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Abstract – Network virtualization and softwarizing network functions, are trends aiming at higher network 
efficiency, cost reduction and agility. They are driven by the evolutions in Software Defined Networking 
(SDN) and Network Function Virtualization (NFV). This shows that software will play an increasingly 
important role within telecommunication services, which were previously dominated by hardware 
appliances. Service providers can benefit from this, as it enables a faster introduction of new telecom 
services, combined with an agile set of possibilities to optimize and fine-tune their operations. However, 
the provided telecom services can only evolve if the adequate software tools are available. In this article, 
we explain how the development, deployment and maintenance of such an SDN/NFV-based telecom 
service puts specific requirements on the platform providing it. A Software Development Kit (SDK) is 
introduced, allowing service providers to adequately design, test and evaluate services before they are 
deployed in production and also update them during their lifetime. This continuous cycle between 
development and operations, a concept known as DevOps, is a well-known strategy in software 
development. To extend its context further to SDN/NFV-based services, the functionalities provided by 
traditional cloud platforms are not yet sufficient. By giving an overview of the currently available tools 
and their limitations, the gaps in DevOps for SDN/NFV services are highlighted. The benefit of such an SDK 
is illustrated by a secure content delivery network service (enhanced with deep packet inspection and 
elastic routing capabilities). With this use-case, the dynamics between developing and deploying a service 
are further illustrated. 
 
Keywords: Network Function Virtualization, Software Defined Networking, Service Function Chaining, 
Software Development Kit, DevOps, SDN/NFV-based telecom service 

1 Introduction 
Modern-day telecom services show an increasingly dynamic behavior, causing network operators and 
service providers to adopt a more unified and elastic deployment approach. They move away from 
(vendor-) specific hardware middleboxes at centralized locations and instead use resource virtualization, 
distributed cloud-based platforms and global partnerships to respond efficiently to market demands. 
Economic viability requires high automation and scalability of resources, while still meeting stringent 
customer requirements such as: fast deployment, zero perceivable interruption and high personalization 
of services [1]. In this context, we investigate how to provide telco-grade solutions for the service 
development process.  
 

1.1 The Evolution of SDN/NFV Development 
A full-fledged development environment for NFV/SDN-based services builds upon the evolutions in three 
overlapping areas: programming languages or software tools in general, SDN/NFV related techniques and 
service platforms [2]. Figure 1 describes this evolution. NFV/SDN-based network services rely on a wide 
set of standards and technologies ranging from virtualization and network programming techniques to 
automation and monitoring tools. Auxiliary features help to deploy, configure and scale the service 
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components in different infrastructure environments. An all-inclusive role is played by the Management 
and Orchestration (MANO) platforms, providing functions for automated deployment and operation of 
network services. This calls for dedicated support to adequately test and debug those service control 
mechanisms, before they are actually deployed in production.  
 

 
Figure 1: Evolution of the SDN/NFV eco-system. Growing functionality integration and abstraction 

require a growing set of dedicated tools for development, testing and debugging. 

 
The next step would be to consolidate all these discrete NFV/SDN related tools into a unified SDK 
environment. But before we select the most interesting tools, let us have a deeper look into the specific 
components and characteristics of a modern network service. 
 

1.2 Service Function Chaining 
NFV and SDN are two main advancements that fundamentally change the way how network services are 
deployed. NFV aims at softwarizing (hardware-based) network functionalities like: packet filtering and 
forwarding, Network-Address-Translation (NAT), Quality-of-Service (QoS) management, WAN 
optimization… The new Virtualized Network Function (VNF) is now an isolated software ‘image’, ready to 
be deployed on generic, common-of-the-shelf servers. The infrastructure is now virtualized, enabling 
more fine-grained ways to consume compute, storage, and network resources. Complementary to NFV, 
SDN allows flexible and easier control of the networking between VNFs. The intelligence or algorithm 
which decides where traffic should be steered to, is implemented in a separate, over-looking control entity 
or SDN-controller. This control plane instructs the underlying packet forwarding devices or data plane 
using a well-defined protocol such as Openflow or NETCONF. The result is a centralized and programmable 
network management. 
 
