•

ASTM E05 Workshop on Advancements in Evaluating the Fire Resistance of Structures – Dec 6-7, 2018 – Washington, DC

Probabilistic strength retention factors for steel and concrete and effect on structural reliability of columns in fire

Negar Elhami Khorasani¹, Thomas Gernay², Alex Stephani¹, Shuna Ni², Ruben Van Coile³, Danny Hopkin⁴ ¹ University at Buffalo NY, ² Johns Hopkins University, ³ University of Ghent, ⁴ OFR Consultants

ABSTRACT: Evaluating reliability of structures requires consideration of the uncertainties in demand and capacity. While material strengths exhibit a significant scatter at high temperature, no probabilistic model is available to quantify these uncertainties. To fill this gap, this work has compiled a database of test data on strength retention factors for steel and concrete, formulated a set of temperature-dependent probabilistic models based on these data, and applied the models in FE analyses of columns in fire. The proposed material models yield an average response similar to well-established deterministic models (Eurocode), but allow an explicit evaluation of the variability in structural fire response due to experimentally observed variability in material strength.

Data-informed probabilistic models are given for retention factors of steel and concrete

The models can be used in reliability assessments of structures in fire