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Abstract

Functional connectivity (FC) characterizes brain activity from a multivariate set of N brain

signals by means of an NxN matrix A, whose elements estimate the dependence within

each possible pair of signals. Such matrix can be used as a feature vector for (un)supervised

subject classification. Yet if N is large, A is highly dimensional. Little is known on the effect

that different strategies to reduce its dimensionality may have on its classification ability.

Here, we apply different machine learning algorithms to classify 33 children (age [6-14

years]) into two groups (healthy controls and Attention Deficit Hyperactivity Disorder

patients) using EEG FC patterns obtained from two phase synchronisation indices. We

found that the classification is highly successful (around 95%) if the whole matrix A is taken

into account, and the relevant features are selected using machine learning methods. How-

ever, if FC algorithms are applied instead to transform A into a lower dimensionality matrix,

the classification rate drops to less than 80%. We conclude that, for the purpose of pattern

classification, the relevant features should be selected among the elements of A by using

appropriate machine learning algorithms.

1 Introduction

Machine learning algorithms, and their approach to data mining ranging from pattern recog-

nition to classification, provide relevant tools for the analysis of neuroimaging data (see [1–12]
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for recent reviews and examples with different neuroimaging modalities and pathologies).

Indeed, modern technologies such as magnetic resonance imaging (MRI), magnetoencepha-

lography (MEG) and electroencephalography (EEG) generate an enormous amount of data

per subject in a single recording session, which call for exactly these kind of algorithms to

extract relevant information for applications such as, e.g., categorical discrimination of

patients from matched healthy controls or prediction of individual (clinical and non clinical)

variables. A salient feature of all these neuroimaging modalities, however, is that (specially in

the case of MRI) the number of features, p (anatomical voxels for MRI) is huge (of the order of

many thousands), whereas the number of subjects n is normally small (typically, two orders of

magnitude smaller. See [13] for a recent review). This problem, which is a well-known issue in

practical machine learning applications, is termed the small-n-large-p effect [14], which aggra-

vates the curse of dimensionality associated to this data. Indeed, singling out the (possibly few)

relevant features from the many thousands available has been compared to finding a needle in

a haystack [7].

In the case of MRI, one way of tackling this issue consists in defining the so-called regions of
interest (ROIs), an approach whereby the many voxels of the MRI are grouped to produce

atlases, i.e., a coarser parcellation of the brain image. ROIs can be defined ad hoc or using

some criterion such as cytoarchitectonics [15] (structure and organization of the neurons), as

it is the case for the classical Broadmann areas of the cerebral cortex. In the case of MEG (and

specially of the EEG), this problem is not so serious. In these two neuroimaging modalities, the

number of recording sites (sensors for the MEG, or electrodes for the EEG) reduces to at most

a few hundred, which, although still large and normally higher than the number of subjects, it

is an order of magnitude lower than for the case of the MRI. Besides, and contrary to MRI,

M/EEG present the advantage of a much higher temporal resolution (of the order of millisec-

onds), which allows characterizing diseases where one of the relevant features is the

impairment of brain oscillatory activity at frequencies > 1 Hz. Thus, it may seem appealing to

turn to these two modalities, where the curse of dimensionality is somehow controlled, for

machine learning applications.

Recently, the study of brain activity from M/EEG has benefited from the development of

new multivariate analysis techniques that characterizes the degree of functional (FC) and/or

effective brain connectivity between two neurological time series (see [16, 17] for reviews).

The application of these new techniques entails a paradigm shift, in which cognitive functions

are no longer associated to specific brain areas, but to networks of interrelated, synchronously

activated areas, networks that may vary dynamically to meet different cognitive demands [18,

19]. The interest of this approach has been confirmed by many studies, which have found that

these brain networks are disrupted in many neurological diseases as compared to the healthy

state [20–22]. Thus, it is not surprising that machine learning algorithms have been recently

combined with M/EEG connectivity analysis to classify subjects as healthy controls or patients

suffering from different diseases such as Alzheimer’s [8], epilepsy [10, 11] and Attention Defi-

cit Hyperactivity Disorder (ADHD) [2], and to identify EEG segments with the subjects that

generate them [23].

However promising this combination may be, the problem with it is that the number of fea-

tures is no longer bounded by that of sensors, but instead, for N recording sites (whether sen-

sor or electrodes), one has OðN2Þ features, which leads us back to the small-n-large-p pathway.

Therefore, should we want to use machine learning algorithms for M/EEG connectivity pat-

terns, it is almost compulsory to apply some type of algorithm, such as feature selection, which

reduces the dimensionality of the problem. Yet such reduction can be carried out following

different strategies. Indeed, there are two main options. One can, on the one hand, using some

truly multivariate method to the connectivity patterns to reduce the dimensionality of the
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feature vector. In this way, features are not actually selected, but mapped to a lower dimen-

sional space using a suitable transformation. On the other hand, features can be selected by

means of a machine learning algorithm, which favours those features most relevant for

classification.

In this work we apply a well-known machine learning algorithm, the Bayesian Network

Classifiers [24] (BNC) to classify 33 children into two different groups (healthy controls and

ADHD) from their functional brain connectivity EEG patterns, obtained by using two indices

of phase synchronisation (PS). ADHD is a well-known disorder, which has received a lot of

attention recently in this framework [13, 25, 26]. Normally, the theta/beta power spectral ratio

is used as the (already FDA supported) biomarker of reference to be used as adjunct to clinical

assessment of such disease, although the latest literature [13] indicates that things may not be

so clear-cut. Besides, little is known [2, 13, 25] about the possibility of using EEG-based FC

methods for this purpose (and the best strategy thereof).

Therefore, we compare here the results obtained when applying to these subjects the two

different approaches for dimensionality reduction mentioned above: one acting a priori on the

connectivity patterns, whereby we go back to the “original” scenario with one feature per

recording site (i.e., to OðNÞ), and the other one a “traditional” machine learning feature selec-

tion algorithm whereby a subset of the OðN2Þ features is selected based on their redundancy.

Specifically, we chose the Fast Correlation Based Filter [27] (FCBF), a fast and efficient algo-

rithm capable of capturing non-linear relationships between features, and the population-

based Scatter Search (SS) algorithm [28], which uses a reference set composed of high-quality

and dispersed solutions that evolves by combining them.

Finally, we also study the influence on the classification accuracy of different strategies to

select the data segments.