The flexibility provided by above described technologies, leads to the concept of Service Function Chaining 
(SFC). VNFs are deployed on infrastructure nodes which can be located at both the network edge and 
core. The telco-grade network service is now deployed as a chain of VNFs, dynamically connected into 
various topologies, as SDN provides ways to programmatically setup network links between several 
servers in one or more data centers. In the next section, we sketch a practical example of this.  
 

NFV service programming models: 
TOSCA, ETSI-NFV, Heat, JuJu, …

SDN based network programming: 
Openflow, Frenetic, Merlin, P4, …

Application programming:
C,    C++,     Java,    Python,  HTML, 
PHP, Ruby, Node.js, Go, …                

Networking test tools:
ping, tcpdump, traceroute, iperf, tcpreplay, 
scapy,  wireshark, ostinato, TRex… Optimized software-based packet processing:

OpenvSwitch, netmap, DPDK, SR-IOV, FD.io …

VIM APIs:
OpenStack API, Google Cloud Platform (gcloud), 
Azure CLI, Amazon AWS CLI, …

SDN controllers:
Ryu, OpenDaylight, OpenContrail, ONOS, …

VNF implementations:
Click, quagga, Snort, pfsense, squid, …

Virtualization techniques and tools:
VM-based: KVM, Vmware, VirtualBox, Vagrant, …
Container-based: LXC, Docker, rkt, …

MANO platforms:
Cloudify, Open-MANO, UNIFY, T-NOVA, 
Open-Baton, OSM, SONATA, ONAP…

Operating systems or hardware platforms 
(server/mobile) :
Windows, Linux, iOS, Android, x86, ARM, FPGA…

Container orchestration platforms:
Kubernetes, Docker Swarm, Nomad, Mesos, 
OpenStack Magnum,  …

Configuration management:
Chef, Puppet, Ansible, …

Network and compute simulation/emulation:
ns-3, Omnet++, CloudSim, Mininet, MeDICINE, …

Service Platform evolution

Monitoring tools and frameworks:
NetFlow, sFlow, Nagios, Prometheus, 
Graphite, Grafana …

NFV development and deployment:
SONATA, ECOMP, ONAP, OPNFV, OSM, 
NGPaaS …

Automated SW deployment and testing:
Jenkins, Travis, Cucumber…

Agile SW management and issue tracking:
GitHub, JIRA,  …

Software evolution SDN/NFV evolution
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1.2.1 Example Use-Case: Secure Content Delivery 
To illustrate better the dynamics enabled by NFV, SDN and SFC, a typical telco service example is given in 
Fig. 2. It is a secured Content Delivery Network (CDN) where service subscribers can both download and 
upload content using their local user applications. Downwards, media can be streamed from a cloud VM 
which serves as a central database, or from Cache-VNFs which cache often streamed data in edge servers 
for faster delivery. Upwards, end-users push content to the cloud VM, by first passing through a Deep 
Packet Inspection (DPI)-VNF for security reasons. Both DPI and Cache VNFs are deployed in a distributed 
way, near the network edge, which enables better quality of experience by locating these functions closer 
to the (mobile) end-users. A Router-VNF aggregates the traffic before it reaches the cloud VM. The Router 
allows easier measurement of parameters like data volume, needed for billing or Service-Level-Agreement 
(SLA) monitoring. It isolates the service-dedicated routing process into a dedicated VNF. In case of flash 
crowds or other sudden data volume changes, the different VNFs can elastically scale, in function of the 
needed packet rate. We will use this use-case throughout the article to illustrate how SDN/NFV-based 
services are deployed and how this impacts their development environment. 
 

 
Figure 2. Example of an SDN/NFV-based Service Function Chains providing a secure CDN where each 
network function is implemented as a VNF. 
 

1.3 Cloud Application vs. SDN/NFV-based Service 
We want to highlight that SDN/NFV-based telecom services extend the classic cloud applications to many 

additional domains. Cloud applications are generally application-layer based, with a three-tier 

architecture consisting of a web-, application- and database server in the backend. A local or mobile device 

is used in the frontend. Moreover, cloud application software is typically not tuned for rapid lower-layer 

packet processing, needed in for example DPI, Cache or Router VNFs. Instead, cloud apps focus on 
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endpoint functionality like web applications. The generic cloud eco-system is basically a connection from 

user to data center, where the network infrastructure in between is not leveraged. This is different from 

the SFC example in Fig. 2, where orchestration also needs to reach the access and core networks. A wider 

orchestration domain enables better optimization regarding the placement and resource use of the 

network functions, especially in case of large-scale services where many users are distributed over 

multiple access networks. It is envisioned that next generation of telecom services will rely heavily on 

dynamic service chains in the provider networks [1].  

