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LOWER BOUNDS FOR OPERATORS ON GRADED LIE

GROUPS

VÉRONIQUE FISCHER AND MICHAEL RUZHANSKY

Résumé. In this note we present a symbolic pseudo-differential calculus on
any graded (nilpotent) Lie group and, as an application, a version of the
sharp G̊arding inequality. As a corollary, we obtain lower bounds for posi-
tive Rockland operators with variable coefficients as well as their Schwartz-
hypoellipticity.

1. Introduction

In this note we present a symbolic pseudo-differential calculus on any graded Lie
group. As applications, we obtain a version of the sharp G̊arding inequality and
results on the Schwartz hypoellipticity for operators in this context.

In the usual Euclidean setting, the positivity of the full symbol is required for the
sharp G̊arding inequality as well as, for instance, for the Fefferman-Phong inequa-
lity. This contrasts with the G̊arding or Melin-Hörmander inequalities, for example,
where knowing the principal (or subprincipal) symbol is sufficient. Thus the latter
inequalities can be proved on manifolds using the standard Hörmander theory of
pseudo-differential operators together with the usual Kohn-Nirenberg quantisation
on Rn. Since the geometric control of the full symbol of an operator is impossible
with these tools in general, the study of sharp G̊aring inequalities appears limited.
However, the sharp G̊arding inequality on compact Lie groups was recently establi-
shed in [13]. This approach uses the notion of a full matrix-valued symbol defined
in terms of the representation theory of the group. In this note we explain how
we follow the same strategy in the case of the Heisenberg group or more general
nilpotent Lie groups.

The pseudo-differential calculus that we define is different from the several
pseudo-differential calculi already developed on the Heisenberg group : see e.g.
Taylor [15] and [16] for symbol classes coming from standard Hörmander classes
though the exponential mapping ; Bahouri, Fermanian-Kammerer and Gallagher
[1] for classes defined in terms of explicit formulae coming from the Schrödinger
representation ; or Beals and Greiner [2] or Ponge [11] for different types of analy-
sis on the Heisenberg manifolds. On more general nilpotent groups, Christ, Geller,
Glowacki and Polin [4] proposed an approach to pseudo-differential operators, ho-
wever based on the properties of kernels and not on a symbolic calculus. Following
Ruzhansky and Turunen [14] and [12], we define symbol classes directly on the
group. As such, our approach can be extended for general graded nilpotent Lie
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groups, and by developing the symbolic calculus and the Friedrichs approximation
on the group, we obtain the corresponding sharp G̊arding inequality and Schwartz
hypoellipticity results.

While the symbol classes in [12] are based on the spectral theory of the Laplace-
Beltrami operator, here, it is not available and it becomes natural to use the
sub-Laplacian on stratified groups or more general Rockland operators on graded
groups. Moreover, surpassing [13], since a dilation structure is present, we establish
the sharp G̊arding inequality for suitable (ρ, δ) classes of operators by establishing
a Calderón–Vaillancourt type theorem in this context. This is, in fact, the best
known lower bound available in the (ρ, δ)-setting already on Rn.

The appearing operators are Calderón–Zygmund in the sense of Coifman and
Weiss [5, ch. III], so that Lp results follow as well. In Section 2 we fix the notation
concerning Lie groups that we are working on. In Section 3 we formulate the results.

2. Preliminaries

Let us first briefly recall the necessary notions and set some notation. In general,
we will be concerned with graded Lie groups G which means that G is a connected
and simply connected Lie group (of step s > 1) with the gradation of its Lie algebra

g given by g =
∞

⊕
ℓ=1

gℓ with [gℓ, gℓ′ ] ⊂ gℓ+ℓ′ for any ℓ, ℓ′ ∈ N, where the gℓ, ℓ = 1, 2, . . .

are vector subspaces of g, almost all equal to {0}. This implies that the group G is
nilpotent. If the whole g is generated by g1 in this way, the group G is said to be
stratified.

