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Abstract—Inferring air quality from a limited number of
observations is an essential task for monitoring and controlling
air pollution. Existing inference methods typically use low spatial
resolution data collected by fixed monitoring stations and infer
the concentration of air pollutants using additional types of data,
e.g., meteorological and traffic information. In this work, we focus
on street-level air quality inference by utilizing data collected by
mobile stations. We formulate air quality inference in this setting
as a graph-based matrix completion problem and propose a novel
variational model based on graph convolutional autoencoders.
Our model captures effectively the spatio-temporal correlation
of the measurements and does not depend on the availability of
additional information apart from the street-network topology.
Experiments on a real air quality dataset, collected with mobile
stations, shows that the proposed model outperforms state-of-
the-art approaches.

I. INTRODUCTION

Air pollution is one of the most serious threats for the
human health and the environment. In order to mitigate air
pollution, we need to accurately measure air quality at very
high spatial and temporal rates, especially within urban areas.
Fixed monitoring stations have been deployed to measure
the concentration of air pollutants. Given the high cost of
the necessary instruments, the number of such installations
is limited. Although fixed stations can collect measurements
with high temporal resolution, their spatial resolution is very
low; hence, there is a need to spatially infer the concentration
of air pollutants. Recent advances in sensors, IoT platforms,
and mobile communications enable deploying low-cost mobile
monitoring stations, e.g., by mounting sensors on vehicles.
Examples include the air quality monitoring system using
the public transport network in Zurich [1], the system using
Google street-view cars in Oakland, CA [2], and imec’s City-
of-Things platform that uses postal trucks [3]. Deploying
mobile stations increases the spatial density of air quality
measurements; however, their temporal resolution per location
is low since the vehicles are moving. In addition, there
are still locations not covered by the vehicles. This renders

computationally inferring missing air quality measurements
across the spatial and temporal dimensions a problem of high
interest.

A number of methods have been proposed to infer the
air pollutant concentration using measurements collected by
fixed monitoring stations. They are based on either physical
models or data-driven solutions [4]. In the former approach,
the complex physical dispersion processes of air pollutants are
modeled using observed data and empirical assumptions [5],
[6], [7]. Methods in this category, however, often require the
availability of additional information, e.g., the distribution of
pollution sources and accurate weather models [8]. Further-
more, the assumptions behind them might not hold given the
variability of urban landscapes [4]. Data-driven methods do not
rely on strong assumptions; instead, they utilize diverse local
data, such as meteorological information, points of interest
and traffic information, to infer the concentration of air pollu-
tants. By leveraging the recent advances in deep learning, in
particular, data-driven methods have achieved good inference
performance [4], [9], [10].

Only very limited work has focused on air quality inference
using data collected by mobile stations [1]. In this paper,
we use the City-of-Things platform from imec [3] to retrieve
street-level air quality data measured using mobile stations
in Antwerp, Belgium. Given the available data, we infer the
air quality in unmeasured locations across time and space.
We follow a data-driven approach and formulate the air
quality inference problem as a graph-based matrix completion
problem. Specifically, we exploit the topology of Antwerp’s
street network and propose a novel deep learning model based
on variational graph autoencoders; we refer to our model as
AVGAE. The model captures effectively the spatio-temporal
dependencies in the measurements, without using other types
of data, such as traffic or weather, apart from the street-
network topology. Experiments on real data from the City-
of-Things platform show that our method outperforms various
reference models.
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To summarize, our main contributions in this paper are: (i)
we formulate air quality inference as a graph-based matrix
completion problem and propose a variational graph autoen-
coder for accurate inference. To the best of our knowledge, this
is the first work to explore graph-based neural network models
in the context of air quality inference; (ii) the proposed model
effectively incorporates the temporal and spatial correlations
via a temporal smoothness constraint and graph convolutional
operations; (iii) we carry out comprehensive experiments on
real-world datasets to evaluate the proposed model showing
its superior performance compared to existing models.

