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Abstract

In the context of recreational routing, the problem of finding a route which
starts and ends in the same location (while achieving a length between specified
upper and lower boundaries) is a common task, especially for tourists or cyclists
who want to exercise. The topic of finding a tour between a specified starting
and ending location while minimizing one or multiple criteria is well covered in
literature. In contrast to this, the route planning task in which a pleasant tour
with length between a maximum and a minimum boundary needs to be found
is relatively underexplored. In this paper, we provide a formal definition of this
problem, taking into account the existing literature on which route attributes
influence cyclists in their route choice. We show that the resulting problem is
NP-hard and devise a branch-and-bound algorithm that is able to provide a
bound on the quality of the best solution in pseudo-polynomial time. Further-
more, we also create an efficient heuristic to tackle the problem and we compare
the quality of the solutions that are generated by the heuristic with the bounds
provided by the branch-and-bound algorithm. Also, we thoroughly discuss the
complexity and running time of the heuristic.

Keywords: Constrained bicycle routing, branch-and-bound algorithm,
reach-based routing

1. Introduction

Cycling is a popular means of spending free time. According to Pucher et al.
(2011), 49% of all bicycle trips in the US between 2001 and 2009 are for exercise,
recreation and sports. In this context, cyclists are often looking for trips that
start and end at the same location, satisfy some length constraints and are as
pleasant as possible. Furthermore, they typically want to avoid taking the same
road or passing through the same area multiple times.
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Online Tools. There are two categories of online tools that are currently avail-
able to help cyclists in creating such tours. The first type of route planner is
limited to finding paths between a specified starting and ending point. Route
planners like BikeRouteToaster.com, plotaroute.com or cycle.travel allow cy-
clists to generate a route by adding and editing route points: users can draw a
route by adding route markers on the map, which are connected by a shortest
path algorithm in which the lengths of roads are modified to prefer more attrac-
tive roads. In the more advanced route planners, users are able to influence how
the new edge weights are calculated by specifying the tradeoff between certain
road properties. OpenTripPlanner (OTP) for example allows cyclists to specify
a trade-off between quick, flat and attractive routes, thus creating a ‘bicycle
preference triangle’. Creating closed tours with these route planners requires
that a user manually searches for some intermediate nodes to form a tour that
both satisfies constraints on length and avoids passing through the same areas.
This requires a lot of effort by the user and can be cumbersome.

The second type of tools contains route planners such as RouteLoops and
RouteYou, that add the needed functionality to generate a closed route by
allowing a user to specify a start point and a desired tour length. This type
of route planners usually operates by generating a set of via-nodes, after which
these points are connected by using a shortest-path algorithm. Another option,
taken by RouteLoops, is to generate a random walk through the graph. At
each vertex of the walk, the probability of choosing an edge as the next one in
the walk depends on the direction in which the edge is heading, the length of
the part of the walk that is already generated and the remaining length of the
tour. Unfortunately, these route planners limit users to a small set of cycling
profiles to express their preferences. Furthermore, tours generated by these
planners may contain multiple occurrences of the same road, especially near the
via-nodes.

Criteria. Hochmair (2004) suggests that preferences of individual cyclists are
highly different and cycling profiles do not suffice to capture the variety of
preferences of different cyclists. The algorithms that we develop allow each user
to define a function cl : E → R+, which maps each road - represented by an edge
e ∈ E - to a local cost. As in the first category of online tools, this cost should
be based on a rescaled road length, where shorter roads are more attractive.

Our implementation calculates cl using a weighted combination of different
criteria, similarly to the formulation of the multi-criteria shortest path problem
as given by Hrncir et al. (2014, 2015). Thus, there is a function ~ca : E → (R+)k,
which maps each road to its edge cost with respect to k attributes. Users assign
importance to each of the edge attributes by specifying a k dimensional vector
of positive numbers ~w = (w1, w2, ..., wk). We assume that this weight vector is

normalized, that is:
∑k
i=0 wi = 1. This allows to define the local cost of an edge

e as:
cl(e) = ~ca(e) · ~w

Thus, although our implementation only considers three criteria, the al-
gorithms that are presented work for an arbitrary number of road-dependent
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criteria.
The first criterion of our implementation specifies the importance of scenery.

Lengths of roads that pass through forests and near waterbodies are scaled down,
since they are considered to be more scenic (this is in accordance with Alivand
et al. (2015)). In addition, the length of a road is decremented when hotspots
for sightseeing or places to drink are situated in its neighbourhood (the impact
of these hotspots is discussed by Alivand and Hochmair (2015)).

A second criterion that users can express is road safety (proposed by Hochmair
(2004)). The lengths of roads are rescaled to reflect the type of bicycle lane,
whether it is separated from car traffic and the maximal allowed speed of nearby
vehicles.

Lastly, our implementation allows users to express the importance of road
fastness (also suggested by Hochmair (2004)), which penalizes intersections with
busy roads and traffic lights.

Similar to OTP, this allows to create an interface in which users can specify
~w by setting a marker inside a triangle with these criteria at the corners, as
visualised in Fig. 1.

attractivity

road safety

fastness

Figure 1: Preference triangle as an interface for a route planning tool

In addition to these road criteria, our algorithms also allow users to specify
the importance of the route avoiding to visit the same regions multiple times
and it allows to specify the extent of what is considered a ‘visited region’.

In this paper, a routing model is formulated which takes these user specified
preferences into account and looks for the tour which satisfies them the best,
while taking length constraints into account. Before defining this problem, we
provide an overview on some related work in Section 2. After this, we formalize
the problem in Section 3. In Section 4, a description of a branch-and-bound al-
gorithm to find the best tour is provided. Section 5 discusses a heuristic to solve
this problem and several optimizations to speed up the heuristic. Subsequently,
the performance of the heuristic is discussed in Section 6. Finally, there is a
conclusion (Section 7).

2. Related work

While there is plenty of literature on calculating shortest paths in both a
static (Bast et al. (2015)) and dynamic (Demeyer et al. (2014)) context, previ-
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ous work on finding tours with a given length and starting node is very limited.
Gemsa et al. (2013) studies the problem of calculating closed jogging routes
from a given starting position. They also scale the weight of roads to avoid
unattractive routes. Since their problem turns out to be NP-hard, they develop
several heuristics. The greedy faces algorithm creates tours by joining adjacent
faces of a planarized version of the street network. They also introduce several
other heuristics, which look for appropriate via-nodes to create a tour. These
algorithms differ from the work presented in this paper in that they foremost
focus on finding routes with a length as close as possible to the specified in-
put length, while the heuristics presented in this work assume that the length
boundaries allow sufficient variation to foremost focus on finding pleasant tours,
while achieving the length constraints as a side-effect of the way in which the
tours are constructed. Also, the lengths of the cycling tours considered in this
paper (up to 150 km) are far larger than the lengths of the jogging routes (up to
10 km). Furthermore, their work measures the amount of shared edges, whilst
the metric presented in this work is more general in the sense that is allows to
avoid coming close to earlier visited edges.

