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GLOBAL QUANTIZATION OF PSEUDO-DIFFERENTIAL

OPERATORS ON COMPACT LIE GROUPS, SU(2) AND 3-SPHERE

MICHAEL RUZHANSKY AND VILLE TURUNEN

Abstract. Global quantization of pseudo-differential operators on compact Lie
groups is introduced relying on the representation theory of the group rather than
on expressions in local coordinates. Operators on the 3-dimensional sphere S3 and
on group SU(2) are analysed in detail. A new class of globally defined symbols is
introduced giving rise to the usual Hörmander’s classes of operators Ψm(G), Ψm(S3)
and Ψm(SU(2)). Properties of the new class and symbolic calculus are analysed.
Properties of symbols as well as L

2-boundedness and Sobolev L
2–boundedness of

operators in this global quantization are established on general compact Lie groups.
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1. Introduction

In this paper we investigate a global quantization of operators on compact Lie
groups. We develop a non-commutative analogue of the Kohn–Nirenberg quantiza-
tion of pseudo-differential operators ([12]). The introduced matrix-valued full sym-
bols turn out to have a number of unexpected properties. Among other things, the
introduced approach provides a characterization of the Hörmander’s class of pseudo-
differential operators on compact Lie groups using a global quantization of operators

Date: October 28, 2018.
1991 Mathematics Subject Classification. Primary 35S05; Secondary 22E30.
Key words and phrases. Pseudo-differential operators, compact Lie groups, representations,

SU(2), microlocal analysis.
The first author was supported in part by the EPSRC Leadership Fellowship EP/G007233/1.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/188649026?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/0812.3961v1


2 MICHAEL RUZHANSKY AND VILLE TURUNEN

relying on the representation theory rather than on the usual expressions in local
coordinate charts. The cases of the 3-dimensional sphere S3 and Lie group SU(2) are
analysed in detail and we show that pseudo-differential operators from Hörmander’s
classes Ψm on these spaces have matrix-valued symbols with a remarkable rapid off-
diagonal decay property.
There have been many works aiming at the understanding of pseudo-differential

operators on Lie groups, see e.g. work on left-invariant operators [26, 15, 6], convolu-
tion calculus on nilpotent Lie groups [14], L2-boundedness of convolution operators
related to the Howe’s conjecture [11, 7], and many others. In particular, Theorem 3.1
allows x-dependence and also removes the decay condition on the symbol in the set-
ting of general compact Lie groups (a possibility of the relaxation of decay conditions
for derivatives of symbols with respect to the dual variable for the L2-boundedness
was conjectured in [11]).
The present research is inspired by M. Taylor’s work [28], who used the exponential

mapping to rely on pseudo-differential operators on the Lie algebra which can be
viewed as the Euclidean space with the corresponding standard theory of pseudo-
differential operators. However, the approach developed in this paper is different
from that of [28, 29] since it relies on the group structure directly and thus we do
not need to work in neighbourhoods of the neutral element and can approach global
symbol classes directly.
As usual, Sm1,0 ⊂ C∞(Rn × Rn) refers to the Euclidean space symbol class, defined

by the symbol inequalities

(1.1)
∣∣∂αξ ∂βxp(x, ξ)

∣∣ ≤ C 〈ξ〉m−|α|,

for all multi-indices α, β ∈ Nn
0 , N0 = {0} ∪ N, where 〈ξ〉 = (1 + |ξ|2)1/2, and where

constant C is independent of x, ξ ∈ Rn but may depend on α, β, p,m. On a compact
Lie group G we define the class Ψm(G) to be the usual Hörmander’s class of pseudo-
differential operators of order m. Thus, operator A belongs to Ψm(G) if its integral
kernel K(x, y) is smooth outside the diagonal x = y and if in (all) local coordinates
operator A is a pseudo-differential operator on Rn with symbol p(x, ξ) satisfying
estimates (1.1). We refer to [9, 10] for the historic development of this subject.
It is a natural idea to build pseudo-differential operators out of smooth families of

convolution operators on Lie groups. In this paper, we strive to develop the convo-
lution approach into a symbolic quantization, which always provides a much more
convenient framework for the analysis of operators. For this, our analysis of operators
and their symbols is based on the representation theory of Lie groups. This leads to
the description of the full symbols of pseudo-differential operators on Lie groups as
sequences of matrices of growing sizes equal to dimensions of representations. More-
over, the analysis is not confined to neighborhoods of the neutral element since it
does not rely on the exponential mapping and its properties. We also characterize,
in terms of the introduced quantizations, standard Hörmander’s classes Ψm(G) on
Lie groups. One of the advantages of the presented approach is that we obtain a
notion of full (global) symbols compared with only principal symbols available in the
standard theory via localizations.
To illustrate some ideas, let us now briefly formulate one of the outcomes of this

approach in the case of the 3-dimensional sphere S3. Before that we note that if
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we have a closed simply-connected 3-dimensional manifold M , then by the recently
resolved Poincaré conjecture there is a global diffeomorphism M ≃ S3 ≃ SU(2)
that turns M into a Lie group with a group structure induced by S3 (or by SU(2)).
Thus, we can use the approach developed in this paper to immediately obtain the
corresponding global quantization of operators on M with respect to this induced
group product. In fact, all the formulae remain completely the same since the unitary
dual of SU(2) (or S3 in the quaternionic R4) is mapped by this diffeomorphism as
well; for an example of this construction in the case of S3 ≃ SU(2) see Section 11.
The choice of the group structure on M may be not unique and is not canonical, but
after using the machinery that we develop for SU(2), the corresponding quantization
can be described entirely in terms of M , for an example see Theorem 1.1 for S3

and Theorem 10.4 for SU(2). In this sense, as different quantizations of operators
exist already on Rn depending on the choice of the underlying structure (e.g. Kohn–
Nirenberg quantization, Weyl quantizations, etc.), the possibility to choose different
group products on M resembles this. In a subsequent paper we will carry out the
detailed analysis of operators on homogeneous spaces and on higher dimensional
spheres Sn ≃ SO(n + 1)/SO(n) viewed as homogeneous spaces. Although we do not
have general analogues of the diffeomorphic Poincaré conjecture in higher dimensions,
this will cover cases when M is a convex surface or a surface with positive curvature
tensor, as well as more general manifolds in terms of their Pontryagin class, etc.
To fix the notation for the Fourier analysis on S3, let tl : S3 → U(2l + 1) ⊂

C(2l+1)×(2l+1), l ∈ 1
2
N0, be a family of group homomorphisms, which are the irreducible

continuous (and hence smooth) unitary representations of S3 when it is endowed
with the SU(2) structure via the quaternionic product, see Section 11 for details.

The Fourier coefficient f̂(l) of f ∈ C∞(S3) is defined by f̂(l) =
∫
S3
f(x) tl(x)∗ dx,

where the integration is performed with respect to the Haar measure, so that f̂(l) ∈
C(2l+1)×(2l+1). The corresponding Fourier series is given by

f(x) =
∑

l∈ 1

2
N0

(2l + 1) Tr
(
f̂(l) tl(x)

)
.

Now, if A : C∞(S3) → C∞(S3) is a continuous linear operator, we define its full
symbol as a mapping

(x, l) 7→ σA(x, l), σA(x, l) = tl(x)∗(Atl)(x) ∈ C(2l+1)×(2l+1).

Then we have the representation of operator A in the form

Af(x) =
∑

l∈ 1

2
N0

(2l + 1) Tr
(
tl(x) σA(x, l) f̂(l)

)
,

see Theorem 2.4. We also note that if

Af(x) =

∫

S3

KA(x, y) f(y) dy =

∫

S3

f(y) RA(x, y
−1x) dy,

where RA is the right convolution kernel of A, then σA(x, l) =
∫
S3
RA(x, y) t

l(y)∗ dy
by Theorem 2.5, where, as usual, the integration is performed with respect to the
Haar measure with a standard distributional interpretation.
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One of the arising fundamental questions is what condition on the matrix symbols
σA characterize operators from Hörmander’s class Ψm(S3). For this, we introduce
symbol class Sm(S3). We write σA ∈ Sm(S3) if the corresponding kernel KA(x, y) is
smooth outside the diagonal x = y and if we have the estimate

(1.2)
∣∣△α

l ∂
β
xσAu

(x, l)ij
∣∣ ≤ CAαβmN (1 + |i− j|)−N(1 + l)m−|α|,

for every N ≥ 0, every u ∈ S3, and all multi-indices α, β, where symbol σAu
is the

symbol of operator Auf = A(f ◦ ϕu) ◦ ϕ−1
u , where ϕu(x) = xu is the quaternionic

product. Symbols of Au and A can be shown to be related by formula σAu
(x, l) =

tl(u)∗σA(xu
−1, l) tl(u). We notice that imposing the same conditions on all symbols

σAu
in (1.2) simply refers to the well-known fact that the class Ψm(S3) should be

in particular “translation”-invariant (i.e. invariant under the changes of variables
induced by quanternionic products ϕu), namely that A ∈ Ψm(S3) if and only if
Au ∈ Ψm(S3), for all u ∈ S3. Condition (1.2) is the growth condition with respect
to the quantum number l combined with a rather striking condition that matrices
σA(x, l) must have a rapid off-diagonal decay. We also write△α

l = △α1

+ △α2

− △α3

0 , where
operators △+,△−,△0 are discrete difference operators acting on matrices σA(x, l) in
variable l, and explicit formulae for them and their properties are given in Section 6.
With this definition, we have the following characterization:

Theorem 1.1. We have A ∈ Ψm(S3) if and only if σA ∈ Sm(S3).

The proof of this theorem is based on the detailed analysis of pseudo-differential
operators and their symbols on Lie group SU(2) where we can use its representation
theory and geometric information to derive the corresponding characterization of
pseudo-differential operators. We note that this approach works globally on the
whole sphere, since the version of the Fourier analysis is different from the one in e.g.
[24, 27, 25] which covers only a hemisphere, with singularities at the equator.
In our analysis on a Lie group G, at some point we have to make a choice whether to

work with left- or right-convolution kernels. Since left-invariant operators on C∞(G)
correspond to right-convolutions f 7→ f ∗ k, once we decide to identify the Lie al-
gebra g of G with the left-invariant vector fields on G, it becomes most natural to
work with right-convolution kernels in the sequel, and to define symbols as we do in
Definition 2.3.
Finally, we mention that the more extensive analysis can be carried out in the

case of commutative Lie groups. The main simplification in this case is that full
symbols are just complex-valued scalars (as opposed to being matrix-valued in the
non-commutative case) because the continuous irreducible unitary representations are
all one-dimensional. In particular, we can mention the well-known fact that pseudo-
differential operators A ∈ Ψm(Tn) on the n-torus can be globally characterised by
conditions

(1.3)
∣∣△α

η∂
β
xp(x, η)

∣∣ ≤ C (1 + |η|)m−|α|,

for all η ∈ Zn, and all multi-indices α, β ∈ Nn
0 , where difference operators △α

η =
△α1

η1 · · ·△αn
ηn are defined by △ηjp(x, η) = p(x, η + ej) − p(x, η), (ej)k = δjk, for all

1 ≤ j, k ≤ n, etc. If we denote by Sm(Tn×Zn) the class of functions p : Tn×Zn → C

satisfying (1.3), then we have OpSm(Tn × Zn) = Ψm(Tn), see e.g. [1, 13, 33, 16, 17]
with different proofs, as well as numerical application of this description in e.g. [20,
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21]. We note that in [17], more general symbol classes as well as analogues of Fourier
integral operators on the torus and toroidal microlocal analysis were developed using
the so-called toroidal quantization, which is the torus version of the quantization
developed here.
It is also known that globally defined symbols of pseudo-differential operators can

be introduced on manifolds in the presence of a connection which allows one to use a
suitable globally defined phase function, see e.g. [35, 19, 23]. However, on a compact
Lie groups the use of the groups structure allows one to develop a theory parallel
to those of Rn and Tn in the sense that the Fourier analysis is well adopted to the
underlying representation theory. Some elements of such theory were discussed in
[32] and in the PhD thesis of the second author, and a consistent development from
different points of view will eventually appear in [18].
The global quantization introduced in this paper provides a relatively easy to use

approach to deal with problems on Sn (and on more general Lie groups) which depend
on lower order terms of the symbol. Thus, applications to global hypoellipticity,
global solvability and other problems in the global setting will appear in the sequel
of this paper.
In this paper, the commutator of matrices X, Y ∈ Cn×n will be denoted by [X, Y ] =

XY − Y X. On SU(2), the conventional abbreviations in summation indices are

∑

l

=
∑

l∈ 1

2
N0

,
∑

l

∑

m,n

=
∑

l∈ 1

2
N0

∑

|m|≤l, l+m∈Z

∑

|n|≤l, l+n∈Z

,

where N0 = {0} ∪ N = {0, 1, 2, · · · }. The space of all linear mappings from a finite
dimensional vector space H to itself will be denoted by End(H). As usual, a mapping
U ∈ L(H) is called unitary if U∗ = U−1 and the space of all unitary linear mappings
on a finite dimensional inner product space H will be denoted by U(H).

2. Full symbols on general compact Lie groups

Let G be a compact Lie group, not necessarily just SU(2). Let us endow D(G) =
C∞(G) with the usual test function topology. For a continuous linear operator A :
C∞(G) → C∞(G), let KA, LA, RA ∈ D′(G × G) denote respectively the Schwartz,
left-convolution and right-convolution kernels, i.e.

