
Unikernels vs Containers: An In-Depth Benchmarking Study in the
context of Microservice Applications

Tom Goethals∗, Merlijn Sebrechts∗, Ankita Atrey∗, Bruno Volckaert∗, Filip De Turck∗

∗Ghent University - imec, IDLab, Department of Information Technology
Technologiepark-Zwijnaarde 15, 9052 Gent, Belgium

Email: togoetha.goethals@UGent.be

Abstract— Unikernels are a relatively recent way to create
and quickly deploy extremely small virtual machines that do not
require as much functional and operational software overhead
as containers or virtual machines by leaving out unnecessary
parts. This paradigm aims to replace bulky virtual machines
on one hand, and to open up new classes of hardware for vir-
tualization and networking applications on the other. In recent
years, the tool chains used to create unikernels have grown from
proof of concept to platforms that can run both new and existing
software written in various programming languages. This paper
studies the performance (both execution time and memory
footprint) of unikernels versus Docker containers in the context
of REST services and heavy processing workloads, written in
Java, Go, and Python. With the results of the performance
evaluations, predictions can be made about which cases could
benefit from the use of unikernels over containers.

Index Terms— containers, unikernels, microservices, virtual-
ization, IoT

I. INTRODUCTION

Unikernels are a relatively new concept in which soft-
ware is directly integrated with the kernel it is running on.
This happens by compiling source code, along with only
the required system calls and drivers, into one executable
program using a single address space [1]. Because of this
design, unikernels can only run a single process, thus forking
does not exist. The build process results in a complete
(virtual) machine image of minimal size that only contains
and executes what it absolutely needs to. Fig. 1 illustrates
this concept by comparing virtual machines, containers and
unikernels. The figure uses a blue color to indicate hardware
or hypervisors, orange to indicate kernel space and green
to indicate user space. The reduced kernel and system
complexity can make a unikernel much faster than a regular
virtual machine [2]. Despite only being able to run a single
process, multi-threading is usually possible [3, 4]. An added
advantage of the way unikernels are built is that they are less
vulnerable to security problems, since there are typically less
attack options, except the program, the required libraries and
the kernel functions it uses. The downside is that programs
always run in kernel mode, making it easier for bugs and
hacks that do succeed to critically break the machine, while
making it harder to debug [1] because unikernels usually
do not have their own sets of debugging tools and existing
ones would have to be cross-compiled. Additionally, all the
facilities and libraries used by debugging tools would have

Fig. 1. Comparison of virtual machine, container and unikernel system
architecture

to be included, ballooning the size of the unikernel, and any
debugging tool that requires another process to run can not
work in a unikernel by design. At the time of writing, all
platforms generate unikernels as virtual machine images, but
work is underway to run them as bare metal images and
under Docker [5]. By eliminating the need for a classical
operating system, the image size difference with regular vir-
tual machines can be in the order of gigabytes. Additionally,
unikernels have a much shorter boot time than full virtual
machines, in the order of hundreds of milliseconds compared
to tens of seconds, and consume much less memory [6, 7].
The same claims have been made for replacing containers
with unikernels, but in this case the advantage in terms of
boot time seems to be much smaller [7], except for highly
specialized unikernels built around a single language [6].

A. Applications of unikernels

Many proof-of-concept unikernel versions of all sorts of
software exist, including database engines, REST services
and a RAMP stack (Rumprun, Apache, MySQL, PHP) [8].
A lot of IoT services are composed of different pieces of
software, but these can easily be broken up into a number of
individual single process components ready to be converted
into a unikernel. Because unikernel images are far smaller
than regular virtual machines, a lot of space on cloud
infrastructure could be saved by using them. Furthermore,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/188648405?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


because unikernels are smaller than virtual machines and
boot faster, microservice deployment strategies could use
unikernels for more flexible and dynamic deployment [9]. In
addition to replacing existing virtual machines and contain-
ers, unikernels can also open up new classes of hardware for
cloud use that are otherwise unfit to run an entire operating
system [9]. This could happen by either running unikernels
under a type I hypervisor or by (eventually) running them
bare metal. The added advantage of using a hypervisor and
unikernels over simply running embedded software (as is
now usually the case) is that any unikernel can be easily
deployed to any machine in the cloud running a hypervisor
and function as a part of a uniform environment. Embedded
software on the other hand often requires local access to
update or is incompatible with cloud management software.