Literature that is concerned with bicycle routing typically focuses on finding
a path between a specified starting and ending node, while minimizing one or
more criteria. There are several works that describe an implementation of a web
based bicycle planner that finds the shortest path between two nodes based on
a user-specified tradeoff between road properties, for example Fu and Hochmair
(2009); Hrncir et al. (2014); Su et al. (2010); Turverey et al. (2010). Other work
approaches the multi-criteria aspect of bicycle routing by searching for a set of
Pareto optima routes Hrncir et al. (2015); Song et al. (2014). Storandt (2012)
focuses on the problem of finding Pareto optimal routes with an upper limit on
one of the routing criteria. Despite advances in finding Pareto-optimal paths by
employing advanced techniques like contraction hierarchies (Geisberger et al.
(2008)), the runtime required to find these paths remains too high for routes
of the size considered in this paper. Therefore, the heuristic route planner
discussed in this work uses a weighted combination of criteria when searching
for paths between two nodes.

The heuristic routeplanner presented in this paper roughly operates by se-
lecting a ‘forward path’ that starts from the starting node of the tour and
subsequently calculates (in an efficient way) an alternative route from each of
the nodes on this forward path back to the starting node. This means that liter-
ature concerning alternative paths is also relevant to our work. An overview of
such methods is presented in Dees et al. (2010). However, many of the presented
alternate path methods require that both the starting and the ending node be-
tween which an alternate path has to be calculated are known. Applying these
methods would require calculating an alternate path between the starting node
and each of the nodes on the forward path and thus be very time-consuming. An
idea which can be extended for this use case is the idea of penalization, which
is also presented in Paraskevopoulos and Zaroliagis (2013); Schieferdecker et al.
(2013). When applying penalization to find alternate paths, the weight of all
edges of the path for which an alternative has to be found is scaled by a factor
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1 +α where α is a small positive number. After this, the shortest path is calcu-
lated using these new weights and the segment of this new shortest path which
overlaps with the old path is scaled once again. By reiterating this procedure
and combining all the resulting shortest paths into a subgraph, an ‘alternative
path graph’ is found. In this work, the method to avoid the ‘forward path’ when
searching for a path from each node in the forward path back to the starting
node also uses penalization, although in a slightly different way.

The quadratic shortest path problem (QSP), as presented in Rostami et al.
(2016), searches for a minimum cost path between two given vertices node whilst
not only taking the edge cost into account, but also a quadratic cost, which de-
pends on the edge pairs that are present in the solution. This is related to our
work in the sense that assigning a non-zero quadratic costs to physically nearby
edges can penalize solutions for staying in the same neighbourhood. A key dif-
ference with this work will turn out to be that in our approach, the cost assigned
to visiting two nearby edges depends not only on the edges themselves, but also
of the distance traveled between those edges, i.e. visiting two nearby edges
is more problematic as the travelled distance between those edges increases.
Nonetheless, there are some similarities is the exact solution approaches, in par-
ticular between the lower bound for the branch-and-bound algorithm presented
in our work and the Gilmore-Lawler bound, that can be adapted to the QSP
and is prevalent in the quadratic assignment problem in general, see Loiola et al.
(2007).

3. Problem

Before defining the actual problem of finding cycling tours, some useful ter-
minology needs to be introduced. Subsection 3.1 starts by defining some general
graph terminology and definitions that will prove useful throughout this work.
Subsection 3.2 focuses on the issue of quantifying the shape of a tour and in-
troduces a measure that allows to evaluate the general ‘roundness’ of a tour.
This roundness is a key ingredient of the Cycling Problem, which is formally
defined in subsection 3.3.

3.1. General Terminology

A cycleway graph is a directed embedded multigraph defined asG = (V,E,~c, l).
Here, V is the set of vertices and E ⊆ V ×V is the set of arcs representing road
segments.

Furthermore, ~c : V → R2 maps each vertex to its coordinates. Related
to these coordinates, we define a metric d : R2 × R2 → R+ that allows to
calculate the displacement (that is, the great-circle distance or the distance as
the crow flies) between a pairs of coordinates. This allows to define dv : V 2 →
R+, the displacement between any couple of vertices as follows: dv(v1, v2) =
d(~c(v1),~c(v2)). Similarly, de : E2 → R+, the displacement between any couple
of edge(center)s is defined as:
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de(〈u1, v1〉, 〈u2, v2〉) = d

(
~c(u1) + ~c(v1)

2
,
~c(u2) + ~c(v2)

2

)
Finally, l : E → R+ is a function that maps each edge to its corresponding

length. For all e = 〈u, v〉 ∈ E, we require that l(e) ≥ dv(u, v).
A walk is a sequence of edges through the graph in which for each pair

(e, e′) of subsequent edges the ending vertex of e equals the starting vertex of
e′. Whenever this work applies a function f : E → Y , that takes an edge as an
input, on a walk π, this refers to the sum of f applied on each of the edges of
the walk, e.g. the length of a path is: l(π) =

∑
∀e∈π l(e).

A closed walk is a walk that starts and ends with the same vertex. The
terms closed walk and cycle are used interchangeably throughout this work and
are not to be confused with a simple cycle, in which vertices cannot be revisited.

3.2. Tour roundness

As previously stated in section 1, users can specify the importance of the
tour avoiding to revisit the same regions multiple times and they can specify
what is considered a previously ‘visited region’.

Evaluating these requirements using ‘hard constraints’ such as forbidding a
tour to revisit the (neighbourhood of the) same street multiple times runs into
problems due to cul-de-sac neighbourhoods (with only one inlet/outlet) and,
more generally, regions that are only accessible through a single access point
within the length constraints of the tour (e.g. a bridge across a river). Another
issue with this approach is that it classifies roads that are very close each other
as either ‘completely unacceptable’ or ‘perfectly fine’, which is counterintuitive.

Therefore, we define a measure that quantifies how well any solution cycle
satisfies the requirements considering revisiting regions. We assign to each tour
a penalty from 0 to 1, where zero corresponds to a tour that perfectly satisfies
its shape requirements and one corresponds to a tour that keeps revisiting the
same spot over and over again.

This metric should satisfy several properties:

1. The metric should be able to detect whether a tour visits a similar region
multiple times

2. The ‘size’ of what is considered to be a similar region should be adaptable
to express the preferences of both cyclists that prefer round tours and
bicyclists that just want to avoid reusing the same edges.

3. The boundaries of what is considered to be the neighbourhood of the tour
should be ‘soft’: edges that are further from a previously visited road
should be penalized less.