(2.1) Af(x) =

∫

G

KA(x, y) f(y) dy =

=

∫

G

LA(x, xy
−1) f(y) dy =

∫

G

f(y) RA(x, y
−1x) dy

in the sense of distributions. To simplify the notation in the sequel, we will often write
integrals in the sense of distributions, with a standard distributional interpretation.
Notice that

RA(x, y) = LA(x, xyx
−1),

and that left-invariant operators on C∞(G) correspond to right-convolutions f 7→
f ∗ k. Since we identify the Lie algebra g of G with the left-invariant vector fields on
G, it will be most natural to study right-convolution kernels in the sequel.
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Let us begin with fixing the notation concerning Fourier series on a compact group
G (for general background on the representation theory we refer to e.g. [8]). In
the sequel, let Rep(G) denote the set of all strongly continuous irreducible unitary
representations of G. In this paper, whenever we mention unitary representations
(of a compact Lie group G), we always mean strongly continuous irreducible unitary

representations, which are then also automatically smooth. Let Ĝ denote the unitary
dual of G, i.e. the set of equivalence classes of irreducible unitary representations

from Rep(G). Let [ξ] ∈ Ĝ denote the equivalence class of an irreducible unitary
representation ξ : G → U(Hξ); the representation space Hξ is finite-dimensional
since G is compact, and we set dim(ξ) = dimHξ. We will always equip compact
Lie groups with the Haar measure, i.e. the uniquely determined bi-invariant Borel

regular probability measure. Let us define the Fourier coefficient f̂(ξ) ∈ End(Hξ) of
f ∈ L1(G) by

(2.2) f̂(ξ) :=

∫

G

f(x) ξ(x)∗ dx;

more precisely,

(f̂(ξ)u, v)Hξ
=

∫

G

f(x) (ξ(x)∗u, v)Hξ
dx =

∫

G

f(x) (u, ξ(x)v)Hξ
dx

for all u, v ∈ Hξ, where (·, ·)Hξ
is the inner product of Hξ. Notice that ξ(x)∗ =

ξ(x)−1 = ξ(x−1).

Remark 2.1. Let U ∈ Hom(η, ξ) be an intertwining isomorphism, i.e. let U : Hη →
Hξ be a bijective unitary linear mapping such that Uη(x) = ξ(x)U for every x ∈ G.
Then we have

(2.3) f̂(η) = U−1f̂(ξ) U ∈ End(Hη).

Let us also consider the inner automorphisms

φu = (x 7→ u−1xu) : G→ G,

where u ∈ G. If ξ ∈ Rep(G) then we also have

(2.4) f̂ ◦ φu(ξ) =
∫

G

f(u−1xu) ξ(x)∗ dx =

∫

G

f(x) ξ(uxu−1)∗ dx

= ξ(u)

∫

G

f(x) ξ(x)∗ dx ξ(u)∗ = ξ(u) f̂(ξ) ξ(u)∗.

Remark 2.2. If f, g ∈ L1(G) then

f̂ ∗ g(ξ) =
∫

G

f ∗ g(x) ξ(x)∗ dx =

∫

G

∫

G

f(xy−1)g(y) dy ξ(x)∗ dx =

=

∫

G

g(y) ξ(y)∗
∫

G

f(xy−1) ξ(xy−1)∗ dx dy = ĝ(ξ) f̂(ξ),

which in general differs from f̂(ξ) ĝ(ξ). This order exchange is due to the definition
of the Fourier coefficients, where we chose the integration of the function with respect
to ξ(x)∗ instead of ξ(x). This choice actually serves us well, as we chose to identify
the Lie algebra g with left-invariant vector fields on the Lie group G: namely, a
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left-invariant continuous linear operator A : C∞(G) → C∞(G) can be presented as a
right-convolution operator Ca = (f 7→ f ∗ a), resulting in convenient expressions like

ĈaCbf = â b̂ f̂ .

If ξ : G → U(d) is an irreducible unitary matrix representation then f̂(ξ) ∈ Cd×d

in (2.2) has matrix elements

f̂(ξ)mn =

∫

G

f(x) ξ(x)nm dx ∈ C, 1 ≤ m,n ≤ d,

where the matrix elements are calculated with respect to the standard basis of Cd.

If here f ∈ L2(G) then f̂(ξ)mn = (f, ξ(x)nm)L2(G), and by the Peter–Weyl Theorem

(2.5) f(x) =
∑

[ξ]∈ bG

dim(ξ) Tr
(
ξ(x) f̂(ξ)

)
=
∑

[ξ]∈ bG

dim(ξ)

dim(ξ)∑

m,n=1

ξ(x)nm f̂(ξ)mn

for almost every x ∈ G, where the summation is understood so that from each class

[ξ] ∈ Ĝ we pick just (any) one representative ξ ∈ [ξ]. The choice of a representation
from the same representation class is irrelevant due to formula (2.3) and the presence
of the trace in (2.5).

Definition 2.3 (Symbols of pseudo-differential operators on G). Let ξ : G→ U(Hξ)
be an irreducible unitary representation. The symbol of a linear continuous operator
A : C∞(G) → C∞(G) at x ∈ G and ξ ∈ Rep(G) is defined by σA(x, ξ) = r̂x(ξ) ∈
End(Hξ), where

rx(y) = RA(x, y)

is the right convolution kernel of A as in (2.1). Hence

(2.6) σA(x, ξ) =

∫

G

RA(x, y) ξ(y)
∗ dy

in the sense of distributions, and operator A can be represented by its symbol:

Theorem 2.4. Let the symbol σA of a continuous linear operator A : C∞(G) →
C∞(G) be defined as in Definition 2.3. Then

(2.7) Af(x) =
∑

[ξ]∈ bG

dim(ξ) Tr
(
ξ(x) σA(x, ξ) f̂(ξ)

)
.

for every f ∈ C∞(G) and x ∈ G.

Proof. Let us define a right-convolution operatorAx0 ∈ L(C∞(G)) by kernel RA(x0, y) =
rx0(y), i.e. by

Ax0f(x) :=

∫

G

f(y) rx0(y
−1x) dy = (f ∗ rx0)(x).

Thus σAx0
(x, ξ) = r̂x0(ξ) = σA(x0, ξ), so that by (2.5) we have

Ax0f(x) =
∑

[ξ]∈ bG

dim(ξ) Tr
(
ξ(x) Âx0f(ξ)

)
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=
∑

[ξ]∈ bG

dim(ξ) Tr
(
ξ(x) σA(x0, ξ) f̂(ξ)

)
,

where we used that f̂ ∗ rx0 = r̂x0 f̂ by Remark 2.2. This implies the result, because
Af(x) = Axf(x). �

For a symbol σA, the corresponding operator A defined by (2.7) will be also denoted
by Op(σA).
Thus, if ξ : G→ U(dim(ξ)) are irreducible unitary matrix representations then

Af(x) =
∑

[ξ]∈ bG

dim(ξ)

dim(ξ)∑

m,n=1

ξ(x)nm




dim(ξ)∑

k=1

σA(x, ξ)mk f̂(ξ)kn


 .

Alternatively, setting Aξ(x)mn := (A(ξmn))(x), we have

(2.8) σA(x, ξ)mn =

dim(ξ)∑

k=1

ξkm(x) (Aξkn)(x),

1 ≤ m,n ≤ dim(ξ), which follows from the following theorem:

Theorem 2.5. Let the symbol σA of a continuous linear operator A : C∞(G) →
C∞(G) be defined as in Definition 2.3. Then

(2.9) σA(x, ξ) = ξ(x)∗(Aξ)(x).

Proof. Working with representations ξ : G→ U(dim(ξ)), we have

dim(ξ)∑

k=1

ξkm(x) (Aξkn)(x) =
∑

k

ξkm(x)
∑

[η]∈ bG

dim(η) Tr
(
η(x) σA(x, η) ξ̂kn(η)

)

=
∑

k

ξkm(x)
∑

[η]∈ bG

dim(η)
∑

i,j,l

η(x)ij σA(x, η)jl ξ̂kn(η)li

=
∑

k,j

ξkm(x) ξ(x)kj σA(x, ξ)jn

= σA(x, ξ)mn,

where if η ∈ [ξ] in the sum, we take η = ξ, so that ξ̂kn(η)li = 〈ξkn, ηil〉L2 , which equals
1

dim ξ
if ξ = η, k = i and n = l, and zero otherwise. �

Remark 2.6. The symbol of A ∈ L(C∞(G)) is a mapping

σA : G× Rep(G) →
⋃

ξ∈Rep(G)

End(Hξ),

where σA(x, ξ) ∈ End(Hξ) for every x ∈ G and ξ ∈ Rep(G). However, it can be

viewed as a mapping on the space G × Ĝ. Indeed, let ξ, η ∈ Rep(G) be equivalent
via an intertwining isomorphism U ∈ Hom(ξ, η): i.e. such that there exists a linear
unitary bijection U : Hξ → Hη such that η(x) U = U ξ(x) for every x ∈ G, that is

η(x) = U ξ(x) U∗. Then by Remark 2.1 we have f̂(η) = U f̂(ξ) U∗, and hence also

σA(x, η) = U σA(x, ξ) U
∗.



QUANTIZATION OF PSEUDO-DIFFERENTIAL OPERATORS ON SU(2) AND S3 9

Therefore, taking any representation from the same class [ξ] ∈ Ĝ leads to the same
operator A in view of the trace in formula (2.7). In this sense we may think that

symbol σA is defined on G× Ĝ instead of G× Rep(G).

Notice that if A = (f 7→ f ∗ a) then RA(x, y) = a(y) and

σA(x, ξ) = â(ξ),

i.e. Âf(ξ) = â(ξ) f̂(ξ). Moreover, if B = (f 7→ b ∗ f) then LB(x, y) = b(y),
RB(x, y) = LB(x, xyx

−1) = b(xyx−1), and by (2.4) we have

σB(x, ξ) = ξ(x)∗ b̂(ξ) ξ(x).

Remark 2.7. Let g be the Lie algebra of a compact Lie group G, and let n =
dim(G) = dim(g). By the exponential mapping exp : g → G, a neighbourhood of
the neutral element e ∈ G can be identified with a neighbourhood of 0 ∈ g. Let
Xm = Sm1# ⊂ Sm1,0 consist of the x-invariant symbols (x, ξ) 7→ p(ξ) in Sm1,0 with the
usual Fréchet space topology. A distribution k ∈ D′(G) with a sufficiently small

support is said to belong to space X̂m if sing supp(k) ⊂ {e} and k̂ ∈ Xm ⊂ C∞(g′),

where the Fourier transform k̂ is the usual Fourier transform on g ∼= Rn, and the dual
space satisfies g′ ∼= Rn (and we are using the exponential coordinates for k(y) when

y ≈ e ∈ G). If k ∈ X̂m then the convolution operator

u 7→ k ∗ u, k ∗ u(x) =
∫

G

k(xy−1) u(y) dy,

is said to belong to space OPXm, which is endowed with the natural Fréchet space
structure obtained from Xm. Formally, let k(x, y) = kx(y) be the left-convolution
kernel of a linear operator K : C∞(G) → C∞(G), i.e.

Ku(x) =
∫

G

kx(xy
−1) u(y) dy.

In [28], M. E. Taylor showed that K ∈ Ψm(G) if and only if the mapping

(x 7→ (u 7→ kx ∗ u)) : G→ OPXm

is smooth; here naturally u 7→ kx ∗ u must belong to OPXm for each x ∈ G.

In the sequel, we will need conjugation properties of symbols which we will now
analyse for this purpose.

Definition 2.8. Let φ : G → G be a diffeomorphism, f ∈ C∞(G), A : C∞(G) →
C∞(G) continuous and linear. Then the φ-pushforwards fφ ∈ C∞(G) and Aφ :
C∞(G) → C∞(G) are defined by

fφ := f ◦ φ−1,

Aφf := (A(fφ−1))
φ

= A(f ◦ φ) ◦ φ−1.

Notice that
Aφ◦ψ = (Aψ)φ .

From the local theory of pseudo-differential operators, it is well-known that A ∈
Ψµ(G) if and only if Aφ ∈ Ψµ(G).
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Definition 2.9. For u ∈ G, let uL, uR : G→ G be defined by

uL(x) := ux and uR(x) := xu.

Then (uL)
−1 = (u−1)L and (uR)

−1 = (u−1)R. The inner automorphism φu : G → G
defined in Remark 2.1 by φu(x) := u−1xu satisfies φu = u−1

L ◦ uR = uR ◦ u−1
L .

Proposition 2.10. Let u ∈ G, B = AuL, C = AuR and F = Aφu. Then we have the
following relations between symbols:

σB(x, ξ) = σA(u
−1x, ξ),

σC(x, ξ) = ξ(u)∗ σA(xu
−1, ξ) ξ(u),

σF (x, ξ) = ξ(u)∗ σA(uxu
−1, ξ) ξ(u).

Especially, if A = (f 7→ f ∗ a), i.e. σA(x, ξ) = â(ξ), then

σB(x, ξ) = â(ξ),

σC(x, ξ) = ξ(u)∗ â(ξ) ξ(u) = σF (x, ξ).

Proof. We notice that F = C(u−1)L , so it suffices to consider only operators B and C.
For operator B = AuL, we get
∫

G

f(z) RB(x, z
−1x) dz = Bf(x) = A(f ◦ uL)(u−1

L (x)) =

=

∫

G

f(uy) RA(u
−1x, y−1u−1x) dy =

∫

G

f(z) RA(u
−1x, z−1x) dz,

so RB(x, y) = RA(u
−1x, y), yielding σB(x, ξ) = σA(u

−1x, ξ). For operator C = AuR,
we get similarly RC(x, y) = RA(xu

−1, uyu−1), yielding the result. �

Let us finally record how push-forwards by translation affect vector fields.

Lemma 2.11. Let u ∈ G, Y ∈ g and let E = DY : C∞(G) → C∞(G) be defined by
DY f(x) =

d
dt
f(x exp(tY ))

∣∣
t=0

. Then

EuR = Eφu = Du−1Y u,

i.e. DY (f ◦ uR)(xu−1) = DY (f ◦ φu)(uxu−1) = Du−1Y uf(x).

Proof. We have

EuRf(x) = E(f ◦ uR)(xu−1) =
d

dt
(f ◦ uR)(xu−1 exp(tY ))

∣∣
t=0

=

=
d

dt
f(xu−1 exp(tY )u))

∣∣
t=0

=
d

dt
f(x exp(tu−1Y u)

∣∣
t=0

= Du−1Y uf(x).

Due to the left-invariance, EuL = E, so that Eφu = (Eu−1

L
)uR = EuR = Du−1Y u. �

3. Boundedness of pseudo-differential operators on L2(G) and Hs(G)

In this section we will state some natural conditions on the symbol of an operator
A : C∞(G) → C∞(G) to guarantee the boundedness on Sobolev spaces. The Sobolev
space Hs(G) of order s ∈ R can be defined via a smooth partition of unity of the
closed manifold G.
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The Hilbert–Schmidt inner product of A,B ∈ Cm×n is

〈A,B〉HS := Tr(B∗A) =

m∑

i=1

n∑

j=1

BijAij ,

with the corresponding norm ‖A‖HS := 〈A,A〉1/2HS, and the operator norm

‖A‖op := sup
{
‖Ax‖HS : x ∈ Cn×1, ‖x‖HS ≤ 1

}
= ‖A‖ℓ2→ℓ2.

