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High-throughput sequencing of full-length transcripts using long reads has paved the way for the discovery of thousands of

novel transcripts, even in well-annotated mammalian species. The advances in sequencing technology have created a need

for studies and tools that can characterize these novel variants. Here, we present SQANTI, an automated pipeline for the

classification of long-read transcripts that can assess the quality of data and the preprocessing pipeline using 47 unique de-

scriptors. We apply SQANTI to a neuronal mouse transcriptome using Pacific Biosciences (PacBio) long reads and illustrate

how the tool is effective in characterizing and describing the composition of the full-length transcriptome. We perform ex-

tensive evaluation of ToFU PacBio transcripts by PCR to reveal that an important number of the novel transcripts are tech-

nical artifacts of the sequencing approach and that SQANTI quality descriptors can be used to engineer a filtering strategy

to remove them.Most novel transcripts in this curated transcriptome are novel combinations of existing splice sites, resulting

more frequently in novel ORFs than novel UTRs, and are enriched in both general metabolic and neural-specific functions.

We show that these new transcripts have a major impact in the correct quantification of transcript levels by state-of-the-art

short-read-based quantification algorithms. By comparing our iso-transcriptome with public proteomics databases, we find

that alternative isoforms are elusive to proteogenomics detection. SQANTI allows the user to maximize the analytical out-

come of long-read technologies by providing the tools to deliver quality-evaluated and curated full-length transcriptomes.

[Supplemental material is available for this article.]

Alternative splicing (AS) and alternative polyadenylation (APA) are
among the most fascinating and challenging aspects of eukaryotic
transcriptomes. AS and APA are considered to be the major mech-
anisms of generating transcriptome complexity and thus the ex-
pansion of proteome diversity of higher organisms (Lu et al.
2010;Mudgeet al. 2011; Frankish et al. 2012). Thesepost-transcrip-
tional mechanisms have been reported to play critical roles in dif-
ferentiation (Wang et al. 2009; Martinez and Lynch 2013; Raj and
Blencowe 2015; Teichroeb et al. 2016), speciation (McGuire et al.
2008; Mudge et al. 2011), and multiple human diseases such as
cancer (Ladomery 2013; Liu and Cheng 2013; Chen and Weiss
2014), diabetes (Eizirik et al. 2012; Tang et al. 2015), and neurolog-

ical disorders (Yang et al. 1998; D’Souza et al. 1999; Kanadia et al.
2003; Ladd 2013; Lee et al. 2016) and therefore may play a funda-
mental role in the establishment of organismal complexity (Black
2003; Mudge et al. 2011; La Cognata et al. 2014). The genome-
wide analysis of AS has been done primarily using exon microar-
rays first and, more recently, short-read RNA-seq. These twometh-
ods are effective for the identification of AS events such as exon
skipping or intron retention andhave established the involvement
of AS in many biological processes. However, both technologies
have serious limitations for the reconstruction of the actual ex-
pressed transcripts, as short reads break the continuity of the tran-
script sequences and fail to resolve assembly ambiguities at
complex loci (Steijger et al. 2013; Tilgner et al. 2014). This impairs
any studies that would catalog specific transcriptomes, investigate

11Joint first authorship.
Corresponding author: aconesa@ufl.edu, aconesa@cipf.es
Article published online before print. Article, supplemental material, and publi-
cation date are at http://www.genome.org/cgi/doi/10.1101/gr.222976.117.
Freely available online through the Genome Research Open Access option.

© 2018 Tardaguila et al. This article, published inGenome Research, is available
under a Creative Commons License (Attribution 4.0 International), as described
at http://creativecommons.org/licenses/by/4.0/.

Method

396 Genome Research 28:396–411 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/18; www.genome.org
www.genome.org

mailto:aconesa@ufl.edu
mailto:aconesa@ufl.edu
mailto:aconesa@cipf.es
mailto:aconesa@cipf.es
http://www.genome.org/cgi/doi/10.1101/gr.222976.117
http://www.genome.org/cgi/doi/10.1101/gr.222976.117
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml


cis-acting mechanisms within transcripts, infer open reading
frames, or understand functional aspects of isoform diversity.

There has been increasing interest in the application of sin-
gle-molecule sequencing to obtain full-length transcripts in ani-
mals and plants, as long reads allow direct sequencing and
eliminate the need for short-read assembly and transcript recon-
struction. Currently, there are three different long-read transcrip-
tome sequencing platforms: Pacific Biosciences (PacBio) (Sharon
et al. 2013; Tilgner et al. 2014; Li et al. 2016), Moleculo (Tilgner
et al. 2015), and Nanopore (Oikonomopoulos et al. 2016). Here,
we have used the popular PacBio Iso-Seq protocol, which consists
of full-length cDNA enrichment using the Clontech SMARTer kit
followed by building single-molecule SMRTbell libraries with spe-
cific PacBio linkers that are subsequently sequenced. PacBio reads
are typically longer than the full-length cDNA sequence, which
means that each molecule can go through several passes of se-
quencing. The consensus of these passes is called a Read of Insert
(RoI), which is the current standard PacBio output. RoIs where
both cDNA primers and the poly(A) can be identified are called
Full-length (FL) reads, while those that miss any of these tags are
deemed non-Full-length (non-FL) reads. PacBio sequencing suf-
fers, however, from a relatively high raw error rate (∼15%)
(Carneiro et al. 2012) and a lower throughput compared to
Illumina. There are several describedmethods for PacBio error cor-
rection and transcript identification. Hybrid error correction
methods such as LoRDEC (Salmela and Rivals 2014) and IDP (Au
et al. 2013) were the first to appear. While LoRDEC corrects long
sequences by traversing paths in de Bruijn graphs representing
short-reads, IDP calls transcripts by using a combination of direct
detection and prediction with short-reads that involves long-
read correction by the computationally intensive LSC algorithm
and genome alignment (Au et al. 2012). The TAPIS pipeline does
not need Illumina reads but performs several rounds of mapping
and correction of RoIs on the reference genome, with apparently
similar error correction efficiency as a short-read-based method
(Abdel-Ghany et al. 2016). Finally, the ToFU PacBio pipeline
(Gordon et al. 2015) obtains auto-clusters of FL and non-FL RoIs
and then computes a consensus transcript sequence where errors
are significantly reduced. In all cases, comparison to the reference
gene models serves to call known and novel transcripts.

All PacBio transcriptome papers discover thousands of new
transcripts, propose classification schemes by comparing to a refer-
ence annotation, and find that the majority of novel transcripts
appear in known genes (Au et al. 2013; Sharon et al. 2013;
Tilgner et al. 2015; Abdel-Ghany et al. 2016; Wang et al. 2016).
However, details on the number, quality, and characteristics of
these new calls can vary greatly. Sequencing the transcriptome
of hESCs by long reads followed by IDP analysis identified over
2000 novel transcripts (∼30%) and discovered new genes that
were proven to be functional (Au et al. 2013). Tilgner et al.
(2015) found about 12,000 novel transcripts fully supported by
previous splice site annotations or Illumina reads using PacBio se-
quencing of the GM12878 cell line but did not study novel junc-
tions in detail. For the sorghum transcriptome, 11,342 (40%)
novel transcripts were found by PacBio from a total of nearly 1mil-
lion reads using a filter on splice junction quality (SpliceGrapher)
(Rogers et al. 2012), and 6/6 random transcripts were confirmed by
PCR. Finally, a maize multitissue transcriptome analysis identified
over 111,151 transcripts from3.7million RoIs,most of themnovel
and tissue-specific (Wang et al. 2016). The authors found that be-
tween 10% and 20% of the PacBio junctions lacked coverage by
Illumina reads and that <1% were noncanonical (Wang et al.

2016), but they did not report on the number of affected tran-
scripts or carry out any validation. In all these cases, an in-depth
characterization of the novel transcripts and junctions that would
reveal potential biases and justify analysis choices wasmissing.We
believe that such analysis is important, as a great variety of FL
andnon-FL RoIs typicallymap at each genome locus, and different
processing pipelines can result in significantly different final
transcript calls. As an example, sequencing the mouse neural tran-
scriptome with PacBio, we obtained ∼90,000, 13,000, and 16,000
different transcripts when applying the TAPIS, IDP, or ToFU pipe-
lines, respectively. Implementing a comprehensive, quality-aware
analysis of single-molecule sequencing is fundamental at a time
when long-read methods are becoming more popular and impor-
tant conclusions on transcriptome diversity will be drawn from
these data.

In this work, we present SQANTI (Structural and Quality
Annotation of Novel Transcript Isoforms), a pipeline for the anal-
ysis of long-read transcriptomics data that creates a wide range of
summary graphs to aid in the interpretation of the sequencing out-
put, defines up to 47 different descriptors of transcript and junc-
tion properties, and uses these descriptors to implement a
machine learning algorithm that removes artifactual transcripts.

Results

Overview of SQANTI analysis workflow

The SQANTI pipeline was developed for an in-depth characteriza-
tion and curation of long-reads transcriptomes. SQANTI takes as
input a transcripts data set, together with genome annotation
and, if available, quantification data, to return a reference correct-
ed transcriptome together with a wide set of transcript and junc-
tion descriptors which are further analyzed in several diagnostic
plots (Fig. 1A). Supplemental Tables 1 and 2 describe in detail
the set of descriptors computed by SQANTI at the transcript and
junction levels, respectively. When necessary, the software can
also filter out potential artifact transcripts using a SQANTI descrip-
tor-based machine learning classifier.