We aim at finding out which combination of PS indices and strategy for dimensionality

reduction of the feature vector is optimal for classification from FC patterns of scalp EEG data

for this data set, in the hope that our results may be useful for other researchers applying the

same approach to M/EEG data in different pathologies.

2 Methods

2.1 Subjects and EEG recording

The data set analysed here is a subset of a larger one described elsewhere [2], thus we only pro-

vide a brief account of its most important features. Two groups of subjects between 6 and 10

years old were selected for the study. The first one (patient group) consists of 19 boys suffering

from ADHD of combined type, (mean age: 8 ± 0.3 y.), recruited from the Pediatric Service

(Psychiatric branch) of the Hospital N.S. La Candelaria in Tenerife. Only subjects meeting

ICD-10 criteria of Hyperkinetic Disorder [29] or DSM-V criteria of ADHD combined type

[30] were included. The second one (control group) consists of 14 boys (mean age: 8.1 ±
0.48 y.) recruited among the children of hospital staff. Inclusion in any group was voluntary

and written informed consent of the subject and his parents/guardians was obtained. The Ethi-

cal Committees of the University of La Laguna and of the University Hospital N.S. La Cande-

laria approved the study protocol, which was conducted in accordance with the Declaration of

Helsinki.

EEG recordings lasting approximately one and a half hourwere carried out with the subjects

at rest in a soundproof, temperature- and lighting-controlled, and magnetically and electrically

shielded room in the clinical neurophysiology service of the hospital. The EEG (sampling rate,

256 Hz) was recorded with open (EO) and closed eyes (EC) between 12:00 and 14:00 using an

analogical—digital Nihon Kohden Neurofax EEG-9200 with a channel cap according to the
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International 10/20 extended system, from the following downsampled set of eight channels

(see Fig 1): Fp1, Fp2, C3, C4, T3, T4, O1 and O2. Each electrode was referenced to the contra-

lateral ear lobe. Its impedance was monitored for each subject with the impedance map of the

EEG equipment prior to data collection, and kept within a similar range (3 –5 kO). The data

were filtered online using a high pass (frequency cut-off: 0.05 Hz), a low pass (frequency cut-

off: 80 Hz) and a notch filter (50 Hz). Additionally, electro-oculograms and abdominal respira-

tion movements were recorded for artefact detection.

2.2 Selection of the data segments

After discarding, by visual inspection, all the segments containing artefacts, the remaining data

was divided into non-overlapping segments of 20s. (5, 120 samples), which were detrended

and subsequently normalized to zero mean and unit variance. Then, we estimate the stationar-

ity of each segment by calculating the average ks statistic of the Kwiatkowski—Phillips—

Schmidt—Shin (KPSS) test for stationarity [31], as implemented in the GCCA toolbox [32].

Concretely, for each segment and subject we calculated:

k̂sg ¼
1

8

X8

i¼1

ksgi ð1Þ

where ksgi is the ks statistic of electrode i for segment g. The lower the value of (1), the lower the

probability of segment g to be trend or mean non-stationary [31]. Therefore, we sorted the

Fig 1. Electrode positions used in our experiments.

https://doi.org/10.1371/journal.pone.0201660.g001
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values of (1) in ascending order ( ^ksg1 < ^ksg2 < ‥) and took the five segments g1, g2, . . ., g5 with

the lowest values of the statistic, which are the five most stationary ones among all those avail-

able for each subject.

Finally, and prior to the estimation of the FC patterns (see below), the selected data seg-

ments were filtered using a Finite Impulsive Response (FIR) filter of zero phase distortion (filter

order: 256) in the following five frequency bands: δ [0.5 − 3.5Hz), θ [3.5 − 8Hz), α [8 − 13Hz),

β [13 − 30Hz) and γ [30 − 48Hz).

2.3 Data analysis

2.3.1 Phase synchronisation analysis. Phase synchronisation (PS) refers to a type of syn-

chronized state in which the phases of two variables are locked, whereas their amplitudes are

uncorrelated (see [33] for details, and, e.g., [16, 34] for a review of neuroscientific applica-

tions). The first step to study PS between two noisy real-valued signal consists of estimating

the phases of each signal, which can be done in different ways [35]. We make use here of the

approach based on the analytic signal xa(t), of a narrow band signal x(t), which is constructed

as follows:

xaðtÞ ¼ xðtÞ þ jxHðtÞ ð2Þ

where j is the imaginary unit (j ¼
ffiffiffiffiffiffiffi
� 1
p

) and xH(t) is the Hilbert transform of x(t)

xHðtÞ ¼
1

p
P:V:

Z
xðtÞ
t � t

dt ð3Þ

and P.V. stands for principal value. The phase of (2) is:

yxðtÞ ¼ arctan
xHðtÞ
xðtÞ

ð4Þ

The relative phase (restricted to the interval [0,2π)) between electrodes i and l is defined as:

φilðtÞ ¼ jyxi
ðtÞ � yxl

ðtÞjmod2p ð5Þ

The most usual way of assessing PS is the so-called Phase Locking Value (PLV), defined as:

PLVil ¼ j < ejφilðtÞ > j ð6Þ

where<> indicates average, and k the norm of the resulting complex number. By definition,

(6) ranges between 0 (no PS, or uniformly distributed φil) and 1 (complete PS or constant φil).

It is closely related to the well-known coherency function, but taking into account only phase

(rather than amplitude) information, and can be estimated very efficiently [36]. A well-known

feature of this index when applied to scalp EEG is that it is unable to distinguish true connec-

tivity, which takes place with non-zero time delay [37], from spurious FC between two elec-

trodes recording the activity of a single deep neural source due to volume conduction), which is

characterized by zero time delay.

Since the existence of a time delay in the interdependence gives rise to a relative phase cen-

tred around values other from 0 and π. Thus, a variant of (6) has been defined, which is robust

against volume conductions effects by ignoring these two relative phase differences [38]:

PLIil ¼ j < signðsinðφilðtÞÞ > j ð7Þ

where sign(x) = 1 if x> 0, -1 otherwise. Clearly, (7) is 0 if the distribution of (5) is symmetric

around 0 or π.
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If we were only interested in the patterns of true connectivity with delay between pairs of

N electrodes, (7) would be the appropriate choice (see, e.g., [39] for a recent example). But

for the present application we think that there are good reasons to prefer the combined use

of both indices, PLVil and PLIil. Firstly, it is well-known that indirect, yet neurologically

meaningful connections, between two cortical networks via thalamic relay also take place

with zero time lag, [40], which make them indistinguishable from volume conduction in this

regards (see also [41]). Secondly, from the point of view of characteristic patterns, the fact

that PLV is sensitive to the activity of deep brain sources is actually an advantage rather than

a problem. Thus, we use both indices (as implemented in the recently released HERMES

toolbox [42]) to characterize the patterns of brain dynamics of each subject, as explained in

section 2.4.1.

