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ISOPERIMETRIC INEQUALITIES FOR SOME INTEGRAL

OPERATORS ARISING IN POTENTIAL THEORY

MICHAEL RUZHANSKY AND DURVUDKHAN SURAGAN

Abstract. In this paper we review our previous isoperimetric results for the loga-
rithmic potential and Newton potential operators. The main reason why the results
are useful, beyond the intrinsic interest of geometric extremum problems, is that
they produce a priori bounds for spectral invariants of operators on arbitrary do-
mains. We demonstrate these in explicit examples.

1. Introduction

In a bounded domain of the Euclidean space Ω ⊂ R
d, d ≥ 2, it is well known that

the solution to the Laplacian equation

−∆u(x) = f(x), x ∈ Ω, (1.1)

is given by the Newton potential formula (or the logarithmic potential formula when
d = 2)

u(x) =

∫

Ω

εd(|x− y|)f(y)dy, x ∈ Ω, (1.2)

for suitable functions f with suppf ⊂ Ω. Here

εd(|x− y|) =

{

1
2π

ln 1
|x−y|

, d = 2,
1

(d−2)sd

1
|x−y|d−2 , d ≥ 3,

(1.3)

is the fundamental solution to −∆ and sd =
2π

d
2

Γ(d
2
)
is the surface area of the unit sphere

in R
d.

An interesting question having several important applications is what boundary
conditions can be put on u on the (Lipschitz) boundary ∂Ω so that equation (1.1)
complemented by this boundary condition would have the solution in Ω still given by
the same formula (1.2), with the same kernel εd given by (1.3). It turns out that the
answer to this question is the integral boundary condition

−
1

2
u(x) +

∫

∂Ω

∂εd(|x− y|)

∂ny
u(y)dSy −

∫

∂Ω

εd(|x− y|)
∂u(y)

∂ny
dSy = 0, x ∈ ∂Ω, (1.4)

where ∂
∂ny

denotes the outer normal derivative at a point y on ∂Ω. A converse question

to the one above would be to determine the trace of the Newton potential (1.2) on
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the boundary surface ∂Ω, and one can use the potential theory to show that it has
to be given by (1.4).
The boundary condition (1.4) appeared in M. Kac’s work [13] where he called it

“the principle of not feeling the boundary”. This was further expanded in Kac’s book
[14] with several further applications to the spectral theory and the asymptotics of
the Weyl’s eigenvalue counting function. Independently in [19] T.Sh. Kal’menov
and the second author proved the existence of the boundary condition (1.4) and
as byproduct the eigenvalues and eigenfunctions of the Newton potential (1.2) were
calculated in the 2-disk and in the 3-ball. In general, the boundary value problem
(1.1)-(1.4) has various interesting properties and applications (see, for example, [13,
14], [6], [34],[19], [29] and [33]). The boundary value problem (1.1)-(1.4) can also be
generalised for higher degrees of the Laplacian, see [20, 21]. In the present paper we
consider spectral problems of inverse operators to the nonlocal Laplacian (1.1)-(1.4),
namely the logarithmic potential operator on L2(Ω) defined by

LΩf(x) :=

∫

Ω

1

2π
ln

1

|x− y|
f(y)dy, f ∈ L2(Ω), Ω ⊂ R

2, (1.5)

and the Newton potential operator on L2(Ω) defined by

NΩf(x) :=

∫

Ω

1

(d− 2)sd

1

|x− y|d−2
f(y)dy, f ∈ L2(Ω), Ω ⊂ R

d, d ≥ 3. (1.6)

Spectral properties of the logarithmic and the Newton potential operator have been
considered in many papers (see, e.g. [2], [1], [6], [15], [21], [35], [36] and [37]). In
this paper we are interested in isoperimetric inequalities of these operators, that is
also, in isoperimetric inequalities of the nonlocal Laplacian (1.1)-(1.4). A recent
general review of isoperimetric inequalities for the Dirichlet, Neumann and other
Laplacians was made by Benguria, Linde and Loewe in [5]. In addition to [5], we
refer G. Pólya and G. Szegö [27], Bandle [3] and Henrot [12] for historic remarks
on isoperimetric inequalities, namely the Rayleigh-Faber-Krahn inequality and the
Luttinger inequality.
We review an analogue of the Luttinger inequality for the Newton potential oper-

ator NΩ and provide related explicit examples. It is a particular case of our previous
result with G. Rozenblum in [28] for the Newton potential (see also [30], [32] and [22]
for a non-self adjoint operators). In Section 3 we present:

• Luttinger type inequality for NΩ: The d-ball is a maximizer of the Schatten p-
norm of the Newton potential operator among all domains of a given measure
in R

d, d ≥ 3, for all integer d
2
< p < ∞.