Transcript and junction annotation

A feature of the SQANTI pipeline is that it can reveal the nature and
magnitude of the novelty found by long-read sequencing by clas-
sifying transcripts based on the comparison between their splice
junctions and the reference transcriptome provided (Fig. 1B).
PacBio transcriptsmatching a reference transcript at all splice junc-
tions are labeled as Full Splice Match (FSM), while transcripts
matching consecutive, but not all, splice junctions of the reference
transcripts are designated as Incomplete SpliceMatch (ISM). Those
ISM transcripts with 95% or more of their sequence within the
UTR3 sequence of their cognate reference transcript are labeled
UTR3 Fragment. Monoexonic transcripts matching a monoexonic
reference are included in the FSM category, whereas those match-
ing a multiexonic reference are placed in the ISM group.

Furthermore, SQANTI classifies novel transcripts of known
genes into two categories: Novel in Catalog (NIC) and Novel Not
inCatalog (NNC).NIC transcripts containnewcombinations of al-
ready annotated splice junctions or novel splice junctions formed
from already annotated donors and acceptors. NNC transcripts use
novel donors and/or acceptors. Note that this transcript classifica-
tion scheme captures the intron-based definition described by
Tilgner et al. (2013), but SQANTI goes a step further by describing
and subclassifying the type of novelties introduced by transcripts
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not matching the splice pattern of annotated references.
Transcripts in novel genes are classified as “Intergenic” if lying out-
side the boundaries of an annotated gene and as “Genic Intron” if
lying entirely within the boundaries of an annotated intron. In ad-
dition, the “Genic Genomic” category encompasses transcripts
with partial exon and intron/intergenic overlap in a known gene
(Fig. 1B). Finally, SQANTI labels transcripts as Fusion (transcript
spanning two annotated loci) and Antisense (poly[A] containing
transcripts overlapping the complementary strand of an annotat-
ed transcript). Additionally, SQANTI annotates transcript length,
number of exons, and, for the FSM class, length of the reference
transcript and distance of transcript 3′/5′ ends to the reference
transcript 3′/5′ ends.

SQANTI analyzes transcripts in relation to their splice junc-
tions. Splice junctions can be divided into canonical and nonca-
nonical according to the two pairs of dinucleotides present at
the beginning and end of the introns encompassed by the junc-
tions. The combination of GT at the beginning and AG at the

end of the intron is found in 98.9% of all the introns in the human
genome (Parada et al. 2014). We considered GT-AG as well as GC-
AG and AT-AC as canonical splicing (altogether, found in more
than 99.9% of all human introns [Cocquet et al. 2006; Parada
et al. 2014]) and all the other possible combinations as noncanon-
ical splicing. SQANTI also allows users to provide their own set of
canonical junctions. Further, SQANTI subdivides splice junctions
between known, if they are present in the reference, and novel,
if they are not. When matching FL and short-read quantification
data are provided, SQANTI will also quantify the number of sup-
porting FL reads, transcript expression, and coverage of junctions
by short-read data.

Two other important QC features calculated by SQANTI are
reverse transcriptase (RT) template switching and off-priming. RT
switching is an intrinsic property of RTs that allows them to
jump within or across template positions without terminating
DNA synthesis. Secondary structures in RNA templates have
been shown to enhance RT switching activity (Cocquet et al.

Figure 1. Overview of the experimental model and SQANTI analysis. (A) SQANTI workflow. Twomain functions are part of SQANTI. sqanti_qc.py uses as
input files a FASTA file with transcript sequences, the reference genome in FASTA format, a GTF annotation file, and optionally, full-length and short-read
expression files. The function returns a reference-corrected transcriptome, transcript-level and junction-level files with structural and quality descriptors,
and a QC graphical report. sqanti_filter.py takes the reference-corrected transcriptome and the transcript-level descriptors file to return a curated transcrip-
tome from which artifacts have been removed. (B) SQANTI classification of transcripts according to their splice junctions and donor and acceptor sites.
Splice donors and acceptors are indicated in red and blue, respectively. (SJ) splice junction, (FSM) Full Splice Match, (ISM) Incomplete Splice Match,
(NIC) Novel in Catalog, (NNC) Novel Not in Catalog. (C) Experimental system and data processing pipeline. RNA isolated from neural progenitor cells
(NPCs) and oligodendrocyte precursor cells (OPCs) was retrotranscribed separately into cDNA and sequenced both by long-read PacBio and short-read
Illumina technologies. All PacBio RoIs were joined and processed by the ToFU pipeline to obtain consensus transcripts. Residual (indel) errors were elim-
inated by comparison to the reference genome to generate a corrected transcriptome, and false transcripts were removed using a SQANTI filter to result
in a curated transcriptome. Illumina short reads were mapped against the RefSeq murine transcriptome annotation, the corrected, and the curated PacBio
transcriptomes.
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2006; Houseley and Tollervey 2010) and to cause gaps during
cDNA synthesis. These gaps are interpreted as splicing events,
which, due to their nonsplicing origin, are enriched for noncanon-
ical junctions (Cocquet et al. 2006; Houseley and Tollervey 2010).
A hallmark of RT switching is the presence of a direct repeat be-
tween the upstream mRNA boundary of the noncanonical intron
and the intron region adjacent to the downstream exon boundary
(Cocquet et al. 2006). SQANTI incorporates an algorithm to locate
these direct repeats. SQANTI also evaluates possible off-priming of
the oligo(dT) in A-rich regions of the mRNA template. Annealing
of the oligo(dT) primer used in the first-strand synthesis of the
cDNA to non-poly(A) tail adenine stretches present in not yet dis-
carded intron-lariats or (pre)-messenger RNAs results in false cDNA
molecules (Nam et al. 2002; Spies et al. 2013). SQANTI investigates
these events by calculating the percentage of adenines (A) within a
window of nucleotides downstream from the genetic coordinates
corresponding to transcripts’ 3′ ends.

Finally, SQANTI implements the GeneMarkS-T (GMST) algo-
rithm (Tang et al. 2015) to predict ORFs from transcript sequences
(Supplemental Methods and Supplemental Fig. 1C–E).

Diagnostic graphs

Supplemental Table 3 lists the set of diagnostics plots returned by
SQANTI, which include distribution of transcript lengths, expres-
sion level, number of exons, position of junctions, full-lengthness,
and different quality features such as the proportion of noncanon-
ical junctions, RT switching evidence, and junction coverage by
short reads. In addition, SQANTI provides most of these graphs
with a transcript category breakdown in order to facilitate quality
assessment of the transcriptome obtained by the single-molecule
sequencing.

SQANTI filtering

After reference-guided error correction, artifacts might still present
in the resulting transcriptome. SQANTI removes artifactual tran-
scripts by applying a machine learning classifier based on
SQANTI features and sets of true and artifact transcripts provided
by the user or inferred by the application. The SQANTI filter also
includes an option to discard transcripts flagged as intra-priming
candidates. The resulting curated transcriptome can be checked
again with the SQANTI QC function to verify improvement in
quality parameters.

Experimental design and transcriptome sequencing

SQANTI was evaluated on a mouse neural differentiation PacBio
data set. Full-length cDNA from neural progenitor cells (NPCs)
and oligodendrocyte progenitor cells (OPCs), two biological repli-
cates each, was obtained and split to prepare Illumina and PacBio
sequencing libraries (Fig. 1C). PacBio sequencing was performed
according to the Iso-Seq protocol to generate around 0.6 million
RoIs per sample for a total of 2.2million RoIs. Illumina sequencing
resulted in approximately 60 million reads per sample. All PacBio
RoIs were joined and processed by the ToFU pipeline (Gordon
et al. 2015) to obtain a total of 16,104 primary transcripts.
Alignment of the ToFU transcripts against the mouse reference ge-
nome (GMAP, assemblymm10) (Wu andWatanabe 2005) showed
an average percentage of coverage and identity above 99.8%, sug-
gesting that the PacBio nominal high raw read sequencing error
is corrected by the ToFU clustering approach, as reported
(Gordon et al. 2015). However, small indels (average size ∼1.2 nt)

were still detected in 56.2% of the transcripts. These small indels
did not affect the overall long-read mappability, as long reads
with and without indels had no significant differences in the
GMAP quality of mapping and occurred with no particular se-
quence context bias (Supplemental Fig. 1A), which is in agreement
with the random profile of PacBio sequencing errors (http://www.
pacb.com/uncategorized/a-closer-look-at-accuracy-in-pacbio/;
Loomis et al. 2013). We first attempted to correct indels with
matching Illumina short reads using proovread (Hackl et al. 2014)
and LSC (Au et al. 2012). Although the number of transcripts
with at least one indel decreased to 16%, this was still unsatisfacto-
ry for ORF prediction. Instead, transcripts were corrected using the
reference genome sequence (Fig. 1C). By virtue of this strategy, all
indels were removed and we obtained the corrected PacBio tran-
scriptome. This corrected PacBio transcriptome contained a total
of 16,104 transcripts resulting from the expression of 7704 differ-
ent genes. Following the SQANTI classification, transcripts map-
ping a known reference (FSM, ISM) accounted for 60% of the
transcriptome, and novel transcripts of known genes (NIC, NNC)
made up 35.6% of our sequences. Transcripts in novel genes
(Intergenic and Genic Intron categories) represented about 2.3%
of our data while transcripts in the Antisense and Fusion classes
amounted to 1.1% and 0.3%, respectively (Supplemental Fig.
1B). We found 11,999 nonredundant ORFs within a total of
14,395 coding transcripts, while 1709 transcripts were predicted
to be “ORF-less.” The great majority of FSM, ISM, NIC, and NNC
transcripts were predicted to have ORFs (97%, 90%, 87.8%, and
92.8%, respectively), while the remaining categories were mostly
noncoding.