Broadly speaking, there are two approaches to building
unikernels:

• Designed from the ground up around a single pro-
gramming language, providing a custom (not POSIX
compatible) API. At compile time, all the libraries and
system calls used by the program are compiled, together
with the program itself, creating a single kernel that is
started on boot. This type of unikernel platform is gen-
erally incompatible with existing source code, requiring
a full rewrite using the platform’s API. Considering
the still-evolving nature of existing platforms of this
type, it also often means dropping features that are
not yet implementable. On the flip side, this type of
unikernel results in superior performance and much
smaller images than the other type [2, 11]. IncludeOS
and MirageOS are good examples of this approach
[16, 17].

• POSIX compatible operating systems that can run ex-
isting software by cross-compiling it using existing
compilers. These platforms generally have custom ker-
nel implementations and drivers to make them faster,
sometimes with options for paravirtualization. Uniker-
nels built this way have larger kernels and resource
requirements, but make up for it in ease of use. This
type is very useful for converting software that runs on
existing virtual machines and containers into unikernels,
since the software only needs to be recompiled, not
rewritten. Examples include OSv and rumprun [18, 19].

Since the goal of this paper is to compare unikernels
and containers as accurately as possible using the same
programming languages, the rest of the text will focus on the
performance of the second type of unikernels. The reasons
for this are that unikernels of the first type, being POSIX
incompatible, simply do not have the facilities and API’s to
run Go, Java or Python.

B. Unikernels vs containers

Since unikernels contain everything from a kernel to
user software, they have some important differences from
containers:

• A hypervisor is required to run a unikernel, but this also

means it can be run on a type I hypervisor, removing
the need for a bulky OS.

• A unikernel’s built-in kernel, no matter how small, will
increase memory use compared to running a program
in a container.

• Since a unikernel does not require context switches
from user space to kernel space and has simpler device
drivers, it should have a significant speed advantage
over a container, because a container runs on a much
more complex host kernel. Of course, since the kernel
of a container can run on bare metal and a unikernel has
to be run on a hypervisor, the actual performance will
depend greatly on the chosen hypervisor. The results
from the tests in this paper indicate that unikernels
running on type I hypervisors can in fact give much
better performance than containers.

• Unikernels are single process by design, so anything
requiring multiple parallel processes must be broken up
into separate unikernels. Additionally, breaking software
up into separate unikernels will induce at least some
communication overhead between the different parts.

II. RELATED WORK

Many aspects of unikernels have been studied in the past,
but due to the changing nature of unikernel platforms, some
of the results are likely outdated at the time of writing. Boot
time comparisons between virtual machines and unikernels
have been made [7], in addition to studies on the boot
times of unikernels using a single unikernel platform, often
comparing to Linux or Linux virtual machines [6, 11, 10].
Another study used a DNS server and an HTTP server,
implemented as unikernels on different platforms, to compare
the networking performance of unikernels versus Linux [2].
Despite interesting results, different programming languages
had to be used per unikernel platform, so the results depend
somewhat on the specific software implementations these
languages allowed. An attempt has been made to employ
unikernels in an edge offloading architecture [9], allowing for
a more dynamic deployment of IoT services, but that work
was hampered by a bug that occurred in the chosen unikernel
platform at the time. Other studies into this area have been
done [11, 12]. The security advantages of unikernels over
containers and regular virtual machines have been exten-
sively studied [13, 14, 15]. To the best of our knowledge,
a direct comparison of containers versus unikernels using
specific software written in the same programming languages
has not been done before. Therefore, the rest of this paper
will focus only on the performance of software written in
Java, Go, and Python, more specifically for microservice
applications, in terms of unikernels versus containers.