In Section 2, we review the following facts for the logarithmic potential from [31]:

• Rayleigh-Faber-Krahn inequality: The disc is a minimizer of the characteristic
number of the logarithmic potential LΩ with the smallest modulus among all
domains of a given measure.

• Pólya inequality: The equilateral triangle is a minimizer of the first charac-
teristic number of the logarithmic potential LΩ with the smallest modulus
among all triangles of a given area.
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• Luttinger type inequality for LΩ: The disc is a maximizer of the Schatten
p-norm of the logarithmic potential operator among all domains of a given
measure in R

2, for all integer 2 ≤ p < ∞.
• Luttinger type inequality for LΩ in triangles: The equilateral triangle is a
maximizer of the Schatten p-norm of the logarithmic potential operator among
all triangles of a given area in R

2, for all integer 2 ≤ p < ∞.

2. Isoperimetric inequalities for LΩ and examples

In this section we review our results for the logarithmic potential from [31] and for
the Newton potential [28]. Let Ω ⊂ R

2 be an open bounded set. We consider the
logarithmic potential operator on L2(Ω) defined by

LΩf(x) :=

∫

Ω

1

2π
ln

1

|x− y|
f(y)dy, f ∈ L2(Ω), (2.1)

where ln is the natural logarithm and |x − y| is the standard Euclidean distance
between x and y. Clearly, LΩ is compact and self-adjoint. Therefore, all of its
eigenvalues and characteristic numbers are discrete and real. We recall that the
characteristic numbers are inverses of the eigenvalues. The characteristic numbers of
LΩ may be enumerated in ascending order of their modulus,

|µ1(Ω)| ≤ |µ2(Ω)| ≤ ...

where µi(Ω) is repeated in this series according to its multiplicity. We denote the
corresponding eigenfunctions by u1, u2, ..., so that for each characteristic number µi

there is a unique corresponding (normalized) eigenfunction ui,

ui = µi(Ω)LΩui, i = 1, 2, ....

It is known, see for example [19], that the equation

u(x) = LΩf(x) =

∫

Ω

1

2π
ln

1

|x− y|
f(y)dy

is equivalent to the equation

−∆u(x) = f(x), x ∈ Ω, (2.2)

with the nonlocal integral boundary condition

−
1

2
u(x) +

∫

∂Ω

∂

∂ny

1

2π
ln

1

|x− y|
u(y)dSy −

∫

∂Ω

1

2π
ln

1

|x− y|

∂u(y)

∂ny

dSy = 0, x ∈ ∂Ω,

(2.3)
where ∂

∂ny
denotes the outer normal derivative at a point y on the boundary ∂Ω,

which is assumed piecewise C1 here.
Let H be a separable Hilbert space. By S∞(H) we denote the space of compact

operators P : H → H . Recall that the singular numbers {sn} of P ∈ S∞(H) are the
eigenvalues of the positive operator (P ∗P )1/2 (see [11]). The Schatten p-classes are
defined as

Sp(H) := {P ∈ S∞(H) : {sn} ∈ ℓp}, 1 ≤ p < ∞.
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In Sp(H) the Schatten p-norm of the operator P is defined by

‖P‖p :=

(

∞
∑

n=1

spn

)
1

p

, 1 ≤ p < ∞. (2.4)

For p = ∞, we can set
‖P‖∞ := ‖P‖

to be the operator norm of P on H . As outlined in the introduction, we assume that
Ω ⊂ R

2 is an open bounded set and we consider the logarithmic potential operator
on L2(Ω) of the form

LΩf(x) =

∫

Ω

1

2π
ln

1

|x− y|
f(y)dy, f ∈ L2(Ω). (2.5)

It is known that LΩ is a Hilbert-Schmidt operator. By |Ω| we will denote the Lebesque
measure of Ω.

Theorem 2.1. Let D be a disc centred at the origin. Then

‖LΩ‖p ≤ ‖LD‖p (2.6)

for any integer 2 ≤ p ≤ ∞ and any bounded open domain Ω with |Ω| = |D|.

Let us give several examples calculating explicitly values of the right hand side of
(2.6) for different values of p.

Example 2.2. Let D ≡ U be the unit disc. Then by Theorem 2.1 we have

‖LΩ‖p ≤ ‖LU‖p =

(

∞
∑

m=1

3

j2p0,m
+

∞
∑

l=1

∞
∑

m=1

2

j2pl,m

)
1

p

, (2.7)

for any integer 2 ≤ p < ∞ and any bounded open domain Ω with |Ω| = |U |. Here
jkm denotes the mth positive zero of the Bessel function Jk of the first kind of order
k.
The right hand sight of the formula (3.6) can be confirmed by a direct calculation

of the logarithmic potential eigenvalues in the unit disc, see Theorem 3.1 in [2].