Descriptive analysis of transcriptome complexity and transcript

full-length made easy by SQANTI

A fundamental goal of long-read transcriptome sequencing is to
capture the extent of transcriptome complexity and to obtain
full-length transcripts. SQANTI includes all basic graphics to read-
ily study these aspects. As analyses are providedwith the transcript
classification breakdown, this adds an extra layer of understanding
to the quality of the sequencing results. For example, we hypoth-
esized that ISM transcripts were a combination of potentially real
shorter versions of long reference transcripts along with partial
fragments resulting from incomplete retrotranscription or mRNA
decay. Indeed, the SQANTI analysis showed that PacBio transcripts
classified as ISM matched reference transcripts that were longer
(Fig. 2A) and had more exons (Supplemental Fig. 2A) than FSM se-
quences. Moreover, UTR3 Fragment transcripts matched the lon-
gest reference transcripts (Fig. 2A), suggesting their enrichment
in retrotranscription fragments. All transcript classes had similar
median length (Fig. 2B), except for Genic Intron which was signif-
icantly lower (t-test P-value = 1.421 × 10−15), while this class and all
novel gene categories except Fusion transcripts were almost entire-
ly composed of monoexon transcripts (Supplemental Fig. 2B). In
terms of full-lengthness, themajority of our FSM transcripts, as ex-
pected, showed a complete or close to complete 3′-end overlap
with the 3′ end of the matched reference transcript: 76% had an
exact 3′-endmatch and 16%werewithin 20 nt upstream of the an-
notated 3′ end (Fig. 2C). This contrasted with the 35%of FSM tran-
scripts showing a complete overlap with their reference 5′ ends
and 50% falling short by 40–100 nt (Fig. 2D). This result is in agree-
ment with the strategy used in cDNA library preparation and ToFU
analysis parameters that require identification of poly(A) tails to
call FL reads but have less control over completeness at 5′ ends.
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Interestingly, 851 and 1361 FSM transcripts had 3′-end and 5′-end
positions that extended beyond the matched reference transcript,
while 1610 and 1439 of our FSM sequences were shorter by
more than 100 nt at their 3′ and 5′ ends, respectively. These cases
might represent alternative polyadenylation/alternative TSS
events. Regarding novel genes, only 13.8% of them had splice
junctions (Fig. 2E), andmost (98.2%) expressed just one transcript
(Supplemental Fig. 2C).

Finally, SQANTI descriptive graphs
revealed differences in expression fea-
tures between transcript categories at
expression features. For example, tran-
script expression level and number of
supporting FL reads were significantly
lower for ISM, NIC, and NNC than for
FSM transcripts (t-test P < 2.2 × 10−16 for
all comparisons) (Fig. 2F; Supplemental
Fig. 2D) and were significantly lower for
novel genes compared to annotated
genes (t-test P < 2.2 × 10−16 for both com-
parisons) (Supplemental Fig. 2E,F),which
showed that novel transcripts had gener-
ally lower expression levels than those al-
ready identified in reference databases.

In summary, thedescriptiveanalysis
framework provided by SQANTI readily
indicates that our neural mouse tran-
scriptome, obtained by PacBio single-
molecule sequencing, recovered full-
length transcripts and had an important
level of novelty (∼40%) with respect to
the reference mouse transcriptome both
because of novel splicing events and due
to 3′-/5′-end length variation. Transcript
diversity was more important than the
presenceofnovel genes,which represent-
ed only a small fraction of the expressed
mRNAs.However, novel transcripts tend-
ed to be less expressed than annotated
transcripts, indicating that, generally,
less novelty is to be expected for major
transcripts.

Evaluation of transcripts according

to their splice junctions

In our mouse neural data, the ratio of ca-
nonical versus noncanonical splicing
events fitted the expected genome pro-
portions when looking at known splice
junctions: Out of 141,332 known splice
junctions, 99.9% were canonical and
0.1% (185)were noncanonical. However,
novel splice junctions showed a very
different distribution: Out of 3837 novel
splice junctions, 69%were canonical and
31% (1188) were noncanonical. When
analyzed across the different SQANTI cat-
egories, noncanonical splicingwasmain-
tained at low rates in FSM (0.1%) and ISM
(0.25%) transcripts, which was expected
as both are formed purely by known

splicing events (Fig. 3A). InNIC transcripts,made up of novel com-
binations of known splice junctions or novel splice junctions de-
riving from annotated donors or acceptors, the percentage of
noncanonical splicing was 0.15% (Fig. 3A). In all cases, these non-
canonical junctionswere already known in the reference, and con-
sequently all novel junctions found in this transcript category
were canonical. However, in NNC transcripts, characterized by
the introduction of alternative donors and/or acceptors, we found

A B

C

E F

D

Figure 2. SQANTI characterization of the corrected PacBio transcriptome. (A) Length of the reference
transcripts to which FSM, ISM, and UTR3 Fragment PacBio transcripts matched. (B) Length of PacBio
transcripts by SQANTI categories. (C) Overlap at 3′ and (D) 5′ ends between the FSM transcripts and their
respective matched reference transcripts. (TTS) transcription termination site, (TSS) transcription start
site. (E) Percentage of monoexonic and multi-exonic transcripts for transcripts belonging to novel genes
and annotated genes. (F ) Transcript expression distribution across SQANTI categories.
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1155 novel noncanonical junctions, which represented 4.5% of
the total. Moreover, Genic Genomic, Intergenic, Genic Intron,
and Antisense transcripts, despite rarely being multiexonic,
showed relatively high percentages of noncanonical splice junc-
tions, with 2.32%, 7.28%, 21.57%, and 32.65%, respectively (Fig.
3A). This unusually high level of noncanonical junctions suggests
that experimental artifacts might be accumulating in these catego-
ries. Furthermore, when the percentage of transcripts showing at
least one noncanonical splice junction was considered, the pro-
portion of affected NNC compared to NIC transcripts became
more evident, 41.5% vs. 1.47%, respectively (Fisher’s exact test
[FET] P < 2.2 × 10−16), strongly indicating that this category of tran-
scripts needed deeper inspection.

We found, that although novel junctions could appear at any
position in novel transcripts, there was a higher concentration of
occurrences toward 5′ ends which is not observed for known—
whether canonical or not—junctions (FET P < 2.2 × 10−16) (Fig.
3B). This could either be the consequence of unannotated variabil-
ity at 5′ ends or higher accumulation of errors due to lower se-
quence support. The ToFU pipeline is more permissive with
clustering conditions at transcript ends (E Tseng, pers. comm.),
which accounts for a higher probability of errors at these areas.

Coverage by Illumina has been used to support novel junc-
tions called by PacBio (Au et al. 2013). However, Illumina reads
are not always equally distributed along the transcript length
and are often less abundant toward 5′ ends, providing less sup-
port for junction validation. We found that, as suspected, splice

junction support by short reads decreased toward the 5′ end of
the transcripts but was significantly higher for known junctions
(Wilcoxon rank-sum test [WRS] P < 2.2 × 10−16) (Fig. 3C). Novel
canonical junctions were in general less frequently covered but
still significantly more supported than novel noncanonical junc-
tions, which had hardly any supporting reads if located within
the first 120 nt of the transcript 5′ end (WRS P < 2.2 × 10−16)
(Fig. 3C).

Another possible explanation for noncanonical splicing is RT
switching. SQANTI analysis confirmed the enrichment of RT
switching in novel splice junctions (FET P < 2.2 × 10−16) (Fig. 3D)
and in NNC compared to NIC transcripts (7.24% versus 1.98%;
FET P < 2.2 × 10−16). Described RT switching events affect minor
isoforms of genes co-expressed with a major isoform that serves
as the template for the intra-molecular switching (Cocquet et al.
2006). Accordingly, we found that NNC transcripts are enriched
for being minor transcripts of highly expressed genes (Supple-
mental Fig. 2G,H). Finally, A-rich genomic DNA regions down-
stream from the TTS were concentrated in the relatively minor
SQANTI categories (Supplemental Fig. 2I) and were enriched in
noncoding and monoexonic transcripts (WRS P < 2.2 × 10−16 for
all tests) (Supplemental Fig. 2J). A total of 601 transcripts were
found to be intra-priming candidates, which affected the Anti-
sense and Genic Intron categories in particular (∼50% and∼ 30%
of their transcripts were flagged). Remarkably, Incomplete Splice
Match transcripts that were versions of the reference transcripts
shortened at the 3′ end and monoexon NIC transcripts with

A B

C D

Figure 3. Splice junction characterization in the corrected PacBio transcriptome. (A) Distribution of splice junction (SJ) types across SQANTI categories.
NNC, Genic Genomic, Antisense, Intergenic, and Genic Intron are enriched in noncanonical SJs. n = 76,757 SJ for FSM, n = 13,802 for ISM, n = 27,368 for
NIC, n = 26,509 for NNC, n = 51 for Genic Genomic, n = 49 for Antisense, n = 494 for Fusion, n = 86 for Intergenic, and n = 55 for Genic Intron. (B)
Distribution of the SJs according to their distance to the transcription start site. (C) Relative coverage by short reads of SJs as a function of their class
and distance to the TSS. (a.u.) Arbitrary units. (D) Detection of RT switching direct repetitions by SQANTI algorithm across SJ types.
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intron retention events were also significantly enriched in intra-
priming candidates (WRS P < 2.2 × 10−16 for all tests) (Supplemen-
tal Fig. 2I).