Cloud applications have limited, often single data center, orchestration possibilities. Therefore only sub-

optimal scaling strategies can be used in certain cases. Typically this means cloning VNF images and 

putting a load-balancer in front of them, or adding more resources to the VNF like CPU and memory. In 

high-speed NFV-based services, adding a load-balancer is not always optimal, because a simple load-

balancing action might have a processing cost in the same order as the original packet-handling itself, thus 

not leading to any improved processing speed. Instead, placing the VNFs closer to the edge might prove 

a better solution, as shown with the DPI and Cache VNFs in Fig. 2. During scaling, stateful VNFs might also 

require a more intelligent state migration strategy instead of simple cloning. The foregoing indicates that 

pre-defined auto-scaling and data-analytics provided by the operator do not always unlock the full 

potential of NFV/SDN-based services. Customized and service-specific actions defined by the service 

developer can handle certain lifecycle events more optimally by controlling scaling and placement 

mechanisms more closely [3, 4]. 

In the remainder of this article, section 2 discusses the different actors and position of the SDK in the 
telco-grade eco-system. In section 3, we detail the necessary features for the SDK environment to support 
all aspects of the SDN/NFV-based network service in practice. We conclude in section 4 with an overview 
of the SDK’s challenges and opportunities.  

2 The Service Development and Deployment Process 
To understand the requirements for the SDK environment, we give an overview of the deployment 

process of NFV/SDN-based services, as presented in Fig. 3. We categorize three main groups of 

stakeholders in the service’s lifecycle: Vendors or Service Developers use the SDK to create or edit 

services and package them, ready to deploy. The Operator or Service Provider receives the service 

package compiled by the SDK. They deploy and manage the service in its operational state by addressing 

the Infrastructure Providers at the bottom, to lease the necessary compute, storage and network 

capacity. The economic viability of a network service improves greatly if these virtualized resources can 

be optimally scaled to fit real-time performance needs, without any noticeable interruption for the service 

users. The operational cost would also further decrease if the service is controlled and managed 

automatically. NFV and SDN have proven added value regarding resource virtualization and automated 

network control, and the SDK should assist in integrating these technologies. Moreover, vendors have 

proprietary knowledge about how the service internally works, while operators have their own private 

systems to deploy and manage the service. The SDK offers a way to bridge this gap by facilitating the 

interfacing between the involved parties and allowing closer cooperation during the service’s lifetime. 
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2.1 The MANO Platform 
Service Operators need to have an adapted deployment system to support the dynamicity enabled by 

NFV/SDN.  Such a system is the Management and Orchestration (MANO) platform, as can be seen on Fig. 

3. In accordance with the ETSI1 defined framework for management and orchestration [5], the high-level 

functional blocks are these: 

- The NFV Orchestrator (NFVO) maintains a global overview of the service topology. It calculates 
the placement and orchestrates the (scaled) VNFs and network links onto the available 
infrastructure. In the described use-case, the NFVO would decide where the Cache and DPI VNFs 
would be placed in the available access networks. 

- The VNF Manager (VNFM) controls the lifecycle events of a single VNF such as instantiation, 
configuration and scaling. The VNFM of the Router in the selected use-case, could decide to scale 
in or out according to the required traffic rate. 

- Virtualized Infrastructure Manager (VIM) adapters provide the NFVO and VNFM an interface to 
control the compute and storage nodes. Specialized VIMs control the network between the 
different infrastructure nodes or cloud data centers: a centralized SDN-controller for example, to 
setup the required links between VNFs in different access networks. 
 

The communication between the different modules in the MANO platform happens by using pre-defined 
messages over a message broker, or the modules address each other’s API directly. Additional features 
related to monitoring and automated healing of network services are also possible parts of the MANO 
framework [6]. 
 
