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Abstract—In this paper, a full-wave boundary integral equa-
tion formulation is proposed that accurately characterizes 3-D
interconnects. By extending a recently presented framework for
the resistance and inductance calculation that employs a 3-D
differential surface admittance operator, the total impedance is
computed. The inclusion of capacitive effects is validated and
demonstrated over a broad frequency range.

Index Terms—3-D surface admittance, boundary integral equa-
tion (BIE), interconnect modeling.

I. INTRODUCTION

The proliferation of electronic devices in a wide variety
of applications has driven electronic circuits and systems to
increasing complexity and diminishing size. These evolutions
bring about a set of challenges for the design engineer,
especially in terms of signal and power integrity. To assess
and tackle these problems, electromagnetic solvers are widely
utilized. However, the models at the core of such solvers are
often based on approximations. Improved, full-wave models
are thus increasingly important to obtain reliable simulation
results.

Electromagnetic full-wave solvers come in all shapes and
sizes and can be classified in various ways. A common
distinction is made based on the discretization approach of
the method, viz., volume or surface discretization. The for-
mer category houses, among others, the well-known finite
element method (FEM). By meshing the entire 3-D volume,
this method provides a versatile tool for a wide range of
applications. However, volume discretization requires a very
large number of (small) mesh elements to properly represent
phenomena such as the skin and proximity effect in good
conductors, leading to computationally intractable systems.

By only meshing the boundary of the structure, surface
discretization schemes, such as boundary integral equation
(BIE) methods, result in considerably smaller systems at
the cost of a dense system matrix. Nevertheless, taking into
account good conductors remains a challenging feat. A popular
class of approximate techniques employs surface impedances
to model conductors [1]. Other methods actually directly solve
the full-wave inner problem in the conducting medium [2]
but suffer from numerical inaccuracies and computational
complexity due to the behavior of the Green’s function [3].
An approach that solves this troublesome problem utilizes a
differential surface admittance operator [4], constructed using
the eigenmodes of the conductor’s shape.
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In this paper, we extend our novel framework [5] employ-
ing a 3-D differential surface admittance for characterizing
interconnect structures to include capacitive effects. This is
achieved by constructing a set of matrix equations analogous
to the approach followed in [6] for the electric field integral
equation (EFIE). This way, for the first time, a complete broad-
band surface equivalent representation of good conductors is
obtained.

II. FORMULATION OF THE METHOD

Consider N disjunct volumes Vi, each filled with a (dif-
ferent) homogeneous, nonmagnetic material defined by its
wavenumber ki, embedded in a homogeneous, nonmagnetic
background medium with wavenumber k0. Applying the
equivalence principle to each Vi, we can replace the inner
material by that of the background medium by introducing an
unknown surface current density js on the boundary surface Si
which ensures that the fields outside Vi, i.e., (e0,h0), remain
unchanged. This approach gets rid of the material discontinu-
ities and results in a problem that is generally more suited
to be solved with a BIE method as the Green’s function
of the restored background medium G0 (r, r′) is easier to
construct/evaluate. In particular, we use the EFIE:

e0 = −jωa−∇φ, (1)

with a the magnetic vector potential and φ the electric scalar
potential (ejωt dependence).

Sticking to the BIE approach, we mesh all the boundary
surfaces Si that support the current densities. These surface
meshes can be triangular with the corresponding RWG basis
functions but as we focus on cuboids in the examples, we
demonstrate the approach for rectangular meshes with the
associated rooftops functions bj for every edge ej as depicted
in Fig. 1. Every rooftop is defined on two adjacent rectangles
R+

j and R−j , which together form the support Sj of bj .
Expanding e0 and js into these rooftop functions, collecting

the expansion coefficients in the vectors E and I, respectively,
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and testing (1) with the same basis functions, leads to the
matrix equation (for more details, see [5]):

GE = −jωLI− TV, (2)

with the following definitions(
G
)
ij

=

∫
Si∩Sj

bi · bj dS (3)(
L
)
ij

= µ0

∫
Si

∫
Sj

G0 (r, r′)bi · bj dS dS′ (4)

(V)i =

∫
Ri

φ

Ai
dS, (5)

with Ri being a rectangle in the mesh with area Ai. Each
element in V represents the average potential on a single
rectangle. The incidence matrix T links the edges and patches
of the mesh as follows:

(
T
)
ij

=


1, if Rj is R+

i of bi

−1, if Rj is R−i of bi

0, otherwise.
(6)

Note that the Gramian matrix G is block diagonal with every
block the Gramiam matrix of Vi. Matrix L, on the other hand,
is dense due to the global nature of the Green’s function.

At this point, we introduce the discretized differential sur-
face admittance operator [7] to obtain a relation between E

and I, viz., GI = YE, and as such eliminate E from (2):(
GY

−1
G+ jωL

)
I− TV = 0. (7)

An additional connection between I and V is now con-
structed by introducing the expression for φ, leading to V =

KQ where (Q)i is the charge per rectangle Ri and(
K
)
ij

=
1

ε0

∫
Ri

∫
Rj

G0 (r, r′)

AiAj
dS dS′. (8)

To eliminate the newly introduced Q, we invoke charge con-
servation on every rectangle. In other words, by discretizing
∇ · js + jωρs = 0 on every Ri, we get

T
T
I + jωQ = S, (9)

where S represents external current sources. Combining (7)
and (9) results in a composite matrix equation:[

GY
−1
G+ jωL −T
T

T
jωK

−1

] [
I
V

]
=

[
0
S

]
. (10)

Solving this equation, either directly or iteratively, results
in the currents on the edges of the mesh and the voltages on
the rectangles. It can be utilized to determine, amongst other
properties, the impedance response of the structure, as will be
demonstrated in Section III.