Let A,B ∈ Cn×n. Then we have ‖AB‖HS ≤ ‖A‖op ‖B‖HS. Moreover, we also have
‖A‖op = sup {‖AX‖HS : X ∈ Cn×n, ‖X‖HS ≤ 1} . By this, taking the Fourier trans-
form and using Plancherel’s formula (see e.g. [22]), we get

(3.1) ‖g 7→ f ∗ g‖L(L2(G)) = ‖g 7→ g ∗ f‖L(L2(G)) = sup
ξ∈Rep(G)

‖f̂(ξ)‖op,

by Remark 2.2. We also note that ‖f̂(ξ)‖op = ‖f̂(η)‖op if [ξ] = [η] ∈ Ĝ.
Let us first consider a condition on the symbol for the corresponding operator to

be bounded on L2(G).

Theorem 3.1. Let G be a compact Lie group of dimension n and let k be an integer
such that k > n/2. Let A be an operator with symbol σA defined as in Definition 2.3.
Assume that there is a constant C such that

‖∂αxσA(x, ξ)‖op ≤ C

for all x ∈ G, all ξ ∈ Rep(G), and all |α| ≤ k, where ∂αx = ∂α1

1 · · ·∂αn
n , and ∂1, . . . , ∂n

are first-order differential operators corresponding to a basis of the Lie algebra of G.
Then A is bounded from L2(G) to L2(G).

Proof. Let Af(x) = (f ∗rA(x))(x), where rA(x)(y) = RA(x, y) is the right-convolution
kernel of A. Let Ayf(x) = (f ∗ rA(y))(x), so that Axf(x) = Af(x). Then

‖Af‖2L2(G) =

∫

G

|Axf(x)|2 dx ≤
∫

G

sup
y∈G

|Ayf(x)|2 dx,

and by an application of the Sobolev embedding theorem we get

sup
y∈G

|Ayf(x)|2 ≤ C
∑

|α|≤k

∫

G

|∂αyAyf(x)|2 dy.

Therefore, using the Fubini theorem to change the order of integration, we obtain

‖Af‖2L2(G) ≤ C
∑

|α|≤k

∫

G

∫

G

|∂αyAyf(x)|2 dx dy

≤ C
∑

|α|≤k

sup
y∈G

∫

G

|∂αyAyf(x)|2 dx

= C
∑

|α|≤k

sup
y∈G

‖∂αyAyf‖2L2(G)

≤ C
∑

|α|≤k

sup
y∈G

‖f 7→ f ∗ ∂αy rA(y)‖2L(L2(G))‖f‖2L2(G)
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≤ C
∑

|α|≤k

sup
y∈G

sup
[ξ]∈ bG

‖∂αy σA(y, ξ)‖2op‖f‖2L2(G),

where the last inequality holds due to (3.1). This completes the proof. �

Let L be the bi-invariant Laplacian of G, i.e. the Laplace-Beltrami operator
corresponding to the unique (up to scaling) bi-invariant Riemannian metric of G.
The Laplacian is symmetric and I − L is positive. Denote Ξ = (I − L )1/2. Then
Ξs ∈ L(C∞(G)) and Ξs ∈ L(D′(G)) for every s ∈ R. Let us define

(f, g)Hs(G) = (Ξsf,Ξsg)L2(G) (f, g ∈ C∞(G)).

The completion of C∞(G) with respect to the norm f 7→ ‖f‖Hs(G) = (f, f)
1/2
Hs(G)

gives us Sobolev space Hs(G) of order s ∈ R, which coincides with the Sobolev
space obtained using any smooth partition of unity on the compact manifold G.
Operator Ξr is a Sobolev space isomorphism Hs(G) → Hs−r(G) for every r, s ∈ R.
To formulate the corresponding boundedness result in Sobolev spaces, let us introduce
some notation.
Let ξ ∈ Rep(G). Given v, w ∈ Hξ, the function ξvw : G→ C defined by

ξvw(x) := 〈ξ(x)v, w〉Hξ

is not only continuous but even C∞-smooth. Let span(ξ) denote the linear span of
{ξvw : v, w ∈ Hξ} . If ξ ∼ η then span(ξ) = span(η); consequently, we may write

span[ξ] := span(ξ) ⊂ C∞(G).

It follows that −L ξvw(x) = λ[ξ]ξ
vw(x), where λ[ξ] ≥ 0, and we denote

(3.2) 〈ξ〉 = (1 + λ[ξ])
1/2.

We note that σL (x, ξ) = −λ[ξ]Idim ξ, where Idim ξ is the identity mapping on Hξ.
Now we can formulate the main result on Sobolev space boundedness:

Theorem 3.2. Let G be a compact Lie group of dimension n. Let A be an operator
with symbol σA defined as in Definition 2.3. Assume that there are constants µ, Cα ∈
R such that

‖∂αxσA(x, ξ)‖op ≤ Cα 〈ξ〉µ

holds for all x ∈ G, ξ ∈ Rep(G) and all multi-indices α, where ∂αx = ∂α1

1 · · ·∂αn
n is as

in Theorem 3.1. Then A is bounded from Hs(G) to Hs−µ(G), for all s ∈ R.

Remark 3.3. We shall prove this theorem later in Section 8, after introducing tools
for symbolic calculus. However, notice that we may easily obtain a special case of
this result with s = µ. Namely, if σA is as in Theorem 3.2, then

∥∥∂αx
(
σA(x, ξ)〈ξ〉−µ

)∥∥
op

≤ Cα

for every multi-index α. Here σA(x, ξ)〈ξ〉−µ = σA◦Ξ−µ(x, ξ), and thus Theorem 3.1
implies that A ◦ Ξ−µ is bounded on L2(G), so that A ∈ L(Hµ(G), L2(G)).
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4. Preliminaries on SU(2)

We study the compact group SU(2) defined by

SU(2) =
{
u ∈ C2×2 : det(u) = 1 and u∗u = I

}
,

where e = I =

(
1 0
0 1

)
∈ C2×2 is the identity matrix. Matrix u ∈ C2×2 belongs to

SU(2) if and only if it is of the form u =

(
α β
−β α

)
, where |α|2 + |β|2 = 1. We

will now fix the notation concerning the representations of SU(2). Let us identify
z = (z1, z2) ∈ C2 with matrix z =

(
z1 z2

)
∈ C1×2, and let C[z1, z2] be the space of

two-variable polynomials f : C2 → C. Consider mappings

tl : SU(2) → GL(Vl), (tl(u)f)(z) = f(zu),

where l ∈ 1
2
N0 may be called the quantum number, and where Vl is the (2l + 1)-

dimensional subspace of C[z1, z2] containing the homogeneous polynomials of order
2l ∈ N0, i.e.

Vl =

{
f ∈ C[z1, z2] : f(z1, z2) =

2l∑

k=0

akz
k
1z

2l−k
2 , {ak}2lk=0 ⊂ C

}
.

Then the family {tl}l∈ 1

2
N0

is the family of irreducible unitary representations of SU(2)

such that any other irreducible unitary representation of SU(2) is equivalent to one
of tl. The collection {qlk : k ∈ {−l,−l + 1, · · · ,+l − 1,+l}} is a basis for the repre-
sentation space Vl, where

qlk(z) =
zl−kl zl+k2√

(l − k)!(l + k)!
.

Let us give the matrix elements tlmn(u) of t
l(u) with respect to this basis, where (4.1)

is well-known and (4.2) follows from it.

Proposition 4.1. Let u =

(
a b
c d

)
. Then

(4.1) tlmn(u) =

(
d

dz1

)l−m(
d

dz2

)l+m
(z1a+ z2c)

l−n(z1b+ z2d)
l+n

√
(l −m)!(l +m)!(l − n)!(l + n)!

,

where

P l
mn(x) = clmn

(1− x)(n−m)/2

(1 + x)(m+n)/2

(
d

dx

)l−m [
(1− x)l−n(1 + x)l+n

]

with

clmn = 2−l
(−1)l−n in−m√
(l − n)! (l + n)!

√
(l +m)!

(l −m)!
.

Moreover, we have

(4.2) tlmn(u) =

√
(l −m)!(l +m)!

(l − n)!(l + n)!
×
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×
min{l−n,l−m}∑

i=max{0,n−m}

(l − n)!(l + n)!

i!(l − n− i)!(l −m− i)!(n +m+ i)!
aibl−m−icl−n−idn+m+i.

On a compact group G, a function f : G→ C is called a trigonometric polynomial
if its translates span the finite-dimensional vector space, i.e. if

dim span
{
(x 7→ f(y−1x)) : G→ C | y ∈ G

}
<∞.

A trigonometric polynomial can be expressed as a linear combination of matrix el-
ements of irreducible unitary representations. Thus a trigonometric polynomial is
continuous, and on a Lie group even C∞-smooth. Moreover, trigonometric polyno-
mials form an algebra with the usual pointwise multiplication. On SU(2), actually,

tl
′

m′n′ tlmn =
l+l′∑

k=|l−l′|

C
ll′(l+k)
m′m(m′+m) C

ll′(l+k)
n′n(n′+n) t

l+k
(m′+m)(n′+n),

where C
ll′(l+k)
m′m(m′+m) are Clebsch-Gordan coefficients, for which there are explicit for-

mulae, see e.g. [34]. Now we are going to give basic multiplication formulae for
trigonometric polynomials tlmn : SU(2) → C; for general multiplication of trigono-
metric polynomials, one can use these formulae iteratively.

Theorem 4.2. Let
(
t−− t−+

t+− t++

)
≡ t1/2 =

(
t
1/2
−1/2,−1/2 t

1/2
−1/2,+1/2

t
1/2
+1/2,−1/2 t

1/2
+1/2,+1/2

)

and denote x± := x± 1/2 for x ∈ R. Then

tlmnt−− =

√
(l −m+ 1)(l − n+ 1)

2l + 1
tl

+

m−n− +

√
(l +m)(l + n)

2l + 1
tl

−

m−n−,

tlmnt++ =

√
(l +m+ 1)(l + n+ 1)

2l + 1
tl

+

m+n+ +

√
(l −m)(l − n)

2l + 1
tl

−

m+n+ ,

tlmnt−+ =

√
(l −m+ 1)(l + n + 1)

2l + 1
tl

+

m−n+ −
√

(l +m)(l − n)

2l + 1
tl

−

m−n+ ,

tlmnt+− =

√
(l +m+ 1)(l − n + 1)

2l + 1
tl

+

m+n− −
√

(l −m)(l + n)

2l + 1
tl

−

m+n−.

These formulae imply, in particular, that expressions similar to these will appear
naturally in the developed quantization of operators on SU(2).

5. Left-invariant differential operators on SU(2)

Let us analyse first-order partial differential operators on SU(2) from the point of
view of pseudo-differential operators and their global quantization. Homomorphisms
ω : R → SU(2) are called one-parametric subgroups, and they are of the form ω =
(t 7→ exp(tY )) for Y = ω′(0) ∈ su(2). As usual, we identify the Lie algebra su(2) with
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the left-invariant vector fields on SU(2), by associating Y ∈ su(2) to the left-invariant
operator DY : C∞(SU(2)) → C∞(SU(2)) defined by

(5.1) DY f(x) =
d

dt
f(x exp(tY ))

∣∣∣∣
t=0

.

Remark 5.1. Notice first that vector field iDY is symmetric on an arbitrary G:

(iDY f, g)L2(G) =

∫

G

(iDY f)(x) g(x) dx = −i

∫

G

f(x)DY g(x) dx = (f, iDY g)L2(G) .

Hence it is always possible to choose a representative ξ ∈ Rep(G) from each [ξ] ∈ Ĝ

such that σiDY
(x, ξ) is a diagonal matrix



λ1

. . .
λdim(ξ)


, with diagonal entries

λj ∈ R, which follows because symmetric matrices can be diagonalised by unitary
matrices. Notice that then also [σiDY

, σA](x, ξ)mn = (λm − λn) σA(x, ξ)mn.

In the case of SU(2), we will simplify the notation writing f̂(l) instead of f̂(tl),

etc., since we can take a representative tl in each equivalence class in ŜU(2).

Definition 5.2. Let us define one-parametric subgroups ω1, ω2, ω3 : R → SU(2) by

ω1(t) =

(
cos(t/2) i sin(t/2)
i sin(t/2) cos(t/2)

)
,

ω2(t) =

(
cos(t/2) − sin(t/2)
sin(t/2) cos(t/2)

)
,

ω3(t) =

(
eit/2 0
0 e−it/2

)
.

Let Yj := ω′
j(0), i.e.

Y1 =
1

2

(
0 i
i 0

)
, Y2 =

1

2

(
0 −1
1 0

)
, Y3 =

1

2

(
i 0
0 −i

)
.

Matrices Y1, Y2, Y3 constitute a basis for the real vector space su(2). Notice that

[Y1, Y2] = Y3, [Y2, Y3] = Y1, [Y3, Y1] = Y2.

Let us define differential operators Dj := DYj .

We note that matrices 2
i
Yj, j = 1, 2, 3, are known as Pauli (spin) matrices in

physics. It can be also noted that k = span{Y3} and p = span{Y1, Y2} form a Cartan
pair of the Lie algebra su(2).

Proposition 5.3. Let wj = ωj(π/2) and t ∈ R. Then

w1 ω2(t) w
−1
1 = ω3(t), w2 ω3(t) w

−1
2 = ω1(t), w3 ω1(t) w

−1
3 = ω2(t).

The differential versions of these formulae are

w1 Y2 w
−1
1 = Y3, w2 Y3 w

−1
2 = Y1, w3 Y1 w

−1
3 = Y2.

The proof is straightforward and follows simply by multiplying these matrices.
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Proposition 5.4. We have

(D3)(w1)R = D2, (D1)(w2)R = D3, (D2)(w3)R = D1.

Symbols of operators D1, D2 can be turned to that of D3 by taking suitable conjuga-
tions:

σD1
(x, l) = tl(w2) σD3

(x, l) tl(w2)
∗,(5.2)

σD2
(x, l) = tl(w1)

∗ σD3
(x, l) tl(w1).(5.3)

Moreover, if D ∈ su(2) there is u ∈ SU(2) such that σD(l) = tl(u)∗ σD3
(l) tl(u).