For an ideal tour (a tour that is a perfect circle), the displacement between
two points is sinusoidal in the distance between those points (the distance is the
length of the path traveled along the circle). This is shown in Figure 2, by the
full pink curve. The roundness metric uses the distance traveled along the tour
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between the centers of the two edges to calculate the expected displacement
dexp : E2 → R+ between these centers. This expected displacement is com-
pared to the (actual) displacement de between the edge centers. In order to use
the sinusoidal relation to exactly calculate the expected displacement between
two points, the total tour length has to be known. Therefore, the expected
displacement is calculated using an approximation of this sine by a piecewise
linear function, as shown in Fig. 2 by the dashed blue curve. Notice that the
slope of the piecewise linear approximation is independent of the tour length.
Furthermore, for a tour of length l, we have dexp(x) = dexp(l−x). We conclude
that the expected displacement between two edges depends exclusively on the
minimal distance between those edges.

displacement

distance

(a) Illustration of distance
and displacement

l
π

l/2 l distance

displacement

(b) Displacement as a function of traveled distance

Figure 2: Distance & displacement in a circular tour of length l

Using the comparison of the expected displacement and the actual displace-
ment between two edges, a penalty p : E2 → R+ is assigned if a pair of edges
is too close to each other. Since preferences about the required roundness of a
tour may vary between cyclists, cyclists are allowed to specify a strictness fac-
tor σ ∈ [0, 1], that is multiplied with the expected distance. Users that prefer
very round routes should choose a high strictness factor, users who just want to
avoid the close neighbourhood of the roads they already visited should prefer a
strictness factor close to zero. Taking this into account, the penalty is defined
as follows:

p(ei, ej) =


σdexp(ei, ej)− de(ei, ej)

σdexp(ei, ej)
if de(ei, ej) < σdexp(ei, ej)

0 otherwise

It is worth noting that the use of de, the distance as the crow flies, rather
than the shortest path distance between two edge centers, results in increased
penalties between edges that are close to one another in terms of displacement,
but at a large distance when travelling through the graph. The reasoning behind
this choice is that locations with a small displacement tend to be similar, and
thus revisiting them is more repetitive (e.g. there will be a high penalty between
edges that are on opposite sides of a river). While this assumption is typically
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reasonable, there are some scenarios in which nearby roads offer distinct views,
but still require to travel a large distance through the graph. Roads on a
mountainside at different elevation levels are one example, but this also can
occur between streets in cul-de-sac neighbourhoods, where there can be a large
travelling distance between roads that are physically close to each other.

The penalty of a tour π = (e1, e2, ..., eN ) is now defined as the average
penalty between two points on π that are randomly chosen, which is approxi-
mated by:

pavg(π) =

∑N
i=1

∑N
j=1 p(ei, ej) l(ei) l(ej)

l(π)2

Due to the fact that the formula for calculating penalties represents each
edge by a single point, the value of pavg(π) gets increasingly more accurate as
the length of the tour and the number of edges increases (assuming edges that
are quite regular). We discuss the accuracy of this approximation in subsection
6.3.

3.3. Cycling Problem

The problem requires a starting (and ending) point s, a lower and an upper
bound on the allowed cycle length lmin and lmax and a local cost function
cl : E → R+, assigning an unpleasantness to each edge of the graph. Defining
this as an input parameter rather than as a part of the cycling graph allows
each users to customise this function, allowing it to better reflect their personal
perception of unpleasantness. The average local cost of a path π is defined as:
cl,avg(π) = cl(π)/l(π).

Simply looking for the cycle that satisfies the length boundaries while min-
imizing the average local cost, will typically result in a route that travels to a
cycle with a (locally optimal) minimal cost-to-length ratio, takes a couple of
tours along this cycle and then returns to the starting point. In fact, this prop-
erty is well known and can be used to identify the minimum weight cycle in a
graph, as discussed by Karp (1978).

Thus, to keep the algorithm from creating tours that visit similar regions
multiple times, the average tour penalty must be incorporated into to the mini-
mization problem. For smaller σ values (that is: σ < 0.5) and cycling tours of 10
or more kilometers, there are typically many tours with a zero (or almost zero)
average penalty. In these cases, it makes sense to trade off the average penalty
and the average local path cost (e.g. a higher penalty tour may be preferable
over a low penalty tour with very unattractive roads). Thus, rather than adding
a constraint that specifies an upper bound on pavg(π), the average tour penalty
is multiplied with a positive parameter λ and added to the minimization term.
The parameters λ allows users to trade off the average penalty and the average
local path cost: for λ = 0, the cyclist does not cares about visiting the same
region or even the same road multiple times, higher values of λ will result in
tours that avoid revisiting regions that have been visited before.

Finally, the Cycling Problem can be formulated: Given a cycleway graph
G, a starting node n ∈ V (G), a local cost function cl : E → R+, a factor 0 < λ
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that specifies the weight of the average penalty and a strictness 0 < σ < 1, we
search for the cycle π = (e1 = (s, v1), e2, ..., eN = (vN−1, s)) with a minimal
average total cost ct,avg(π):

ct,avg(π) = cl,avg(π) + λ · pavg(π) (1)

under the constraint that lmin ≤ l(π) ≤ lmax.
In other words, the Cycling Problem asks for the cycle for which the sum

of the local average cost and λ times the average penalty is minimal.

4. Exact Solution

In this section, the Cycling Problem is shown to be strongly NP-hard by
reduction from the Planar Hamiltonian Cycle Problem (Planar HCP).
In addition, we prove that Cycling Problem cannot be approximated in poly-
nomial time unless P = NP. While this implies there is no pseudo-polynomial
time algorithm to solve Cycling Problem, it is possible to devise a pseudo-
polynomial time algorithm to check whether the length constraints allow a so-
lution. We extend this algorithm such that it provides a lower bound on the
minimum score that can be achieved and use it as a building block to create a
branch-and-bound algorithm to find an exact solution to this problem.

4.1. NP-hardness

Assume that an instance of Planar HCP is provided: a directed graph
G = (V,E) with V = {v1, v2, ..., vn} and a planar embedding ~cp : V → R2. The
Planar HCP requires to determine whether G contains a cycle that visits each
of the vertices exactly once.

A corresponding cycleway graph G′ = (V ′, E′,~c, l) is constructed as follows:

V ′ = {v1,in, v2,in, ..., vn,in} ∪ {v1,out, v2,out, ..., vn,out}
E′ = {(vi,out, vj,in) | (vi, vj) ∈ E} ∪ {(vi,in, vi,out) | i ∈ {1, ..., n}}

~c(v) = ~cp(vi) if v = vi,in or v = vi,out

In other words, every vertex from V is replaced by an in- and an out-vertex
and each arc from E is adapted to start and end in the appropriate out-vertex
and in-vertex of E′ respectively. The coordinates of the in- and out-vertices are
identical to the coordinates of the original vertices. As the required metric d,
we choose the Euclidean distance. Lastly, we choose l(e) = L,∀e ∈ E′, with
L = max({dv(u, v) | (u, v) ∈ E}). This ensures that for every arc e = (u, v) the
following property holds: dv(u, v) ≤ l(e).

Solving Planar HCP in G corresponds to solving Cycling Problem in
G′ with some appropriate choices of parameters. Setting lmin = lmax = 2|V |L
ensures that the resulting solution will correspond to a closed walk with |V |
nodes in the original graph.

The coordinates of the edge centers of each couple of non anti-parallel edges
in E′ correspond to the coordinates of different vertices and/or edgecenters of
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G. Thus, since G is planar, the minimum Euclidean distance D between each
two edges in E′ that are not anti-parallel must be strictly positive. By choosing
(2D)/(π|V |L) > σ > 0, one can easily show that for |V |L, the largest possible
distance between two edges, 0 < dexp < D. Thus, for this choice of σ, there is
only a penalty if a cycle revisits an edge, which results in a penalty of one (since
in this case the displacement equals zero). This implies that all Hamiltonian
cycles will have an average cycle penalty of zero.