III. BENCHMARKING SETUP

This section discusses the potential platforms for the tests,
as well as the physical test setup. The tests and measuring
methods used to obtain the results are also explained. Several
platforms were examined for their ability to create Go, Java
and Python unikernels.



A. Candidate platforms

OSv (0.51) is a unikernel platform that works similar to
Docker. At the basis of OSv unikernels lies a very small core
to which modules and files can be added through a layered
build process. Each layer defines a base image to start from,
a number of files to add and optional build and command line
commands. Using this method, base images were created for
Java 1.8, Python 2.7 and Go 1.10, which were then used to
create the unikernels for the tests. Running newer versions of
both Java (1.9, 1.10) and Python (3.6) was attempted. While
higher Java versions worked, a minimal JRE would not start
on OSv due to not being compiled correctly. Java 1.8 was
deemed sufficient for the purposes of the tests. In the case
of Python 3.6, many system calls were required that are not
yet implemented in OSv, so 2.7 had to be used. Modules to
run Java 1.8 and Python 2.7 (some modification and building
required) are included in the OSv source, while Go code was
compiled as a shared library and run indirectly via a wrapper
supplied by OSv. To confirm that this wrapper does not have
any impact on performance, Go was also compiled as a
position independent executable, which can run directly on
OSv. A position independent executable is an executable that
can execute properly no matter what its absolute address in
the address space is [21]. Note that OSv requires all software
running on it to be built as position independent by design
[22], but in the cases of Java and Python this is already
done by cross-compiling the virtual machine and interpreter,
respectively. For Go, compiling as a shared library has the
same result, except that it still needs to be launched by the
aforementioned wrapper. The position independent version
of Go is included in the results as Go(pie).

Rumprun (unversioned, Apr 8, 2018 commit) was also
considered as a test candidate. Contrary to OSv, rumprun
compiles the source code and all required system libraries
and drivers in one step, into a single kernel that is loaded
during boot. While this allows for more optimizations than
OSv’s approach, it also results in a slower and bulkier build
process. Unikernels for Python and Go were successfully
created using rumprun, but during testing these unikernels
never managed to complete more than a few thousand
requests before running into a socket allocation bug. This
problem was partially fixed under KVM (Kernel-based Vir-
tual Machine [20]) by increasing memory, which caused it
to happen after a few million requests, but could not be
fixed on the test setup. Memory footprint and image sizes
of rumprun unikernels were more or less the same as those
of OSv unikernels, but the results are not included because
they are incomplete and thus unreliable.

UniK [23] (unversioned, Nov 15 2016 release) is a plat-
form that combines several other platforms (including OSv
and rumprun) into one tool chain. While this is certainly an
interesting development, UniK is less flexible than OSv and
rumprun in terms of what libraries and packages are included
in any given unikernel (for example, the Java version cannot
be changed), and allows less control over how the images
are generated and deployed. Despite both rumprun and OSv

supporting static IP addresses, no method was found to
assign them to unikernels generated with UniK, which was
required for the test setup. Additionally, unikernels seem to
be (in part) dependent on UniK’s daemon to boot, which
caused them to hang on XenServer even before running into
IP assignment problems. Unikernels for Python and Go were
tested on localhost using VirtualBox, but being based on
rumprun, they ran into the same problems and thus are not
included in the results.

Although several platforms were examined, only OSv was
used for testing because it proved to be the most stable op-
tion. Rumprun had some quirks that made testing unreliable
and UniK, being partially based on rumprun, showed the
same symptoms. Additionally, since the more stable parts of
UniK rely on OSv anyway, the latter was chosen as a testing
platform to reduce the complexity of the build process.

B. Test machine

All tests were run on an Intel Core i5-2300 processor
with virtualization extensions enabled. The machine had a
total of 4GB ram and a 160GB Western Digital hard drive.
All virtual machines and containers were limited to 256MB
RAM, either by configuration or by using Docker’s –memory
flag. In single threaded tests, both virtual machines and
containers were limited to one CPU core and test programs
were written to reflect this. For multi threaded tests, all
instances were given four cores and the program code was
changed to use exactly four threads wherever possible and
govern itself where exact numbers could not be forced. The
test machine was only used as a server, all client activity
was run on a separate machine connected directly to the
test machine to avoid result collection from interfering with
performance. Only one container or virtual machine was
active at any given time during the tests.