Proof. Combining Lemma 2.11 with Proposition 5.3, we see that (D3)(w1)R = D2,
(D1)(w2)R = D3 and (D2)(w3)R = D1. Since D1, D2, D3 are left-invariant operators,
their symbols σDj

(x, l) do not depend on x ∈ G, and by Proposition 2.10 we obtain
(5.2) and (5.3). The last statement follows from Proposition 2.10 since D is a rotation
of D3. �

Although operators Dj have meaning as derivatives with respect to i
2
Pauli matri-

ces, it will be technically simpler for us to work with their linear combinations (see
Remark 5.9, also for the explanation of the terminology), which we will now define.

Definition 5.5. Let us define left-invariant first-order partial differential operators
∂+, ∂−, ∂0 : C∞(SU(2)) → C∞(SU(2)), called creation, annihilation, and neutral
operators, respectively, by




∂+ := iD1 −D2,

∂− := iD1 +D2,

∂0 := iD3,

i.e.





D1 =
−i
2
(∂− + ∂+)

D2 =
1
2
(∂− − ∂+) ,

D3 = −i∂0.

Remark 5.6. The Laplacian L satisfies L = D2
1 + D2

2 + D2
3 and [L , Dj ] = 0 for

every j ∈ {1, 2, 3}. Notice that it can be expressed as L = −∂20 − (∂+∂− + ∂−∂+)/2.
Operators ∂+, ∂−, ∂0 satisfy [∂0, ∂+] = ∂+, [∂−, ∂0] = ∂−, [∂+, ∂−] = 2∂0.

Theorem 5.7. We have

∂+t
l
mn = −

√
(l − n)(l + n + 1) tlm,n+1,

∂−t
l
mn = −

√
(l + n)(l − n + 1) tlm,n−1,

∂0t
l
mn = n tlmn,

L tlmn = −l(l + 1) tlmn.

Proof. Formulae for ∂+, ∂−, ∂0 follow from calculations in [34, p. 141-142] . Since

L = −∂20 − (∂+∂− + ∂−∂+)/2,

we get

L tlmn = −n2 tlmn +
1

2

(√
(l + n)(l − n + 1) ∂+t

l
m,n−1

+
√
(l − n)(l + n+ 1) ∂−t

l
m,n+1

)

=
−1

2

(
2n2 +

√
(l + n)(l − n+ 1)

√
(l − (n− 1))(l + (n− 1) + 1)
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+
√
(l − n)(l + n + 1)

√
(l + (n+ 1))(l − (n + 1) + 1)

)
tlmn

=
−1

2

(
2n2 + (l + n)(l − n + 1) + (l − n)(l + n+ 1)

)
tlmn

=
−1

2

(
2n2 + 2(l2 − n2) + (l + n) + (l − n)

)
tlmn

= −l(l + 1) tlmn.

�

We can now calculate symbols of ∂+, ∂−, ∂0 and of the Laplacian L .

Theorem 5.8. We have

σ∂+(x, l)mn = −
√

(l − n)(l + n + 1) δm,n+1 = −
√

(l −m+ 1)(l +m) δm−1,n,

σ∂−(x, l)mn = −
√

(l + n)(l − n + 1) δm,n−1 = −
√

(l +m+ 1)(l −m) δm+1,n,

σ∂0(x, l)mn = n δmn = m δmn,

σL (x, l)mn = −l(l + 1) δmn,

where δmn is the Kronecker delta: δmn = 1 for m = n and, δmn = 0 otherwise.

Proof. Let e ∈ SU(2) be the neutral element of SU(2) and let tl be a unitary matrix
representation of SU(2). First we note that

δmn = tl(e)mn = tl(x−1x)mn =
∑

k

tl(x−1)mk t
l(x)kn =

∑

k

tl(x)km tl(x)kn.

Similarly, δmn =
∑

k

tl(x)mk tl(x)nk. From this, formulae (2.9)-(2.8), and Theorem 5.7

we get

σ∂+(x, l)mn =
∑

k

tlkm(x)
(
∂+t

l
kn

)
(x)

= −
√

(l − n)(l + n + 1)
∑

k

tlkm(x) t
l
k,n+1(x)

= −
√

(l − n)(l + n + 1) δm,n+1,

and the case of σ∂−(x, l) is analogous. Finally,

σ∂0(x, l)mn =
∑

k

tlkm(x)
(
∂0t

l
kn

)
(x) = n

∑

k

tlkm(x) t
l
k,n(x) = n δm,n,

and similarly for L , completing the proof. �

Remark 5.9. Notice that σ∂0(x, l) and σL (x, l) are diagonal matrices. The non-zero
elements reside just above the diagonal of σ∂+(x, l), and just below the diagonal of
σ∂−(x, l). Because of this operators ∂0, ∂+ and ∂− may be called neutral, creation
and annihilation operators, respectively, and this explains our preference to work
with them rather than with Dj’s, which have more non-zero entries.
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6. Differences for symbols on SU(2)

In this section we describe difference operators on SU(2) leading to symbol inequal-
ities for symbols introduced in Definition 2.3. From Proposition 4.1 and Theorem 4.2
we recall the notation

t1/2 =

(
t−− t−+

t+− t++

)
=

(
t
1/2
−1/2,−1/2 t

1/2
−1/2,+1/2

t
1/2
+1/2,−1/2 t

1/2
+1/2,+1/2

)
.

Definition 6.1. For q ∈ C∞(SU(2)) and f ∈ D′(SU(2)), let △qf̂(l) := q̂f(l). We
shall use abbreviations △+ = △q+, △− = △q− and △0 = △q0, where

q− := t−+ = t
1/2
−1/2,+1/2,

q+ := t+− = t
1/2
+1/2,−1/2,

q0 := t−− − t++ = t
1/2
−1/2,−1/2 − t

1/2
+1/2,+1/2.

Thus each trigonometric polynomial q+, q−, q0 ∈ C∞(SU(2)) vanishes at the neutral
element e ∈ SU(2). In this sense trigonometric polynomials q− + q+, q− − q+, q0 on
SU(2) are analogues of polynomials x1, x2, x3 in the Euclidean space R3.
The aim now is to define difference operators acting on symbols. For this purpose

we may only look at symbols independent of x corresponding to right invariant op-
erators since the following construction is independent of x. Thus, let a = a(ξ) be a
symbol as in Definition 2.3. It follows that a = ŝ for some right-convolution kernel
s ∈ D′(SU(2)) so that operator Op(a) is given by

Op(a)f = f ∗ s.
Let us define “difference operators” △+,△−,△0 acting on symbol a by

△+a := q̂+ s,(6.1)

△−a := q̂− s,(6.2)

△0a := q̂0 s.(6.3)

We note that this construction is analogous to the one producing usual derivatives in
Rn or difference operators on the torus Tn (see [17] for details). On SU(2), to analyse
the structure of these difference operators, we first need to know how to multiply
functions tlmn by q+, q−, q0, and the necessary formulae are given in Theorem 4.2.
Let us now derive explicit expressions for the first order difference operators △+,

△−, △0 defined in (6.1)-(6.3). To abbreviate the notation, we will also write alnm =
a(x, l)nm, even if symbol a(x, l) depends on x, keeping in mind that the following
theorem holds pointwise in x.

Theorem 6.2. The difference operators are given by

(△−a)
l
nm =

√
(l −m)(l + n)

2l + 1
al

−

n−m+ −
√

(l +m+ 1)(l − n + 1)

2l + 1
al

+

n−m+ ,

(△+a)
l
nm =

√
(l +m)(l − n)

2l + 1
al

−

n+m− −
√

(l −m+ 1)(l + n + 1)

2l + 1
al

+

n+m− ,



QUANTIZATION OF PSEUDO-DIFFERENTIAL OPERATORS ON SU(2) AND S3 19

(△0a)
l
nm =

√
(l −m)(l − n)

2l + 1
al

−

n+m+ +

√
(l +m+ 1)(l + n + 1)

2l + 1
al

+

n+m+ −

−
√

(l +m)(l + n)

2l + 1
al

−

n−m− −
√
(l −m+ 1)(l − n + 1)

2l + 1
al

+

n−m−,

where k± = k ± 1
2
, and satisfy commutator relations

(6.4) [△0,△+] = [△0,△−] = [△−,△+] = 0.

Proof. Equalities (6.4) follow immediately from (6.1)–(6.3). We can abbreviate a(x, l)
by a(l) since none of the arguments in the proof will act on the variable x. Recall
that by (2.6) we have

a(x, l)nm = alnm = ŝ(l)nm =

∫

SU(2)

s(y) tlmn(y) dy,

and

(6.5) s(x) =
∑

l

(2l + 1) Tr
(
a(x, l) tl(x)

)
=
∑

l

(2l + 1)
∑

m,n

alnm tlmn.

In the calculation below we will not worry about boundaries of summations keeping
in mind that we can always view finite matrices as infinite ones simply by extending
them be zeros. Recalling that q− = t−+ and using Theorem 4.2, we can calculate

q− s =
∑

l

(2l + 1)
∑

m,n

alnm q− tlmn

=
∑

l

∑

m,n

alnm

[
tl

+

m−n+

√
(l −m+ 1)(l + n+ 1)− tl

−

m−n+

√
(l +m)(l − n)

]

=
∑

l

∑

m,n

tlmn

[
al

−

n−m+

√
(l −m)(l + n)− al

+

n−m+

√
(l +m+ 1)(l − n + 1)

]
.

Since △−a = q̂−s, we obtain the desired formula for △−. The calculation for △+ is
analogous. Finally, for △0, we calculate

q0 s =
∑

l

(2l + 1)
∑

m,n

alnm q0 t
l
mn

=
∑

l

∑

m,n

alnm

[
tl

+

m−n−

√
(l −m+ 1)(l − n + 1) + tl

−

m−n−

√
(l +m)(l + n)

− tl
+

m+n+

√
(l +m+ 1)(l + n+ 1)− tl

−

m+n+

√
(l −m)(l − n)

]

=
∑

l

∑

m,n

tlmn

[
al

−

n+m+

√
(l −m)(l − n) + al

+

n+m+

√
(l +m+ 1)(l + n + 1)

−al−n−m−

√
(l +m)(l + n)− al

+

n−m−

√
(l −m+ 1)(l − n+ 1)

]
.

From this we obtain the desired formula for △0 and the proof of Theorem 6.2 is
complete. �

Let us now calculate higher order differences of symbol aσ∂0 which will be needed
in the sequel.
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Theorem 6.3. For any α ∈ N3
0, we have the formula

[
△α1

+ △α2

− △α3

0 (aσ∂0)
]l
nm

=

= (m− α1/2 + α2/2)
[
△α1

+ △α2

− △α3

0 a
]l
nm

+ α3

[
△0△α1

+ △α2

− △α3−1
0 a

]l
nm
,

where △0 is given by

(△0a)
l
nm =

1

2

[√
(l −m)(l − n)

2l + 1
al

−

n+m+ +

√
(l +m+ 1)(l + n+ 1)

2l + 1
al

+

n+m++

+

√
(l +m)(l + n)

2l + 1
al

−

n−m− +

√
(l −m+ 1)(l − n + 1)

2l + 1
al

+

n−m−

]
,

and satisfies [△0,△0] = 0.

Proof. First we observe that we have

(a σ∂0)
l
nm =

∑

k

alnk k δkm = m alnm.

Then using Theorem 6.2, we get

△−(aσ∂0)
l
nm =

√
(l −m)(l + n)

2l + 1
m+al

−

n−m+ −
√
(l +m+ 1)(l − n+ 1)

2l + 1
m+al

+

n−m+

= (m+△−a)
l
nm,

and we can abbreviate this by writing △−(aσ∂0) = m+△−a. Further, we have

△−(△−(aσ∂0))
l
nm =

=

√
(l −m)(l + n)

2l + 1
[△−(aσ∂0)]

l−

n−m+ −
√
(l +m+ 1)(l − n+ 1)

2l + 1
[△−(aσ∂0)]

l+

n−m+

=

√
(l −m)(l + n)

2l + 1
(m+ 1)(△−a)

l−

n−m+ −
√
(l +m+ 1)(l − n+ 1)

2l + 1
(m+ 1)(△−a)

l+

n−m+

= (m+ 1)(△2
−a)

l
nm.

Continuing this calculation we can obtain

(6.6)
[
△k

−(aσ∂0)
]l
nm

= (m+ k/2)(△k
−a)

l
nm.

By Theorem 6.2 we also have

[△+(△−(aσ∂0))]
l
nm =

=
[
△+

(
m+△−a

)]l
nm

=

√
(l +m)(l − n)

2l + 1

(
m+△−a

)l−
n+m−

−
√
(l −m+ 1)(l + n+ 1)

2l + 1

(
m+△−a)

)l+
n+m−

= m(△+△−a)
l
nm.

By induction we then get

(6.7)
[
△k1

+△k2
− (aσ∂0)

]l
nm

= (m− k1/2 + k2/2)(△k1
+△k2

− a)
l
nm.
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The situation with △0 is more complicated because there are more terms. Using
Theorem 6.2 we have

△0(aσ∂0)
l
nm =

=

√
(l −m)(l − n)

2l + 1
(ma)l

−

n+m+ +

√
(l +m+ 1)(l + n+ 1)

2l + 1
(ma)l

+

n+m+ −

−
√

(l +m)(l + n)

2l + 1
(ma)l

−

n−m− −
√
(l −m+ 1)(l − n + 1)

2l + 1
(ma)l

+

n−m−

=

√
(l −m)(l − n)

2l + 1
m+al

−

n+m+ +

√
(l +m+ 1)(l + n+ 1)

2l + 1
m+al

+

n+m+ −

−
√

(l +m)(l + n)

2l + 1
m−al

−

n−m− −
√

(l −m+ 1)(l − n+ 1)

2l + 1
m−al

+

n−m−

= m(△0a)
l
nm +

1

2

[√
(l −m)(l − n)

2l + 1
al

−

n+m+ +

√
(l +m+ 1)(l + n+ 1)

2l + 1
al

+

n+m++

+

√
(l +m)(l + n)

2l + 1
al

−

n−m− +

√
(l −m+ 1)(l − n+ 1)

2l + 1
al

+

n−m−

]

= m(△0a)
l
nm + (△0a)

l
nm,

where △0 is a weighted averaging operator given by

(△0a)
l
nm =

1

2

[√
(l −m)(l − n)

2l + 1
al

−

n+m+ +

√
(l +m+ 1)(l + n+ 1)

2l + 1
al

+

n+m++

+

√
(l +m)(l + n)

2l + 1
al

−

n−m− +

√
(l −m+ 1)(l − n + 1)

2l + 1
al

+

n−m−

]
.