The rest of this paper is as follows: Section II reviews the
related work, and Section III states the problem and presents
our model. Section IV describes the experiments and Section V
concludes the paper.

II. RELATED WORK

A. Air Quality Inference

Unmeasured air pollution in locations or time instances
can be estimated using simple interpolation or resampling
techniques [10], [11]. However, given the dynamics of air
pollutants, these techniques tend to produce high estimation
errors. Alternatively, one can use kriging-based variogram
models to capture the variance in air pollution data with
respect to the geodesic distance [12], [13]. As a purely spatial
interpolation method, however, this approach does not capture
the temporal correlation in the air quality data.

In recent years, we have witnessed the rise of machine-
learning-based methods. In [14], a co-training approach with
temporal and spatial classifiers is proposed for classifying
discrete air quality indices (AQIs); yet, this model can not be
used to infer the real-valued concentration of air pollutants.
Deep-neural-network-based models have been proposed for
air quality inference in [4], [9]. These models exploit the
spatio-temporal correlations in the concentration of air pol-
lutants either by incorporating additional information in the
model—from traffic, weather, etc.—or by imposing objective
constraints. Unlike these methods, our work utilizes a graph
variational autoencoder to estimate the concentration of air
pollutants across space and time, and provides higher estima-
tion performance without considering additional information.
Alternatively, the authors of [15] proposed a model to infer
the air quality using a graph-based semi-supervised approach.
The work considers an affinity graph of locations and deploys
a label propagation mechanism to predict the air quality.
This work is similar to ours in terms of formulating the air
quality inference problem on graphs; however, instead of label
propagation, we propose an end-to-end graph convolutional
model, which is more flexible. It is worth noting that in [9],
[14], [15] the considered area is divided in a uniform grid,
whereas in the proposed approach we aggregate measurements
non-uniformly across the street network (see Section III-A)

B. Matrix Completion on Graphs

Matrix completion is a fundamental problem in machine
learning, which focuses on inferring unknown entries of ma-

trices [16]. Applications of matrix completion include recom-
mender systems [17], cellular network planning [18] and air
quality inference [19], to name a few. Recently, a number
of studies have addressed the problem of matrix completion
with tools from graph signal processing [20], [21], [22], [23],
[24] with applications in recommender systems. Our method is
related to these approaches but it includes specific components
tailored to the problem of air quality inference from mobile
measurements. In the experimental section, we compare the
performance of our method against [17], [20] and demonstrate
its superior performance in inferring air quality data.

C. Variational Graph Autoencoders

Variational autoencoders (VAEs) [25] are generative models
that have lately received considerable attention. The study
in [26] proposed a VAE with fully connected neural network
layers with application in collaborative filtering, a particular
application of matrix completion. Furthermore, variational
inference on graphs has been proposed for link prediction [27].
Our model is different from [27], [26] in that we propose a
variational graph autoencoder, which can express the spatial
and temporal dependencies across air pollution measurements.
Furthermore, the data in [26] is assumed to follow a discrete
multinomial distribution, whereas in our model, the data
follows a continuous distribution.

III. METHOD

A. Problem Formulation and Notation

We focus on air quality inference at the street network of
urban areas—namely, we consider only locations on streets—
using measurements on the concentration of air pollutants col-
lected by sensor-equipped vehicles moving around a specific
urban area; the problem statement adheres to the smart cities
concept. Each vehicle makes measurements while moving on
the city street network, resulting in high spatial measurement
density; in contrast, the measurements at a specific location
have low temporal resolution.

As the time and location associated to a measurement are
continuous, it is convenient to aggregate the measurements
at discrete time instances and locations. We uniformly divide
the time span of the data into equal slots of duration τ (e.g.,
one hour). In a given timeslot t, we gather all measurements
within a pre-defined geographical distance r from a given
spatial location p on the street network and take their median-
value as the measurement at location p at timeslot t. The street
network information is obtained from OpenMapTiles1. Hence,
the aggregation across space is non-uniform and is adapted to
the considered locations on the street network.