Containers were run on Ubuntu 18.04 using Docker 18.03.
Container web services were made available by forwarding
their ports to the host using docker’s -p option (Fig. 3).
Unikernels were run on XenServer 7.5, a type I hypervisor
[24]. The virtual machines’ network interfaces were bridged
to the host interface for network access (Fig. 2).

The code for all tests is made available for use and review
on GitHub: https://bit.ly/2PTXWZr.

C. REST service stress test

For Go, Java and Python, a simple REST service was
written that contains a static array of to-do items (description,
time due and finished/not finished). The service supports the
following GET methods:

• /todos: list all items
• /todos/{id}: get the to-do with the specified id
While this is a very simple service, it should be a good

indicator of how fast a container or unikernel can process
REST HTTP requests and a small amount of code. Apache
JMeter [26] was used to run 40 concurrent threads, each
firing 50000 requests at the test machine to simulate a good
sized concurrent demand. Every request called the /todos
method, fetching the entire array as JSON.



Fig. 2. XenServer test setup for unikernels

Fig. 3. Docker test setup for containers

The Go web service was created with the standard net/http
package in combination with the Gorilla Toolkit mux (v1.6.2)
[27]. For the Python version, Flask and Flask-Restful [28]
were used. In the case of Java, Vert.X 3.5.1 [29] was used.
Vert.x is an event-driven, non-blocking toolkit for developing
reactive applications [30] in which a verticle is an atomic
piece of deployable code. For this test, a verticle was created
that listens to HTTP traffic on a specific port and handles
incoming messages like REST service requests.

To enable multi-threading, the verticle was instantiated
four times under Java, while Python was given free reign by
simply enabling multi-threading for Flask. Go automatically
creates a number of threads fitting its hardware environment,
so no code changes were necessary [31].

D. Heavy workload test

For the load test, a simple bubble sort algorithm was
implemented as identically as possible for each of the tested
programming languages. To focus on processing power and
memory load instead of networking overhead, the collection
to be sorted was made as big as possible without making
testing impractical. The array to be sorted is simply a
descending array of numbers (x 0), where x was chosen

Go Java PythonGo(pie)

5,000

10,000

15,000

20,000

25,000

R
eq

ue
st

s/
s

Unikernel Container

Fig. 4. REST stress test performance evaluation of unikernels versus
containers

at 20000. Each test was repeated 20 times to get an accurate
average.

This test was built as a web service, so the same frame-
works were used as in the REST service stress test. However,
these frameworks matter little in terms of performance since
the algorithm takes most of the processing time by far.

IV. RESULTS

In this section the results of the tests are discussed. In
addition to raw throughput capacity of the machines, memory
footprint and response latency will also be reviewed. Re-
sponse latency gives an indication of how stable a particular
unikernel or container is, while memory consumption is
useful in determining if unikernels can be deployed on the
same scale as containers.

A. Single-threaded results

Fig. 4 shows the results for the REST stress test using a
single thread to do all processing (higher is better). The Go
service is about 38% faster when running as a unikernel than
as a container, while the Java version is about 16% faster as
a unikernel. The results confirm the claims that unikernels’
reduced kernel and complexity makes them a fast alternative
to containers, at least when running on a type I hypervisor.

The equality of Go and Go(pie) performance is clearly
visible here, confirming that OSvs Go wrapper has no
negative effects.

For Python, being an interpreted language rather than a
compiled one and thus slower, the result is a bit harder to
interpret from the figure. However, the effect from running it
in a unikernel seems to be the same, with a performance of
395±1 requests per second for the unikernel versus 351±1
requests per second for the container. This 15% improvement
from running in a unikernel is similar to the improvement
for Java, but much lower than for Go.



