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for DSM applications
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Experimental assessment and prediction
of short-term ATES for DSM applications

Demand

» Hour of day

DSM is Demand Side Management



Experimental assessment and prediction
of short-term ATES for DSM applications

Demand

» Hour of day
an example of load-shifting



Experimental assessment and prediction
of short-term ATES for DSM applications
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Modified after Bonte (2013)

ATES is Aquifer Thermal Energy Storage
It is mainly seasonal so far



Why using ATES for DSM applications?
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energy production

GWHP produces heat but consumes electricity

energy consumption




short-term ATES

DSM frequencies comprises
real-time, intraday, and interday too

&
The longer we wait, the less we recover!

&
Exergy



Experimental assessment

Experimental prediction

only alluvial aquifers are considered



Experimental assessment

Experimental prediction



Case study one: HssA
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HssA: push/pull tests in Pz15 upper layer
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HssA: test 1 = storage phase lasted 4d

Time (days)



HssA: test 2 = storage phase lasted 19h
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Case study two: 1SS
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JSS: 1 test with a storage phase of 3d

We did not recover everything
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Energy recovery summary

Storage
duration -

Site
- 75 % -
(16 m3 injected
pumped)

Up to 90 % with higher
pumped volume

HSSA, upper 25 %

Iayer (18 m3 injected
pumped)

GW fluxes difference:
< 1m/d ]SS and ~20 m/d HSSA top



Energy recovery summary

Storage 72 hours
duration =2

Site
- 75 % -
(16 m3 injected, 37 m3
pumped)

Up to 90 % with higher
pumped volume

LV s 35 9% for cycle 1 -

Iayer (15 m3 injected, 25 m3
pumped)

43 % for cycle 2

(15 m3 injected, 25 m3
pumped)

25 %
(18 m3 injected, 37 m3
pumped)

37 %

(18 m3 injected, 78 m3
pumped)




Energy recovery summary

Storage 72 hours
duration =2

Site
- 75 % -
(16 m3 injected, 37 m3
pumped)

Up to 90 % with higher
pumped volume

VT s i 35 9% for cycle 1 - 25 %
Iayer (15 m3 injected, 25 m3 (18 m3 injected, 37 m3
pumped) pumped)
43 % for cycle 2 37 %
(15 m3 injected, 25 m3 (18 m3 injected, 78 m3

pumped) pumped)



Exergy summary

Storage
duration >
Site

AT from 12 to 5 K

HSSA, upper AT from 18 to 7 K - AT from 7 to 2 K

layer

The longer we wait, the less we recover!
&
The longer we pump, the lower is the exergy



Experimental assessment

Experimental prediction



The HssA site is used again
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We used BEL to simulate ATES
with 500 surrogate models

heat push/pull tests

Exp. prediction? «—— Evaluation of energy recovery
and exergy



We used the same prior information
as for the last talk

Mean of logio K (m/s) U[-4 -1]

Variance logio K (m/s)  U[0.05 2]

Range (m) U[1 10]

Anisotropy ratio U[0.1 0.5]

Depth (m)

¢ Orientation U[0 7]

Porosity U[0.05 0.30]

Gradient (%) U[0.083 0.167]

Coarse gravel




A trend exists between average GW fluxes

Energy recovery rate (%)
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A trend exists between average GW fluxes

Energy recovery rate (%)
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This trend could be used to predict
a range of energy recovery rates
for every DSM frequencies
if you have an idea about average GW fluxes



To specify cut-off on fluxes
for which ATES is not suitable

Storage phase

Energy recovery rate (%) 19 hours
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To specify cut-off on fluxes
for which ATES is not suitable

Energy recovery rate (%) Storage phase
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Experimental assessment and prediction
of short-term ATES for DSM applications?

The longer we wait,
the less we recover!

The slower groundwater flows,
the most we recover!

Exergy is higher with short-term ATES

DSM is potentially feasible for all ATES
but not for all frequencies



Any questions?

Groundwater Quality 2019
The next IAHS conference on Groundwater Quality (GQ 2019) will be held in Lieége

(Belgium) on 9-12 September 2019 !
With the support of IAH, NICOLE, UK CL:AIRE and EU H2020 ITN iNSPIRATION

More information : aimontefiore.org/GQ2019
Contact: c.dizier@aim-association.org — serge.brouyere@uliege.be

roundwater Quality 2019
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Can short-term hydrogeological experiments
predict the long-term behavior of subsurface reservoirs?

An example from shallow geothermy
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Additional slides



An interday frequency

Push Pull

Coarse gravel Coarse gravel Coarse gravel

+3m3/h for 6h Storage phase -5m3/h for 16h
AT=30K 4 days T = data



HssA: test 1 = storage phase lasted 4d

(1)(2) (4)
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We tried to recover everything



An intraday frequency

Push Pull

Coarse gravel Coarse gravel Coarse gravel

+3nA1;/h3BoKr 5h Storage phase -5nT13/hdfotr 5h
) 19 hours -



HssA: test 2 = storage phase lasted 19h
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