By choosing λ = (2|V | L)2, revisiting even one edge results in an average
cycle penalty that is at least equal to one. Since each vertex is either an in-
vertex (with only one outbound edge) or an out-vertex (with only one inbound
edge), revisiting a node implies that an edge is revisited as well. Therefore, all
non-Hamiltonian cycles will result in an average cycle penalty of at least one.

By defining cl(e) = 0,∀e ∈ E, the minimum average total cost of the Cy-
cling Problem will be zero in a Hamiltonian graph and at least one in a
non-Hamiltonian graph. Thus, it can be concluded that Cycling Problem is
NP-hard. Additionally, since any solution has an objective value of zero or at
least one, Cycling Problem cannot be approximated unless P = NP .

4.2. Solvability and lower bound

Since Cycling Problem requires that the length of a solution cycle is
between lmin and lmax, another question arises: when is it actually possible
to find such a cycle? It turns out that this problem is NP-hard too. This
can easily be seen by reduction from the Unbounded Subset Sum Problem,
which is discussed by Kellerer et al. (2004). This problem provides a set of
weights {w1, w2, ..., wN}, a target weight W and asks whether it is possible to

find xi ∈ N ∪ {0} such that
∑N
i=0 xiwi = W . This problem can be transformed

in a graph representation by drawing a single vertex v with each of the weights
wi being represented by a loop edge with length wi. If this graph contains a
cycle starting from v with length lmin = lmax = W , then this cycle corresponds
to a solution of the Unbounded Subset Sum Problem.

When restricting the edge lengths to integer values, the solvability problem
turns to be weakly NP-hard, since it is solvable in pseudo-polynomial time using
the algorithm used to solve the Simple Jogging Problem that is introduced
by Gemsa et al. (2013). Here, we present an extension of this algorithm that
has the additional benefit of also providing a lower bound on the score that can
be achieved in the Cycling Problem.

The problem that we focus on is the following: given a graph G = (V,E), a
length function l : E → N, a weight function w : E → R+, a source vertex s, a
target vertex t, a starting weight ws, a starting length ls ∈ N ∪ {0} and length
bounds lmin and lmax, what is the minimum average weigth associated with a
walk π = (e1 = (s, v1), e2, ..., eN = (vN−1, t)) for which lmin ≤ ls + l(π) ≤ lmax.
In this problem, we define this minimum average weight as:

min
π

(
ws + w(π)

ls + l(π)

)
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This problem can be solved by maintaining, for each vertex v and for each
length l′, the weight corresponding to a minimum weight walk of length l′ from
s to v. Thus, the algorithm maintains a matrix Q : V ×(N∪{0})→ (R∪{+∞}).
Initially all values of Q are set to +∞, except for Q(s, ls) which is set to ws.
The algorithm operates by iterating over all edges, for lenghts l′ incrementing
from ls to lmax. For each edge e = (u, v), the matrix is updated according to
the rule:

Q(v, l′ + l(e)) = min(Q(v, l′ + l(e)), Q(u, l′) + w(e))

When these minimum weights are calculated, the minimum average weight can
be found by iterating over Q(t) for length values increasing from lmin to lmax
and calculating the average weight, since:

min
π=(s,...,t)

lmin≤ls+l(π)≤lmax

(
ws + w(π)

ls + l(π)

)
= min
lmin≤ls+l′≤lmax

 min
π=(s,...,t)
l(π)=l′

(
ws + w(π)

ls + l′

)
= min
lmin≤ls+l′≤lmax

(
Q(t, ls + l′)
ls + l′

)
The worst case running time of this algorithm is O(lmax|E|) and the re-

quired amount of space is O(lmax|V |). Since the underlying graph corresponds
to a road network, which typically has a spatial distribution of nodes that is ap-
proximately uniform and an average amount of edges per node that is constant, a
more realistic estimate can be found by only considering edges adjacent to nodes
within a radius of lmax from s. This leads to a running time of O((lmax)3) and
space requirements of the same order.

4.3. Branch-and-bound algorithm

Using the minimum average weight algorithm from the previous section, a
branch-and-bound algorithm can be built. This algorithm maintains a priority
queue that orders partially completed paths by a lower bound on the best score
that can be achieved by extending the respective paths. As long as no solution is
found or as long as there are paths in the queue which may result in a solution
with a better score, the algorithm keeps running. In these cases, the ‘most
promising path’ (the one with the lowest lower bound on the score) is extracted
from the priority queue and for all out edges departing from the end of this
path, an extended path is created and bounded. All these extensions are added
to the priority queue. Stated otherwise, the algorithm is of the ‘branch from
lowest bound’ type as described by Lawler and Wood (1966).

There are aspects of this technique that require some additional explanation.
It is essential to take the average penalty of a cycle into account to get a tight
lower bound on the scores that can be achieved by extending a path. To take this
into account, the fact that any walk π that solves Cycling Problem has the
property l(π) ≤ lmax can be used, which gives rise to the following inequality:
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s(π) ≥
w(π) + λ

lmax

∑N
i=1

∑N
j=1 p(ei, ej) l(ei) l(ej)

l(π)

=
w(π) + 2λ

lmax

∑N
i=1

∑i−1
j=1 p(ei, ej) l(ei) l(ej)

l(π)

The second line follows from the properties p(ei, ei) = 0 and p(ei, ej) =
p(ej , ei). After choosing the first M edges of a path for which a lower bound on
the score has to be found, every solution π consists of a subpath πs→t (starting
from s and ending in t), containing those first M edges, and a subpath πt→s
(starting from t and ending in s), which contains all subsequent edges. This
allows to rewrite the bound on the score as:

s(π) ≥
w(πs→t) + w(πt→s) + 2λ

lmax

∑N
i=1

∑i−1
j=1 p(ei, ej) l(ei) l(ej)

l(πs→t) + l(πt→s)

≥
w(πs→t) + λ pavg(πs→t) +

∑N
i=M+1

(
w(ei) + 2λ

lmax

∑M
j=1 p(ei, ej) l(ei) l(ej)

)
l(πs→t) + l(πt→s)

where p(πs→t) = 2
lmax

∑M
i=1

∑i−1
j=1 p(ei, ej)l(ei)l(ej) is the average penalty asso-

ciated with the subpath πs→t. The algorithm from the previous section can be
used to find this last bound by choosing ws = w(πs→t) +λp(πs→t), ls = l(πs→t)
and by modifying the weight of the graph edges to account for the average
penalty between those edges and πs→t.