2.3.2 Multivariate surrogate data test. It is well-known that the values of any of the PS

indices described in Section 2.3.1, when applied to two finite-size, noisy experimental time

series, may be affected by features of the data other than the existence of statistical relationships

between them. In order words, one may have, e.g., that PLVi, k> 0 even though xi(t) and xl(t)
are actually independent from each other. To tackle this problem, it is advisable to estimate the

significance of the PS indices before applying any classification algorithm. Here, we made use

of the (bivariate) surrogate data method [43], whereby the original value of a FC index (say,

PLVil is compared to the distribution of Ns indices calculated from surrogates versions of xi

and xl that preserve all their individual features (amplitude distribution, power spectrum‥) but

are independent by construction. Such surrogate signals can be generated in different ways

[44, 45]. The simplest strategy in PS analysis consists of estimating the Fourier transform of

the signals, add to the phase of each frequency a random quantity drawn from a uniform dis-

tribution between 0 and 2π and then transform them back to the time domain. In this way,

any possible PS between the original signals is destroyed, but, as it turns out, this also destroys

any coherent phase relationship present in each individual signal due to the nonlinearity of the

system that generates it [44]. Since such nonlinearity cannot be ruled out in the case of EEG

data (see, e.g., [46, 47]), more sophisticated algorithms are necessary. Thus, we chose the twin

surrogate algorithm [45, 48, 49], which allows to test for phase synchronisation of complex sys-

tems in the case of passive experiments in which some of the signals involved may present

nonlinear features. This algorithm works on the recurrence plot obtained from the signal, and

is parametric, because it requires, for the proper reconstruction of the state space of the sys-

tems that generates the data, the embedding dimension m, which we estimated by using the

false nearest neighbor method [50] and the delay time τ, which we took as the first minimum

of the mutual information.

In this way, we generated Ns = 99 pairs of surrogate data fxl; xs
ig (s = 1, ‥, 99), and estimated

the distribution of PLVil and PLIil under the null hypothesis of no PS by calculating the corre-

sponding PS index between each xs
i and xl. Finally, the original value of the index (say, PLV)

was considered significant, at the p<0.01 level, if PLVil > PLV s
il 8s.

2.4 Classification

2.4.1 Feature vectors. The process of band pass filtering and PS assessment described

before gives rise to FC matrices of the following form:

Ab
R ¼

ab
R11

ab
R12

. . .

ab
R21

ab
R22

. . .

..

. ..
. . .

.

0

B
B
B
@

1

C
C
C
A

ð8Þ
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where R is either PLV or PLI, b = δ, θ, α, β, γ stands for each of the five frequency bands, and

1 = F3, 2 = C3,. . ., 8 = O4 are the electrodes as depicted in Fig 1.

Considering that both PS indices are symmetric (i.e., ab
Ril
¼ ab

Rli
8i; l;R), and that the diago-

nal values convey no information (ab
Rii
� 1 8i), the total number of features per band and

index is NF = N(N − 1)/2, where N (= 8 in our case) is the number of electrodes analysed, i.e.,

NF = 28. In other words, each feature vector per band b and index R is:

Ab
R ¼ ða

b
R12
; . . . ; ab

R18
; ab

R23
. . . ;

. . . ; ab
R28
; ab

R34
; . . . ; ab

R68
; ab

R78
Þ

ð9Þ

The whole procedure of feature vector construction is shown in Fig 2 for the case of the α
band.

If we merge the twenty vectors such as (9) (one per band and condition for both PLV and

PLI), we end up with a feature vector (recently termed as the FCprofile [51]) of 28x20 = 560 fea-

tures:

R ¼ fAO;d
PLV ;A

O;y
PLV ; . . . ;AO;g

PLV ;A
O;d
PLI ;

. . . ;AO;g
PLI; . . . ;AC;d

PLV ;A
C;y
PLV ; . . . ;AC;g

PLIg
ð10Þ

where the superscripts O and C stand for open and closed eyes, respectively.

Note that, if one does not apply the surrogate data test, ab
Ril
> 0 8i; l; b;R and both condi-

tions. After applying it, however, for a given subject on has ab
Ril
¼ 0 for those values of the

index R that do not pass the test (say, e.g., aa
PLV23

for open eyes, both but possibly not for closed

Fig 2. Schematic representation of the construction of the feature vector for each band and index. For each pair of

channels as in (a), the raw data in (b) are filtered in the electrodes (Fp1 and T3 in this example), segments such as those in

(b) are selected. Then, the signals are filtered in the corresponding frequency bands (e.g., α in (c)), and the 8×8 connectivity

matrix Aa
R is obtained, which is finally converted to the 1 × 28 feature vector, after removing the diagonal elements and

taking into account the symmetry of both PS indices (i.e., ab
Rii
¼ 1; ab

Ril
¼ ab

Rli
8i, l, b and R).

https://doi.org/10.1371/journal.pone.0201660.g002
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eyes). Yet this method cannot be used to reduce the dimensionality of (10), because aa
PLV23

may

be indeed significant for another subject. Thus, in general, if we use for the purpose of FC pat-

tern classification, R symmetric bivariate indices providing complementary information, cal-

culated on N signals in b independent frequency bands, we end up with feature vectors such as

(10), with b × R × N(N − 1)/2 features. These are the feature vectors used by the machine learn-

ing classification algorithms described henceforth.

2.4.2 Bayesian Network Classifier (BNC). In machine learning, classification is the prob-

lem of learning a function that identifies the category to which a new observation belongs to.

Formally, let T be a set composed by n instances described by pairs (xi, yi), where each xi is a

vector described by d quantitative features, and its corresponding yi is a qualitative attribute

that stands for the associated class to the vector. The classification problem consists of induc-

ing a function C : X! Y called classifier such that maps from a vector X to class labels Y.

We use the BNC [24] due to its ability to explain the causal relationships among the features

by using the joint probability distribution. These causal relationships allow to model correla-

tion among the features as well as make predictions of the class label Y. A BNC is a probabilis-

tic graphical model that represents the features and their conditional dependencies as a

directed acyclic graph (DAG). A node represents a feature and the edges represent conditional

dependences between two features.