We want to find a formula for △k
0, and for this we first calculate

[
△0(△0a)

]l
nm

=

=

√
(l −m)(l − n)

2l + 1
(△0a)

l−

n+m+ +

√
(l +m+ 1)(l + n + 1)

2l + 1
(△0a)

l+

n+m+ −

−
√

(l +m)(l + n)

2l + 1
(△0a)

l−

n−m− −
√

(l −m+ 1)(l − n+ 1)

2l + 1
(△0a)

l+

n−m−

=

√
(l −m)(l − n)

2l + 1

1

2

[√
(l− −m+)(l− − n+)

2l− + 1
al

−−

n++m+++

+

√
(l− +m+ + 1)(l− + n+ + 1)

2l− + 1
al

−+

n++m++ +

+

√
(l− +m+)(l− + n+)

2l− + 1
al

−−

n+−m+− +

√
(l− −m+ + 1)(l− − n+ + 1)

2l− + 1
al

−+

n+−m+−

]
+

+

√
(l +m+ 1)(l + n+ 1)

2l + 1

1

2

1

2l+ + 1

[√
(l+ −m+)(l+ − n+)al

+−

n++m+++
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+
√
(l+ +m+ + 1)(l+ + n+ + 1)al

++

n++m++ +

+
√

(l+ +m+)(l+ + n+)al
+−

n+−m+− +
√

(l+ −m+ + 1)(l+ − n+ + 1)al
++

n+−m+−

]
−

−
√

(l +m)(l + n)

2l + 1

1

2

1

2l− + 1

[√
(l− −m−)(l− − n−)al

−−

n−+m−++

+
√
(l− +m− + 1)(l− + n− + 1)al

−+

n−+m−+ +

+
√

(l− +m−)(l− + n−)al
−−

n−−m−− +
√

(l− −m− + 1)(l− − n− + 1)al
−+

n−−m−−

]
−

−
√

(l −m+ 1)(l − n+ 1)

2l + 1

1

2

1

2l+ + 1

[√
(l+ −m−)(l+ − n−)al

+−

n−+m−++

+
√
(l+ +m− + 1)(l+ + n− + 1)al

++

n−+m−+ +

+
√

(l+ +m−)(l+ + n−)al
+−

n−−m−− +
√

(l+ −m− + 1)(l+ − n− + 1)al
++

n−−m−−

]
.

From this we get

[
△0(△0a)

]l
nm

=

=

√
(l −m)(l − n)

2l + 1

1

2

1

2l

[√
(l −m− 1)(l − n− 1)al

−−

n++m+++

+
√
(l +m+ 1)(l + n + 1)aln++m++ +

+
√

(l +m)(l + n)al
−−

nm +
√

(l −m)(l − n)alnm

]
+

+

√
(l +m+ 1)(l + n + 1)

2l + 1

1

2

1

2l + 2

[√
(l −m)(l − n)aln++m+++

+
√
(l +m+ 2)(l + n + 2)al

++

n++m++ +

+
√

(l +m+ 1)(l + n+ 1)alnm +
√
(l −m+ 1)(l − n + 1)al

++

nm

]
−

−
√

(l +m)(l + n)

2l + 1

1

2

1

2l

[√
(l −m)(l − n)al

−−

nm+

+
√
(l +m)(l + n)alnm +

+
√

(l +m− 1)(l + n− 1)al
−−

n−−m−− +
√

(l −m+ 1)(l − n+ 1)aln−−m−−

]
−

−
√

(l −m+ 1)(l − n+ 1)

2l + 1

1

2

1

2l + 2

[√
(l −m+ 1)(l − n+ 1)alnm+

+
√
(l +m+ 1)(l + n + 1)al

++

nm +

+
√

(l +m)(l + n)aln−−m−− +
√

(l −m+ 2)(l − n+ 2)al
++

n−−m−−

]
,

and we can note that here pairs of terms with al
−−

nm , al
++

nm cancel, and also four terms
with alnm cancel in view of the identity

(l −m)(l − n)

(2l + 1)(2l)
+

(l +m+ 1)(l + n+ 1)

(2l + 1)(2l + 2)
− (l +m)(l + n)

(2l + 1)(2l)
− (l −m+ 1)(l − n+ 1)

(2l + 1)(2l + 2)
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=
−2l(m+ n)

(2l + 1)(2l)
+

(2l + 2)(m+ n)

(2l + 1)(2l + 2)
= 0.

Calculating in the other direction, we get
[
△0(△0a)

]l
nm

=

=
1

2

√
(l −m)(l − n)

2l + 1
(△0a)

l−

n+m+ +
1

2

√
(l +m+ 1)(l + n + 1)

2l + 1
(△0a)

l+

n+m+ +

+
1

2

√
(l +m)(l + n)

2l + 1
(△0a)

l−

n−m− +
1

2

√
(l −m+ 1)(l − n+ 1)

2l + 1
(△0a)

l+

n−m−

=

√
(l −m)(l − n)

2l + 1

1

2

1

2l− + 1

[√
(l− −m+)(l− − n+)al

−−

n++m+++

+
√

(l− +m+ + 1)(l− + n+ + 1)al
−+

n++m++ −
−
√

(l− +m+)(l− + n+)al
−−

n+−m+− −
√

(l− −m+ + 1)(l− − n+ + 1)al
−+

n+−m+−

]
+

+

√
(l +m+ 1)(l + n+ 1)

2l + 1

1

2

1

2l+ + 1

[√
(l+ −m+)(l+ − n+)al

+−

n++m+++

+
√

(l+ +m+ + 1)(l+ + n+ + 1)al
++

n++m++ −
−
√

(l+ +m+)(l+ + n+)al
+−

n+−m+− −
√

(l+ −m+ + 1)(l+ − n+ + 1)al
++

n+−m+−

]
+

+

√
(l +m)(l + n)

2l + 1

1

2

1

2l− + 1

[√
(l− −m−)(l− − n−)al

−−

n−+m−++

+
√

(l− +m− + 1)(l− + n− + 1)al
−+

n−+m−+ −
−
√

(l− +m−)(l− + n−)al
−−

n−−m−− −
√
(l− −m− + 1)(l− − n− + 1)al

−+

n−−m−−

]
+

+

√
(l −m+ 1)(l − n+ 1)

2l + 1

1

2

1

2l+ + 1

[√
(l+ −m−)(l+ − n−)al

+−

n−+m−++

+
√

(l+ +m− + 1)(l+ + n− + 1)al
++

n−+m−+ −
−
√

(l+ +m−)(l+ + n−)al
+−

n−−m−− −
√
(l+ −m− + 1)(l+ − n− + 1)al

++

n−−m−−

]
.

From this we get
[
△0(△0a)

]l
nm

=

=

√
(l −m)(l − n)

2l + 1

1

2

1

2l

[√
(l −m− 1)(l − n− 1)al

−−

n++m+++

+
√

(l +m+ 1)(l + n + 1)aln++m++ −
−
√

(l +m)(l + n)al
−−

nm −
√
(l −m)(l − n)alnm

]
+

+

√
(l +m+ 1)(l + n + 1)

2l + 1

1

2

1

2l + 2

[√
(l −m)(l − n)aln++m+++

+
√

(l +m+ 2)(l + n + 2)al
++

n++m++ −
−
√

(l +m+ 1)(l + n+ 1)alnm −
√

(l −m+ 1)(l − n+ 1)al
++

nm

]
+



24 MICHAEL RUZHANSKY AND VILLE TURUNEN

+

√
(l +m)(l + n)

2l + 1

1

2

1

2l

[√
(l −m)(l − n)al

−−

nm+

+
√

(l +m)(l + n)alnm −
−
√

(l +m− 1)(l + n− 1)al
−−

n−−m−− −
√

(l −m+ 1)(l − n+ 1)aln−−m−−

]
+

+

√
(l −m+ 1)(l − n+ 1)

2l + 1

1

2

1

2l + 2

[√
(l −m+ 1)(l − n+ 1)alnm+

+
√

(l +m+ 1)(l + n + 1)al
++

nm −
−
√

(l +m)(l + n)aln−−m−− −
√

(l −m+ 2)(l − n+ 2)al
++

n−−m−−

]

and we can note that here terms alnm, a
l−−

nm and al
++

nm cancel again. From these calcu-
lations we obtain

△0△0a = △0△0a.

Then we can easily see that

△2
0(ma) = △0(m△0a+△0a) = m△2

0a+ 2△0△0a,

and, moreover,
△k

0(ma) = m△k
0a + k△0△k−1

0 a.

Let us now apply this to (6.7). Using commutativity of △0,△+ and △− from Theo-
rem 6.2, we get

[
△k1

+△k2
−△k3

0 (aσ∂0)
]l
nm

=

=
[
△k3

0 △k1
+△k2

− (aσ∂0)
]l
nm

=
[
△k3

0

(
(m− k1/2 + k2/2)△k1

+△k2
− a
)]l
nm

=
[
△k3

0

(
m△k1

+ △k2
− a
)]l
nm

−
[
△k3

0

(
(k1/2− k2/2)△k1

+△k2
− a
)]l
nm

= m
[
△k3

0 △k1
+△k2

− a
]l
nm

+ k3
[
△0△k3−1

0 △k1
+△k2

− a
]l
nm

−
−(k1/2− k2/2)

[
△k3

0 △k1
+△k2

− a
]l
nm

= (m− k1/2 + k2/2)
[
△k1

+△k2
−△k3

0 a
]l
nm

+ k3
[
△0△k1

+△k2
−△k3−1

0 a
]l
nm
,

completing the proof. �

We now collect some properties of first-order differences.

Theorem 6.4. We have

(6.8) σI = △+σ∂+ = △−σ∂− = △0σ∂0 .

If µ, ν ∈ {+,−, 0} are such that µ 6= ν, then

(6.9) △µσ∂ν = 0,

and for every ν ∈ {+,−, 0}, we have

(6.10) △νσI(x) = 0.

Moreover, if L is the bi-invariant Laplacian, then

(6.11) △+σL = −σ∂− , △−σL = −σ∂+ , △0σL = −2σ∂0 .
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Proof. Let us prove (6.8). From Theorem 4.2 we get an expression for q+t
l
mn =

t+−t
l
mn, which is used in the following calculation together with (6.5) and Theo-

rem 5.8:

q+ s∂+ = q+
∑

l

(2l + 1)
∑

m,n

σ∂+(l)mn t
l
nm

=
∑

l

∑

n

σ∂+(l)n+1,n (2l + 1) q+ tln,n+1

=
∑

l

∑

n

−
(√

(l − n)(l + n + 1)
)2 (

tl
+

n+n+ − tl
−

n+n+

)

=
∑

l

(2l + 1)
∑

k

tlkk

= sI .

Hence △+σ∂+ = σI . Similarly, we can show that △−σ∂− = σI and that △0σ∂0 = σI .
Let us now prove (6.9). We have

q+ s∂− = q+
∑

l

(2l + 1)
∑

m,n

σ∂−(l)mn t
l
nm

=
∑

l

∑

n

σ∂−(l)n−1,n (2l + 1) q+ tln,n−1

=
∑

l

∑

n

−
√

(l + n)(l − n + 1)

(√
(l + n + 1)(l − n + 2) t

l+1/2
n+1/2,n−3/2

−
√

(l − n)(l + n− 1) t
l−1/2
n+1/2,n−3/2

)

=
∑

l

∑

n

t
l+1/2
n+1/2,n−3/2

(
−
√

(l + n+ 1)(l − n+ 2)
√

(l − n+ 1)(l + n)

+
√
(l + n)(l − n+ 1)

√
(l + n+ 1)(l − n+ 2)

)

= 0.

Analogously, one can readily show the rest of (6.9). Let us now prove (6.10). We
have

q− sI = q−
∑

l

(2l + 1)
∑

m,n

tlmn

=
∑

l

∑

n

(2l + 1) q− tlnn

=
∑

l

∑

n

(√
(l − n + 1)(l + n+ 1) tl

+

n−,n+ −
√

(l + n)(l − n) tl
−

n−,n+

)

=
∑

l

∑

n

tl
−

n−,n+

(√
(l − n)(l + n)−

√
(l + n)(l − n)

)
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= 0.

Analogously, we have q+ sI = q0 sI = 0 which proves proves (6.10). Let us finally
prove (6.11). Since

σL (x, l)mn = −l(l + 1) δmn

by Theorem 5.8, we get

q− s−L = q−
∑

l

(2l + 1)
∑

m,n

σ−L (x, l)mn t
l
nm

=
∑

l

(2l + 1)
∑

n

l(l + 1) q− tlnn(y)

=
∑

l

∑

n

l(l + 1)
(
+
√
(l − n+ 1)(l + n+ 1) tl

+

n−,n+

−
√

(l + n)(l − n) tl
−

n−,n+

)

=
∑

l

∑

n

tl
+

n−,n+

(
+l(l + 1)

√
(l − n+ 1)(l + n+ 1)

−(l + 1)(l + 2)
√
(l + n + 1)(l − n + 1)

)

=
∑

l

∑

n

−2(l + 1)
√
(l + n+ 1)(l − n+ 1) tl

+

n−,n+

=
∑

l

(2l + 1)
∑

n

−
√

(l + n)(l − n+ 1) tln−1,n

= s∂+ .

Analogously, one can readily show that q+ s−L = s∂− and that q0 s−L = 2s∂0,
completing the proof. �

Remark 6.5. In Theorem 6.4 we applied the differences on the symbols of specific
differential operators on SU(2). In general, on a compact Lie group G, a difference
operator of order |γ| applied to a symbol of a partial differential operator of order N
gives a symbol of order N − |γ|. More precisely, let

D =
∑

|α|≤N

cα(x) ∂
α
x

be a partial differential operator with coefficients cα ∈ C∞(G). For q ∈ C∞(G) such
that q(e) = 0, we define difference operator △q acting on symbols by

△qf̂(ξ) := q̂f(ξ).