So far we have assumed that our structure consists of N
disjunct volumes (all cuboids in the presented examples). In
order to simulate relevant structures, however, the various
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Fig. 2. Copper plate (σ = 5.8 · 107 S/m) with a feed stub above a perfect
electric conducting (PEC) half-space. The thickness of the conductor is 1µm.
All other dimensions are given in µm on the diagram.

TABLE I
CAPACITANCE IN fF OF THE STRUCTURE IN FIG. 2

l [µm] w [µm] α = l/w Cpp Yuan/Trick [8] Eq. (10)

50 50 1 9.208 12.035 12.647
111.80 22.36 5 9.208 12.742 13.524
22.36 111.80 0.2 9.208 12.742 13.462

cuboids should be combined into more complex shapes. We
effectuate this connection by equating the voltage on adjacent
rectangles of two cuboids and by introducing an additional
unknown current between those two patches. In the presented
matrix formalism, this boils down to the addition of an extra
row and column per rectangle pair with two nonzero entries
each. The column contains a 1 and −1 to include the extra
current in the charge conservation equation on each rectangle
while the additional row ensures the equality of both voltages.

III. NUMERICAL EXAMPLES

A. Validation example

Consider the geometry depicted in Fig. 2. A copper plate
(σ = 5.8 · 107 S/m) of dimension l × w with a thickness of
1µm is fed by a stub of 20µm× 5µm and suspended 2.5µm
above a perfect electric conducting ground plane. Initially
we choose l = w = 50µm and use the simple parallel
plate formula (Cpp = εA/d) for both cuboids to estimate the
total capacitance of this structure (see Table I). However, this
ignores the fringing fields and will as such underestimate the
true capacitance. Various analytical expressions to estimate
this effect can be found for 2-D and 3-D capacitors. We
will employ the simple expressions for 2-D conductors with
a finite thickness as found in [8] and apply them along two
dimensions for an improved estimation. All results are col-
lected in Table I. It is apparent that the parallel plate formula
severely underestimates the total capacitance. Employing the
analytical formulas results in a 30 % increase while our full-
wave solution computes a capacitance that is 37 % larger. The
additional increase found with the integral equation solution
is due to the corners and the connection of both blocks.

According to the parallel plate formula, the capacitance
only depends on the area of the plate and not on its shape.
However, the analytical formulas contradict this and suggest
that fringing effects do depend on the exact shape. Therefore,
we investigate configurations with the same, fixed area for
various aspect ratios α = l/w. The difference between the
calculated and nominal capacitance of 9.208 fF is character-
ized by the fringing factor γ such that C = γ Cpp. For some
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Fig. 3. Fringing factor φ for various aspect ratios α = l/w.
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Fig. 4. Two copper plates of variable width w with a feeding structure. All
dimensions shown are in µm. The impedance is measured over the 1µm gap.

specific values of α the capacitances are included in Table I.
From Fig. 2 we see that γ is minimum for a square plate and
increases the more the plate is elongated in either direction.
Note as well that the capacitance for reciprocal aspect ratios is
slightly different according to the simulation results. Two such
values are included in Table I and show that for longer plates
the capacitance is marginally larger than for wider plates.
This phenomenon can be attributed to the feed stub, which
is aligned along the length of the plate, and a such introduces
a small asymmetry.

B. Application example

The second example, depicted in Fig. 4, represents a copper
parallel plate capacitor with variable width w and a 1µm
separation between the plates, fed via two traces that form
a rectangular loop. All dimensions are annotated on the figure
and are given in µm. The total impedance of this structure
is measured over the 1µm gap for a broad frequency range.
In Fig. 5 the absolute value of this impedance is shown for
various values of w (including results from CST MWS shown
with markers) and for a reference planar loop. This reference
loop has the same shape and dimensions, i.e., 60µm×40µm,
as the structure in Fig. 4 but lacks the parallel plates (for a
similar structure, see [5]). For low frequencies, we see that
the structure behaves as a capacitance which increases for
larger widths w. The response of the planar loop, on the
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Fig. 5. Absolute value of the impedance of the structure in Fig. 4 for various
values of w with CST MWS results (blue markers) and the impedance of a
reference loop (black).

other hand, indicates inductive behavior with a non-negligible
resistive component that levels out the response for the lowest
frequencies. Around 150 GHz, the structure undergoes a series
resonance, whose precise frequency shifts with w as the
capacitance changes. For even higher frequencies (around
700 GHz), the structure endures a second (parallel) resonance.
This phenomenon is caused by the capacitance of the gap
where the impedance is measured. The planar loop exhibits
the same resonance albeit at a lower frequency of 630 GHz
due the absence of the parallel plate capacitance.

IV. CONCLUSIONS

A full-wave BIE method employing a differential surface
admittance operator to extract the total impedance of 3-D
interconnects was put forward. The formulation circumvents
the cumbersome evaluation of the Green’s function in good
conductors and thus leads to accurate broadband results as
demonstrated in the presented examples.
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