The above aggregation process results in a measurement
matrix X ∈ RN×T , with N the number of considered geo-
graphical locations and T the number of timeslots. An entry
Xij , with i = 1, . . . , N and j = 1, . . . , T , corresponds to the
measurements at the ith location and the jth timeslot. X is a
highly incomplete matrix with the set of known entries denoted

1https://openmaptiles.com/downloads/europe/belgium/antwerp/
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Fig. 1. The proposed variational graph autoencoder architecture for air quality inference (AVGAE). The input of AVGAE consists of the incomplete matrix
X and the matrix of geocoordinates S. The light gray row in X indicates a location without measurements across time, dark gray cells represent unmeasured
locations at a given time instance, and the entries with a red font are reconstructed known entries on which we evaluate the loss function. The function blocks
fGCN represent GCN layers. The encoder outputs the parameters µ, σ of a Gaussian distribution. The output matrix X̃ approximates the known entries and
contains the inferred unknown entries.

by Ω. Our task is to predict the air pollution concentration
values in the unknown entries using the measurements (known
entries) and the street-network topology.

For notational consistency, in the rest of the paper, we use
bold-faced uppercase letters for matrices, bold-faced lowercase
letters for vectors and regular lowercase letters for scalar
variables. Both regular uppercase and lowercase Greek letters
denote constants.

B. Variational Autoencoders

VAEs build on the assumption that the data points in
a dataset can be drawn from a distribution conditioned by
latent variables; furthermore, the latent variables follow a prior
distribution, e.g., the Gaussian distribution. VAEs attempt to
learn a deterministic function that transforms the Gaussian
distribution to the distribution of the observed data.

Let x denote an example in the dataset and z the vector
containing the latent variables. The inference process is mod-
elled by

q(z|x) = N
(
µ,σ

)
, (1)

where µ = fµ(x,Θ1) and σ = fσ(x,Θ2) are parameters of
the Gaussian distribution. The generative process is character-
ized by

p(x|z) ∝ fz(z,Φ). (2)

It should be noted that fµ, fσ and fz are parameterized
functions and their parameters Θ1,Θ2 and Φ can be learned
from data. These functions are often implemented by neural
network layers. To find the parameters, one needs to minimize
the following equation:

L = −Eq(z|x)

[
logp(x|z)

]
+D

[
q(z|x)‖p(z)

]
. (3)

In (3), one can interpret the first term as the reconstruction
error and the second term as a regularization constraint. The
second term is the Kullback-Leibler (KL) divergence between
q(z|x) and the prior p(z) = N (0, I), which can be computed
with a closed form formula [25].

C. Variational Graph Autoencoders

Variational graph autoencoders (VGAEs) [27] adhere to the
VAE concept and utilize graph convolutional layers (GCN)
for the parameterized functions fµ, fσ and fz . Given a graph
G = (V, E) with an adjacency matrix A ∈ RN×N and a
degree matrix D ∈ RN×N , N = |V|, a graph convolutional
layer [28] is expressed as

fGCN(X) = σ
(
D̃−

1
2 ÃD̃−

1
2XW

)
(4)

where Ã = A + IN , D̃ij =
∑
j Ãij , X ∈ RN×T is

the input signal summarized in a matrix, W ∈ RT×D is
the corresponding weight matrix with D being the GCN
layer’s dimensionality, and σ indicates a nonlinear function.
By stacking multiple GCN layers, more complex functions
can be constructed. In what follows, we propose a particular
architecture tailored to the air quality inference task.