Then we obtain

△qσD(x, ξ) =
∑

|α|≤N

cα(x)
∑

β≤α

(
α

β

)
(−1)|β| (∂βx q)(e) σ∂α−β

x
(x, ξ),

which is a symbol of a partial differential operator of order at most N − 1.
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7. Taylor expansion on Lie groups

As Taylor polynomial expansions are useful in obtaining symbolic calculus on Rn,
we would like to have analogous expansions on group G. Here, Taylor expansion
formula on G will be obtained by embedding G into some Rm, using the Taylor
expansion formula in Rm, and then restricting it back to G.
Let U ⊂ Rm be an open neighbourhood of some point ~e ∈ Rm. The Nth order

Taylor polynomial PNf : Rm → C of f ∈ C∞(U) at ~e is given by

PNf(~x) =
∑

α∈Nm
0
: |α|≤N

1

α!
(~x− ~e)α ∂αx f(~e).

Then the remainder ENf := f − PNf satisfies

ENf(~x) =
∑

|α|=N+1

(~x− ~e)α fα(~x)

for some functions fα ∈ C∞(U). In particular,

ENf(~x) = O(‖~x− ~e‖N+1) as ~x→ ~e.

Let G be a compact Lie group; we would like to approximate a smooth function
u : G → C using a Taylor polynomial type expansion nearby the neutral element
e ∈ G. We may assume that G is a closed subgroup of GL(n,R) ⊂ Rn×n, the group
of real invertible (n × n)-matrices, and thus a closed submanifold of the Euclidean
space of dimension m = n2. This embedding of G into Rm will be denoted by x 7→ ~x,
and the image of G under this embedding will be still denoted by G. Also, if x ∈ G,
we may still write x for ~x to simplify the notation. Let U ⊂ Rm be a small enough
open neighbourhood of G ⊂ Rm such that for each ~x ∈ U there exists a unique
nearest point p(~x) ∈ G (with respect to the Euclidean distance). For u ∈ C∞(G)
define f ∈ C∞(U) by

f(~x) := u(p(~x)).

The effect is that f is constant in the directions perpendicular to G. As above, we
may define the Euclidean Taylor polynomial PNf : Rm → C at e ∈ G ⊂ Rm. Let us
define PNu : G→ C as the restriction,

PNu := PNf |G.
We call PNu ∈ C∞(G) a Taylor polynomial of u of order N at e ∈ G. Then for
x ∈ G, we have

u(x)− PNu(x) =
∑

|α|=N+1

uα(x) (x− e)α

for some functions uα ∈ C∞(G), where we set (x−e)α := (~x−~e)α. Taylor polynomials
on G are given by

PNu(x) =
∑

|α|≤N

1

α!
(x− e)α ∂(α)x u(e),

where we set ∂
(α)
x u(e) := ∂αx f(~e).

Let us now consider especially G = SU(2). Recall the quaternionic identification

(x01 + x1i + x2j+ x3k 7→ (x0, x1, x2, x3)) : H → R4.
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Moreover, there is the identification H ⊃ S3 ∼= SU(2),

~x = (x0, x1, x2, x3) 7→
(
x0 + ix3 x1 + ix2
−x1 + ix2 x0 − ix3

)
=

(
x11 x12
x21 x22

)
= x.

Hence we identify (1, 0, 0, 0) ∈ R4 with the neutral element of SU(2). Notice that

q+(x) = x12 = x1 + ix2,

q−(x) = x21 = −x1 + ix2,

q0(x) = x11 − x22 = 2ix3.

A function u ∈ C∞(S3) can be extended to f ∈ C∞(U) = C∞(R4 \ {0}) by

f(~x) := u(~x/‖~x‖).
Then we obtain PNu ∈ C∞(S3),

PNu(~x) :=
∑

|α|≤N

1

α!
(~x− ~e)α ∂αx f(~e),

where ~e = (1, 0, 0, 0). Expressing this in terms of x ∈ SU(2), we obtain Taylor
polynomials for x ∈ SU(2):

PNu(x) =
∑

|α|≤N

1

α!
(x− e)α ∂(α)x u(e),

where we write ∂
(α)
x u(e) = ∂αx f(~e), and where

(x− e)α = (~x− ~e)α = (x0 − 1)α1xα2

1 x
α3

2 x
α4

3 =

=

(
x11 + x22

2
− 1

)α1
(
x12 − x21

2

)α2
(
x12 + x21

2i

)α3
(
x11 − x22

2i

)α4

.

8. Properties of global pseudo-differential symbols

In this section, we study the global symbols of pseudo-differential operators on
compact Lie groups. We also derive elements of the calculus in more general classes
of symbols, and prove the Sobolev boundedness Theorem 3.2.
As explained in Section 7, smooth functions on a group G can be approximated

by Taylor polynomial type expansions. More precisely, there exist partial differential

operators ∂
(α)
x of order |α| on G such that for every u ∈ C∞(G) we have

(8.1)

u(x) =
∑

|α|≤N

1

α!
qα(x

−1) ∂(α)x u(e) +
∑

|α|=N+1

qα(x
−1) uα(x) ∼

∑

α≥0

1

α!
qα(x

−1) ∂(α)x u(e)

in a neighbourhood of e ∈ G, where uα ∈ C∞(G), and qα ∈ C∞(G) satisfy qα+β =
qαqβ. Moreover, here q0 ≡ 1, and qα(e) = 0 if |α| ≥ 1. Let us define difference

operators△α
ξ acting on Fourier coefficients by△α

ξ f̂(ξ) := q̂αf(ξ). Notice that△α+β
ξ =

△α
ξ△β

ξ .
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Remark 8.1. The technical choice of writing qα(x
−1) in (8.1) is dictated by our

desire to make asymptotic formulae in Theorems 8.3 and 8.4 look similar to the
familiar Euclidean formulae, and by an obvious freedom in selecting among different
forms of Taylor polynomials qα. For example, on SU(2), if we work with operators
∆+,∆−,∆0 defined in (6.1)-(6.3), we can choose the form of the Taylor expansion
(8.1) adapted to functions q+, q−, q0. Here we can observe that q+(x

−1) = −q−(x),
q−(x

−1) = −q+(x), q0(x−1) = −q0(x), so that for |α| = 1 functions qα(x) and qα(x
−1)

are linear combinations of q+, q−, q0.

Let {Yj}dim(G)
j=1 be a basis for the Lie algebra of G, and let ∂j be the left-invariant

vector fields corresponding to Yj. For β ∈ Nn
0 , let us denote ∂

β = ∂β11 · · ·∂βnn .
For a compact closed manifold M , let Am

0 (M) denote the set of those continuous
linear operators A : C∞(M) → C∞(M) which are bounded from Hm(M) to L2(M).
Recursively define Am

k+1(M) ⊂ Am
k (M) such that A ∈ Am

k (M) belongs to Am
k+1(M)

if and only if [A,D] = AD − DA ∈ Am
k (M) for every smooth vector field D on M .

Now we will use a variant of the commutator characterization of pseudo-differential
operators (see e.g. [2, 3, 4, 5, 30]), but we will need the following Sobolev space
version proved in [31], assuring that the behaviour of commutators in Sobolev spaces
characterizes pseudo-differential operators:

Theorem 8.2. A continuous linear operator A : C∞(M) → C∞(M) belongs to
Ψm(M) if and only if A ∈ ⋂∞

k=0Am
k (M).

In such characterization on a compact Lie group M = G, it suffices to consider
vector fields of the form D = Mφ∂x, where Mφf := φf is multiplication by φ ∈
C∞(G), and ∂x is left-invariant. Notice that

[A,Mφ∂x] =Mφ [A, ∂x] + [A,Mφ] ∂x,

where [A,Mφ]f = A(φf) − φAf . Hence we need to consider compositions MφA,
AMφ, A ◦ ∂x and ∂x ◦ A. First, we observe that

σMφA(x, ξ) = φ(x) σA(x, ξ),(8.2)

σA◦∂x(x, ξ) = σA(x, ξ) σ∂x(x, ξ),(8.3)

σ∂x◦A(x, ξ) = σ∂x(x, ξ) σA(x, ξ) + (∂xσA)(x, ξ),(8.4)

where σ∂x(x, ξ) is independent of x ∈ G. Here (8.4) follows by the Leibnitz formula:

∂x ◦ Af(x) = ∂x
∑

[ξ]∈ bG

dim(ξ) Tr
(
ξ(x) σA(x, ξ) f̂(ξ)

)

=
∑

[ξ]∈ bG

dim(ξ) Tr
(
(∂xξ)(x) σA(x, ξ) f̂(ξ)

)

+
∑

[ξ]∈ bG

dim(ξ) Tr
(
ξ(x) ∂xσA(x, ξ) f̂(ξ)

)
.

Next we claim that we have the fomula

(8.5) σAMφ
(x, ξ) ∼

∑

α≥0

1

α!
△α
ξ σA(x, ξ) ∂

(α)
x φ(x),
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where ∂
(α)
x are certain partial differential operators of order |α|. This will follow from

the following general composition formula:

Theorem 8.3. Let m1, m2 ∈ R and ρ > δ ≥ 0. Let A,B : C∞(G) → C∞(G) be
continuous and linear, their symbols satisfying

∥∥△α
ξ σA(x, ξ)

∥∥
op

≤ Cα 〈ξ〉m1−ρ|α|,
∥∥∂βxσB(x, ξ)

∥∥
op

≤ Cβ 〈ξ〉m2+δ|β|,

for all multi-indices α and β, uniformly in x ∈ G and [ξ] ∈ Ĝ. Then

(8.6) σAB(x, ξ) ∼
∑

α≥0

1

α!
(△α

ξ σA)(x, ξ) ∂
(α)
x σB(x, ξ),

where the asymptotic expansion means that for every N ∈ N we have
∥∥∥∥∥∥
σAB(x, ξ)−

∑

|α|<N

1

α!
(△α

ξ σA)(x, ξ) ∂
(α)
x σB(x, ξ)

∥∥∥∥∥∥
op

≤ CN〈ξ〉m1+m2−(ρ−δ)N .

Proof. First,

ABf(x) =

∫

G

(Bf)(xz) RA(x, z
−1) dz

=

∫

G

∫

G

f(xy−1) RB(xz, yz) dy RA(x, z
−1) dz,

where we use the standard distributional interpretation of integrals. Hence

σAB(x, ξ) =

∫

G

RAB(x, y) ξ(y)
∗ dy

=

∫

G

∫

G

RA(x, z
−1) ξ(z−1)∗ RB(xz, yz) ξ(yz)

∗ dz dy

=
∑

|α|<N

1

α!

∫

G

∫

G

RA(x, z
−1) qα(z

−1) ξ(z−1)∗ ∂(α)x RB(x, yz) ξ(yz)
∗ dz dy

+
∑

|α|=N

∫

G

∫

G

RA(x, z
−1) qα(z

−1) ξ(z−1)∗ uα(x, yz) ξ
∗(yz) dz dy

=
∑

|α|<N

1

α!
(△α

ξ σA)(x, ξ) ∂
(α)
x σB(x, ξ) +

∑

|α|=N

(△α
ξ σA)(x, ξ) ûα(x, ξ).

Now the statement follows because we have ‖ûα(x, ξ)‖op ≤ C〈ξ〉m1+δN since uα(x, y)

is the remainder in the Taylor expansion of RB(x, y) in x only and so it satisfies
similar estimates to those of σB with respect to ξ. This completes the proof. �

Before discussing symbol classes, let us complement Theorem 8.3 with a result
about adjoint operators:
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Theorem 8.4. Let m ∈ R and ρ > δ ≥ 0. Let A : C∞(G) → C∞(G) be continuous
and linear, with symbol σA satisfying

(8.7)
∥∥△α

ξ ∂
β
xσA(x, ξ)

∥∥
op

≤ Cα 〈ξ〉m−ρ|α|+δ|β|,

for all multi-indices α, uniformly in x ∈ G and [ξ] ∈ Ĝ. Then the symbol of A∗ is

(8.8) σA∗(x, ξ) ∼
∑

α≥0

1

α!
△α
ξ ∂

(α)
x σA(x, ξ)

∗,

where the asymptotic expansion means that for every N ∈ N we have
∥∥∥∥∥∥
△γ
ξ∂

β
x


σA(x, ξ)−

∑

|α|<N

1

α!
△α
ξ ∂

(α)
x σA(x, ξ)

∗



∥∥∥∥∥∥
op

≤ CN〈ξ〉m−(ρ−δ)N−ρ|γ|+δ|β|.

Remark 8.5. We note that if we impose conditions of the type (8.7) on both symbols
σA, σB in Theorem 8.3, we also get the asymptotic expansion (8.6) with the remainder
estimate as in Theorem 8.4.

Proof of Theorem 8.4. First we observe that writing A∗g(y) =
∫
G
g(x)RA∗(y, x−1y) dx,

we get the relation RA∗(y, x−1y) = RA(x, y−1x) between kernels, which means that

RA∗(x, v) = RA(xv−1, v−1). From this we find

σA∗(x, ξ) =

∫

G

RA∗(x, v) ξ(v)∗ dv

=

∫

G

RA(xv−1, v−1) ξ(v)∗ dv

=
∑

|α|<N

1

α!

∫

G

qα(v) ∂
(α)
x RA(x, v−1) ξ(v)∗dv +RN (x, ξ)

=
∑

|α|<N

1

α!
△α
ξ ∂

(α)
x σA(x, ξ)

∗ +RN(x, ξ),

where the last formula for the asymptotic expansion follows in view of

σA(x, ξ)
∗ =

(∫

G

RA(x, v) ξ
∗(v) dv

)∗

=

∫

G

RA(x, v−1) ξ∗(v) dv,

and estimate for the remainder RN (x, ξ) follows by an argument similar to that in
the proof of Theorem 8.3. �

On the way to characterize the usual Hörmander’s classes Ψm(G) in Theorem 9.2,
we need some properties concerning symbols of pseudo-differential operators.

Lemma 8.6. Let A ∈ Ψm(G). Then there exists a constant C <∞ such that

‖σA(x, ξ)‖op ≤ C〈ξ〉m

for all x ∈ G and ξ ∈ Rep(G). Also, if u ∈ G and if B is an operator with symbol
σB(x, ξ) = σA(u, ξ), then B ∈ Ψm(G).
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Proof. First, B ∈ Ψm(G) follows from the local theory of pseudo-differential oper-
ators, by studying Bf(x) =

∫
G
KA(u, ux

−1y) f(y) dy. Hence the right-convolution
operator B is bounded from Hs(M) to Hs−m(G), implying ‖σA(u, ξ)‖ ≤ C〈ξ〉m. �

Lemma 8.7. Let A ∈ Ψm(G). Then Op(△α
ξ ∂

β
xσA) ∈ Ψm−|α|(G) for all α, β.