To find a lower bound on the average penalty associated with πs→t, a lower
bound on each of the p(ei, ej) (with i > j) terms in the summation will be
deduced. These penalties increase as the expected distance between ei and ej
increases. Since this expected distance is determined by the minimal distance
dmin(ei, ej) traveled along the cycle between ei and ej , it is sufficient to find
a lower bound on this distance. The distance dej→ei to travel from ej to ei
(corresponding to increasing edge indices) can be calculated directly, since these
edges are part of πs→t, as illustrated in Figure 3. The distance covered by
travelling along the tour from ej to ei by passing through the starting vertex
s can be split up in three parts: moving from ei to t, travelling over πt→s and
moving from s to ej . The only unknown distance is the second part, the length
of πt→s, which can be bounded by: l(πt→s) ≥ max(lmin−l(πs→t), dv(t, s)). This
results in the following bound on the minimal distance between ei and ej :

dmin(ei, ej) ≥ min(dej→ei , l(πs→t)− dej→ei + max(lmin − l(πs→t), dv(t, s)))

Similarly, bounding the average penalty between an edge e = (u, v) ∈
E(G) and πs→t is achieved by finding a lower bound on the minimum dis-
tance dmin(e, ej) required to travel along the cycle between e and each edge ej
of πs→t. Like before, two alternative paths are possible: travelling from ej to t
(this distance will be noted as dej→t) and from t to the center of e or travelling
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Figure 3: Partially completed path πs→t

from the center of e to s and from s to ej (noted as ds→ej ). This results in the
following bound on the minimum distance between e and ej :

dmin(e, ej) ≥ min(dej→t + dv(t, u) + l(e)/2, l(e)/2 + dv(v, s) + ds→ej )

Finally, we analyse the running time to calculate these bounds. The branch-
and-bound algorithm discards paths πs→t that are longer than lmax, so the
amount of edges in πs→t is O(lmax). Thus, a bound on the average penalty
of πs→t is calculated in worst-case time O((lmax)2) and adapting the weight
of a single edge is possible in O(lmax). As discussed in the previous para-
graph, the amount of edges within length lmax of s in a typical road network is
O((lmax)2), meaning that adapting the weight of all relevant edges can be done
in O((lmax)3). Combining this result with the running time of the algorithm of
the previous paragraph, we conclude that the running time of a single iteration
of the branch-and-bound algorithm is O((lmax)3).

5. Heuristic

Since Cycling Problem is NP-hard, a heuristic is developed. Whilst the
heuristic described below provides no guarantee on finding a (good) solution,
the results that are generated turn out to be close to optimal in practice. Fur-
thermore, when the length bounds allow for some variation in the tour length, a
solution that satisfies these bounds is almost always found. This section starts
with a general overview of the heuristic. After this, some optimizations are
discussed and the running time is analyzed.

5.1. General overview

The algorithm searches for pleasant routes in a way that resembles the route
marker based bicycle planning tools that were discussed in Section 1. Basically,
it looks for a ‘well-placed’ intermediary/turning point and generates a tour by
searching a path to the intermediary node and an alternative path back to the
starting point s. This method results in a heuristic that naturally consists of
two major phases: in a first phase, that can be described as ‘forward routing’,
a path from the starting point to an intermediary point is constructed. In a
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second step, called ‘backward routing’, the algorithm looks for an alternative
path starting from the intermediary node and ending at the starting point.

In a first, unoptimized version of the algorithm, the forward searching is
performed by executing Dijkstra’s algorithm to construct, starting from s, a
forward shortest path tree f that contains a least-cost path πf (v) to each nearby
node v. The local edge cost, cl is used is for building this shortest path tree.
These ‘nearby nodes’ are the nodes v for which l(πf (v)) + dv(s, v) ≤ lmax. This
avoids that the algorithm considers nodes that are too far away to get back to
the starting node without exceeding the maximal allowed tour length. The main
motivation for using a shortest path algorithm to find the forward path is that
these paths, when they are sufficiently long, tend to be (more or less) straight,
resulting in a low penalty between edges of the forward path. Furthermore,
minimal-cost paths tend to have a low cost-to-length ratio.

In a next step, a node t is chosen that will be the turning point that is
‘aimed for’ during the backwards routing process. To find suitable turning
points that are not too close to s, the algorithm collects from the shortest path
tree a set C of candidate turning points, containing all vertices v for which
l(πf (v)) + dv(s, v) ≥ lmin. In addition to this, vertices that have a neighbour
that is not in the shortest path tree f (since this neighbour is too far from s) are
added to C. This ensures that C is non-empty and contains vertices that are
not too close to s. From this set of candidate nodes, a turning vertex t can be
chosen randomly, but in order to favor turning points with a low cost-to-length
ratio, it is recommended to tune the selection probabilities of the candidate
nodes. When executing the heuristic multiple times, each time a candidate
node is chosen, the node probabilities are adapted to decrease the probability
of candidate nodes that are in the neighbourhood of previously selected nodes.
Thus, when a user generates multiple tours, the resulting tours are unlikely to
head for similar directions.

To avoid penalties between the edges that are part of the return path, a
shortest path algorithm is also employed to find the return path. Here, Dijkstra’s
algorithm is used to find a least-cost return path πr(v) that ends in s. Such a
return path πr(v) is calculated for every vertex v on the forward path (thus, by
constructing a sink tree). For each of these vertices, the length and the score
of the cycle consisting of πf (v) followed by πr(v) is calculated and the best
scoring cycle that also satisfies the length constraints is returned. Thus, rather
than searching directly for a cycle that satisfies the length constraints, a cycle
is found indirectly by considering every vertex of the forward path as a possible
point to start returning to the starting vertex s. This principle is illustrated in
Fig. 4.

To take the penalties between the forward path πf (t) and the return paths
into account, the costs of the graph edges are adapted when searching for a
return path. Dijkstra’s algorithm requires the adapted weight of an edge e =
(x, y) only when the vertex y is added to the shortest path tree and thus πy→s,
the least-cost path from y to s is known. Calculating the penalty between e and
an edge e′ ∈ πf requires estimating the minimum distance required to travel
between e and e′ over the final cycle. Since πy→s is known, calculating the
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Figure 4: Operation of the heuristic
(πf (t) is dashed, πr(v) to each vertex v of πf (t) in full lines)

distance le→e′ to travel along the tour from e to e′ over s is straightforward.
Edges e′ for which le→e′ > lmax are not taken into account when calculating
the penalty, since they cannot be part of a valid cycle that also contains e. To
avoid underestimating penalties for cycles with a length that is close to lmax,
the estimated penalties assume that the tour length equals lmax. This means
that the estimated length to travel from e′ to e (without passing through s)
equals lmax − le→e′ . This results in the following estimated minimum distance
lmin,est(e, e

′) between e and e′:

lmin,est(e, e
′) = min(le→e′ , lmax − le→e′)

This corresponds to a new cost c′(e) for e according to:

c′(e) = c(e) +
2λ

lmax

∑
e′∈πf (t)

le→e′≤lmax

p(e, e′) l(e) l(e′) (2)

5.2. Optimizations

The most time-consuming part of the proposed algorithm is adapting the
costs of the edges that are encountered during the backward routing. Indeed,
assuming that the underlying graph corresponds to a typical road network, the
amount of edges encountered during backward routing is O((lmax)2). Since
the length of πf (t) is O(lmax), the time required to apply the formula from
the previous section to calculate the adapted costs of all edges encountered
during backward routing is O((lmax)3). Using a binary heap implementation
of Dijkstra’s algorithm, the time required for forward and for backward routing
is O((|V | + |E|) log(|V |)) according to Bast et al. (2015). In a road graph this
equals O((lmax)2 log(lmax)). This section proposes a method to approximate
the adapted cost of the edges encountered during backward routing in the same
running time as required by the routing steps. Furthermore, some optimizations
for the forward and backward routing are proposed.