Go Java PythonGo(pie)

102

103

104

105

E
xe

cu
tio

n
tim

e
(m

s,
lo

g
sc

al
e)

Unikernel Container

Fig. 5. Bubble sort execution time of unikernels versus containers (log
scale, lower is better)

Fig. 5 contains the results for the heavy workload test
(lower is better). Note that a logarithmic scale was used to
accommodate Python’s performance. The execution times for
the Go and Java unikernels seem to be on par with those of
their container counterparts. The Go unikernel is about 3%
slower (0.5% for the position independent version), while the
Java unikernel is about 1% faster. Again, the chart shows
that OSv’s Go wrapper is doing a good job of avoiding
performance penalties.

Python is having some trouble, the execution time of the
unikernel is twice as long as that of the container version.
This could be because Python uses a disproportionate amount
of operations that run slower in a virtual environment.
Existing research shows that array and variable access, the
building blocks of bubble sort, take up by far the bulk of
Python’s interpreting overhead [32]. It stands to reason that
either or both of these types of instructions run slowly on
either XenServer or OSv, and Java and Go may avoid using
them so much.

B. Multi-threaded results

Unikernels can only run a single process, but since they
do support multi-threading this aspect merits some attention.
Generally speaking, REST services scale almost linearly with
the number of cores available to them. Fig. 6 (higher is
better) shows good performance scaling for Go and Java
containers, but unikernel performance has dropped precip-
itously. Despite all unikernels performing badly in this case,
there are some notable distinctions which are more obvious
when compared with the single threaded results.

When directly comparing the multi-threaded and single-
threaded results (Fig. 7), only Java shows a performance in-
crease with an increasing number of cores. Even in that case,
the only return for quadrupling processing power is 60%
more requests per second. Python is relatively unaffected

Go Java PythonGo(pie)
0

20,000

40,000

60,000

R
eq

ue
st

s/
s

Unikernel Container

Fig. 6. REST service performance of multi-threaded unikernels versus
multi-threaded containers

Go Java PythonGo(pie)
0

50

100

150
R

el
at

iv
e

pe
rf

or
m

an
ce

(%
)

Fig. 7. REST service performance of multi-threaded unikernels relative to
single-threaded unikernels

by adding more cores, with multi-threaded performance
dipping 3% below single-threaded performance. Go seems to
actually suffer a great deal from expanding the thread pool,
only managing 75% of its single core performance. It was
verified that this is not an effect of Go simply starting too
many threads and drowning the scheduler, since Go fetches
hardware information and starts as many threads as there
are cores [31]. The possibility of XenServer causing these
scaling issues was considered, but related work has shown
that this is not the case [33], at least in instances where the
number of physical cores equals the number of virtual cores
and the number of threads is not (much) higher than either,
which is true here.

It should be noted that in all cases the combined CPU
load of all cores was between 40 and 50% during testing,
indicating that a lot of cycles were being wasted on simply



Go(UK) Go(C) Java(UK) Java(C)

0

20

40

60
R

es
po

ns
e

tim
e

(m
s)

Fig. 8. REST service response time overview for unikernels and containers

getting threads to run at all, and not enough on actually
running them. This shows that while OSv obviously has very
good single threaded performance, any applications using
multiple worker threads should probably be split up until
threading performance has been stabilized.

C. Request latency

Part of the requirements for the smooth operation of
microservices is having a predictable, stable and preferably
low response time. In this section, the results from the stress
tests are examined in a different way to see if this is the case
for unikernels. Values over the 98th percentile and below
the 2nd percentile have been removed to avoid noise from
distorting the scope of the charts. All statistics are based on
one million requests to their respective web service.

Fig. 8 shows the response times for both Go and Java. A
(UK) suffix indicates response times for a unikernel while
(C) is the container version. While the Go unikernel seems to
have a slightly higher median response time than its container
counterpart, the maximum response time of the container
version is almost 10 times higher. Taking the performance
results from the previous sections into account, its obvious
that these numbers are not a problem for unikernel perfor-
mance. Java, for its part, performs equally well in both cases.

The results for Python were not included in the chart
because their range would make the other results hard to
interpret. However, the Python unikernel seems to perform
considerably better than the container version, with a median
response time of 100ms versus 111ms, respectively. Addi-
tionally, Python’s maximum response times are much better
when running as a unikernel with 105ms versus 140ms for
the container.