Proof. First, given A ∈ Ψm(G), let us define σB(x, ξ) = △α
ξ ∂

β
xσA(x, ξ). We must

show that B ∈ Ψm−|α|(G). If here |β| = 0, we obtain

Bf(x) =

∫

G

f(xy−1) qα(y) RA(x, y) dy =

∫

G

qα(y
−1x) KA(x, y) f(y) dy.

Moving to local coordinates, we need to study

B̃f(x) =

∫

Rn

φ(x, y) KÃ(x, y) f(y) dy,

where Ã ∈ Ψm(Rn) with φ ∈ C∞(Rn×Rn), the kernel KÃ being compactly supported.

Let us calculate the symbol of B̃:

σB̃(x, ξ) =

∫

Rn

ei2π(y−x)·ξ φ(x, y) KÃ(x, y) dy

∼
∑

γ≥0

1

γ!
∂γz φ(x, z)|z=x

∫

G

ei2π(y−x)·ξ (y − x)γ KÃ(x, y) dy

=
∑

γ≥0

1

γ!
∂γz φ(x, z)|y=xD

γ
ξσÃ(x, ξ).

This shows that B̃ ∈ Ψm(Rn). We obtain Op(△α
ξ σA) ∈ Ψm−|α|(G) if A ∈ Ψm(G).

Next we show that B = Op(∂βxσA) ∈ Ψm(G). We may assume that |β| = 1. Left-
invariant vector field ∂βx is a linear combination of terms of the type c(x)Dx, where

c ∈ C∞(G) and Dx is right-invariant. By the previous considerations on B̃, we may
remove c(x) here, and consider only C = Op(DxσA). Since RA(x, y) = KA(x, xy

−1),
we get

DxRA(x, y) = (Dx +Dz)KA(x, z)|z=xy−1 ,

leading to

Cf(x) =

∫

G

f(xy−1) DxRA(x, y) dy =

∫

G

f(y) (Dx +Dy)KA(x, y) dy.

Thus, we study local operators of the form

C̃f(x) =

∫

Rn

f(y)
(
φ(x, y)∂βx + ψ(x, y)∂βy

)
KÃ(x, y) dy,

where the kernel of Ã ∈ Ψm(Rn) has compact support, φ, ψ ∈ C∞(Rn × Rn), and

φ(x, x) = ψ(x, x) for every x ∈ Rn. Let C̃ = D̃ + Ẽ, where

D̃f(x) =

∫

Rn

f(y) φ(x, y)
(
∂βx + ∂βy

)
KÃ(x, y) dy,

Ẽf(x) =

∫

Rn

f(y) (ψ(x, y)− φ(x, y)) ∂βyKÃ(x, y) dy.
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By the above considerations about B̃, we may assume that φ(x, y) ≡ 1 here, and
obtain σD̃(x, ξ) = ∂βxσÃ(x, ξ). Thus D̃ ∈ Ψm(Rn). Moreover,

Ẽf(x) ∼
∑

γ≥0

1

γ!
∂γz (ψ(x, z)− φ(x, z))|z=x

∫

Rn

f(y) (y − x)γ ∂βyKÃ(x, y) dy,

yielding

σẼ(x, ξ) ∼
∑

γ≥0

cγ(x) ∂
γ
ξ

(
ξβ σÃ(x, ξ)

)

for some functions cγ ∈ C∞(Rn) for which c0(x) ≡ 0. Since |β| = 1, this shows that

Ẽ ∈ Ψm(Rn). Thus Op(∂βxσA) ∈ Ψm(G) if A ∈ Ψm(G). �

Lemma 8.8. Let A ∈ Ψm(G) and let D : C∞(G) → C∞(G) be a smooth vector field.
Then Op(σAσD) ∈ Ψm+1(G) and Op([σA, σD]) ∈ Ψm(G).

Proof. For simplicity, we may assume that D =Mφ∂x, where ∂x is left-invariant and
φ ∈ C∞(G). Now

σA(x, ξ) σD(x, ξ) = φ(x) σA(x, ξ) σ∂x(ξ) = σMφA◦∂x(x, ξ),

and it is well-known that MφA ◦ ∂x ∈ Ψm+1(G). Thus Op(σAσD) ∈ Ψm+1(G). Next,

σD(x, ξ) σA(x, ξ) = φ(x) σ∂x(ξ) σA(x, ξ)
(8.4)
= φ(x) (σ∂x◦A(x, ξ)− (∂xσA)(x, ξ))

= σMφ◦∂x◦A(x, ξ)− φ(x) (∂xσA)(x, ξ).

From this we see that

Op([σA, σD]) = MφA ◦ ∂x −Mφ∂x ◦ A +Mφ Op(∂xσA)

= Mφ[A, ∂x] +Mφ Op(∂xσA).

Here Op(∂xσA) ∈ Ψm(G) by Lemma 8.7. Hence Op([σA, σD]) belongs to Ψm(G) by
the known properties of pseudo-differential operators. �

Finally, let us prove the Sobolev space boundedness of pseudo-differential operators
given in Theorem 3.2.

Proof of Theorem 3.2. Observing the continuous mapping Ξs : Hs(G) → L2(G), we
have to prove that operator Ξs−µ ◦ A ◦ Ξ−s is bounded from L2(G) to L2(G). Let us
denote B = A ◦Ξ−s, so that the symbol of B satisfies σB(x, ξ) = 〈ξ〉−sσA(x, ξ) for all
x ∈ G and ξ ∈ Rep(G), where 〈ξ〉 is defined in (3.2). Since Ξs−µ ∈ Ψs−µ(G), by (3.1)
and Lemma 8.7 its symbol satisfies

(8.9) ‖△α
ξ σΞs−µ(x, ξ)‖op ≤ C ′

α 〈ξ〉s−µ−|α|.

Now we can observe that the asymptotic formula in Theorem 8.3 works for the com-
position Ξs−µ ◦B in view of (8.9), and we obtain

∂βxσΞs−µ◦B(x, ξ) ∼
∑

α≥0

1

α!

(
△α
ξ σΞs−µ(x, ξ)

)
〈ξ〉−s ∂(α)x ∂βxσA(x, ξ).

It follows that ∥∥∂βxσΞs−µ◦B(x, ξ)
∥∥
op

≤ C ′′
β ,
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so that Ξs−µ ◦B is bounded on L2(G) by Theorem 3.1. This completes the proof. �

9. Symbol classes on compact Lie groups

The goal of this section is to describe the pseudo-differential symbol inequalities
on compact Lie groups that yield Hörmander’s classes Ψm(G). Combined with as-
ymptotic expansion (8.6) for composing operators, Theorem 8.2 motivates defining
the following symbol classes Σm(G) =

⋂∞
k=0Σ

m
k (G), that we will show to characterize

Hörmander’s class Ψm(G).

Definition 9.1. Let m ∈ R. We denote σA ∈ Σm0 (G) if

(9.1) sing supp (y 7→ RA(x, y)) ⊂ {e}
and if

(9.2) ‖△α
ξ ∂

β
xσA(x, ξ)‖op ≤ CAαβm 〈ξ〉m−|α|,

for all x ∈ G, all multi-indices α, β, and all ξ ∈ Rep(G), where 〈ξ〉 is defined in (3.2).
Then we say that σA ∈ Σmk+1(G) if and only if

σA ∈ Σmk (G),(9.3)

σ∂jσA − σAσ∂j ∈ Σmk (G),(9.4)

(△γ
ξσA) σ∂j ∈ Σ

m+1−|γ|
k (G),(9.5)

for all |γ| > 0 and 1 ≤ j ≤ dim(G). Let

Σm(G) =

∞⋂

k=0

Σmk (G).

Let us denote A ∈ OpΣm(G) if and only if σA ∈ Σm(G).

Theorem 9.2. Let G be a compact Lie group and let m ∈ R. Then A ∈ Ψm(G) if
and only if σA ∈ Σm(G), i.e. OpΣm(G) = Ψm(G).

Proof. First, applying Theorem 8.3 to σA ∈ Σmk+1(G), we notice that [A,D] ∈ OpΣmk (G)
for any smooth vector field D : C∞(G) → C∞(G). Consequently, if here A ∈
OpΣm(G) then also [A,D] ∈ OpΣm(G). By Remark 3.3, OpΣm(G) ⊂ L(Hm(G), L2(G)).
Hence Theorem 8.2 implies OpΣm(G) ⊂ Ψm(G).
Conversely, we have to show that Ψm(G) ⊂ OpΣm(G). This follows by Lemma 8.6,

and Lemmas 8.7 and 8.8. More precisely, let A ∈ Ψm(G). Then we have

Op(△α
ξ ∂

β
xσA) ∈ Ψm−|α|(G),

Op
(
[σ∂j , σA]

)
∈ Ψm(G),

Op
(
(△γ

ξσA)σ∂j
)

∈ Ψm+1−|γ|(G).

Moreover, ‖σA(x, ξ)‖ ≤ C〈ξ〉m by Lemma 8.6, and the singular support y 7→ RA(x, y)
is contained in {e} ⊂ G. This completes the proof. �

Corollary 9.3. The set Σm(G) is invariant under x-freezings, x-translations and ξ-
conjugations. More precisely, if (x, ξ) 7→ σA(x, ξ) belongs to Σm(G) and u ∈ G then
also the following symbols belong to Σm(G):

(x, ξ) 7→ σA(u, ξ),(9.6)
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(x, ξ) 7→ σA(ux, ξ),(9.7)

(x, ξ) 7→ σA(xu, ξ),(9.8)

(x, ξ) 7→ ξ(u)∗ σA(x, ξ) ξ(u).(9.9)

Proof. The symbol classes Σm(G) are defined by conditions (9.1)-(9.5), which are
checked for points x ∈ G fixed (with constants uniform in x). Therefore it follows
that Σm(G) is invariant under the x-freezing (9.6), and under the left and right
x-translations (9.7),(9.8). The x-freezing property (9.6) would have followed also
from Lemma 8.6 and Theorem 9.2. From the general theory of pseudo-differential
operators it follows that A ∈ Ψm(G) if and only if the φ-pullback Aφ belongs to the
same class Ψm(G), where Aφf = A(f ◦φ)◦φ−1. This, combined with the x-translation
invariances and Proposition 2.10, implies the conjugation invariance in (9.9). �

From Theorem 9.2 and Lemma 8.7 we also obtain:

Corollary 9.4. If σA ∈ Σm(G) then △α
ξ ∂

β
xσA ∈ Σm−|α|(G).

10. Symbol classes on SU(2)

Let us now turn to the analysis on SU(2). In this section we derive a much sim-
pler symbolic characterization of pseudo-differential operators on SU(2) than the one
given in Definition 9.1. First we summarize the approach in the case of SU(2) also
simplifying the notation in this case.
By the Peter-Weyl theorem {

√
2l + 1 tlnm : l ∈ 1

2
N0, −l ≤ m,n ≤ l, l−m, l−n ∈

Z} is an orthonormal basis for L2(SU(2)), where tl were defined in Section 4, and
thus f ∈ C∞(SU(2)) has a Fourier series representation

f =
∑

l∈ 1

2
N0

(2l + 1)
∑

m

∑

n

f̂(l)mn t
l
nm,

where the Fourier coefficients are computed by

f̂(l)mn :=

∫

SU(2)

f(g) tlnm(g) dg = 〈f, tlnm〉L2(SU(2)),

so that f̂(l) ∈ C(2l+1)×(2l+1). We recall that in the case of SU(2), we simplify the

notation writing f̂(l) instead of f̂(tl), etc.
Let A : C∞(SU(2)) → C∞(SU(2)) be a continuous linear operator and let RA ∈

D′(SU(2)× SU(2)) be its right-convolution kernel, i.e.

Af(x) =

∫

SU(2)

f(y) RA(x, y
−1x) dy = (f ∗RA(x, ·))(x)

in the sense of distributions. According to Definition 2.3, by the symbol of A we
mean the sequence of matrix-valued mappings

(x 7→ σA(x, l)) : SU(2) → C(2l+1)×(2l+1),

where 2l ∈ N0, obtained from

σA(x, l)mn =

∫

SU(2)

RA(x, y) tlnm(y) dy.
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That is, σA(x, l) is the l
th Fourier coefficient of the function y 7→ RA(x, y). Then by

Theorem 2.4 we have

Af(x) =
∑

l

(2l + 1) Tr
(
tl(x) σA(x, l) f̂(l)

)

=
∑

l

(2l + 1)
∑

m,n

tl(x)nm

(∑

k

σA(x, l)mk f̂(l)kn

)
.

Alternatively, by Theorem 2.5 we have

σA(x, l) = tl(x)∗
(
Atl
)
(x),

that is
σA(x, l)mn =

∑

k

tlkm(x)(At
l
kn)(x).

In the case of SU(2), quantity
〈
tl
〉
for ξ = tl in (3.2) can be calculated as

〈
tl
〉
= (1 + λ[tl])

1/2 = (1 + l(l + 1))1/2

in view of Theorem 5.7, and Definition 9.1 becomes:

Definition 10.1. We write that symbol σA ∈ Σm0 (SU(2)) if

(10.1) sing supp (y 7→ RA(x, y)) ⊂ {e}
and if

(10.2)
∥∥△α

l ∂
β
xσA(x, l)

∥∥
C2l+1→C2l+1 ≤ CAαβm (1 + l)m−|α|

for all x ∈ G, all multi-indices α, β, and l ∈ 1
2
N0. Here △α

l = △α1

0 △α2

+ △α3

− and

∂βx = ∂β10 ∂
β2
+ ∂

β3
− . Moreover, σA ∈ Σmk+1(SU(2)) if and only if

σA ∈ Σmk (SU(2)),(10.3)

[σ∂j , σA] = σ∂jσA − σAσ∂j ∈ Σmk (SU(2)),(10.4)

(△γ
l σA) σ∂j ∈ Σ

m+1−|γ|
k (SU(2)),(10.5)

for all |γ| > 0 and j ∈ {0,+,−}. Let

Σm(SU(2)) =

∞⋂

k=0

Σmk (SU(2)),

so that by Theorem 9.2 we have OpΣm(SU(2)) = Ψm(SU(2)).