5.2.1. Forward path approximation

In order to reduce the running time required for calculating the costs of the
edges that are encountered to O((lmax)2 log(lmax)), an approximation of the
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forward path is used to calculate the adapted cost. The approximation contains
O(log(lmax)) edges rather than O(lmax) edges.

The path approximation uses the observation that for an edge e ∈ πf (t) for
which the minimal distance to any edge e′ of the backward tree is large, a small
error in de(e, e

′) has a limited impact on the value of p(e, e′). Assuming that the
turning point that results in the path with minimal cost is situated close to the
end of πf (t), the minimal distance between e and any e′ is approximated as the
minimum of ls→e, the distance to travel along πf (t) from s to the center of e and
le→t, the distance to travel from the center of e to t. Under this assumption,
the edges ei up to ej (with 1 ≤ i ≤ j ≤ M) of πf (t) = (e1, e2, ..., eM ) can
be replaced by a single edge ei→j , whilst still allowing to calculate the average
penalty with an error smaller than the penalty error threshold 0 < ε < 1.

Before describing how to create such an approximation, some additional
notation is introduced. We define dmax(ei→j) as the maximum displacement
between the center of ei→j and the center of ek, for i ≤ k ≤ j, as shown in
Figure 5. Furthermore, lei→ej is the distance required to move from the center
of ei to the center of ej along πf (t). The approximated path is created by moving
along the original path πf (t) and joining edges ei = (vi−1, vi) to ej = (vj−1, vj)
in ei→j = (vi−1, vj) if:

2dmax(ei→j) + σdexp(lei→ej )

σ dexp(min(ls→ej , lei→t))
< ε (3)

The penalty term between ei→j and e′ is calculated as:

p(e, ei→j) = max

(
0, 1−

de(e, ei→j) + dmax(ei→j) + σdexp(lei→ej )

σdexp(min(ls→ej , lei→t))

)
In equation 2, the terms corresponding to ei to ej are replaced by:

2λ

lmax
p(e, ei→j) l(e) l(ei→j)

In this equation, l(ei→j) is the sum of the lengths of all edges ek (i ≤ k ≤ j)
that are replaced by ei→j . One can easily show that p(e, ei→j) ≤ p(e, ek) using
the properties that de(e, ei→j) + dmax ≥ de(e, ek) and for some 0 ≤ f ≤ 1:

σdexp(min(ls→ej , lei→t)) = σdexp(min(ls→ek , lek→t)) + fσdexp(lei→ej )

Furthermore, it can be shown that p(e, ek) − p(e, ei→j) is smaller than the left
hand side of inequality 3, which leads to the conclusion:

p(e, ek)− ε ≤ p(e, ei→j) ≤ p(e, ek)

It remains to be shown that applying inequality 3 results to a number of edges
that is logarithmic in lmax. This can be seen by noting that in the first half of
πf (t) the expected length in the left hand side of the inequality is determined
by ls→ej , which is larger than the sum of the lengths of all approximate edges
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Figure 5: Replacing edges of the forward path with an approximation edge

that precede ei→j . Since dmax(ei→j) ≤ l(ei→j) and s dexp(lei→ej ) ≤ l(ei→j),
the length of ei→j is bounded by a fraction of the sum of the lengths of the
approximate edges that precede ei→j . This implies that the series of approxi-
mate edge lengths in the first half of the path grows exponentially, resulting in
a logarithmic number of edges required to represent this half of the path. A
similar reasoning holds true for the last part of the path.

5.2.2. Reach Based Forward Routing

A possibility to gain time in the forward routing step is by applying the
concept of reaches, which was introduced by Gutman (2004). We define the
reach r(v, πs→t) of a node v on a path πs→t, starting in a vertex s and ending
in a vertex t, with πs→v the subpath of πs→t from s to v and πv→t the subpath
from v to t as r(v, P ) = min(m(Ps→v),m(Pv→t)). In this expression, m : E → R
is the reach metric. The reach of a node v in G is the maximum of the reach of
r(v,Q) over all least-cost paths Q in G, which are calculated over a given cost
metric. Reach and cost metric can be the same, but this is not required.

The reach metric over which the reaches are calculated in this algorithm is
l and the cost metric is c. The reaches can be efficiently computed using the
algorithm that is described in Gutman (2004). In the forward routing step, a
search is conducted for the most pleasant path to each of the candidate nodes.
When adding a non-candidate node v with a least cost path πs→v, with l(πs→v)+
dv(s, v) < lmin, we have for each candidate node t with a least cost path passing
through v and πv→t being the subpath from v to t:

l(πs→v) + l(πv→t) + dv(s, t) ≥ lmin
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This situation is visualized in Fig. 6.

v

s

tdv(s, v)

dv(v, t)

dv(s, t)

πs→v

πv→t

Figure 6: Forward search tree diagram

The triangle inequality implies that dv(s, v)+dv(v, t) ≥ dv(s, t) and because
of l(πv→t) ≥ dv(v, t), it follows that:

l(πs→v) + 2l(πv→t) + dv(s, v) ≥ lmin

so

l(πv→t) ≥
lmin − l(Ps→v)− dv(s, v)

2
= lrem(πs→v)

Otherwise: when a tentative node v is added during forward search, the path
will at least continue for an additional walking distance of at least lrem(πs→v)
before reaching a candidate node t. So if r(v) < min(lrem(πs→v), l(πs→v)), v is
too far from the starting node and too far from an ending node to be part of a
least cost path.

The effect of applying this condition is that half-way between starting node
and candidate node, many node insertions are avoided, resulting in a shortest
path tree that is dense at the edges and in the center, but sparse in-between, as
visualized in Fig. 7.

A problem with this approach is that it requires that the cost function c(e)
of an edge e is known during preprocessing, which is not the case if the user
has full freedom in choosing the parameters ~w (since c(e) = ~w · ~c(e)). We solve
this problem by calculating reaches for varying choices of ~w and by storing
for each node the maximal reach. An alternative approach is as follows: since
the calculated reaches do not have to be stored very accurately to gain speed,
and since most nodes have a small reach, the storage requirements for reaches
are very small. This makes it possible to easily calculate and store the reach
for several combinations of parameter values. During routing, the parameter
combination that most closely fits the parameters specified by the user can be
chosen.
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Figure 7: Example forward search tree using reach based routing

5.2.3. Backwards Routing using Inequalities

Since the weights of edges in the neighbourhood of the forward route are
increased, it is hard to preprocess the graph with the goal of gaining time
in the backward routing step. However, the number of vertices involved in
the backward routing can be limited by making use of inequalities. During
backwards routing, the system keeps track of c, the first vertex in the forward
path that has not yet been reached by the backward search tree. πf (c) is the
part of the forward path beginning in vertex s and ending in c. Since all closed
tours that have not yet been found will pass through c, any node w on a path
πr(w) from w to s, should satisfy the following inequality, as illustrated in Fig.
8:

l(πf (c)) + dv(c, w) + l(πr(w)) < lmax

s
v1

c = v2

v3

vM−1

t

w

...

dv(c, w)

Figure 8: Backward search tree diagram

The nodes of the forward path that are close to the starting point will usually
not be used as turning point, since that would typically result in a route that
is too short. The search space can be limited even more by assuming that
the walking length of the starting point to the turning point will be at least
β lmin/2 (0 < β < 1). Under this assumption, c is initialized as the first node
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of the forward path for which this property is fulfilled. An example of such a
backward search tree (using β = 0.8) is shown in Fig. 9.