Let {X1, . . .Xn1} be a basis of g1 (this basis is possibly reduced to {0}), let
{Xn1+1, . . . , Xn1+n2} a basis of g2 and so on, so that we obtain a basis X1, . . . , Xn

of g adapted to the gradation. Via the exponential mapping expG : g → G, we
identify the points (x1, . . . , xn) ∈ Rn with the points x = expG(x1X1+ · · ·+xnXn)
in G. This leads to a corresponding Lebesgue measure on g and the Haar measure
dx on the group G. We define the spaces of Schwartz functions S(G) and tempered
distributions S ′(G) of the group G as those on Rn. The coordinate function x =
(x1, . . . , xn) ∈ G 7→ xj ∈ R is denoted by xj . More generally we define for every
multi-index α ∈ Nn

0 , x
α := xα1

1 xα2
2 . . . xαn

n , as a function on G. Similarly we set
Xα = Xα1

1 Xα2
2 · · ·Xαn

n in the universal enveloping Lie algebra of g.
For any r > 0, we define the linear mapping Dr : g → g by DrX = rℓX for

every X ∈ gℓ, ℓ ∈ N. Then the Lie algebra g is endowed with the family of dilations
{Dr, r > 0} and becomes a homogeneous Lie algebra in the sense of [8]. The weights
of the dilations are the integers υ1, . . . , υn given by DrXj = rυjXj , j = 1, . . . , n.
The associated group dilations are defined by

r · x := (rυ1x1, r
υ2x2, . . . , r

υnxn), x = (x1, . . . , xn) ∈ G, r > 0.

In a canonical way this leads to the notions of homogeneity for functions and opera-
tors. For instance the degree of homogeneity of xα and Xα, viewed respectively as
a function and a differential operator on G, is [α] =

∑
j υjαj . Indeed, let us recall

that a vector of g defines a left-invariant vector field on G and more generally that
the universal enveloping Lie algebra of g is isomorphic with the left-invariant diffe-
rential operators ; we keep the same notation for the vectors and the corresponding
operators.

The dimension of G is n =
∑

ℓ nℓ while its homogeneous dimension is Q =∑
ℓ ℓnℓ = υ1 + υ2 + . . .+ υn.
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We denote by Ĝ the set of equivalence classes of (continuous) irreducible unitary
representations of G. We will often identify a representation of G with its equiva-
lence class. We will also keep the same notation for the corresponding infinitesimal

representation. For π ∈ Ĝ, we denote by Hπ the representation space of π and by
H∞

π its subspace of smooth vectors. For f ∈ L1(G), we define its Fourier transform

at π ∈ Ĝ by f̂(π) =
∫
G
f(g)π(g)∗dg, with the integral understood in the Bochner

sense. Denoting by µ the Plancherel measure on Ĝ, the inverse Fourier formula
holds :

f(g) =

∫

Ĝ

trace
(
π(g)f̂(π)

)
dµ(π) when

∫

Ĝ

trace
∣∣∣f̂(π)

∣∣∣ dµ(π) < ∞ .

Let R be a positive (left) Rockland operator on G ; this means that R is a left-
invariant differential operator, homogeneous of degree ν necessarily even, positive

in the operator sense, and such that for every non-trivial π ∈ Ĝ the operator π(R)
is injective on H∞

π . The operator R admits an essentially self-adjoint extension on
C∞

0 (G) (see [8]), and we will still denote this extension by R. Examples of such
operators are given in the stratified case by R = −L where L =

∑
1≤j≤n1

X2
i is a

Kohn-sub-Laplacian, and in the graded case by the operators
∑

1≤j≤nj

(−1)
νo
υj X

2 νo
υj

j and
∑

1≤j≤nj

X
4 νo

υj

j ,

where νo denotes some common multiple of υ1, . . . , υn. In fact our class of operators
do not depend on the choice of such an operator R.

3. Results

We aim at defining the symbol classes in terms of the operators R as above.