Altogether, the SQANTI framework analyses suggest that a
fraction of the novel transcripts found by the ToFU pipeline could
be technical artifacts that originated at the cDNA library construc-
tion step or via less confident sequencing data at the 5′ ends of
transcripts.

PCR validation of PacBio transcripts

To shed light on whether the transcripts detected by the ToFU
analysis were correct or not, we performed RT-PCR amplifications
for a total of 67 mRNAs encompassing different SQANTI catego-
ries: 23 FSM (three with noncanonical splice sites), 12 NIC, 30
NNC canonical (11 of them containing at least one noncanonical
splice junction), and three Fusion (Supplemental Fig. 3). Impor-
tantly, we performed RT-PCRs both on the Clontech oligo(dT)-en-
riched full-length cDNAs used for PacBio sequencing and, for
positive NIC/NNC/Fusion and four FSM transcripts, on new
cDNA retrotranscribed at 42°C and 50°C using random hexamers
rather than oligo(dT). The rationale behind this approach was to
test whether novel transcripts could have been spuriously generat-
ed by RT switching-like mechanisms at the retrotranscription step
of the PacBio protocol. Since higher temperature and/or the use of
random hexamers would complicate the formation of secondary
structures in the RNA template, retrotranscription artifacts would
be less favored in these conditions.

We validated by RT-PCR for all of the 23 FSM, including the
three cases with noncanonical junctions (Fig. 4A1), highlighting
the high level of confidence supporting these transcripts. Novel
transcripts showed lower validation rates: 8/12 NIC, 1/3 Fusion,
and 6/30 NNC, highlighting the low detection rate within the
NNC category (Fig. 4A2). Importantly, nine of these nonvalidated
NNC transcripts were amplified by oligo(dT) PCR but were lost
when random hexamers and higher temperatures were used (Fig.
4A3), suggesting the possible occurrence of retrotranscription arti-
facts. Table 1 summarizes the results of the PCR validation exper-
iment. Details can be found in Supplemental Table 4. These
results indicated that an additional filtering strategy was impor-
tant to remove artifactual transcripts from the ToFU transcriptome
output.

Using SQANTI features to build a quality control filter for ToFU

artifacts

Previous work applied different criteria to discard artifacts from
transcriptome sequencing, including support by short reads (Au
et al. 2012), removal of transcripts with noncanonical splicing
(Tilgner et al. 2013), or filtering based on sequence features
(Rogers et al. 2012). However, we found that these approaches do
not fully capture the complexity of the data. For example, a few
known and NIC transcript junctions lack Illumina coverage (148
out of 67,610, and 20 out of 437, respectively), while most of the
novel noncanonical junctions did have supporting Illumina reads
(543 out of 597). We found that additional features such as RT
switching direct repeats and low expression values accumulated
in NNC transcripts but were not exclusive to them. Moreover, our
RT-PCR analysis revealed an important number of transcripts (16)
having a full set of canonical junctions but failing validation.

We hypothesized that the set of SQANTI descriptors ought to
be informative of transcript quality and could be used to define a
composite filter to remove artifact transcripts efficiently.Wedecid-

ed to train a machine learning (ML) classifier based on these fea-
tures. To obtain a generally applicable filter, we trained our
classifier with a “best guess” of true (positive set) and artifact (neg-
ative set) transcripts within the genome-corrected ToFU output:
We defined as the positive set Full Splice Match transcripts (n =
7774) and as the negative set Novel Not in Catalog transcripts
with at least one noncanonical junction (NNC-NC; n = 1110).
Note we trained the classifier without providing this structural in-
formation (Methods). We used Random Forest (Breiman 2001)
with an 80/20 training/test set split, random down-sampling for
class balance, and 10× cross-validation, and called predicted tran-
scripts those with a probability for positive classification higher
than 0.75. As a note, the RT-PCR instances mentioned in the pre-
vious section were excluded from the classifier build. We obtained
an area under the curve (AUC) of 99.54% for the ROC curve of the
test set (Fig. 4B, blue line), while the AUC for the set of NIC/NNC
transcripts assayed by RT-PCR was 82.41% (Fig. 4B, red line, and
Supplemental Table 5). This result indicates that our classifier built
on SQANTI descriptors faithfully captures differences between our
ground truth set of positive and negative transcripts, and this can
be efficiently applied to discriminate true transcripts from artifacts
within the set of long-read defined novel sequences. Figure 4C
shows howwell the RT-PCR data of the SQANTI classifier performs
against two previous approaches used to remove artifacts, namely
the “noncanonical splice junction” filter and SpliceGrapher. Data
indicate that the classifier approachhas a higher F1 score (71.7 ver-
sus 57.9 and 41.1, respectively) and lower FDR (11% versus 53.3%
and 58.8%, respectively) than alternative methods. These notable
FDR differences are mostly due to a high rate of false canonical
junction transcripts that are not discarded by the prior approaches.
Moreover, SQANTIwas the only filtering strategy that succeeded in
lowering both the noncanonical SJ and the no short-read coverage
quality features in NNC transcripts to levels similar to those of the
high-confidence FSM category (Fig. 4D).

Features selected by the SQANTI classifier are shown in order
of importance in Supplemental Figure 4. The feature ranked first in
order of importance (Bite) flags transcripts that skip consecutive
exons and have donor/acceptor sites inside a known exon, which
we interpret as an indication of novel splice junctions caused by
secondary RNA structures. Five out of the eight top variables (low-
est Illumina coverage at junction, minimum sample coverage,
number of FL reads, expression of the gene, expression of the tran-
script, and ratio of transcript versus gene expression) were associat-
ed with transcript expression, suggesting that expression patterns
arewithin themost useful characteristics for calling bona fide nov-
el transcripts.

Following these results, we incorporated a function for tran-
scriptome curation into SQANTI.When applied to themouse neu-
ral transcriptome, the combination of the SQANTI ML and intra-
priming filters removed 4134 novel transcripts (2462 NNC, 1281
NIC, 32 Genic Genomic, 36 Fusion, 116 Antisense, 25 Intergenic,
129 Genic Intron, and 53 ISM). In our final curated transcriptome,
the adjusted percentages of each category were: 66.3% FSM, 14.1%
ISM, 15.7% NIC, 2% NNC, 0.5% Genic Genomic, 0.5% Antisense,
0.2% Fusion, 0.3% Intergenic, and 1.4% Genic Intron (Fig. 4E).
The transcript category inwhich our filter has the strongest impact
is NNC, that went from 14% to 2%, while FSM increased conse-
quently from 49% to 66% in the curated transcriptome (Fig. 4E).
In our final data set, 9626 transcripts (80.4%) are in the known cat-
egories, 2344 (19.6%)arenovel transcripts, ofwhich207 (1.7%) fall
within novel genes. These transcripts were the product of 7167
genes and resulted in 9269 different ORFs.
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Table 1. Summary RT-PCR validation

Transcript type

Oligo(dT) Random hexamers

Overall validationPositive Negative Total Positive Negative Total

FSM 23 (3 nc) 0 23 4 (3 nc) 0 4 100%
NIC 10 1 11 8 2 10 67%
NNC 15 (3 nc) 15 (8 nc) 30 6 9 (3 nc) 15 20%
Fusion 1 2 3 1 0 1 33%

(nc) Transcript with noncanonical junctions.

A1 C

D

A2

A3

B
E

Figure 4. SQANTI filter performance on mouse data set. (A) Representative examples of RT-PCR validation experiments. Three PCR conditions were as-
sessed: oligo(dT) template at 42°C and random hexamers (RH) template at 42°C and at 50°C. (A1) Example of a FSM transcript with a noncanonical SJ
successfully amplified at each PCR condition. (A2) Example of a NNC transcript with a noncanonical SJ that failed to be amplified in the oligo(dT) condition.
(A3) Example of NNC transcript with noncanonical SJ amplified at oligo(dT) but not at RH conditions. (B) ROC curves of the SQANTIML filter for the test set
(blue line) and for the set of novel isoforms assayed by RT-PCRs (red line). (C) Summary of the performances of the SQANTI filter, the noncanonical filter,
and the SpliceGrapher filter for the set of novel isoforms assayed by RT-PCR. (nc filter) Noncanonical filter, (TP) True Positive, (TN) True Negative, (FP) False
Positive, (FN) False Negative, (FDR) False Discovery Rate. (D) Comparison of quality features in the FSM and NNC categories after the SQANTI, nc, and
SpliceGrapher filters. Statistical differences by Fisher’s exact test (FET), (∗∗∗) P < 0.001, (ns) not significant. (E) Composition of SQANTI transcript categories
in the mouse before and after the SQANTI filter.
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Generalization of the SQANTI approach

To assess the general utility of SQANTI, we applied our approach to
alternative analysis pipelines and data sets. We processed our raw
mouse PacBio readswith the IDP andTAPIS pipelines and analyzed
resulting transcriptomes with SQANTI (Supplemental Fig. 5A,B).
IDP, which relies heavily on a high-quality reference annotation
and on short-reads correction, returned a total of 13,525 tran-
scripts, the great majority belonging to the FSM category (96%).
Only 509 transcripts were novel in this approach (358 NIC, 158
NNC), yet they still showed significant enrichments in RT switch-
ing and no short-read coverage in a junction (Supplemental Fig.
5A). IDP fails to return any of the 16 novel transcripts validated
by PCR, suggesting that this method is highly restrictive for novel
isoform calling. On the contrary TAPIS, that, like ToFU, works
without short-read data, returned a significantly larger set of tran-
scripts (91,428), with an overwhelming majority of them belong-
ing to the NNC class (66%), which were strongly enriched in low-
quality features (Supplemental Fig. 5B).