The response times for multi-threaded applications show
rather interesting numbers that give some food for thought
for the bad scaling performance. Fig. 9 shows the response
latencies for both single- and multi-threaded Go unikernels.
The response times have been gathered in categories 50ms
wide, with the only exceptions being the 0-5ms and >450ms

5 50 100 150 200 250 300 350 400>450
102

103

104

105

106

Response time (ms)

R
es

po
ns

es

Multithread Single thread

Fig. 9. Number of REST service responses per response time category for
single- versus multi-threaded Go unikernels

categories. In the single threaded case, the number of re-
sponses falls off exponentially with response time, with the
maximum response time being 63ms. In the multi-threaded
case however, the curve flattens around 100ms and about
0.6% of the requests take a much longer time to complete.
0.12% of the requests even take between 450 and 1000ms
to complete. Despite the multi-threaded program actually
handling about 99% of all requests slightly faster than the
single threaded program, the fact that a small percentage of
all requests is held up for a long time makes it slower overall.
The only explanation for this is that while the scheduler
handles the large majority of threads quickly and correctly,
some thread switches are made to wait an exceptionally long
time before being able to run their thread and complete their
workload.

D. Memory footprint

Using the REST service images from the stress test,
a crude comparison can be made between the memory
consumption of unikernels versus containers for the different
languages.

Container memory footprint was queried directly from
Docker. For unikernels, memory footprint was measured by
taking the number of actually allocated pages as reported
by VirtualBox for each machine and multiplying it by page
size. VirtualBox 5.2 was used for this purpose instead of the
already deployed unikernels on XenServer because it was
easier to measure memory footprint at any given time using
VirtualBox.

Memory footprint was only examined for the single
threaded version of unikernels and containers. Measurements
were taken after starting an instance and executing a sin-
gle request to make sure all libraries and variables were
initialized. Note that after thousands of requests, memory
footprint could be higher than the numbers presented, but



Go Java Python
0

50

100

150

200
M

em
or

y
co

ns
um

pt
io

n
(M

B
)

Unikernel Container

Fig. 10. Container versus unikernel instance memory consumption

would eventually go down again after garbage collection.
Fig. 10 shows that Java unikernels use over twice as much

memory than containers, Python unikernels use up to 6 times
more memory, and Go unikernels require as much as 30
times more memory. This makes sense, since containers
run on top of a host kernel and only need to load their
programs into memory. Unikernels, on the other hand, have
some memory overhead because of their built-in kernel, no
matter how small it may be. The huge difference for Go
can be explained by the fact that the program requires no
interpreter or virtual machine like Python and Java programs
do, so the container version has a minimal memory footprint.
This makes the unikernel version, which only requires 70MB
more memory in absolute numbers, look comparably huge.

In absolute terms, the extra memory required to run a
program as a unikernel is 70MB to 130MB, depending
on programming language. One redeeming quality of
unikernels is the fact that they can run on a type I
hypervisor, eliminating the need for an operating system
that could potentially consume a large amount of memory
by itself. This means that unikernels are a viable alternative
to containers where small to medium numbers of unikernels
are concerned, simplistically represented by:

HV + UK ×MPK < OS + C ×MPC

Where HV is the memory requirement of the hypervisor,
OS is the memory requirement of the operating system to be
replaced, UK and C represent the number of unikernels and
containers respectively and MPK and MPC represent mem-
ory requirement per unikernel and container, respectively.
Note that the number of unikernels does not always equal
the number of containers, since one container may have to
be split up into several unikernels due to threading or multi-
processing concerns.

E. Stability issues

As discussed before, unikernels under UniK and rumprun
had serious stability problems, despite being otherwise fully
functional. OSv on the other hand is a stable platform, but
there were some quirks:

• When compiling Go as PIE executables, REST services
crashed once every 2 to 10 million requests. This was
not a huge problem for testing since it was done in
batches, but it is something to look out for when
planning to use unikernels in any type of production
environment. Luckily, the tests have also shown that
OSv’s wrapper for Go, which is stable, has nearly
identical performance, so it would be preferable to run
Go that way.