Definition 3.1. A symbol is a family of operators σ = {σ(x, π) : x ∈ G, [π] ∈ Ĝ},
such that

1. for each x ∈ G, the family {σ(x, π), π ∈ Ĝ} is a µ-measurable field of operators
H∞

π → Hπ ;
2. there exist two constants γ1, γ2 ∈ R such that for every x ∈ G, the operator

π(I +R)γ1σ(x, π)π(I +R)γ2 is bounded on Hπ uniformly in π ∈ Ĝ ;

3. for any π ∈ Ĝ and any u, v ∈ Hπ, the scalar function x 7→ (σ(x, π)u, v)Hπ
is

smooth on G.

Here, the powers π(I +R)γ are defined by the spectral theorem for the positive
operator π(R). The existence of γ1, γ2 in the second condition is used to guarantee
that the following formula makes sense :

Tf(x) =

∫

Ĝ

trace
(
π(x)σ(x, π)f̂ (π)

)
dµ(π) , f ∈ S(G), x ∈ G ;

indeed such operator T = Op(σ) is well-defined and continuous S(G) → S ′(G). We
note that if the operator T is left-invariant, then its symbol is independent of x.

Definition 3.2. The difference operators ∆α, α ∈ Nn
0 , are densely defined on the

C∗-algebra of the group via

(∆αf̂)(π) := (̂xαf)(π) , f ∈ S(G) .

Let now m ∈ R and 0 ≤ δ ≤ ρ ≤ 1 with δ 6= 1.
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Definition 3.3. The symbol class Sm
ρ,δ is defined as the set of symbols σ satisfying

for all α, β ∈ Nn
0 and every γ ∈ R :

(3.1) sup
x∈G,π∈Ĝ

‖π(I +R)
ρ[α]−m−δ[β]+γ

ν Xβ
x∆

ασ(x, π)π(I +R)−
γ
ν ‖op < ∞.

(The supremum over π is in fact the essential supremum over the Plancherel measure
µ.)

It is easy to see that if m1 ≤ m2, δ1 ≤ δ2 and ρ1 ≥ ρ2, then Sm1

ρ1,δ1
⊂ Sm2

ρ2,δ2
.

Furthermore, the expressions in (3.1) define a Fréchet topology on the linear space
Sm
ρ,δ.

In the abelian case, that is, Rn endowed with the addition law and R = −L, L
being the Laplace operator, Sm

ρ,δ boils down easily to the usual Hörmander class.
However our initial motivation did not come from the abelian case : we wanted
to define the difference operators and the symbol classes in analogy with the ones
defined in [14] on compact Lie groups. In this case, a definition similar to (3.1)
would formally give the same classes of symbols defined in [14] since, R = −L, L
being the Laplace-Beltrami operator, the operator π(I +R) is scalar. In our case,
i.e. G being a graded non-abelian Lie group, the operator R is not even central and
the introduction of γ in (3.1) assures that

⋃
m∈R

Sm
ρ,δ is an algebra.

We have the following properties for the operators classes Ψm
ρ,δ := Op(Sm

ρ,δ)

defined using the quantisation procedure σ 7→ Op(σ) described above.

Theorem 3.4. Let 0 ≤ δ ≤ ρ ≤ 1. We have the following properties :
(1) The symbol classes is an algebra of operators

⋃
m∈R

Sm
ρ,δ stable by taking the

adjoint. Each vector space Sm
ρ,δ does not depend on the choice of the positive

Rockland operator R.
(2) For ρ 6= 0, the operator class

⋃
m∈R

Ψm
ρ,δ is an algebra stable by taking the

adjoint.

(3) For any α ∈ Nn
0 , we have Xα ∈ Ψ

[α]
1,0.

(4) For any positive Rockland operator of homogeneous degree ν, we have (I +
R)

m
ν ∈ Ψm

1,0.

(5) If ρ ∈ [0, 1) then the operators in Ψ0
ρ,ρ are continuous on L2(G).