Example 2.3. Let D ≡ U be the unit disc. Then by Theorem 2.1 we have

‖LΩ‖ ≤ ‖LU‖ =
1

j201
(2.8)

for any bounded open domain Ω with |Ω| = |U |. Here ‖ · ‖ is the operator norm on
the space L2.

From Corollary 3.2 in [2] we calculate explicitly the operator norm in the right
hand sight of (3.8).
In Theorem 2.1 when p = ∞, the following analogue of the Rayleigh-Faber-Krahn

theorem for the integral operator LΩ is used.

Theorem 2.4. The disc D is a minimizer of the characteristic number of the loga-

rithmic potential LΩ with the smallest modulus among all domains of a given measure,

i.e.

0 < |µ1(D)| ≤ |µ1(Ω)|

for an arbitrary bounded open domain Ω ⊂ R
2 with |Ω| = |D|.
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In Landkof [23] the positivity of the operator LΩ is proved in domains Ω ⊂ U,
where U is the unit disc. In general, LΩ is not a positive operator. For any bounded
open domain Ω the logarithmic potential operator LΩ can have at most one negative
eigenvalue, see Troutman [35] (see also Kac [15]).
In other words Theorem 2.4 says that the operator norm of LΩ is maximized in a

disc among all Euclidean bounded open domains of a given area.
It follows from the properties of the kernel that the Schatten p-norm of the operator

LΩ is finite when p > 1 see e.g. the criteria for Schatten classes in terms of the
regularity of the kernel in [7]. Our techniques do not allow us to prove Theorem
2.1 for 1 < p < 2. In view of the Dirichlet Laplacian case, it seems reasonable to
conjecture that the Schatten p-norm is still maximized on the disc also for 1 < p < 2.
However, In Section 3 by using different method we prove such conjecture for the
Newton potential operator, see also [28].
We can ask the same question of maximizing the Schatten p-norms in the class

of polygons with a given number n of sides. We denote by Pn the class of plane
polygons with n edges. We would like to identify the maximizer for Schatten p-
norms of the logarithmic potential LΩ in Pn. According to the Dirichlet Laplacian
case, it is natural to conjecture that it is the n-regular polygon. Currently, we have
proved this only for n = 3:

Theorem 2.5. The equilateral triangle centred at the origin has the largest Schatten

p-norm of the operator LΩ for any integer 2 ≤ p ≤ ∞ among all triangles of a given

area. More precisely, if △ is the equilateral triangle centred at the origin, we have

‖LΩ‖p ≤ ‖L△‖p (2.9)

for any integer 2 ≤ p ≤ ∞ and any bounded open triangle Ω with |Ω| = |△|.

When p = ∞, Theorem 2.5 implies the following analogue of the Pólya theorem
[26] for the operator LΩ.

Theorem 2.6. The equilateral triangle △ centred at the origin is a minimizer of the

first characteristic number of the logarithmic potential LΩ among all triangles of a

given area, i.e.

0 < |µ1(△)| ≤ |µ1(Ω)|

for any triangle Ω ⊂ R
2 with |Ω| = |△|.

In other words Theorem 2.6 says that the operator norm of LΩ is maximized in an
equilateral triangle among all triangles of a given area.

3. The Newton potential

Let Ω ⊂ R
d, d ≥ 3, be an open bounded set. We consider the Newton potential

operator NΩ : L2(Ω) → L2(Ω) defined by

NΩf(x) :=

∫

Ω

εd(|x− y|)f(y)dy, f ∈ L2(Ω), (3.1)

where εd(|x− y|) = 1
(d−2)sd

1
|x−y|d−2 , d ≥ 3.

Since εd is positive, real and symmetric function, NΩ is a positive self-adjoint
operator. Therefore, all of its eigenvalues and characteristic numbers are positive real
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numbers. We recall that the characteristic numbers are inverses of the eigenvalues.
The characteristic numbers of NΩ may be enumerated in ascending order

0 < µ1(Ω) ≤ µ2(Ω) ≤ . . . ,

where µi(Ω) is repeated in this series according to its multiplicity. We denote the
corresponding eigenfunctions by u1, u2, ..., so that for each characteristic number µi

there is a unique corresponding (normalized) eigenfunction ui,

ui = µi(Ω)NΩui, i = 1, 2, . . . .