• All OSv unikernels tend to crash every few million
requests once they have been multi-core enabled. They
did not so much cause errors, but simply hung or
stopped without further explanation. Since multi-core
performance under OSv proved to be worse than simply
instancing several unikernels, this is not much of an
issue either.

V. CONCLUSION

Out of the considered platforms, OSv is the only stable
one for the tested scenarios at the moment of writing. It
supports (among others) C++, Go, Python and Java, albeit
with some small changes to OSv’s source code in the case of
Python. Other platforms were either unstable during testing
and/or were less user friendly, either because it was hard to
create usable images in the required format(s) or because
the images refused to boot correctly without certain other
software in place (UniK daemon). The rest of this section
only deals with the results of OSv, so the conclusions may
be different for other platforms.

Unikernels exceed containers in terms of pure speed
and response time, firmly surpassing them for single core
performance on a type I hypervisor. In our evaluations,
Java and Python unikernels performed 16% better than their
respective containers for a REST service stress test, and
Go even performed 38% better. When the focus shifted to
heavy workloads, all unikernels kept an equal pace with
their container counterparts, apart from the Python unikernel
which only reached 50% of the container’s performance.
Unikernel performance for the REST service stress test can
be explained by the fact that this test relied heavily on kernel
functions and thus context switches from user space to kernel
space. These do not exist in a unikernel, giving unikernels a
large advantage over containers in situations where context
switches happen very often (REST service), but breaking
even in situations where they almost never occur (heavy
workload). Another contributing factor is the heavier use of
device drivers in the REST service stress test, which are less
complex in unikernels.

Unikernels are far from ready for multi-threading, but
that should not be a problem for cases where software can
either be split up or multiple instances can be deployed



(REST services, modular software) or where multi-threading
is not really required (embedded software). In these cases
converting software to unikernels could still be a major
advantage.

Concerning memory, unikernels consume a good deal
more than containers. This makes sense, since unikernels
have the extra overhead of a kernel, while containers use the
kernel of a host OS. However, since unikernels do not need
a full OS to run on in the first place, memory consumption
of a hypervisor with a small number of unikernels may be
less than that of a large OS running a few containers. The
result is that memory consumption is an important factor to
consider when deciding whether to use unikernels. Adding
more instances will give better performance than adding the
same CPU power to one or more containers running the same
software, but the trade-off is that the unikernels will use more
memory.

In terms of unikernel performance of specific program-
ming languages, Java and Go are the clear winners. Java
gives by far the best performance of all, while Go uses
the least amount of memory. For new software, this can be
useful information when choosing a language for unikernel
development. For existing Java or Go software being ported
to unikernels, switching to the other language might not be
worth the effort required to convert it, unless either speed or
memory footprint are absolutely critical.

VI. ACKNOWLEDGMENT

The research in this paper has been funded by Vlaio by
means of the FLEXNET research project.

REFERENCES

[1] R. Pavlicek, Unikernels, https://www.safaribooksonline.com/library/
view/unikernels/9781492042815/

[2] Ian Briggs, Matt Day, Yuankai Guo, Peter Marheine,
Eric Eide, A Performance Evaluation of Unikernels,
http://media.taricorp.net/performance-evaluation-unikernels.pdf

[3] Sebastian Wicki, The Rumprun Unikernel, pkgsrcCon 2016
https://www.pkgsrc.org/pkgsrcCon/2016/rumprun.pdf

[4] Avi Kivity, OSv - Optimizing the Operating System for Virtual
Machines, USENIX ATC’14 Proceedings of the 2014 USENIX con-
ference on USENIX Annual Technical Conference Pages 61-72

[5] Mano Marks, Unikernel Systems Joins Docker,
https://blog.docker.com/2016/01/unikernel/

[6] Dan Williams, Ricardo Koller, Unikernel Monitors: Extending Mini-
malism Outside of the Bo x, 8th USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud 16)

[7] Bruno Xavier, Tiago Ferreto, Luis Carlos Jersak, Time provisioning
evaluation of KVM, Docker and Unikernels, 2016 16th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing
(CCGrid)