Building the classifier consists in learning the structure of the network that best fits the joint

distribution of all features given the data, and the set of conditional probability tables (CPTs).

Fig 3 shows a Bayesian network for binary data. As we can see, there is always an edge from

the class variable Y to each feature Xi. The edge from X2 to X1 implies that the influence of X1

on the assessment of the class variable also depends on the value of X2. Structure learning is

computationally very expensive and has been shown to be an NP-hard problem [52], even for

approximate solutions [53]. Therefore, learning Bayesian networks normally requires the use

of heuristics and approximate algorithms to find a local maximum in the structure space and a

score function that evaluates how well a structure matches the data.

To learn the structure of the Bayesian networks, we used the following algorithms: K2 [54],

Hill Climbing [55] and LAG Hill Climbing. K2 is a greedy search strategy that begins by

Fig 3. Bayesian network for binary features. Nodes represent features and edges conditional dependencies. The

model specifies the conditional Probability Table (CPT) for each feature, which lists the probability that the child node

takes on each of its different values for each combination of values of its parents.

https://doi.org/10.1371/journal.pone.0201660.g003
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assuming that a node has no parents. Then, it adds incrementally that parent, from a given

ordering, whose addition increases most the score of the resulting structure. This strategy

stops when there is no increase of the score when adding parents to the node. Hill Climbing

algorithms begin with an initial network and at each iteration apply single edge operation

(adding, deleting and reversing) until reaching a locally optimal network. Unlike K2, the

search is not restricted by an ordering of variables. LAG Hill Climbing performs hill climbing

with look ahead on a limited set of best scoring steps. With the purpose of quantifying the fit-

ting of the obtained Bayesian networks, we use the Bayesian Dirichlet [56] (BD) scoring

function.

2.4.3 Dimensionality reduction. In principle, each of the components of the feature vec-

tor 10 offers information on the FC patterns. Thus, we would be faced with the problem of

classifying a set of k subjects using n features, where k� n. Yet, it is not difficult to foresee that

there are cases where there exists a high degree of redundancy between some or many of the

such components. For instance, if the connection between the brain networks recorded by

electrodes i and l at a given frequency is direct (or non-existent) then PLVil and PLIij provides

essentially the same information. Thus, it is reasonable, to lessen the so-called “curse of

dimensionality” to apply some kind of procedure to reduce the number of useful (non-redun-

dant) features to be used for classification. This aim can be accomplished in two different

ways. The first one consists of selecting a subset of the available features by using feature selec-

tion algorithm from the field of machine learning, which allows maintaining the classification

accuracy while minimizing the number of necessary features. The second one, which is specific

to multivariate PS analysis, entails the derivation, from each of the matrices 8, of a reduced set

of indices that summarize the information of the PS pattern at each frequency band by apply-

ing truly multivariate PS methods such as those described, e. g., in [57, 58]. Henceforth, we

detail how both approaches were carried out.

Feature selection via machine learning algorithms
As commented above, in classification tasks the aim of feature selection is to find the best

feature subset, from the original set, with the smallest lost in classification accuracy. The good-

ness of a particular feature subset is evaluated using an objective function, J(S), where S is a fea-

ture subset of size |S|.

In our experiments we use, as feature selection algorithm, the Fast Correlation Based Filter

[27] (FCBF). FCBF is an efficient correlation-based method that performs a relevance and

redundancy analysis for selecting a good subset of features. It consist in a backward search

strategy that uses Symmetrical Uncertainty (SU) as objective function to calculate dependences

of features. Since SU is an entropy based non-linear correlation, it is suitable for detecting

non-linear dependencies between features.

By considering each feature as a random variable, the uncertainty about the values of a ran-

dom variable X is measured by its entropy H(X), which is defined as

HðXÞ ¼ �
X

i

PðxiÞlog
2
ðPðxiÞÞ ð11Þ

Given another random variable Y, the conditional entropy H(X|y) measures the uncertainty

about the value of X given the value of Y and is defined as

HðXjYÞ ¼ �
X

j

PðyjÞ
X

i

PðxijyjÞlog
2
ðPðxijyjÞÞ ð12Þ

where P(yj) is the prior probability of the value yj of Y, and P(xi|yj) is the posterior probability

of a given value xi of variable X given the value of Y. Information Gain [59] of a given variable
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X with respect to variable Y (IG(Y;X)) measures the reduction in uncertainty about the value

of X given the value of Y and is given by

IGðXjYÞ ¼ HðXÞ � HðXjYÞ ð13Þ

Therefore, IG can be used as correlation measure. For example, given the r.v. X, Y and Z, X is

considered to be more correlated to Y than Z, if IG(Y|X)> IG(Z|X). IG is a symmetrical mea-

sure; which is a desired property for a correlation measure. However it is biased in favor of r.v.

with more values and such values have to be normalized to ensure the values have the same

scale and so are comparable and have the same effect. To overcome the bias drawback we use

the Symmetrical uncertainty (SU) measure; which modifies IG measure by normalizing with

their corresponding entropy to compensate the bias

SUðX;YÞ ¼ 2
IGðXjYÞ

HðXÞ þHðYÞ

� �

ð14Þ

SU restricts its values to the range [0, 1]. A value of 1 indicates that knowing the values of

either feature completely predicts the values of the other; a value of 0 indicates that X and Y are

independent. So SU can be used as a correlation measure between features.

Based on SU correlation measure, the authors define the approximate Markov blankets as

follows.

Definition 1 (Approximate Markov blanket) Given two features Xi and Xj (i 6¼ j) so
that SUðXj;YÞ � SUðXi;YÞ, then Xj forms an approximate Markov blanket for Xi iff
SUðXi;XjÞ � SUðXi;YÞ.

To guarantee that a redundant feature removed in a given step will still find a Markov blan-

ket in any later phase when another redundant feature is removed, they also introduce the con-

cept of predominant feature.

Definition 2 (Predominant feature) Given a set of features S � X , a feature Xi is a predomi-
nant feature of S if it does not have any approximate Markov blanket in S.