D. The Proposed AVGAE Architecture

The architecture of our model, which we refer to as AVGAE,
is depicted in Fig. 1. We build a graph of N nodes by
considering the geodesic distance among the N corresponding
discretized locations on the street network. Two nodes are
connected if the geodesic distance between them is smaller
than a predefined threshold δ, or if they belong to the same
road segment. The weight of a connection is the inverse of
the geodesic distance in meters computed by the Haversine
formula [29]. Furthermore, we summarize the locations’ geo-
coordinates in a matrix S. Our model is described by the
following set of equations:

µ = GCNµ(X,S,Θ1) (5)
σ = GCNσ(X,S,Θ2) (6)
Z ∼ N (µ,σ) (7)

X̃ = GCNz(Z,Φ) (8)

In 5, 6, 8, GCNµ, GCNσ and GCNz are functions obtained
by stacking GCN layers and, Θ1, Θ2 and Φ are parameters
that can be learned from the data. S is the geocoordinates
matrix, which is horizontally concatenated with X . Our model



utilizes two separate branches for training µ and σ, thereby
allowing to select proper activation functions for µ and σ (the
selected functions are mentioned in Section IV).

It is worth mentioning that our model is capable of inferring
values at locations that are not measured by vehicles, which
are illustrated by an empty row in matrix X in Fig. 1. This
is because the proposed model captures the spatial correlation
between the unobserved and observed locations through their
geocoordinates and the street network’s topology.

The loss function of our model is defined in (9). We
modify (3) by using the mean absolute error (MAE) reg-
ularized by a KL divergence term. Even though the MAE
is not everywhere differentiable, we find that using its sub-
gradient is sufficient for optimization with gradient descent.
The temporal dependency between measurements imposes an
additional smoothness constraint:

L(X,Θ1,Θ2,Φ) =
1

|Ω|
∑

(i,j)∈Ω

|X̃ij −Xij |+

βD
[
q(z|x)‖p(z)

]
+ γ

∑
(i,j)

∑
k∈T (i,j)

e−|j−k|(X̃ij − X̃i,k)2

(9)

In (9), β and γ are positive tuning parameters and T (i, j)
is the neighborhood of the entry Xi,j with respect to the
temporal dimension. The width of the neighborhood wT is a
parameter that is fine-tuned experimentally. We minimize the
loss function with respect to training entries using the stochas-
tic gradient descent—where we use the reparameterization
technique in [25]—and we deploy the dropout regularization
technique to mitigate overfitting. After training, we obtain the
re-constructed data matrix X̃ containing predicted values for
the unknown entries.

IV. EXPERIMENTS

A. The Dataset

We rely on the City-of-Things platform [3] to obtain mea-
surements of the air quality in the Antwerp city in Belgium.
The platform makes use of 24 cars equipped with mobile
monitoring devices. We retrieve the measurements during May
2018 for two air pollutants, that is, NO2 and PM2.5.

As described in Section III-A, we first apply aggregation as
a data preprocessing step, where we choose τ = 1 hour and
r = 100 meters. It is worth mentioning that these parameters
can be made smaller, leading to near real-time inference with
a finer spatial resolution. After processing, we obtain 3630
and 4086 discrete locations for the NO2 and PM2.5 datasets,
respectively. Each location is specified by the pair of latitude
and longitude geocoordinates. Moreover, for each pollutant,
a location is associated with a measurement vector of T =
30 × 24 = 720 dimensions, which is the number of hours
during the considered period. The description of the dataset is
presented in Table II.

B. Experimental Setting

To evaluate the proposed method, we randomly divide the
known entries into training and test sets. That is, 90% of the
known entries is used for training and the rest is reserved for
testing. We use two common evaluation metrics, namely, the
root mean squared error (RMSE) and the mean absolute error
(MAE). To obtain robust results, we repeat this procedure with
5 random divisions and report average results.

To create the graph, we set the distance threshold to δ = 200
m. The parameters of the AVGAE are chosen experimentally:
we set the learning rate to α = 0.005, the KL divergence
coefficient to β = 0.1, the temporal smoothness coefficient to
γ = 0.8, the temporal neighborhood width to wT = 3 and
the dropout rate to 0.4. For all GCN layers, we use the same
dimensionality, that is, D = 512. We use 4 GCN layers for the
encoder and 1 GCN layer for the decoder. We employ ReLU
to activate the GCN layers of the encoder except for the last
GCN layer of the σ branch where the sigmoid function is used
because σ should contain strictly positive entries. Because the
output is unbounded, it is not necessary to use an activation
function for the GCN layer of the decoder.