We next evaluated our analysis pipeline using additional
data sets, namely the maize ear (Wang et al. 2016) and the human
MCF-7 cells (http://www.pacb.com/blog/data-release-human-
mcf-7-transcriptome/), both publicly available. Transcriptome
composition in these data sets was substantially similar to what
we observed for our mouse transcriptome, with a significant num-
ber of novel transcripts in known genes that were enriched in low-
quality features (Supplemental Fig. 5C,D).We applied the SQANTI
filtering approach to these data sets by training ourML classifier in
each casewith their sets of FSM andNNC-NC transcripts and using
default values for removing of intra-priming events. As with the
mouse data, we obtained high AUC values in the test sets (99.3%
for maize ear and 99.7% for MCF-7) and succeeded in removing
a considerable amount of low-quality novel transcripts while con-
trolling their enrichment in low-quality features (Supplemental
Fig. 5C,D).

Additionally, we analyzed the importance of SQANTI descrip-
tors for theMLclassifier in these data setswith respect to themouse
data. Although we observed an overall agreement in top-ranked
classification features (i.e., the top three variables were shared
among data sets), we also found some noticeable differences
(Supplemental Fig. 4). For example, the number of FL reads was
not a highly ranked feature for the maize ear data, probably due
to the lower sequencing depth of this data set, and was absent for
theMCF-7 data set, as the valuewas not available. Still, in both cas-
es, the SQANTI classifier achieved high classification performance.
We conclude that our SQANTI filtering approach based on the
composite utilization of quality descriptors is a robust but versatile
approach for effectively removing artifacts in long-read transcrip-
tome data sets that can be applied to a wide range of organisms.

Altogether, this section shows that the SQANTI quality con-
trol framework is a very useful tool to reveal the structural compo-
sition of transcriptomes obtained from long-read sequencing and
to compare quality across preprocessing pipelines and experi-
ments. We show that our choice of ToFU read clustering plus
SQANTI filtering for transcriptome curation is a good trade-off be-
tween discovery and high quality for novel transcript calls and can
be efficiently applied to different PacBio long-read data sets provid-
ed that a reference genome and short-read data are available.

Functional insights from novel and alternative transcripts

Most of the novel transcripts from themouse neural transcriptome
belong to existing genes. To further understand the biological rel-

evance of these new calls, we analyzed the cellular processes where
they participate. Genes with novel transcripts were enriched in
metabolic processes, regulation of neurogenesis, oligodendroglial
lineage, behavior, and regulation of potassium ion transport (Fig.
5A), suggesting that unannotated isoform diversity may impact
fundamental energy utilization and specific neural biology path-
ways, both key for neural differentiation (Cai et al. 2004; Amaral
et al. 2016; Shih et al. 2017). The availability of a full-length cor-
rected and curated transcriptome allows us to predict ORFs with
high confidence and annotate 3′ and 5′ UTRs. We studied to
what extent alternative splicing modifies coding and noncoding
regions of transcripts and impacts the principal isoform (PI) of
the gene. PIs are defined by the APPRIS (Rodriguez et al. 2013) da-
tabase as the protein isoform with highest functional load and
cross-species conservation. Approximately, 36% of the genes ex-
pressed in our system were multi-isoform genes. Of these, 1836
genes expressed the transcript corresponding to the principal iso-
form (Rodriguez et al. 2013) of the gene and in 592 cases (32%), the
PI transcripts were expressed with multiple, distinct UTR regions.
Transcripts corresponding to predicted alternative ORFs were ex-
pressed for 1429 genes (79%). In contrast, these non-PI transcripts
were much less variable at UTRs, with only 9% of them showing
multiple 3′ or 5′ UTR variants, and about 27% of the novel tran-
scripts extended existing TSSs or TTSs. This result suggests that,
at least in the mouse neural transcriptome, multi-isoform expres-
sion would mostly result in a change in the predicted protein
and to a lesser extent in the alternative processing of UTRs.
However, alternative ORFs rarely were expressed as more than
one transcript, suggesting further transcriptional regulation of
these alternative forms might not be required to modulate their
functionality.

Peptide support of novel and alternative transcripts

As most of the novel transcripts were predicted to have ORFs that
contained novel amino acid stretches when compared to PIs, we
sought to investigate whether peptide data present in public prote-
omics databases could support these findings. In order to do this,
we first created a nonredundantORF database of publicmouse pro-
teins and the predicted proteins in our neural data and classified
each protein as a Principal IsoformORF (PI-ORF; n = 4579) if anno-
tated as such by APPRIS (Rodriguez et al. 2013), Alternative ORF
(Alt-ORF; n = 2127) if present in Ensembl or RefSeq but not being
PI, and Novel ORF (Novel-ORF; n = 1194), if the protein would be
coded by NIC or NNC transcripts present only in our mouse
PacBio data. For each predicted protein, we performed an in silico
trypsin digestion and selected unique peptides that would un-
equivocally identify each ORF. We analyzed theoretical peptides
for those genes identified in our mouse transcriptome that had
more than one isoform annotated in Ensembl (v80). The percent-
age of ORFs predicted to be identifiable by unique peptides was
highest for the PI-ORFs (56.3%, or 2577), followed by the Novel-
ORFs (42.6%, or 509) and was lowest for Alt-ORFs (30.1%, or
641). The majority of Novel-ORFs and Alt-ORFs were predicted to
have only one unique peptide, while this was only the case for
14.2% of the PI-ORFs (Supplemental Fig. 6A). Conversely, most
PI-ORFs were predicted to contain six or more discriminating pep-
tides and this was true for only 7% of Alt-ORFs and 9.8% of Novel-
ORFs. This higher rate of unique peptides in PI-ORFs was expected
as the mouse genome contains a significant number of genes in
which alternative isoforms are incompletely annotated and have
only partial sequences and the APPRIS PI is often the longest
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Figure 5. Functional diversity associatedwith genes with novel transcripts, variability of 3′ UTR in PI-ORFs transcripts, and comparative analysis of protein
differences between PI and non-PI-ORFs. (A) Gene Ontology enrichment analysis for genes expressing novel transcripts. Analysis of the type of protein
changes introduced by (B) Alternative ORFs and (C) Novel ORFs with respect to the PI-ORF of the gene. Blue: ORFs computationally predicted in the curated
transcriptome; red: ORFs predicted to be identifiable by unique peptides; green:ORFs detected in proteomics databases with at least two peptide spectrum
matches (PSMs). (D) Example of 3′ UTR variability in a PI-ORF that leads to a quantification error. (D1) Transcripts associated with the Spcs2 gene according
to PacBio sequencing (green) and by RSEM quantification using RefSeq (red). The profile of mapping short reads at the Spcs2 locus is shown in gray. The
positions of transcript-specific primers are indicated by arrows, and differences at the transcription termination sites are highlighted by a red dashed box; 0
indicates splice junctions lacking any short-read support. (D2) Short-reads-based average transcript expression levels of Spcs2 transcripts using either
RefSeq or PacBio-T references. (D3) Validation of Spcs2 transcript expression by RT-PCR: PB.6460.1/ NM_025668 but not XM_006508117 was amplified.
(E) Analysis of the most expressed transcript (MET) in genes with MET differences between PacBio-T and RefSeq quantifications. Kruskal-Wallis Test, (K-W),
(∗∗∗) P < 0.001, (ns) not significant. (E1) Lowest SJ coverage by short reads in METs. (E2) Lowest mean exon coverage by short reads in METs. (E3) Distance
between the TTS of the METs and their FSM references. Same MET means both PacBio-T and RefSeq select the same MET; Different MET means RefSeq
selects a MET that is not manually curated and PacBio-T selects a MET that is manually curated.
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ORF in a gene. Consequently, proteins deemed as PIs are expected
to be easier to detect by protein digestion approaches than alterna-
tive isoforms.

We then screened public databases for the presence of unique
peptides associated with our set of ORFs. Two separate approaches
were conducted: a Neural tissue approach, comprising one proteo-
mics study of mouse neural tissue and another study of the mouse
neural secretome, and an All tissue approach comprising peptides
from 36 proteomics studies carried out on a variety of murine tis-
sues but excluding the two used in the first approach. Overall,
we detected at least one unique peptide for 77.9% of the PI-ORFs
predicted to be identifiable, while this percentage went down to
20.56% and 8% for Alt-ORFs and Novel-ORFs, respectively. Most
Alt- and Novel-ORFs had single unique peptide matches, while
most PI-ORFs were found with multiple peptides (Supplemental
Fig. 6B). In part, this is to be expected; the success of detection
was significantly lower when the ORF was predicted to have only
one unique theoretical peptide, and this was the case for the ma-
jority of Alt-ORFs and Novel-ORFs (Supplemental Fig. 6C).
Interestingly the agreement between the two proteomics screen-
ing approaches was much stronger for those proteins detected
with two or more peptides (Supplemental Fig. 6B). When ORFs
were identified by a single peptide, the peptide was almost always
present in just one of the two studies. Note that ORF detection by
single peptide matches, similarly to transcript detection by single
read counts, falls into the area of unreliable protein identification,
and therefore false discovery in these cases is not controlled
(Deutsch et al. 2016). Combined with the fact that many of the al-
ternative isoforms could only be discriminated by a single peptide,
the result confirms that the lower number of discriminating pep-
tides in Alt and Novel ORFs versus their PI ORF counterparts im-
pairs their detection by proteogenomics approaches.