As we can see in Fig 4, it starts by calculating SUðXi;YÞ for each feature to estimate the rele-

vance. A feature is considered irrelevant if its value is lower or equal to a given threshold δ. In

order to detect a subset of predominant features, remaining features are ordered in descending

SUðXi;YÞ value. Then a backward search is performed in the ordered list S0list to remove redun-

dant features. The first feature from S0list is a predominant feature since it has no approximate

Markov blanket. Note that a predominant feature Xj can be used to filter out other features for

which Xj forms an approximate Markov blanket. Therefore a feature Xi is removed from S0list if

Xj forms a Markov blanket for it. The process is repeated until no predominant features are

found. In this work we set δ = 0 since there is no rule about this parameter tuning and in the

datasets under study only a small subset of features have a SU value different to 0.

The second method we used for feature selection is based on the Scatter Search (SS) meta-

heuristic proposed by Garcı́a et al. [28]. SS is a population-based algorithm that makes use of a

subset of high quality and dispersed solutions, which are combined to construct new solutions.

The pseudocode of SS is summarized in Fig 5. The method generates an initial population of

solutions in line 1, which is composed of solutions dispersed in the solution space. In line 2, a

reference set of high quality and dispersed solutions is generated from the population. As in

standard implementations of SS, the SelectSubset method in line 5 selects all subsets consisting

of two solutions, which are then combined in line 6. The resulting solutions are then improved

in line 7 obtaining new local optima. Finally, a static update of the reference set is carried out

in line 9, in which a new reference set is obtained from the union of the original set and all the

The blessing of Dimensionality: Feature Selection outperforms functional connectivity to classify ADHD subjects

PLOS ONE | https://doi.org/10.1371/journal.pone.0201660 August 16, 2018 10 / 24

https://doi.org/10.1371/journal.pone.0201660


combined and improved solutions by quality and diversity. For more details, we refer the

interested reader to the original paper.

The novelty introduced in this paper is that, in order to measure the quality of the subsets

of features selected by the scatter search, we made use of the Correlation Feature Selection

(CFS) measure [60] instead of a wrapper approach. CFS evaluates subsets of features taking

into account the hypothesis that the good subsets include features highly correlated with the

classification, but uncorrelated to each other. It evaluates the worth of a subset of attributes by

Fig 4. Pseudocode of the Fast Correlation Based Filter algorithm (FCBF).

https://doi.org/10.1371/journal.pone.0201660.g004
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considering the individual predictive ability of each feature along with the degree of redun-

dancy between them.

The subsest evaluation function of CFS can be stated as follows:

MS ¼
krcf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ kðk � 1Þrff

q ; ð15Þ

where MS is the heuristic merit of a feature subset S containing k features, rcf is the mean fea-

ture-class correlation (f 2 S), and rff is the average feature-feature inter-correlation.

Dimensionality reduction using FC methods: synchronisation cluster algorithm
The need for dimensionality reduction in FC studies was already recognized even before

the possibility of using them in Machine Learning applications. Indeed, apart from the practi-

cal issues associated to the multiple comparison problem (see, e.g., [61] and references

therein), it was also demonstrated that weak pairwise correlations (i.e., low values of ab
Rij

) may

indicate, rather counter-intuitively, strongly correlated neural network states [62]. In the spe-

cific case of PS analysis, Allefeld and co-workers [57] developed a method termed synchronisa-
tion Cluster Analysis (SCA) whereby the N electrodes/sensors from a multivariate M/EEG

recording can be considered, under very general conditions, as individual oscillators coupled

to a common oscillatory rhythm. The degree of coupling of each oscillator to this global

rhythm, ρi, as well as the overall strength of the joint synchronized behaviour of all the oscilla-

tors, r, can be inferred from the matrix 8 (see [57] for details). Thus, the FC pattern for each PS

index R and frequency band b comes down to a OðNÞ vector rather than to a OðN2Þ one.

Fig 5. Pseudocode of the Scatter Search algorithm (SS).

https://doi.org/10.1371/journal.pone.0201660.g005
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Namely:

rb
R ¼ ðr

b
R1
; rb

R2
; ‥; rb

Rn
Þ ð16Þ

Contrary to the approach described above, with SCA we actually do not select a subset of

the OðN2Þ features, but rather reduce the number of features to OðNÞ by taking advantage of

the characteristics of the dynamics of the brain synchronisation as described by the data. Note

that this approach is also equivalent to another FC methods of dimensionality reduction, such

as those based on describing 8 in terms of its N eigenvalues [58] or the more recent one based

on hyperdimensional geometry [63]. For the 5 frequency bands considered, the two PS indices

and the two conditions (open and closed eyes) we have, for each subject, a feature vector ρ of

N(=8)×5×2×2 = 160 components. Finally, if we take the reduction approach to the limit, and

use r instead of (16), then the feature vector comprises only 20 components, one for each possi-

ble band / index /condition combination.

3 Experiments and results

For each subject, we selected three different sets of feature vectors (R, Rt and Rt
S), with the aim

of determining the influence of each processing steps on classification accuracy. Thus, R stands

for the feature vectors obtained from 5 segments selected randomly out of all the available one.

Then, Rt corresponds to the results from the 5 most stationary segments with the selection pro-

cedure described in section 2.2. Finally, Rt
S is the same that Rt but applying the surrogate data

test. Let ρ and r and ρt and rt be the datasets obtained by applying the SCA algorithm to R and

Rt, respectively. As for Rt
S, there are instances in which the matrix (8) is sparse (i.e., there are

many non-significant indices), which prevents the application of the SCA algorithm. There-

fore, it was not possible to calculate either rt
S or rt

S.

In Table 1, we present the main characteristics of the datasets used in the experiment. The

first column refers to the set of feature vector. The following two columns show the datasets

obtained from the feature vectors depending on whether SCA was applied or not. Then, for

each dataset, the number of features per band is presented and finally, in the last column, we

can see the total number of features. Datasets are generated for PLI and PLV phase synchroni-

sation methods. Note that for each band and phase synchronisation method, we include mea-

sures from two eyes positions (open and closed).

To evaluate and compare the predictive models learned from data, we used cross-valida-

tion; which is a popular method for estimating generalization error based on re-sampling and

thus assesses model quality.

In cross-validation, the training and validation sets must cross-over in successive rounds

such that each data point has a chance of being validated against. The basic form of cross-

Table 1. Characteristics of the different datasets used in this work for PLI and PLV phase synchronisation

methods.

data FC dataset #features/band #features

R sca r 2 10

ρ 16 80

− R 28 280

Rt sca rt 2 10

ρt 16 80

− Rt 28 280

Rt
S − Rt

S 28 280

https://doi.org/10.1371/journal.pone.0201660.t001
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validation is k-fold cross-validation, which splits the data into k equally sized subsets or folds.