[8] M. Lucina, Deploying real-world software today as unikernels on Xen
with Rumprun, https://lucina.net/files/rumprun-xpds2015.pdf

[9] Vittorio Cozzolino, Aaron Yi, Ding Jrg Ott, FADES: Fine-Grained
Edge Offloading with Unikernels, HotConNet ’17 Proceedings of the
Workshop on Hot Topics in Container Networking and Networked
Systems

[10] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David
Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand,
Jon Crowcroft, Unikernels: library operating systems for the cloud,
ASPLOS ’13 Proceedings of the eighteenth international conference
on Architectural support for programming languages and operating
systems, Pages 461-472

[11] Anil Madhavapeddy, Thomas Leonard, Magnus Skjegstad, Thomas
Gazagnaire, David Sheets, Dave Scott, Richard Mortier, Amir
Chaudhry, Balraj Singh, Jon Ludlam, Jon Crowcroft and Ian Leslie,
Jitsu: Just-In-Time Summoning of Unikernels, Proceedings of the 12th
USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 15)

[12] Vittorio Cozzolino, Aaron Yi Ding, Jorg Ott, Dirk Kutscher, Enabling
Fine-Grained Edge Offloading for IoT, SIGCOMM Posters and Demos
’17 Proceedings of the SIGCOMM Posters and Demos, Pages 124-126

[13] Bob Duncan, Alfred Bratterud, Andreas Happe, Enhancing cloud se-
curity and privacy: Time for a new approach?, 2016 Sixth International
Conference on Innovative Computing Technology (INTECH)

[14] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon
Kuenzer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, Felipe Huici,
My VM is Lighter (and Safer) than your Container, SOSP ’17
Proceedings of the 26th Symposium on Operating Systems Principles
Pages 218-233

[15] Alfred Bratterud, Andreas Happe, Robert Anderson Keith Duncan,
Enhancing Cloud Security and Privacy: The Unikernel Solution,
Eighth International Conference on Cloud Computing, GRIDs, and
Virtualization, 19 February 2017 - 23 February 2017, Athens, Greece

[16] IncludeOS, includeOS, http://www.includeos.org/
[17] Xen and Linux Foundation, MirageOS, https://mirage.io/
[18] Cloudius Systems, OSv, https://github.com/cloudius-systems/osv
[19] Rumprun, https://github.com/rumpkernel/rumprun
[20] Kernel-based Virtual Machine, https://www.linux-

kvm.org/page/Main Page
[21] Introduction to the Application Loader, ftp://bitsavers.informatik.uni-

stuttgart.de/pdf/intel/iRMX/iRMX 86 Rev 6 Mar 1984/146196 Burst/
iRMX 86 Application Loader Reference Manual.pdf 1-3

[22] Nadav Har’El, Running compiled code on OSv,
https://github.com/cloudius-systems/osv/wiki/Running-compiled-
code-on-OSv

[23] Solo.io, UniK, https://github.com/solo-io/unik
[24] XenServer - open source virtualization, https://xenserver.org/
[25] Unikernel test code repository, https://github.com/togoetha/unikernels-

v-containers
[26] Apache JMeter, https://jmeter.apache.org/
[27] Gorilla web toolkit: mux, http://www.gorillatoolkit.org/pkg/mux
[28] Flask RESTful, https://flask-restful.readthedocs.io/en/latest/
[29] Eclipse Vert.x, https://vertx.io/
[30] Hseyin Akdoan, An introduction to Vert.x,

https://dzone.com/articles/introduce-to-eclicpse-vertx
[31] Go 1.5 Release Notes, https://golang.org/doc/go1.5
[32] Gerg Barany, Python Interpreter Performance Deconstructed, Dyla’14

Proceedings of the Workshop on Dynamic Languages and Applications
Pages 1-9

[33] Cong Xu, Yuebin Bai, Cheng Luo, Performance Evaluation of Par-
allel Programming in Virtual Machine Environment, 2009 Sixth IFIP
International Conference on Network and Parallel Computing