Remark 10.2. We would like to provide a more direct definition for Σm(SU(2)),
without resorting to classes Σmk (SU(2)). Condition (10.2) is just an analogy of the
usual symbol inequalities. Conditions (10.1) and (10.3) are straightforward. We may
have difficulties with differences △α

l , but derivatives ∂βx do not cause problems; if
we want, we may assume that the symbols are constant in x. By the definition of
operators △α

l and ∂βx we also have the following properties:

△α
l ∂

β
xσA(x, l) = ∂βx△α

l σA(x, l),

∂j (σA(x, l) σB(x, l)) = (∂jσA(x, l)) σB(x, l) + σA(x, l) ∂jσA(x, l),

∂βy (σA(x, l) σB(y, l) σC(z, l)) = σA(x, l)
(
∂βy σB(y, l)

)
σC(z, l).



QUANTIZATION OF PSEUDO-DIFFERENTIAL OPERATORS ON SU(2) AND S3 37

We now give another, simpler characterization of pseudo-differential operators.

Definition 10.3 (Symbol classes on SU(2)). For u ∈ SU(2), denote Auf := A(f ◦
φ) ◦ φ−1, where φ(x) = xu; then (by Proposition 2.10)

RAu
(x, y) = RA(xu

−1, uyu−1),

σAu
(x, l) = tl(u)∗ σA(xu

−1, l) tl(u).

The symbol class Sm(SU(2)) consists of the symbols σA of those operators A ∈
L(C∞(SU(2))) for which (y 7→ RA(x, y)) ⊂ {e} and for which

(10.6)
∣∣△α

l ∂
β
xσAu

(x, l)ij
∣∣ ≤ CAαβmN 〈i− j〉−N (1 + l)m−|α|

uniformly in x, u ∈ SU(2), for every N ≥ 0, all l ∈ 1
2
N0, every multi-indices α, β ∈ N3

0,
and for all matrix column/row numbers i, j. Thus, the constant in (10.6) may depend
on A, α, β,m and N , but not on x, u, l, i, j.

We now formulate the main theorem of this section:

Theorem 10.4. Operator A ∈ L(C∞(SU(2))) belongs to Ψm(SU(2)) if and only if
σA ∈ Sm(SU(2)). Moreover, we have the equality of symbol classes Sm(SU(2)) =
Σm(SU(2)).

In fact, we need to prove only the equality of symbol classes Sm(SU(2)) = Σm(SU(2)),
from which the first part of the theorem would follow by Theorem 9.2. In the process
of proving this equality, we establish a number of auxiliary results.

Remark 10.5. By Corollary 9.4, if σA ∈ Σm(SU(2)) then △γ
l ∂

δ
xσA ∈ Σm−|δ|(SU(2)).

Let us show the analogous result for Sm(SU(2)).

Lemma 10.6. If σA ∈ Sm(SU(2)) then σB = △γ
l ∂

δ
xσA ∈ Sm−|γ|(SU(2)).

Proof. First, let |γ| = 1. Then △γ
l f̂(l) = q̂f(l) for some

q ∈ Pol1(SU(2)) := span
{
t
1/2
ij : i, j ∈ {−1/2,+1/2}

}

for which q(e) = 0. Let r(y) := q(uyu−1). Then r ∈ Pol1(SU(2)), because

t
1/2
ij (uyu−1) =

∑

k,m

t
1/2
ik (u) t

1/2
km(y) t

1/2
mj (u

−1).

Moreover, we have r(e) = 0. Hence f̂(l) 7→ r̂f(l) is a linear combination of difference
operators △0,△+,△− because {f ∈ Pol1(SU(2)) : f(e) = 0} is a three-dimensional
vector space spanned by q0, q+, q−. Now let γ ∈ N3

0 and σB = △γ
l ∂

δ
xσA. We have

△α
l ∂

β
xσBu

(x, l) = △α
l ∂

β
x

(
tl(u)∗ σB(xu

−1, l) tl(u)
)

= △α
l ∂

β
x

(
tl(u)∗

(
△γ
l ∂

δ
xσA(xu

−1, l)
)
tl(u)

)

=
∑

|γ′|=|γ|

λu,γ′ △α+γ′

l ∂β+δx σAu
(x, l),

for some scalars λu,γ′ ∈ C depending only on u ∈ SU(2) and multi-indices γ′ ∈ N3
0. �
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Remark 10.7. Let D be a left-invariant vector field on SU(2). From the very
definition of the symbol classes Σm(SU(2)) =

⋂∞
k=0Σ

m
k (SU(2)), it is evident that

[σD, σA] ∈ Σm(SU(2)) if σA ∈ Σm(SU(2)). We shall next prove the similar invariance
for Sm(SU(2)).

Lemma 10.8. Let D be a left-invariant vector field on SU(2). Let σA ∈ Sm(SU(2)).
Then [σD, σA] ∈ Sm(SU(2)) and σA σD ∈ Sm+1(SU(2)).

Proof. For D ∈ su(2) we write D = iE, so that E ∈ i su(2). By Proposition 5.4 there
is some u ∈ SU(2) such that σE(l) = tl(u)∗ σ∂0(l) t

l(u). Now, we have

[σE , σA](l) = tl(u)∗
[
σ∂0(l), t

l(u) σA(x, l) t
l(u)∗

]
tl(u)

=
[
σ∂0 , σAu−1

]
u
(l).

Next, notice that Sm(SU(2)) is invariant under the mappings σB 7→ σBu
and σB 7→

[σ∂0 , σB]; here [σ∂0 , σB](l)ij = (i− j) σB(l)ij . Finally,

σA(x, l) σE(l) = tl(u)∗ tl(u) σA(x, l) t
l(u)∗ σ∂0(l) t

l(u)

=
(
σA

u−1
(x, l) σ∂0(l)

)
u
.

Just like in the first part of the proof, we see that σA σD belongs to Sm+1(SU(2))
since σB σ∂0 ∈ Sm+1(SU(2)) if σB ∈ Sm(SU(2)), by Theorem 6.3. �

Proof of Theorem 10.4. We have to show that Sm(SU(2)) = Σm(SU(2)), so that the-
orem would follow from Theorem 9.2. Both classes Sm(SU(2)) and Σm(SU(2)) require
the singular support condition (y 7→ RA(x, y)) ⊂ {e}, so we do not have to consider
this; moreover, the x-dependence of the symbol is not essential here, and therefore we
abbreviate σA(l) := σA(x, l). First, let us show that Σm(SU(2)) ⊂ Sm(SU(2)). Take
σA ∈ Σm(SU(2)). Then also σAu

∈ Σm(SU(2)) (either by the well-known properties
of pseudodifferential operators and Theorem 9.2, or by checking directly that the
definition of the classes Σmk (SU(2)) is conjugation-invariant). Let us define cN(B) by

σcN (B)(l)ij := (i− j)N σB(l)ij.

Now σcN (Au) ∈ Σm(SU(2)) for every N ∈ Z+, because σAu
∈ Σm(SU(2)) and

[σ∂0 , σB](l)ij = (i− j) σB(l)ij.

This implies the “rapid off-diagonal decay” of σAu
:

|σAu
(x, l)ij | ≤ CAmN 〈i− j〉−N (1 + l)m,

implying the norm comparability

(10.7) ‖· · ·σAu
(l)‖op ∼ sup

i,j
|· · ·σAu

(l)ij |

in view of Lemma 12.2 in Appendix. Moreover, △α
l ∂

β
xσAu

∈ Σm−|α|(SU(2)) by
Corollary 9.4, so that we obtain the symbol inequalities (10.6) from (9.2). Thereby
Σm(SU(2)) ⊂ Sm(SU(2)).
Now we have to show that Sm(SU(2)) ⊂ Σm(SU(2)). Again, we may exploit the

norm comparabilities (10.7): thus clearly Sm(SU(2)) ⊂ Σm0 (SU(2)). Consequently,
Sm(SU(2)) ⊂ Σmk (SU(2)) for all k ∈ Z+, due to Lemmas 10.6 and 10.8. �
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11. Pseudo-differential operators on manifolds and on S3

In this section we discuss how the introduced constructions are mapped by global
diffeomorphisms and give an example of this in the case of SU(2) and S3, proving
Theorem 1.1.
Let Φ : G → M be a diffeomorphism from a compact Lie group G to a smooth

manifold M . Such diffeomorphisms can be obtained for large classes of compact
manifolds by the Poincaré conjecture type results. For example, if dimM = 3 it is
now known that such Φ exists for any closed simply-connected manifold.
Let us endow M with the natural Lie group structure induced by Φ, i.e. with the

group multiplication ((x, y) 7→ x · y) :M ×M →M defined by

x · y := Φ
(
Φ−1(x) Φ−1(y)

)
.

Spaces C∞(G) and C∞(M) are isomorphic via mappings

Φ∗ : C
∞(G) → C∞(M), f 7→ fΦ = f ◦ Φ−1,

Φ∗ : C∞(M) → C∞(G), g 7→ gΦ−1 = g ◦ Φ.
The Haar integral on M is now given by∫

M

g dµM ≡
∫

M

g dx :=

∫

G

g ◦ Φ dµG,

because for instance
∫

M

g(x · y) dx =

∫

M

g(Φ(Φ−1(x) Φ−1(y))) dx =

=

∫

G

(g ◦ Φ)(Φ−1(x) Φ−1(y)) d(Φ−1(x)) =

∫

G

(g ◦ Φ)(z) dz =
∫

M

g(x) dx.

Moreover, Φ∗ : C
∞(G) → C∞(M) extends to a linear unitary bijection Φ∗ : L

2(µG) →
L2(µM): ∫

M

g(x) h(x) dx =

∫

G

(g ◦ Φ) (h ◦ Φ) dµG.

Notice also that there is an isomorphism

Φ∗ : Rep(G) → Rep(M), ξ 7→ Φ∗(ξ) = ξ ◦ Φ
of irreducible unitary representations. Thus Ĝ ∼= M̂ in this sense. This immediately
implies that the whole construction of symbols of pseudo-differential operators on M
is equivalent to that on G.
Let us now apply this construction to the isomorphism S3 ∼= SU(2). First recall

the quaternion space H which is the associative R-algebra with a vector space basis
{1, i, j,k}, where 1 ∈ H is the unit and

i2 = j2 = k2 = −1 = ijk.

Mapping x = (xm)
3
m=0 7→ x01 + x1i + x2j + x3k identifies R4 with H. In particular,

the unit sphere S3 ⊂ R4 ∼= H is a multiplicative group. A bijective homomorphism
Φ−1 : S3 → SU(2) is defined by

x 7→ Φ−1(x) =

(
x0 + ix3 x1 + ix2
−x1 + ix2 x0 − ix3

)
,
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and its inverse Φ : SU(2) → S3 gives rise to the global quantisation of pseudo-
differential operators on S3 induced by that on SU(2), as shown in the beginning of
this section. This, combined with Theorem 10.4, proves Theorem 1.1.

12. Appendix on infinite matrices

In this section we discuss infinite matrices. The main conclusion that we need is
that the operator-norm and the l∞-norm are equivalent for matrices arising as full
symbols of pseudo-differential operators in Ψm(SU(2)).

Definition 12.1. Let CZ denote the space of complex sequences x = (xj)j∈Z. A
matrix A ∈ CZ×Z is presented as an infinite table A =

(
Aij
)
i,j∈Z

. As usual, we set

〈x, y〉ℓ2 =
∑

j∈Z xjyj, ‖x‖l2 = 〈x, x〉1/2ℓ2 , and ‖A‖l2→l2 = sup{‖Ax‖l2 : ‖x‖l2 ≤ 1}
provided that the sums (Ax)i =

∑
j∈ZAij xj converge absolutely. For each k ∈ Z, let

us define A(k) ∈ CZ×Z by

A(k)ij =

{
Aij, if i− j = k,

0, if i− j 6= k.

A matrix A ∈ CZ×Z will be said to decay (rapidly) off-diagonal if

(12.1) |Aij| ≤ cAr 〈i− j〉−r

for every i, j ∈ Z and r ∈ N, where constants cAr < ∞ depend on r, A, but not on
i, j. The set of off-diagonally decaying matrices is denoted by D.

Lemma 12.2. Let A ∈ CZ×Z and ‖A‖ℓ∞ = supi,j∈Z |Aij|. Then
‖A‖ℓ∞ ≤ ‖A‖op.

Moreover, if |Aij| ≤ c〈i− j〉−r for some r > 1 then for c′ = c
∑

k∈Z〈k〉−r we have

‖A‖op ≤ c′ ‖A‖ℓ∞ .
Proof. Let δi = (δij)j∈Z ∈ CZ, where δii = 1 and δij = 0 if i 6= j. Then Aij =
〈Aδj, δi〉ℓ2. The first claim then follows from the Cauchy–Schwarz inequality:

|Aij| =
∣∣(Aδj , δi)ℓ2

∣∣ ≤ ‖A‖op.
Next, since A =

∑
k∈ZA(k), we get

‖A‖op ≤
∑

k∈Z

‖A(k)‖op =
∑

k∈Z

sup
j

|A(k)j+k,j| ≤
∑

k∈Z

c〈k〉−r.

From this we directly see that if ‖A‖ℓ∞ ≥ 1 then ‖A‖op ≤ c′ ‖A‖ℓ∞ . By the linearity
of the norms, this concludes the proof. �

Proposition 12.3. Let A,B ∈ D. Then AB ∈ D.

Proof. Matrices A,B ∈ CZ×Z in general cannot be multiplied, but here there is no
problem as A,B ∈ D, so that the matrix element (AB)ik is estimated by
∑

j

|Aij | |Bjk| ≤ cArcBs
∑

j

〈i−j〉−r〈j−k〉s
Peetre ineq.

≤ cArcBs
∑

j

〈i−k〉−r〈k−j〉|r|〈j−k〉s,

which converges if |r|+ s < −1. This shows that AB ∈ D. �



QUANTIZATION OF PSEUDO-DIFFERENTIAL OPERATORS ON SU(2) AND S3 41

Altogether, we obtain the following

Theorem 12.4. D ⊂ L(ℓ2) is a unital involutive algebra. Moreover, for A ∈ D,
norms ‖A‖op and ‖A‖ℓ∞ are equivalent.
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