Then, k iterations of training and validation are performed such that each time a different fold

is held-out for validation while remaining k − 1 folds are used for learning purpose. Finally,

the validation results are averaged over the runs. In general, lower values of k produce more

pessimistic estimates and higher values more optimistic ones. However, since the true generali-

zation error is not usually known, it is not possible to determine whether a given result is an

overestimate or underestimate. In spite of this, cross-validation is a suitable estimator for

model comparison purposes.

Although cross-validation consumes a great deal of resources, for small sized data the leave-

one-out cross-validation (LOOCV) is used since it is an almost unbiased estimator, albeit with

high variance. LOOCV is a special case of k-fold cross-validation, where k equals the number

of instances in the data.

All EEG data used in this work are bi-class (e.g., the subjects are either control or ADHD),

so that we use sensitivity and specificity scores as performance measures. In our data positive

examples refer to label ADHD while negative to control cases. Sensitivity, also called true posi-
tive rate or recall, measures the proportion of actual positives which are correctly identified as

such. Higher values means that higher cases of ADHD are detected. Specificity is the propor-

tion of actual negatives which are identified as such. Higher values correspond to lower proba-

bility that a control case be classified as ADHD case.

3.1 Baseline classification results

In this section, we analyse the predictive power of the different search strategies for Bayes net-

work structure learning with the datasets under study. Table 2 presents the results. The phase

synchronisation method applied is indicated in the first column. Then, the dataset id is shown.

The following columns refer to sensitivity and specificity scores for K2, Hill Climbing (HC),

and LAG Hill Climbing (LHC). Results with an accuracy higher than 0.7 are in bold.

With the PLI index, K2 achieves an accuracy higher than 0.70 on R dataset. With PLV

index, results on Rt dataset achieves a very high accuracy with all search strategies. The other

results are lower than 0.70.

Table 2. Sensitivity and specificity obtained with K2, HC, and LHC search strategies for Bayes network structure learning. Results with accuracy values higher than or

equal to 0.70 are marked in bold.

classifier K2 HC LHC

PS id sens. spec. sens. spec. sens. spec.

PLI r 0.421 1.000 0.421 1.000 0.421 1.000

ρ 0.421 0.875 0.421 0.813 0.421 0.813

R 0.684 0.733 0.684 0.600 0.684 0.600

rt 0.947 0.000 0.947 0.000 0.947 0.000

ρt 0.684 0.467 0.684 0.467 0.684 0.467

Rt 0.526 0.467 0.526 0.467 0.526 0.467

Rt
S 1.000 0.000 1.000 0.000 1.000 0.000

PLV r 1.000 0.000 1.000 0.000 1.000 0.000

ρ 1.000 0.000 1.000 0.000 1.000 0.000

R 0.579 0.667 na na 0.526 0.667

rt 0.579 0.000 0.579 0.000 0.579 0.000

ρt 0.421 0.733 0.421 0.733 0.421 0.733

Rt 0.895 0.933 0.895 0.867 0.947 0.933

Rt
S 0.474 0.667 0.474 0.667 0.474 0.667

https://doi.org/10.1371/journal.pone.0201660.t002
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3.2 Feature selection analysis

Regarding the effect of the feature selection algorithms FCBF and SS on the classification per-

formance, results are shown in Table 3. Those obtained by applying the FCBF are shown in

columns 3–8 while those achieved with SS in columns 4–9. As in the baseline scenario, K2

achieves the same accuracy on R with PLI index, and all search strategies achieve the best per-

formance scores on Rt using PLV index. With FCBF, the model found by K2 achieves the same

accuracy by increasing the sensitivity and decreasing the specificity. The model found by HC

improves the accuracy by increasing the sensitivity. Finally, the predictive power found by

LHC achieves an accuracy of 100%. This results must be taken with certain caution since they

may suggest some kind of overfitting. With SS, the model of K2 improves increases the sensi-

tivity while remaining the specificity value. HC improves in both measures and LHC increases

sensitivity reaching a value of 1.

3.3 Band relationship analysis

In this section we analyse the subsets of features selected by FCBF and SS on Rt with PLV. Fig

6 shows the features (connections from now on) selected according to the electrode positions

used in our experiments. The connections selected by FCBF are shown in Fig 6A, while those

selected by SS are in Fig 6B. The width of the connection is larger for those with higher correla-

tion values with the class label. We used SU as a measure of feature correlation. Superscript c
stands for connections measured with closed eyes while no superscript refers to open eyes.

Along this section we will write the connection between two electrodes E1 and E2 in a given

band as (E1 − E2)band for opened eyes and ðE1 � E2Þ
c
band for closed ones.

When applying FCBF, 12 out of the 280 features have non-zeron SU correlation values.

Then, the strategy selected 10 of them as predominant features. The selected connections are

shown in Fig 6A. The most correlated connections correspond to (T3 − Fp2)β with SU = 0.571

and ðO2 � C4Þ
c
g

with SU = 0.536. Most values are in the range of [0.303 − 0.380] and only two

Table 3. Sensitivity and specificity obtained with K2, HC, and LHC search strategies for Bayes network strcuture learning after preprocessing with FCBF and SS fea-

ture selection algorithms. Results with accuracy values higher than or equal to 0.70 are marked in bold.

PS id FCBF SS

K2 HC LHC K2 HC LHC

sens. spec. sens. spec. sens. spec. sens. spec. sens. spec. sens. spec.

PLI r 0.421 1.000 0.421 1.000 0.421 1.000 0.421 1.000 0.421 1.000 0.421 1.000

ρ 0.421 0.875 0.421 0.875 0.421 0.875 0.421 0.875 0.421 0.938 0.421 0.875

R 0.684 0.733 0.684 0.600 0.684 0.600 0.684 0.733 0.684 0.600 0.684 0.600

rt 0.947 0.000 0.947 0.000 0.947 0.000 0.947 0.000 0.947 0.000 0.947 0.000

ρt 0.684 0.467 0.684 0.467 0.684 0.467 0.684 0.467 0.684 0.467 0.684 0.467

Rt 0.526 0.467 0.526 0.467 na na 0.526 0.467 0.526 0.467 na na
Rt

S 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

PLV r 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

ρ 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000

R 0.526 0.533 0.579 0.600 0.632 0.600 0.632 0.533 0.579 0.533 0.684 0.600

rt 0.579 0.000 0.579 0.600 0.579 0.000 0.579 0.000 0.579 0.000 0.579 0.000

ρt 0.421 0.733 0.421 0.733 0.421 0.733 0.421 0.733 0.421 0.733 0.421 0.733

Rt 0.947 0.867 0.947 0.867 1.000 1.000 0.947 0.933 0.947 0.933 1.000 0.933

Rt
S 0.474 0.667 0.474 0.667 0.474 0.667 0.474 0.667 0.474 0.667 0.474 0.667

https://doi.org/10.1371/journal.pone.0201660.t003
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of them have values lower than 0.3. The redundant connections found by this strategy are:

ðFp1 � O2Þ
c
b

and ðC3 � T3Þ
c
g
. The earlier one with (O1 − O2)α and the later one with

ðO1 � C4Þ
c
g
.