Figure 9: Example backward search tree

6. Results

6.1. Data

The algorithm is tested on an OpenStreetMap (OSM) dataset that stores
all roads in Belgium. The dataset is preprocessed to convert it into a graph
representation that contains the parameters required by the algorithm. Each
of the edges has weights assigned to it, representing the road safety and scenic
value of the represented road, as discussed in the introduction. All results that
are presented in this section are calculated for a weight vector that assigns equal
importance to these attributes.

country # nodes area (km) # edges

Belgium 558 585 30 528 1 646 731

Table 1: Graph characteristics of the test dataset

This section presents the results of two series of experiments. The first
experiments aim to assess the quality of the heuristic, by comparing the routes
that are found by the heuristic with (bounds on) the optimal tours that are
calculated by the branch-and-bound algorithm. To limit the number of walks
that are evaluated by the branch-and-bound algorithm, these first experiments
are executed on a modified graph that represents a more constrained version of
the Cycling Problem. The second series of experiment studies the running
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time of the heuristic and the effect of some input parameters on whether the
heuristic successfully finds a tour that satisfies the length constraints.

All results that are presented, unless stated otherwise, are calculated for a
(roundness) strictness σ of 0.4 and a weight λ = 12. These parameters were
experimentally determined and represent, to our opinion, a reasonable trade-off
between edges costs and roundness penalties. For the heuristic, the optimization
parameters β = 0.6 and ε = 0.01 were used.

6.2. Route quality

In this experiment, 500 random starting points were chosen and for each of
these points, the optimal tour was searched with a length in [5i, 5i+ 5] km, for
i ∈ {0, 1, ..., 13}. To limit the search space of the branch-and-bound algorithm,
an additional constraint is imposed on the solution: at any moment along the
tour, an edge can only be traversed if, for each node encountered during the last
lmin/20 km of the tour, the edge is part of a least cost path departing from that
node. Intuitively, the constraint avoids that the resulting tour features ‘sharp
turns’. The limitation can be encoded by replacing the original cycling graph G
by a graph G′ in which each vertex uv→w ∈ V (G′) represents a least-cost path
between nodes v, w ∈ V (G) with a length that is less than or equal to lmin/20.
Furthermore, the graph G′ was adapted such that no anti-parallel edges were
present (this can be done similarly to the other constraint, by making sure that
to ∀e = 〈v, w〉 ∈ E : uv→w ∈ V (G′), where vertex uv→w, represents a shortest
path between v and w). Both of these requirements aim to remove the presence
of short, low cost-to-length cycles, since the bounding algorithm cannot detect
the penalty associated with traversing these cycles multiple times.

Even with these additional constraints, the branch-and-bound algorithm re-
quires an average routing time varying from 2 to 20 minutes to find tours of
varying lengths. This is acceptable when calculating theoretical lower bounds to
evaluate the quality of tours, but too slow for applications with user interaction.

In Fig. 10, the score (see equation 1) of the optimal algorithm and the
heuristic is visualised for varying tour lengths. In the case of the heuristic, the
results are shown for attempting four times to find a tour (which is what we
recommend) and selecting the best one and attempting a single time to find a
tour. The average cost-to-length ratio in this graph is 1.52. Both the optimal
algorithm and the heuristic perform increasingly better than this average, the
quality of the generated tours improves as the length of the tour increases. For
the optimal algorithm, this is a result of the increasing number of possible walks
that are available as the length increases, allowing to pick a tour with both a
near-zero penalty and a low cost. In the case of the heuristic, phenomena with
similar effects occur: for short paths, it can be hard to avoid the forward path
during backward routing due to all sorts of physical boundaries. As the length
of the tour increases, the size of these boundaries become smaller in comparison
to the tour, thus making it more easy to achieve a low penalty. Furthermore,
longer forward and backward paths feature more low cost edges (i.e. ‘bicycle
highways’) , which typically also have a low cost-to-length ratio.
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Figure 10: Scores for tours of varying length as calculated by the exact algorithm
and 4 or 1 iterations of the heuristic

(boxplots show 5, 25, 50, 75 and 95 percentiles)

6.3. Error of average tour penalty

For the second series of experiments, 500 random starting points were chosen
and tours of different lengths were calculated starting from each of these points.
Tours were calculated for lengths [5i, 5i + 5] km, for i ∈ {0, 1, ..., 29}. For each
of these 30 required lengths per node, the heuristic attempts four times to find
a tour.

In order to assess the accuracy of the average tour penalty formula pavg(π)
for tours of different sizes, we calculated for each tour the average tour penalty
using the graph representation used by the heuristic and using a high quality
graph representation, in which none of the edges have a length that exceeds 10m.
The absolute error between the standard and the high quality representation
∆pavg(π), as well as the high quality penalty is shown in Fig. 11 for tours of
varying sizes.

We notice that, although ∆pavg(π) is significant for short tours (especially
when compared to pavg(π)), the error quickly decreases as the length of the tour
increases. For tours longer than 20 km, ∆pavg(π) is negligible. This is somewhat
unsurprising, since larger tours feature more edges and thus a smaller edge size
when compared to the tour length. The large absolute error for short tours can
easily be remidied by using a higher quality graph representation when searching
for short tours. The resulting increase in running time when calculating these
short tours would not pose a problem, juding by the timing results presented in
subsection 6.5.2.
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Figure 11: Average tour penalty and error of the average tour penalty
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(boxplots show 5, 25, 50, 75 and 95 percentiles)

6.4. Solvability

The measurements for evaluating the error of the average penalty are reused
to study the effect of the starting location on the chance of such an attempt
failing to find a solution. It should be noted that the used length constraints
allow for less variation in tour lengths than what would typically be required
in practice, especially for longer tours. Figure 12a shows that although most
nodes have a chance of failure around 0-5%, there are nodes which perform
significantly worse. Figure 13a reveals that these difficult starting points are
situated in the southern part of Belgium (especially near the border). This
makes sense, considering that the heuristic finds a tour for each of the vertices
along the forward path. Since the road network in the south of Belgium is
more sparse, the forward path contains less intersections and thus the chance of
one of these intersections resulting in a tour with a length within the specified
constraints decreases.

As one would expect, searching multiple times for a tour significantly im-
proves the chance of finding one. This is illustrated in Fig. 12b and 13b, that
show the probability of at least one of four attempts being successful. Almost all
of the remaining failed configurations correspond to short length requirements,
as shown in Fig. 14. These failures are caused by nodes that are situated in
remote area’s or at a dead end of a long road, making it impossible to find
short tours without turning around and returning to the starting point with-
out travelling back along the forward path. Also, for nodes that are close to a
border the directions in which the forward path can head are limited, resulting
in more overlap and a lower chance of success. It should be noted that because
both border nodes and short tours result in a smaller search space, the running
time of the algorithm is lower in these cases and one could execute more routing
attempts to increase the success rate.