As reference benchmarks, we have selected two well-
established kriging-based models, that is, the linear and ex-
ponential models [12]. A kriging model is applied per column
of the matrix X (corresponding to a timeslot) using the
geocoordinates information in S. Furthermore, we consider
various state-of-the-art matrix completion methods, including
KNN-based collaborative filtering [30], SVD-based matrix
completion [31], non-negative matrix factorization [32], and
extendable neural matrix completion [17]. These models per-
form completion under an assumption on X , e.g., a low-
rank prior. Furthermore, we compare against the graph-based
matrix completion method in [20]; specifically, the RGCNN
model, where the graph for the row-factor matrix is the same
as in our AVGAE model and the hyper-parameters are kept
as in [20]. For the implementation, we rely on PyKridge2

for the kriging models and Surprise3 for the reference matrix
completion techniques. The implementations of [17], [20] are
available online. All models have been trained in our dataset.

C. Result and Analysis

The results in air quality inference with the different meth-
ods are shown in Table I. Kriging-based methods provide good
estimation accuracy, particularly the exponential model. This
is because such models capture properly the spatial correlation
in the air quality measurements with respect to the geodesic
distance.

On the other hand, matrix completion models assume that
there are hidden factors characterizing rows (a.k.a., discrete
locations) and columns (a.k.a., timeslots). While this assump-
tion is appropriate for other problems such as recommendation
systems, it does not properly capture the spatio-temporal
correlation in the concentration of air pollutants.

2https://pykrige.readthedocs.io/en/latest/index.html
3https://surprise.readthedocs.io/en/stable/index.html



TABLE I
AIR QUALITY INFERENCE RESULTS.

NO2 PM2.5

MAE RMSE MAE RMSE
Kriging linear [12] 18.19 28.43 3.28 7.98

Kriging exponential [12] 15.86 25.58 2.89 7.43
KNN-based collaborative filtering [30] 20.92 32.67 3.60 7.47

SVD [31] 27.35 38.32 7.41 13.40
NMF [32] 71.67 82.34 6.75 13.09
NMC [17] 22.12 32.83 3.99 8.35

RGCNN [20] 48.6 60.11 6.2 15.4
AVGAE (Our method) 14.92 24.33 2.56 6.42

TABLE II
THE DESCRIPTION OF THE NO2 AND PM2.5 DATASET. THE UNITS FOR

NO2 AND PM2.5 ARE PARTS PER BILLION (PPB) AND µG/M3 .

NO2 PM2.5

Number of locations 3630 4086
Duration in hours 720 720
Max concentration 633.65 189.03
Min concentration 0.16 0.07

Mean concentration 85.50 9.83
% of known entries versus all 0.60 0.56

It is evident that our AVGAE model achieves the best
performance for both the RMSE and MAE metrics and for
both pollutants (NO2 and PM2.5). Conversely to kriging
models, AVGAE effectively captures both the temporal and
spatial correlations in the data, and leverages the underlying
graph structure of the street network. Furthermore, unlike the
reference matrix completion models, either graph-based or not,
AVGAE adheres to an autoencoder model, which provides
good performance in reconstruction problems.

V. CONCLUSION

Measuring the concentration of air pollutants with mo-
bile stations is a promising approach to achieve hyperlocal
air quality monitoring. The measurements collected by such
mobile stations, however, have very low temporal resolution
per location and there are still unmeasured locations. We
formulated the air quality inference problem in this setting
as a matrix completion problem on graphs, and proposed a
variational graph autoencoder model to solve it. The proposed
model was experimentally shown to effective capture the
spatio-temporal correlation in the measurements, resulting in
better air quality inference compared to various state-of-the-art
kriging and matrix completion methods.
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