As we can see in Fig 6B, SS found 5 features that were identified as predominant features by

FCBF. It selects the two most correlated connections (T3 − Fp2)β and ðO2 � C4Þ
c
g
, as well as

the features (O1 − C4)γ, ðO1 � C4Þ
c
g

and ðO2 � C4Þ
c
d
.

Now we will analyse the BN classifier models generated with the connections selected by

FCBF and SS. Fig 7 shows the models obtained using the search methods K2, HC and LHC. As

it was explained in this work, in the Bayesian model, edges represent conditional dependencies

between the connections. Dashed lines stands for correlations between connections. Due to

lack of space, a connection between two electrodes E1 and E2 in a given band is represented in

the figure as ð
E1

E2
Þband for opened eyes cases and ð

E1

E2
Þ
c
band for closed ones. We can interpret the

generated model as follows.

In Fig 7A we can see the model obtained with K2 with the features selected by FCBF. This

model achieves an accuracy of 91.18%. Values of Connection (O1 − C4)γ depend on values of

(O1 − O2)α. We can also see that connection ðC3 � Fp2Þ
c
b

receives influence from (T3 − Fp2)β

and (C3 − C4)β and ðT4 � O2Þ
c
d

from ðC4 � O2Þ
c
d

and (C3 − C4)β. It is worth noting that (C3 −
C4)β influences two different connections. Fig 7B shows the model with HC, which is quite

similar to the previous one and achieves the same accuracy. In contrast to previous model, the

dependency between connections (O1 − C4)γ and (O1 − O2)α is inverted. Another difference is

that (C3 − C4)β receives influences from (T3 − Fp2)β and ðC3 � Fp2Þ
c
b
. Finally, the model with

LHC is presented in Fig 7C. The accuracy is 100% but the complexity of the model has

increased considerably and, so, its interpretability. The new dependencies with respect to the

previous models are that (C3 − C4)β and (T4 − Fp1)β are influenced by other four connections

each. The influence of (C3 − C4)β comes from ðC3 � Fp2Þ
c
b
, (T3 − Fp2)β, (Fp2 − C4)δ and

Fig 6. Connections (features) selected by (A) the FCBF and (B) SS feature selection algorithms on Rt dataset with PLV index. The type of

line indicates the band (δ: dashed; β: solid; α: loosely dashed; γ: dotted), whereas its width is proportional to the correlation of the corresponding

connections (see text for details). The superscript c on the letter for each band indicates the EC condition, whereas connections without

superscript correspond to the EO condition.

https://doi.org/10.1371/journal.pone.0201660.g006
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(T4 − Fp1)β. Finally, (T4 − Fp1)β is influenced by ðO1 � C4Þ
c
g
, (Fp2 − C4)δ, (T3 − Fp2)β and

ðC3 � Fp2Þ
c
b
.

Note that in all models generated with connections selected by FCBF, we found that ðT4 �

O2Þ
c
d

depends on connections (C3 − C4)β and ðC4 � O2Þ
c
d
. The dependence between (O1 −

C4)γ and (O1 − O2)α is also present in all models although the direction of the arc is different

in the first model.

The models obtained with SS are much simpler than those obtained with FCBF, since SS

only selected five connections. As we can see in Fig 7D and 7E, K2 and HC algorithms learned

the same BN model and it achieves an accuracy of 94.12%. Furthermore, this model shows a

single statistical dependence between (O1 − O2)α and (O1 − C4)γ. Finally, in Fig 7F, we can see

that the model obtained with LHC is slightly different to those obtained previously. It reaches

the same accuracy (94.12%), but it presents no dependencies and connection ðC4 � O2Þ
c
d

is

the parent node of Y. Therefore, if Y is known, ðC4 � O2Þ
c
d

and the other four connections are

conditionally independent.

Finally, it is noteworthy that the dependence between (O1 − C4)γ and (O1 − O2)α is also

presented in two of the three models generated with the connections selected by SS. This

dependence is also found in the models generated previously with FCBF. Thus, we think that

this is a robust result.

Fig 7. BNC models generated with the connections found by FCBF and SS. Dashed lines represent dependencies between such connections.

(A) BNC model generates using K2 strategy with FCBF, (B) HC strategy and FCBF, (C) LHC algorithm and FCBF, (D) K2 and SS, (E) HC and

SS, and (F) LHC and SS.

https://doi.org/10.1371/journal.pone.0201660.g007
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4 Discussion

We have analysed here a topic of great current interest [5, 9], namely the applicability of

machine learning algorithms for subject classification from brain connectivity patterns. Con-

cretely, we aimed at elucidating, using data from multichannel human EEG recordings, which

is the best strategy to deal with the curse of dimensionality inherent to this research approach

[14]. For this purpose, we compared different machine learning approaches of feature selec-

tion, which pinpoint the optimal subset of features out of all the available ones, with a method

(SCA) based on modelling PS in brain dynamics to transform the original features in a reduced

set of new variables. The whole procedure has been tested in a problem common in this frame-

work, whereby brain connectivity is characterized using bivariate PS indexes between every

two electrodes in different frequency bands [16, 19], and this feature vectors is then used to

classify subjects in two groups [2, 7, 8, 10]. To the best of our knowledge, this is the first work

where such a comparative study has been carried out.

Regarding the results of the classifier, we found that the combination of using the most sta-

tionary segments and the PLV yielded a high quality Bayesian network model. Additionally,

the original FC features contain more information about the class than the transformed vari-

ables r and ρ. Such features correspond to the most informative connections for classification

purposes in the brain connectivity pattern, since irrelevant and redundant ones are removed.