This spectral problem has various interesting properties and applications (see [13]
and [34], for example). In particular, one can prove that in the unit ball its spectrum
contains the spectrum of the corresponding Dirichlet Laplacian by using an explicit
calculation (cf. [21]).
Kac [13] proved that

1 = lim
δ→0

∞
∑

j=1

1

1 + µjδ
uj(y)

∫

Ω

uj(x)dx, y ∈ Ω, (3.2)

where µj, j = 1, 2, ..., and uj, j = 1, 2, ..., are the characteristic numbers and the
corresponding normalized eigenfunctions of the Newton potential operator (3.1), re-
spectivelty. The purely analytic fact (3.2) expresses that the expansion of 1 in a
series of orthonormal functions uj is summable to 1 for every y ∈ Ω. In [16] Kac gave
asymptotic formulae for the characteristic numbers in R

d, d ≥ 3. In this section we
discuss some other pure analytic facts for the Newton potential. It should be noted
that similar results are already known for the Dirichlet Laplacian.
By using the Feynman-Kac formula and spherical rearrangement, Luttinger proved

that the ball Ω∗ is the maximizer of the partition function of the Dirichlet Laplacian
among all domains of the same volume as Ω∗ for all positive values of time [25], i.e.

ZD
Ω (t) :=

∞
∑

i=1

exp(−tλD
i (Ω)) ≤ ZD

Ω∗(t) :=

∞
∑

i=1

exp(−tλD
i (Ω

∗)), |Ω| = |Ω∗|, ∀t > 0,

where λD
i (Ω), i = 1, 2, ..., are the eigenvalues of the Dirichlet Laplacian ∆D

Ω in Ω.
The partition function and the Schatten norms are related:

‖∆D
Ω‖

p
p =

1

Γ(p)

∫ ∞

0

tp−1ZD
Ω (t)dt,

where Γ is the gamma function. Hence it easily follows that

‖∆D
Ω‖p ≤ ‖∆D

Ω∗‖p, |Ω| = |Ω∗|, (3.3)

when p > d/2, Ω ⊂ R
d. Here the Schatten p-norm of the Dirichlet Laplacian is

defined by

‖∆D
Ω‖p :=

(

∞
∑

i=1

1

[λD
i ]

p

)p

, d/2 < p < ∞.

The right hand side of the inequality (3.3) gives the exact upper bound of the Schatten
p-norm and it can be calculated explicitly.
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Example 3.1. Let U be the unit disk then

‖∆D
U‖

2
2 = 0.0493....

Therefore, from (3.3) we have

‖∆D
Ω‖

2
2 ≤ 0.0493..., |Ω| = |U |.

This inequality is better than the inequality conjectured in [10]

‖∆D
Ω‖

p
p ≤

Γ(p− d
2
)

Γ(p)

V ol|Ω|
2p

d

(4π)
d
2

, p >
d

2
, (3.4)

which implies that

‖∆D
Ω‖

2
2 ≤ 0.7853...,

when |Ω| = |U |.

However, it is important to note that in (3.4) p is an arbitrary real number greater
than d

2
.

The condition p > d/2 in (3.3) is necessary to absolute convergence of series, but
in case p ≤ d/2 one may use regularization process to get an absolute convergent
series.

Example 3.2 ([8]). In Ω ⊂ R
2 the sum

‖∆D
Ω‖1 =

∞
∑

k=1

1

λD
k (Ω)

= ∞, Ω ⊂ R
2.

However, using the following regularisation we find that if U ≡ Ω ⊂ R2 is the unit
disk then

∞
∑

k=1

(

1

λD
k (U)

−
1

4k

)

= −0.3557....

As usual by |Ω| we will denote the Lebesque measure of Ω.

Theorem 3.3. Let B be a ball centred at the origin, d ≥ 3. Then

‖NΩ‖p ≤ ‖NB‖p (3.5)

for any integer d
2
< p ≤ ∞ and an arbitrary bounded open domain Ω with |Ω| = |B|.

Let us give some examples:

Example 3.4. Let B ≡ U be the unit 3-ball. Then by Theorem 3.3 we have

‖NΩ‖p ≤ ‖NU‖p =





∞
∑

l=0

∞
∑

m=1

2l + 1

j2p
l− 1

2
,m





1

p

, (3.6)

for any real 2 ≤ p < ∞ and any bounded open domain Ω with |Ω| = |U |. Here jkm
denotes the mth positive zero of the Bessel function Jk of the first kind of order k.
The right hand side of the formula (3.6) can be confirmed by a direct calculation of
the characteristic numbers of the Newton potential in the unit 3-ball, see Theorem
4.1 in [2] (cf. [19]).
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Example 3.5. For the Hilbert-Schmidt norm we have

‖NΩ‖2 ≤ ‖NU‖2 =

√

7

48
, (3.7)

for any bounded open domain Ω with |Ω| = |U |, where B ≡ U is the unit 3-ball. Here,
when p = 2, we have calculated the value on the right hand side of the inequality
(3.7) by using the polar representation. We omit the routine technical calculation.

Example 3.6. When p = ∞ by Theorem 3.3 we have

‖NΩ‖op ≤ ‖NB‖op =
4

π2
(3.8)

for any domain Ω with |Ω| = |B|, where Ω∗ ≡ B is the unit ball. Here ‖ · ‖op is the
operator norm of the Newton potential on the space L2.
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