(6) Let ρ 6= 0. The integral kernel K(x, y) of an operator T ∈ Ψm
ρ,δ is smooth

on (G × G)\{(x, y) : x = y}. It is of Calderón-Zygmund type in the sense of
Coifman and Weiss [5, ch.III]. It decreases rapidly as |xy−1| → ∞ (here we
have fixed a homogeneous norm | · | on G, i.e. a continuous function, homoge-
neous of degree one and vanishing only at 0) : i.e. for any M > 0 there exists
CM > 0 such that

|xy−1| ≥ 1 =⇒ |K(x, y)| ≤ CM |xy−1|−M .

At the diagonal it satisfies

|xy−1| ≤ 1 =⇒ |K(x, y)| ≤ C|xy−1|−
Q+m

ρ .

By [5, ch.III théorème 2.4] Property (6) implies that the operators in Ψ0
ρ,δ, 1 ≥

ρ ≥ δ ≥ 0, ρ 6= 0, δ 6= 1, are continuous on Lp(G), 1 < p < ∞.
By Properties (2) and (4), any operator in Ψm

ρ,δ, 1 ≥ ρ ≥ δ ≥ 0, ρ 6= 0, δ 6= 1,

is continuous on the natural Sobolev spaces (denoted by L2
a(G)) associated with

the dilations and the loss of derivatives is controlled by the order m. The Sobolev
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space L2
a(G) is defined as the set of tempered distribution f ∈ S ′(G) such that

(I +R)
a
ν f ∈ L2(G) but does not depend on the choice of R. These Sobolev spaces

enjoy properties similar to the stratified case proved by Folland [7], in particular
for interpolation (see [6]).

We now give the sharp G̊arding inequality.

Theorem 3.5. Let 0 ≤ δ ≤ ρ ≤ 1, ρ 6= 0, δ 6= 1, and let T ∈ Ψm
ρ,δ with symbol

σ = {σ(x, π)}. Assume that each {σ(x, π)} of T is non-negative on Hπ (in the
operator sense). Assume also that there exists a Rockland operator R such that
each σ(x, π) commutes with the spectral measure of π(R) for every x ∈ G and

almost every π ∈ Ĝ. Then there exists C > 0 such that for every f ∈ S(G) we have

Re(Tf, f)L2(G) ≥ −C‖f‖L2
m−(ρ−δ)

2

(G).

The class includes
– the variable coefficient Kohn-sub-Laplacians and Rockland operators of the
form a(x)R, with a(x) ≥ 0 satisfying Xαa ∈ L∞(G) for all α ∈ Nn

0 ,
– the multipliers φ(R) for a smooth function φ : [0,∞) 7→ [0,∞) satisfying

(3.2) ∀a ∈ N0 ∃C = Ca > 0 ∀λ ≥ 0 |∂α
λφ(λ)| ≤ C(1 + λ)

m
ν
−a,

– more generally the operators with symbols given by σ(x, π) = φx(π(R)) with
(x, λ) 7→ φx(λ) being non-negative and smooth on G×[0,∞), and φx satisfying
(3.2) at each x with a constant C independent of x.

The condition on the commutation with the spectral measure of π(R) seems to
be reasonable : in the corresponding version of the sharp G̊arding inequality on
compact Lie groups in [13] or in the abelian case, this condition is automatically
satisfied there because if R = −L and L is the Laplacian then π(R) is central.

In [9], Helffer and Nourigat proved that R and, equivalently, I +R are hypoel-
liptic. We finally give the result stating that the Schwartz version of such hypoel-
lipticity is also true.

Theorem 3.6. The operator I+R is Schwartz-hypoelliptic, i.e. for f ∈ S ′(G), the
condition (I +R)f ∈ S(G) implies f ∈ S(G).

In fact, our symbolic calculus allows the construction of a parametrix for the
operator I+R from which both the hypoellipticity and the Schwartz hypoellipticity
follow.
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