Alt/Novel ORFs had lower unique peptide detection rates
across all unique peptide ranges (Supplemental Fig. 6C), so other
factors are also contributing. To understand whether expression
levels were playing a role, we evaluated the number of studies
(PSM counts) supporting each ORF to find that, on average,
Alt- and Novel-ORFs had five to six supporting studies (median
= 2) per detected unique peptide, while this number was nearly
10 for PI-ORFs (median = 4.5), which is in agreement with the no-
tion that PI-ORFs are ubiquitously expressed across tissues
(Rodriguez et al. 2013). We found that PI-ORFs detected by
unique peptides in fewer than five proteomics studies had a sig-
nificantly lower expression in our system than those found in
more than 10 projects and had similar expression levels as the
transcripts coding for Alt- and Novel-ORFs (Supplemental Fig.
6D). Altogether, our results indicate that direct detection in pub-
lic proteomics databases of predicted coding products of novel
and alternative transcripts is hampered by their lower expression
pattern and an overall lower identifiability by unique peptides.

Finally, we evaluated the types of protein differences between
alternative and principal isoforms for which peptide support was
conclusive (minimum of two PSM counts per ORF, n = 59 Alt-
ORFs, and n = 14 Novel-ORFs) and compared them to the compo-
sition of our predicted transcriptomes. While our set of curated
transcripts predicted that most alternative and novel ORFs distrib-
uted between N-terminal truncations, microexons (indels/substi-
tutions up to 9 amino acids [aa]), and major changes (indels/
substitutions of more than 9 aa with or without N-Ter/C-Ter trun-
cations), the proteogenomics analysis, as expected, failed to reveal
these N-terminal differences and mostly found the major changes
both for Alt- and Novel-ORFs (Fig. 5B,C), which is in agreement

with a detection approach that relies on positive detection of
unique peptides. Microexons were found mostly in Alt-ORFs
(Fig. 5B), while Novel-ORFswith no overlap to their PIs were found
in the proteomics databases more than expected (Fig. 5C); howev-
er, this finding is supported by just a few ORFs and hence cannot
be conclusive. Although there was more than a 10-fold difference
between the number of identifiable ORFs and those consistently
identified in our proteomics screenings, there was a general agree-
ment between the relative abundance of each type of protein dif-
ference among the two ORF sets, which suggests that the ORFs
confidently identified by unique peptide matches could represent
the actual diversity range of the alternative proteome.

Novel transcripts have a major impact on accurate transcriptome

quantification by short reads

Previous studies have shown that the utilization of a reduced, ex-
pressed transcriptome as reference for short-read mapping instead
of the total reference dramatically impacts transcriptome quantifi-
cation (Mezlini et al. 2013; Soneson et al. 2016) and improves rep-
licability of expression level estimates (Au et al. 2013). We sought
to investigate how the new transcripts impact quantification by
short reads. As one important aspect of transcript-resolved analysis
is the identification of the transcript that captures most of the ex-
pression in each gene (most expressed transcript, MET), we con-
centrated our study in the comparison of METs when using the
total RefSeq (∼160,000 transcripts) or the curated PacBio transcrip-
tome (11,970 transcripts, aka PacBio-T) as reference for short-read
mapping. For 3976 genes, the MET was identical in PacBio-T and
RefSeq, meaning that the PacBio-T MET was a Full Splice Match
of the RefSeq MET. This was not the case for 1433 genes, and, in
996 of them, the PacBio-T MET was a different FSM transcript pre-
sent in RefSeq. For example, the Signal PeptidaseComplex Subunit
2 gene (Spcs2) was expressed as one transcript in our PacBio neural
transcriptome (PB.6460.1) and had two transcripts in RefSeq quan-
tification (NM_025668 andXM_006508117) (Fig. 5D1). PB.6460.1
is a FSM transcript ofNM_025668 andboth codify for the PI-ORFof
the gene, but the 3′ exon of PB.6460.1 is smaller, resulting in a 3′

UTR shorter by 1340 nt (Fig. 5D1, red dashed box). This shorter
3′ exon is actually the annotated exon of the RefSeq transcript,
XM_006508117, which also uses two alternative 5′ exons (Fig.
5D1). XM_ 006508117 was the MET in the RefSeq quantification,
while NM_025668 was estimated as poorly expressed (Fig. 5D2).
Upon RT-PCR amplification with transcript discriminating prim-
ers, we confirmed the PacBio-T- and not the RefSeq-based
quantification scheme (Fig. 5D3). When inspecting read coverage
at this locus, we observed that neither the unique 5′ junctions of
XM_006508117 nor the extra exonic sequence at the 3′exon of
NM_025668 were covered by Illumina short reads, while the
short-read pattern nicely fits the PacBio transcriptmodel.We spec-
ulate that this variability at the 3′ UTRs creates a conflict when re-
solving transcript quantification in the RefSeq gene model that
was decided in favor of transcript XM_006508117 by RSEM (Li
and Dewey 2011; Zhang et al. 2017), as this transcript has a more
consistent 3′-end coverage. In summary, the transcript quantifica-
tion error of the Spcs2 gene when using a reference transcriptome
as mapping template was due to a discrepancy in the 3′-end anno-
tation between the reference and the actual expressed transcripts.
Similar disagreement patterns were observed for two additional
genes, Dhrs7b and Bdkrb2, with similar outcomes in terms of
MET selection (Supplemental Fig. 6E,F). To estimate how general
this pattern was, for all the MET discrepant genes, we investigated
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the RefSeq curation status. The majority of the discrepant genes
(57.2%, n = 470 genes) corresponded to situations where the
PacBio-T MET was a FSM of a manually curated RefSeq transcript
and the RefSeq MET was not manually curated, as in the Spcs2
gene. Furthermore, in these cases, the RefSeq-based MET had sig-
nificantly worse lowest splice junction coverage and lowest mean
exon coverage than the MET called by the PacBio-T quantification
(Fig. 5E1,E2). Similarly to Spcs2, we found that, for these 470 genes,
the differences in the length at the 3′ end between the MET select-
ed at PacBio-T quantification and their matched RefSeq transcripts
were significantly higher than in geneswhere both quantifications
selected equivalent METs (Fig. 5E3). Moreover, these differences
were also observed for transcripts codifying for the PI-ORF of the
genes, indicating that the extensive variability in the 3′ ends that
is not annotated in a global reference such as RefSeq is not restrict-
ed to secondary/alternative transcripts. These results demonstrate
the relevance of using a full-length reference transcriptome updat-
ed with novel expressed transcripts for correct quantification
estimates.

Discussion

SQANTI as a critical tool to analyze whole

transcriptome quality

Long-read sequencing technologies, such as the PacBio platforms,
as well as Illumina’s Moleculo and Oxford Nanopore, have
brought novel excitement into the challenge of describing the
complexity of the transcriptome of higher eukaryotes by provid-
ing new means for sequencing full-length transcript models.
While early papers concentrated on demonstrating the dramatic
enrichment in full-length transcripts achieved by long reads
(Sharon et al. 2013; Tseng and Underwood 2013), there is an in-
creasing number of publications that describe thousands of new
transcripts discovered by this technology. Accordingly, we found
that, when sequencing the mouse neural transcriptome using
PacBio, a large number of novel transcripts could be detected.
However, close inspection of these new transcripts revealed signs
of potential errors that required a thorough and systematic analy-
sis of these sequences before making any new transcript calls. This
motivated the development of SQANTI, a new software for the
structural and quality analysis of transcripts obtained by long-
read sequencing.

The three basic aspects of the SQANTI QC pipeline are (1) the
classification of transcripts according to the comparison of their
junctions to a reference annotation in order to dissect the origin
of transcript diversity, (2) the computation of a wide range of de-
scriptors to chart transcript characteristics, and (3) the generation
of graphs from descriptors data, frequently with a transcript-type
breakdown, to facilitate interpretation of the sequencing output
and reveal potential biases in the novel sequences. Using this anal-
ysis framework, wewere able to show that, at least in ourmouse ex-
periment, novel transcripts—especially those in the NNC category
—are typically poorly expressed transcripts of known genes, con-
sistent with previous reports (Sharon et al. 2013; Tilgner et al.
2014, 2015). We also observed that novel junctions accumulate
at the 5′ end of transcripts, have lower coverage by Illumina reads,
and are enriched in noncanonical splicing and direct repeats typ-
ical of RT switching.

