T. ROBERT, T. HERMANS, N. LESPARRE, F. NGUYEN, C. PAULUS, P.-Y. BOLLY, A. DEFOURNY, P. JAMIN, P. ORBAN, S. BROUYERE, A. DASSARGUES

Tanguy.Robert@uliege.be

IAH 2018 congress Session T9-3 FP102

Université catholique de Louvain

Energy production

must be in balance with

energy consumption

DSM is Demand Side Management

an example of load-shifting

Modified after Bonte (2013)

ATES is Aquifer Thermal Energy Storage It is mainly seasonal so far

Why using ATES for DSM applications?

energy production

GWHP produces heat but consumes electricity

energy consumption

DSM frequencies comprises real-time, intraday, and interday too &

The longer we wait, the less we recover! & Exergy Experimental assessment

Experimental prediction

only alluvial aquifers are considered

Experimental assessment

Experimental prediction

Case study one: HssA

HssA: push/pull tests in Pz15 upper layer

HssA: test 1 = storage phase lasted 4d

HssA: test 2 = storage phase lasted 19h

Case study two: JSS

Average fluxes < 1m/day

JSS: 1 test with a storage phase of 3d

Energy recovery summary

Storage duration → Site	19 hours	72 hours	91 hours
JSS	-	75 % (16 m ³ injected, 37 m ³ pumped) Up to 90 % with higher pumped volume	_
HSSA, upper layer			25 % (18 m ³ injected 37 m ³ pumped)

GW fluxes difference: < 1m/d JSS and ~20 m/d HSSA top

Energy recovery summary

Storage duration → Site	19 hours	72 hours	91 hours
JSS	-	75 %	-
		(16 m ³ injected, 37 m ³ pumped)	
		Up to 90 % with higher pumped volume	
HSSA, upper layer	35 % for cycle 1	-	25 %
	(15 m ³ injected, 25 m ³ pumped)		(18 m ³ injected, 37 m ³ pumped)
	43 % for cycle 2		37 %
	(15 m ³ injected, 25 m ³ pumped)		(18 m ³ injected, 78 m ³ pumped)

Energy recovery summary

Storage duration → Site	19 hours	72 hours	91 hours
JSS	-	75 %	-
		(16 m ³ injected, 37 m ³ pumped)	
		Up to 90 % with higher pumped volume	
HSSA, upper layer	35 % for cycle 1	-	25 %
	(15 m ³ injected, 25 m ³ pumped)		(18 m ³ injected, 37 m ³ pumped)
	43 % for cycle 2		37 %
	(15 m ³ injected, 25 m ³ pumped)		(18 m ³ injected, 78 m ³ pumped)

Exergy summary

Storage duration →	19 hours	72 hours	91 hours
Site			
JSS	_	ΔT from 12 to 5 K	-
HSSA, upper layer	ΔT from 18 to 7 K	-	ΔT from 7 to 2 K

The longer we wait, the less we recover! & The longer we pump, the lower is the exergy Experimental assessment

Experimental prediction

The HssA site is used again

We used BEL to simulate ATES with 500 surrogate models

We used the same prior information as for the last talk

Mean of log10 K (m/s)	U[-4 -1]
Variance log10 K (m/s)	U[0.05 2]
Range (m)	U[1 10]
Anisotropy ratio	U[0.1 0.5]
Orientation	U[0 π]
Porosity	U[0.05 0.30]
Gradient (%)	U[0.083 0.167]

A trend exists between average GW fluxes and energy recovery rates

A trend exists between average GW fluxes and energy recovery rates

Log10 (average fluxes m/s)

This trend could be used to predict a range of energy recovery rates for every DSM frequencies if you have an idea about average GW fluxes

To specify cut-off on fluxes for which ATES is not suitable

Log10 (average fluxes m/s)

To specify cut-off on fluxes for which ATES is not suitable

The longer we wait, the less we recover!

The slower groundwater flows, the most we recover!

Exergy is higher with short-term ATES

DSM is potentially feasible for all ATES but not for all frequencies

Any questions?

Groundwater Quality 2019

Groundwater Quality 2019

The next IAHS conference on Groundwater Quality (GQ 2019) will be held in Liège (Belgium) on 9-12 September 2019! With the support of IAH, NICOLE, UK CL:AIRE and EU H2020 ITN iNSPIRATION

More information : aimontefiore.org/GQ2019 Contact: c.dizier@aim-association.org - serge.brouyere@uliege.be Can short-term hydrogeological experiments predict the long-term behavior of subsurface reservoirs?

An example from shallow geothermy

T. HERMANS, F. NGUYEN, N. LESPARRE, J. CAERS, T. ROBERT

Tanguy.Robert@uliege.be

IAH 2018 congress Session T9-3 FP101

Additional slides

An interday frequency

HssA: test 1 = storage phase lasted 4d

An intraday frequency

HssA: test 2 = storage phase lasted 19h