Besides, as summarized in Fig 6, the application of FCBF/SS improves the interpretability of

the classification model. In fact, Fig 6A and 6B present a very specific frequency/topology pat-

tern of bands and electrodes whose FC, as assessed by PLV, is impaired in the ADHD groups

as compared to the healthy one. Thus, low frequency activity in δ band is modified in the right

hemisphere during CE condition, whereas higher frequency α, β and γ band FC changes

mainly in the OE condition for interhemispheric connections. This is consistent with what is

known about EEG activity in CE/OE conditions, where low frequency activity is enhanced in

the former one, and also with the EEG changes associated to ADHD (see, e.g., [2, 25] and ref-

erences therein). Note, however, that, as commented before, PLV and PLI measured different

things [38], which justifies the use of both of them in the feature vectors. Yet, the best overall

performance of any of the algorithms is obtained when only PLV features are considered. PLV

is known to be more sensible to volume conduction effects, whereby the activity of a single

neural source in the cerebral cortex or beneath is picked up by various electrodes, resulting in

EEGs that are correlated. Quite interestingly, and also in line with recent results ([64, 65]),

apparently this very reason turns this index into a richer source of information about the char-

acteristic neuroimaging pattern of a given group, and correlates better with the underlying

anatomical connectivity [41]. In other words, if one is not interested in the origin of the dis-

tinctiveness of the patterns but only wants to generate the most different patterns from two

groups, then an index such as PLV, sensitive to changes both in the activity of deep sources

and in the interdependence between them, may be more suitable for this purpose than the

more robust PLI, which mainly detects the latter changes. Finally, given the inherent multi-

band nature of EEG changes in ADHD, it may be also interesting to use indices of cross-fre-

quency coupling, which assess the interdependence between different frequencies (see, e.g.,

[66, 67]) to construct the FC vectors. Another interesting topic for further research would be

the dynamic of FC patterns [26]. In both cases, the additional information would come at the

price of further increasing the dimensionality, so that the present approach would be even

more relevant there.

Another interesting issue that we have investigated is the effect of the segment selection

procedure and the estimation of the statistical significance of the FC indices on classification

accuracy. The main conclusion in this regard was that the optimal combination consists in
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selecting the most stationary segments among those available ones (because randomly taking

the segments always decreased the accuracy)and at the same time use the values of the indi-

ces as such, without any thresholding from the multivariate surrogate data. The result con-

cerning the need for a careful selection of the segments according to their stationarity is

hardly surprising. In fact, stationarity is known to be one of the prerequisites to estimate

many interdependence indices such as correlation, coherence, mutual information or those

based in the concept of generalized synchronisation [16], and the quantitative assessment of

the degree of stationarity of M/EEG data segments in functional connectivity applications is

receiving increasing attention [68]. Thus, even though stationarity is not a pre-requisite for

the application of the Hilbert transform, it is anyhow quite logical that selecting stationary

EEG segments that records a single brain state instead of non-stationary ones recording a

mixture of them are the best candidates for pattern recognition applications. However, the

poorer performance of the surrogate-corrected feature vectors as compared to the “raw”

ones is somewhat surprising. Apparently, in the case analysed, the non-significant connec-

tivity indices, whose values are not due to the statistical dependence between the time series

but to some feature of the individual data (see, e.g.,[16, 43, 49]), do contain information that

is relevant for the classification, so that setting all of them to zero produces more harm than

good. Here, again, the message seems to be that the task of dimensionality reduction should

be left to machine learning algorithms.

Admittedly, we cannot guarantee that these results will held for other sets of subject / neu-

roimaging modalities. It may be, for instance, that, contrary to what we have found here, there

are instances where the original FC features, even after conveniently selected, do not outper-

form FC-based methods of dimensionality reduction such as SCA. Or that the use of surrogate

data may be useful when the number of electrodes is high. Besides, it may be that BNC could

no be always the best classifier. Different algorithms such as SVM [8], linear discriminant

analysis [2] or random forest classifiers [10] have proven useful in similar applications. Note,

however, that two of these works [8, 10] used previously transformed variables where data

reduction is carried out by means of graph theoretic measures, and none of them perform a

comparison of different classification algorithms or strategies for dimensionality reduction.

4.1 Limitations of the results

A very recent metanalysis of neuroimaging biomarkers in ADHD [13] has warned about the

very high accuracies obtained in the literature in these type of studies. There, the small sample

sizes and the circularity of the analysis, in which no cross-validation was used in many cases,

were pointed out as the main causes of this inflated results. Although we did use cross-valida-

tion in the present study, it is clear that the size of our sample is small. Thus, rather that

emphasising the absolute values of the accuracies obtained, we stress that they are the changes

in this index (i.e., its relative values) after applying different approaches to select the segments

and reduce the dimensionality of the feature vector, which represent most interesting outcome

of our paper. Furthermore, by sharing all our data and making the code for connectivity analy-

sis publicly available [42, 69], in line with recent efforts from our own research [12], we hope

that other labs can apply the proposed classification model as build from our EEGs to their

own data. This would be the best check for the validity of the proposed approach by estimating

the accuracy of the model in external test sets, or alternatively would allow refining the model

by enlarging the sample size. Although issues regarding the different pipelines may still be

present, the detailed account we give on the preprocessing steps and automatic segment selec-

tion goes online with recent recommendations to improve reproducibility in neuroimaging

research [70].
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4.2 Conclusions

That said, our results suggest that the combination of a careful selection of the data segments, a

suitable feature selection method and a machine learning algorithm such as BNC, able to cope

with high dimensional data, can turn the curse of dimensionality into a blessing, as the avail-

ability of many features allows selecting an optimal subset of meaningful, information-rich

variables that can accurately classify subjects from their brain connectivity patterns even from

scalp EEG data.

In conclusion, the present outcomes indicate that the use of machine learning algorithms

on EEG patterns of FC represents a powerful approach to investigate the underlying mecha-

nisms contributing to changes, as regard to controls, in FC among different scalp electrodes,

while allowing at the same time the use of this information for subject classification. They also

suggest that this approach may not only be relevant for clinical applications (as it is the case for

the theta/beta ratio in ADHD [13]), but also useful to provide insight into the neural correlates

of the pathology under investigation.
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E. Pereda and J.J. González acknowledge the financial support of the Spanish MINECO

through the grant TEC2012-38453-C04-03. E. Pereda acknowledges the financial support of

the Spanish MINECO through the grant TEC2016-80063-C3-2-R. The funders had no role in

study design, data collection and analysis, decision to publish, or preparation of the manu-

script. Part of the computer time was provided by the Centro Informático Cientı́fico de Anda-
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