However, none of these features are exclusive of any of the
novel transcripts categories, which invites the question on how
best to remove transcript artifacts. This has been solved in the

past by either eliminating all novel transcripts with at least one
junction not supported by short reads (Sharon et al. 2013), by sys-
tematically discarding transcripts with noncanonical splicing (Au
et al. 2013), or by developingmodels to estimate the likelihood of a
certain splicing event (Abdel-Ghany et al. 2016). In our case, we
performed an extensive PCR validation of transcripts belonging
to different known and novel types. We found a significant num-
ber of transcripts, both with canonical and noncanonical junc-
tions, that had complete junction support by Illumina and that
were amplified by RT-PCR of the sequenced cDNA library but
that failed to be validated when PCR conditions were adjusted to
avoid secondary RNA structures. We concluded that these might
be cases of retrotranscription artifacts, which would have escaped
filtering solely based on short-read support. This result may sug-
gest that a revision of library preparation protocols is needed,
which goes beyond the scope of this study. As an alternative, we
were able to combine our set of SQANTI descriptors with a ma-
chine learning strategy to build a filter that discards poor quality
transcripts with better performance than alternative existing
approaches.

The SQANTI filter is data-adaptive, and we showed that it can
be successfully applied to other long-read transcriptomics data
sets. Note that SQANTI is designed to leverage genome annotation
data to characterize and filter the long-read transcriptome. Where
no genome is available or the assembly is low-quality, reference-
guided correction of transcript sequences will be compromised
and therefore also the accurate translation into ORFs. If, addition-
ally, the gene content annotation is poor, this will impact SQANTI
transcript classification, leading to enrichment in novel isoforms
and genes. In these conditions, it might be difficult to define ro-
bust FSM positive and NNC-NC negative training sets for the
SQANTI classifier: the first set, because of the low number of
known transcripts, and the second, because of poor correction
of PacBio sequences. Subsampling experiments showed that
150–200 training set transcripts would be sufficient to obtain
comparable performance to that in Figure 4B, indicating that
the SQANTI filter can be used confidently even when reduced
training sets are available. Furthermore, the SQANTI set of quality
descriptors will be extremely useful in these cases, as they will pro-
vide a comprehensive characterization of the quality of the tran-
script calls in situations where little additional data is available.
Finally, note that SQANTI is agnostic to the sequencing technolo-
gy that generated the transcripts and simply requires sequences in
FASTA format. Hence, the software can accept transcript sequenc-
es from other long-read approaches such as Nanopore and
Moleculo. Obviously, the results of the quality assessment will
vary as a function of the characteristics of the underlying
technology.

Novel insights in transcriptome complexity from single-molecule,

full-length transcriptome sequencing

The fundamental advantage of single-molecule, long-read tech-
nologies over short reads is their direct detection of full-length iso-
formdiversity and of novel transcripts. The availability of a curated
full-length transcriptome data set of our mouse neural tissue al-
lowed us to explore these aspects confidently.We found that genes
with novel transcripts are enriched inmetabolic processes and spe-
cific neural functions related to neurogenesis and oligodendroglial
lineage. This is remarkable because both the narrow control of
metabolic programming and the expression of genes involved in
cell identity are key players in differentiation courses (Cliff and
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Dalton 2017), and the finding that most novel transcripts concen-
trate in these categories suggests that important untapped tran-
script/regulatory diversity could be revealed by long-read
sequencing technologies.

We find it interesting that, while most of the transcript diver-
sity is in the form of novel ORFs, an important fraction of the al-
ternative transcripts are UTR variations of the principal isoform
transcript. However, alternative transcripts of the same PI rarely
show variable UTRs among them, and novel transcripts infre-
quently extend annotated TSSs and TTSs. This suggests that
gene expression regulation by alternative transcripts either con-
trols the expressed protein or the transcript stability, but the inter-
action of the two might not be as critical. We also show how high
variability at transcript ends is a source of quantification errors
that can be alleviated when an expressed full-length reference
transcriptome is used. Our data suggests that unannotated
alternative polyadenylation events are frequent in mammalian
genomes, which, in turn, induce incorrect quantification esti-
mates. Full-length sequencing of the expressed transcriptome
readily identifies this 3′-end diversity to provide the correct tem-
plates for transcript quantification. On the other hand, variability
at the 5′ end is still an issue for full-length transcriptome sequenc-
ing, as biological variability cannot be unequivocally differentiat-
ed from technical artifacts in cDNA library preparation protocols.
The SMARTer protocol typically used in PacBio sequencing may
not always capture the full extension of the 5′ ends due to tran-
script degradation or incomplete retrotranscription. This may ac-
count for the lack of 5′-end coverage observed in FSM and
ISM transcripts. Trapping of the 5′ CAP prior to the synthesis
of the secondary cDNA strand has been shown to increase the
overlap of the 5′ end without seriously compromising the yield
of long reads (Cartolano et al. 2016) and in the future may repre-
sent the preferred form of library preparation to study 5′-end
diversity.

Finally, we investigated whether the transcriptome diversity
found by long-read sequencing was mirrored by proteogenomics
data. We concluded that the low expression and identifiability by
single peptides of Alt and Novel ORFs hampered their detection
by proteomics. Detection of alternative protein isoforms has
proved to be difficult, and while some authors claim that limited
detection in proteomics databases might indicate low translation-
al or stability rates (Ezkurdia et al. 2015; Tress et al. 2016), other
studies identify a significant proportion of alternative exons asso-
ciated with ribosomes as evidence of active translation (Sterne-
Weiler et al. 2013; Weatheritt et al. 2016). While it is not the
scope of this work to resolve these issues, we turned our attention
to the analysis of protein differences for those cases of confident
peptide detection. We found that the distribution of the type of
protein differences in the non-PI-ORFs with respect to the main
isoforms is similar to the predictions based on the PacBio se-
quencing data, except for N-terminal truncations that are at a dis-
advantage in a standard peptide detection approach. Most of
detected alternative ORFs showed major peptide changes com-
pared to the PI-ORFs of their respective genes, which could po-
tentially have an impact on functionality of the alternative
protein. While a detailed analysis of these functional differences
requires further computational and experimental approaches, the
results presented in this paper indicate that long-read technolo-
gies, provided adequate quality control is applied, are effective
tools for describing the isoform-resolved transcriptome and can
aid in the study of the biological significance of alternative
splicing.

Methods

Differentiation of NPCs and OPCs from neonatal mice

Neonatal C57/BL6mice (4 d old) were sacrificed and neural precur-
sor cells (NPCs) were isolated from the subventricular zone.
Neurospheres were obtained by culturing the progenitors inmedia
supplemented with EGF and bFGF and oligodendrocyte precursor
cells were derived from them by adding ATRA (All Trans Retinoic
Acid) as described in the Supplemental Methods section.

Transcriptome generation and quantification

Sequenced PacBio subreads were pooled together, and ToFU soft-
ware was used to obtain nonredundant transcripts. Default param-
eters were set to obtain Read of Insert, full-length classification of
RoIs, and ICE (Iterative Clustering for Error Correction) steps. The
Quiver option was turned on to improve consensus accuracy of
previously generated ICE clusters by using non-full-Length read
information. Generated HQ polished transcripts (>99% accuracy
after polishing) were collapsed to eliminate transcript redundancy
(5′ differences were not considered when collapsing transcripts).
This set of 5′ merged nonredundant transcripts was defined as
the ToFU transcriptome. TAPIS was run with default parameters,
except for the maximum intron length used by GMAP (version
2016-05-01), which was set to 200,000. Apart from the reference
genome, TAPIS requires the input of a transcriptome annotation
file, in this case, the RefSeq murine transcriptome. IDP corrects
long sequences through the incorporated LSC (Au et al. 2012)
module thatmaps high quality short reads to Iso-Seq long reads us-
ing Bowtie 2 (version 2.3.2) (Langmead and Salzberg 2012). The
parameters were set to default except for the aligner (GMAP; see
command line in Supplemental Methods) and the minimum iso-
form fraction value to accept a predicted transcript, which was
set to 5%. Transcript quantification using short reads was obtained
using STAR (Dobin et al. 2013) as the mapper and RSEM (Li and
Dewey 2011; Zhang et al. 2017) as the quantification algorithm
(parameters available at Supplemental Methods). Expression esti-
mates were obtained as transcript per million (TPM). Long-read
quantification was computed as the number of full-length reads
of each transcript divided by the total number of FLs of the sample.
Themost expressed transcript was defined as the transcript of each
gene that obtained the highest average TPM value across all the
samples. The relative coverage of a splice junction was defined as
the sum of all the reads mapped to the junction divided by the
sum of the expression of all the transcripts in which it is present.

Verification of transcripts by reverse transcription PCR

PCR amplification of selected transcripts was performedwith both
the sequenced full-length cDNA and newly synthesized cDNA
from the same RNA extractions. For new cDNA reactions, 1 µg of
total RNA was used to synthesize the first-strand cDNA using
SuperScript III (Life Technologies) primed with random hexamers
in a reaction volume of 20 µL, according to the manufacturer’s in-
structions. Each random hexamer cDNA synthesis reaction was
carried out at two temperature conditions: 42°C and 50°C. RT-
PCR reactions used 1 µL of sequenced full-length cDNA or 2 µL
of random hexamers cDNA, together with Biotools DNA
Polymerase (1U/µL) in a reaction volume of 50 µL. Primers were
designed to span the predicted splicing event using Primer-
BLAST (Supplemental Table 3; http://www.ncbi.nlm.nih.gov/
tools/primer-blast; Ye et al. 2012). PCR conditions were 5 min
at 94°C, followed by 35 cycles of 30 sec at 94°C, primer-specific an-
nealing temperature for 30 sec, and 72°C for 1min or 1min 30 sec,
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depending on the predicted product size. PCR amplification was
monitored on 1.5% agarose gel.