We also notice from Fig. 14 that the chance of a single attempt failing to
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Figure 12: Chance of the heuristic failing to achieve a configuration

(a) One failure (b) Four subsequent failures

Figure 13: Chance per node of the heuristic failing to achieve a configuration

find a tour increases slightly for increasing tour lengths. This is because longer
forward paths tend to feature more low-cost edges, typically corresponding to
long, uninterrupted sections of cycling way. The lower number of intersections
per distance unit of these roads results in fewer tours that can satisfy the length
constraints. This effect is however limited, barely affecting the success rate for
four executions.

In conclusion, for length constraints that allow for tours with a length within
a range of 5 km (or more), the heuristic is almost always able to find tours with
satisfying length.

6.5. Running times

To study the running time, the same measurements are used as for looking
at solvability. These measurements were performed using an Intel Core i7-
6700HQ CPU running at a clock frequency of 2.60 GHz. The graph in which
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Figure 14: Chance of the heuristic failing to achieve a configuration for varying tour lengths

the routing is performed was loaded into RAM-memory before the start of the
time measurements.

6.5.1. Optimizations

Since the use of reaches does not result in a decrease of the worst case
running time, the running time of the forward routing step is measured with
and without reaches. For the measurement with reaches, reaches of a length up
to 5 km were exactly calculated (the reach of all other nodes was set to infinity).
As shown in Fig. 15, 70% of the vertices have a reach that is below this length.
This is important, since the exact calculation of reaches requires to calculate all
shortest paths, whilst calculation up to a specified length can be achieved using
local shortest path trees, see Gutman (2004).
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Figure 15: Cumulative distribution of reaches

The effect of using reaches for calculating tours of various lengths is illus-
trated in Fig. 16. For long tours, a speedup of a factor four is achieved.

To evaluate the impact of the optimisations on the backward routing time,
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Figure 16: Time required for forward routing

this time is compared for β = 0 (no assumptions on the position of the turn
node along the forward path) and β = 0.6. The higher β value results in a
significant reduction in the search space of the heuristic, resulting in a speedup
of a factor two.
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Figure 17: Time required for backward routing (1 attempt)

6.5.2. Total running time

In Fig. 18, the total running time of the heuristic and the different compo-
nents of which this time consists are plotted. The time required by the heuristic
for executing a single attempt and for executing four attempts is shown. Note
that executing multiple attempts does not require to re-execute the forward
routing step. The plots illustrate the ability of the heuristic to generate con-
strained cycling routes up to 150 km in the sub-second timescale. This is an
increase of an order of magnitude in tour length compared to the previous work
on closed tours (see section 2).
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Figure 18: Total routing time for tours of varying length

7. Conclusion

A routing algorithm is designed that allows cyclists to generate personalized
tours within given length constraints. This problem is shown to be NP-hard.
An exact branch-and-bound algorithm is introduced and a heuristic is designed.

The heuristic generates routes by selecting an intermediary node and search-
ing a path to this node and a backward path to the starting point, while taking
into account personalized user preferences. The running time of this algorithm
is shown to be O((lmax)2 log(lmax)), where lmax is the maximal allowed tour
length. This running time was improved using reaches and inequalities to limit
the search space.

The resulting algorithm is tested and validated on an OpenStreetMap-based
graph of the Belgian road network. The results are compared to the exact
solutions. Extensive studies are performed regarding the time behaviour and
the success rate of the algorithm. The heuristic is able to generate high-quality
routes of up to 150 km in the subsecond time scale.

8. Future work

To allow designing even longer routes, for instance tours for motorized ve-
hicles or multi-day cycling trips, research would be needed to speed up the
heuristic even more.
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Borzou Rostami, André Chassein, Michael Hopf, Davide Frey, Christoph Buch-
heim, Federico Malucelli, and Marc Goerigk. The Quadratic Shortest Path
Problem: Complexity, Approximability, and Solution Methods. Technical re-
port, 2016. URL http://www.optimization-online.org/DB_HTML/2016/

02/5341.html.

Dennis Schieferdecker, Moritz Kobitzsch, and Marcel Radermacher. Evolution
and Evaluation of the Penalty Method for Alternative Graphs. In Proceedings
of the 13th Workshop on Algorithmic Approaches for Transportation Mod-
eling, Optimization, and Systems (ATMOS’13), volume 33, pages 94–107,
2013. ISBN 9783939897583. doi: 10.4230/OASIcs.ATMOS.2013.94. URL
http://drops.dagstuhl.de/opus/volltexte/2013/4247.

Qing Song, Pavol Zilecky, Michal Jakob, and Jan Hrncir. Exploring pareto
routes in multi-criteria urban bicycle routing. In 17th International IEEE
Conference on Intelligent Transportation Systems (ITSC), page 1781. IEEE
Intelligent Transportation Systems Society, 2014. ISBN 2153-0009;21530009.
doi: 10.1109/ITSC.2014.6957951. URL http://ieeexplore.ieee.org/

stamp/stamp.jsp?arnumber=6957951.

Sabine Storandt. Route Planning for Bicycles — Exact Constrained Short-
est Paths Made Practical Via Contraction Hierarchy. In Proceedings of
the Twenty-Second International Conference on Automated Planning and
Scheduling, pages 234–242, 2012. ISBN 9781577355625.

Jason G. Su, Meghan Winters, Melissa Nunes, and Michael Brauer. Designing a
route planner to facilitate and promote cycling in Metro Vancouver, Canada.
Transportation Research Part A: Policy and Practice, 44(7):495–505, 2010.
ISSN 09658564. doi: 10.1016/j.tra.2010.03.015. URL http://dx.doi.org/

10.1016/j.tra.2010.03.015.

Robert J. Turverey, David D. Cheng, Owen N. Blair, Joseph T. Roth, and
Gregory M. Lamp. Charlottesville bike route planner. 2010 IEEE Systems and
Information Engineering Design Symposium, SIEDS10, pages 68–72, 2010.
doi: 10.1109/SIEDS.2010.5469679.

30

http://www.optimization-online.org/DB_HTML/2016/02/5341.html
http://www.optimization-online.org/DB_HTML/2016/02/5341.html
http://drops.dagstuhl.de/opus/volltexte/2013/4247
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6957951
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6957951
http://dx.doi.org/10.1016/j.tra.2010.03.015
http://dx.doi.org/10.1016/j.tra.2010.03.015

	Introduction 
	Related work 
	Problem 
	General Terminology 
	Tour roundness 
	Cycling Problem 

	Exact Solution
	NP-hardness
	Solvability and lower bound
	Branch-and-bound algorithm

	Heuristic 
	General overview
	Optimizations
	Forward path approximation
	Reach Based Forward Routing
	Backwards Routing using Inequalities


	Results 
	Data
	Route quality
	Error of average tour penalty 
	Solvability
	Running times
	Optimizations
	Total running time 


	Conclusion 
	Future work 