RT switching prediction

SQANTI contains an algorithm that implements the RT switching
(RTS) conditions described in Cocquet et al. (2006), namely, an
exon skipping pattern due to a retrotranscription gap caused by
secondary structures in expressed transcripts. The algorithm looks
at all the junctions for possible RTS (both canonical and nonca-
nonical junctions) and checks for a direct repeat pattern match
at defined sequence locations: The pattern at the end of the splice
junction’s 5′ exon must match the pattern at the 3′ end of the
splice junction’s intron. There are three parameters that control
pattern matching: (1) the minimum number of nt required to
match (4–10); (2) the number of nt of wiggle allowed from the ide-
al pattern location (0–3); and (3) whether to allow for a single mis-
match, indels or not. SQANTI uses as default parameters: a
minimum of 8-base-long repeat sequences, a maximum wiggle
of 1, and no mismatches. FSM transcripts with the highest mean
expression in each gene are assumed to serve as templates for
RTS and are excluded from the analysis.

ORF prediction and functional annotation

TheGMSTalgorithm (Tang et al. 2015)was applied to predictORFs
in PacBio transcripts, setting parameters to consider just the direct
strand of the cDNA and AUGs as the initial codon. As GeneMarkS-
T allows prediction in incomplete transcripts, lack of coverage at
the 5′ end caused some truncated ORFs starting in codons other
than methionine. In these instances, the ORF started at the first
in-frame methionine, shortening the N terminus. GMST was
benchmarked as shown in SupplementalMethods. GO annotation
of novel transcripts was done by Blast2GO (Conesa et al. 2005)
with default parameters and a query-hit overlap requirement of
90% of the hit sequence (Götz et al. 2008). Enrichment analysis
was performed with the hypergeometric test of the GOseq
(Young et al. 2010) R package.

Characterization of Alt-ORFs and Novel-ORFs with respect to PI-

ORFs and UTR/ORF variability

Microexon definition was restricted to novel amino acid stretches
obtained by in-frame indels or substitutions of nomore than 27 nt
(9 aa), following Irimia et al. (2014). ORFs showing exclusively N-
terminal or C-terminal deletions were labeled as N-Ter Deletion or
C-Ter Deletion ORFs. ORFs with indels and substitutions greater
than 9 aa, combined or not with N-Ter and C-Ter deletions, were
labeled as Major Change ORFs. ORFs that could not be aligned
against the PI-ORF of their respective genes were deemed as No
align ORFs. Two UTRs were considered to be different if they start-
ed in different genomic coordinates or if they shared a common
start point but had a length difference of more than 30 nt.

Machine learning classifier of artifacts based on SQANTI features

A machine learning approach was developed to discriminate arti-
facts from true novel transcripts utilizing SQANTI features. FSM
transcripts were used to define the set of positive transcripts, while
NNC-noncanonical transcripts were taken as the negative set. By
definition, the labeled sets (FSM and NNC-NC) contain only mul-
ti-exonic transcripts, and hence the classifier can only be applied
to this type of transcripts. From the total set of SQANTI transcript
descriptors, 16 variables defined for both novel and known tran-
scripts sequences were selected (Supplemental Table 1). SQANTI
transcript descriptors that relate to reference transcripts, structural

category classification, and canonical junction status were exclud-
ed because either they are irrelevant to the classification or they
were used to define the positive and negative transcript sets.
Variables with near zero variance or a correlation higher than 0.9
in the labeled sets were removed. The labeled set was divided
into a training set (80%) and a test set (20%) and algorithms
were run using down-sampling to equilibrate positive and negative
sets and 10×10 cross-validation. Several machine learning meth-
ods were tested (Adaboost [Schwenk and Bengio 2000], CART
[Breiman et al. 1984], Random Forest [Breiman 2001], SVM
[Cortes and Vapnik 1995], and Treebag [Loh and Shih 1997]) on
the mouse data that employed 7774 FSM, 1100 NNC-NC tran-
scripts, and 14 SQANTI descriptors (RTS_stage and coding vari-
ables were excluded in this data set due to low variability).
Random Forest (RF) was selected as the best performing approach
and run using 500 trees. This RF approach was also applied to the
PacBio maize ear (Wang et al. 2016) and human MCF-7 (PacBio)
data sets. For all data sets, we assessed the quality of the predictions
by ROC analysis and evaluated SQANTI quality descriptor perfor-
mance on the filtered transcriptome obtained after the application
of the classifier to the novel transcripts. For our mouse data
set, SQANTI filter performance was also evaluated on the 67 tran-
scripts tested by RT-PCR by computing ROC, F1-score, and FDR
values. The F-score was calculated as 2∗(Specificity∗Sensitivity/
[Specificity+Sensitivity]). The FDR was calculated as 100∗(FP/[TP
+FP]). Note that transcripts evaluated by RT-PCR were excluded
from the training set used to build the classifier.

SQANTI pipeline

SQANTI is implemented in Python with calls to R (R Core Team
2016) for statistical analyses and generation of descriptive plots.
The SQANTI program has two major functions: sqanti_qc.py and
sqanti_filter.py. The sqanti_qc.py function performs different tasks:
(1) It corrects transcript sequences based on the provided reference
and returns a corrected transcriptome; (2) it compares sequenced
transcripts with the current genome annotation to generate gene
models and classify transcripts according to splice junctions (a
full description of structural classification of isoforms can be found
in the Results section); (3) it predicts ORFs using GeneMarkS-T; (4)
it runs our algorithm to predict RT switching; and (5) it returns a
transcript level and junction level descriptive file. These files con-
tain 33 and 20 fields, respectively, where the three first fields iden-
tify the transcript in the reference genome and the remaining
fields describe different transcript/junction properties, making a
total of 47 SQANTI descriptors (Supplemental Tables 1, 2). sqanti_
filter.py uses the SQANTI features output to perform filtering of ar-
tifacts by two different approaches. The intra-priming filter option
removes transcripts with adenine stretches in the genomic posi-
tion downstream from their 3′ ends. The machine learning filter
trains a Random Forest classifier based on the user’s data following
the strategy described above. sqanti_filter.py returns a curated tran-
scriptome where artifact transcripts are removed. For the mouse,
maize (Wang et al. 2016), and MCF-7 (PacBio) data sets, the refer-
ence genomes used were mm10, AGPv4, and hg38, respectively.

Analysis of peptide support

We performed an in silico analysis of the peptide support for the
predicted ORFs in our neural transcriptome by analyzing public
proteomics databases. A nonredundant database composed of pre-
dicted ORFs from our murine transcriptome experiments and all
the murine ORFs annotated in Ensembl (v80) was created. These
ORFs were subjected to in silico tryptic digestion (Proteogest, com-
plete digestion). Unique peptideswere identified, andORFswith at
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least one unique peptide of 7 aa or more were annotated as identi-
fiable ORFs. We then used two different approaches to detect ex-
perimental Peptide to Spectrum Matches (PSMs) that match
unique peptides from our ORFs. The first approach made use of a
pipeline built on Pladipus (Verheggen et al. 2016), a platform
that allows for distributed and automated execution of bioinfor-
matics-related tasks, and performed an all-tissue search of mouse
proteomic studies (n = 36). The pipeline consists of pride-asap, a
tool designed to automatically extract optimal search parameters,
SearchGUI (Vaudel et al. 2011), a tool that manages the execution
of several search engines, and PeptideShaker (Vaudel et al. 2015), a
tool that allows for the merging of the results produced by the
search engines. For this study, X! Tandem (Craig and Beavis
2004), MyriMatch (Tabb et al. 2007), and MS-GF+ (Kim et al.
2008) algorithms were applied. The input spectra were obtained
from 36 murine projects in the PRIDE (Martens et al. 2005) data-
base. The second approach was based on the Sequest algorithm
(Eng et al. 1994) and screened large-scalemouse proteomics exper-
iments of brain tissue (Sharma et al. 2015) and astrocyte-secreted
proteins (Han et al. 2014). A more detailed description of these ap-
proaches is available in Supplemental Methods.

RNA extraction, full-length cDNA library preparation,

and sequencing

Total RNA isolation from cultured cells (two biological replicas per
cell type) was donewith theNucleospin RNA kit (Macherey-Nagel)
obtaining RINs (RNA IntegrityNumbers) between10 and 9.7 for all
samples. The synthesis of full-lengthcDNAwasperformedwith the
SMARTer PCR cDNA Synthesis kit (Clontech, version 040114) fol-
lowing PacBio recommendations. The cDNA synthesis protocol
used 1 µg of total RNA, 42°C for retrotranscription, and 13 PCR am-
plification cycles to control for overamplification of small frag-
ments. For each sample, we performed two first-strand cDNA
synthesis reactions and nine PCR reactions using 10 µL of first
strand cDNA (diluted 1:5 in TE-buffer) to obtain ∼14–16 µg full-
length cDNA per sample. Each sample was submitted to the ICBR
sequencing facility (University of Florida) for PacBio sequencing
(P4-C2 chemistry). Three cDNA fractions were obtained with
BluePippin and sequenced on the RSII instrument using two
SMRT cells for the 1–2 kb fraction, and three SMRT cells for 2–3
and 3–6 kb fractions, for a total of eight SMRT cells per sample.
Additionally, the same samples were sequenced with the
Illumina NextSeq instrument using Nextera tagmentation and
2×50 paired-end sequencing.

Data access

Sequencing data from this study have been submitted to the NCBI
Sequence Read Archive (SRA; https://www.ncbi.nlm.nih.gov/sra)
under study accession number SRP101446.
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