Some of the automated NFVO and VNFM control functionalities, such as VNF startup and shutdown, can 
be quite generic. Other VNF lifecycle events, such as configuration, updating, migration or scaling, are 
likely to include very service-specific logic, custom-built by the developer. Therefore MANO platforms 
would need to plug-in customized control functions, shown in Fig. 3. Each service has its own NFVO and 
each VNF has its own VNFM. Suppose a scale-out would be required as traffic increases: The scaled-out 
topology is calculated by the specific VNFM, orchestrated by the service’s NFVO and deployed using the 
involved VIM adapters. A more detailed explanation of the MANO framework is out of the scope of this 
article, but it is important to understand that the modular approach and split-up of the various service 
management and control features must be taken into account during service development.  

                                                           
1 ETSI, NFV research group, https://irtf.org/nfvrg, accessed on 27 June 2017 

https://irtf.org/nfvrg
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Figure 3: The SDK produces a Service Package which describes the chained VNFs in the network service 
and the required functions for customized management and control. This is deployed through the Service 
Provider’s MANO platform.  
 

2.2 The Service Package 
To abstract the wide range of deployment and operational aspects of an SDN/NFV-based service, a 
programming model is helpful [7]. Essentially, network services can be seen as graphs, like the SFC 
example in Fig. 2. The VNFs are the nodes which can be enriched with annotations such as their resource 
requirements (number of CPU cores, amount of memory and storage), or other requirements like high 
availability. The edges are the links in the infrastructure network, specified by necessary bandwidth or the 
maximum delay, further constraining the placement in the physical infrastructure. Other abstractions, like 
network resiliency, can be mapped to redundant link configurations for example. Several flavors of such 
a model are being devised by ETSI-NFV [5] and several research projects such as UNIFY, T-NOVA, OSM and 
SONATA. Also open-source initiatives like TOSCA and OpenStack/HEAT have own models. 
 
The service package includes everything needed to deploy the service in the operator’s environment and 

bridges the boundary between vendors and operators. Figure 3 shows that the package should at least 

consist of: 

- References to the actual VNF images to deploy on the infrastructure. 

- A service graph that describes how the VNFs in the service are connected.  
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- All service or VNF specific logic in the form of NFVOs or VNFMs that can be plugged into the 

operator’s platform. 

Optionally, a definition of the expected feedback from the operator can be added. This can include a set 

of metrics to be monitored or certain alarms, triggered by a given threshold. Also shown in Fig. 3 is how 

multiple, in parallel deployed, service packages support a multi-tenancy scenario. In our example a second 

service using only DPI and Router VNFs is added, reaching a second VM in the cloud data center. The 

modules of the service package are developed by the vendor, and the operator should deploy all 

components on the infrastructure while respecting the constraints defined in the service package. It can 

be seen that service abstraction into packages allows vendors and operators to work in much closer 

collaboration, with still enough room for proprietary knowledge on either side. The role of the SDK is to 

support the creation and validation of this service package. 

2.3 Telco-grade DevOps 
The softwarized nature of SDN/NFV-based services, makes them a good fit for DevOps processes. A well-

known methodology from the IT-world for building and maintaining software projects, but now applied 

to a collaboration between network service developers and telecom operators [4, 6]. At a high level, it 

resembles the “design for manufacturing” engineering concept, where the design facilitates the 

manufacturing process [1]. But in a telco-grade solution, the design should facilitate the operator’s 

deployment. As explained above, the service package allows the operator to deploy the modular service 

on its own MANO platform. By using the SDK, the vendor or service developer has the ability to do 

operation-aware development and testing: After deployment, monitoring data can be analyzed to detect 

failures and debug any VNF or service-related functionality. As shown in Fig. 4, the service can re-iterate 

through the SDK, where it is edited and packaged again with any needed updates. This also enables 

continuous integration and continuous deployment (CI/CD), another common practice in software 

development. CI/CD merges development with testing, allowing to build code collaboratively and 

automatically check for issues. Figure 4 also depicts that an execution environment can be chosen from 

the SDK, so the service can be checked in parallel to production. The SDK features are detailed in the next 

section. 

3 Introducing SDK Features for SDN/NFV - based Services 
In the previous section we have explained how the service package enables an open interface between 

vendors and operators. As depicted in Fig. 4, we use the service package to implement two main 

categories of SDK features:  formal pre-deployment checks and a functional verification of the service. 

The toolset allows a developer or vendor to fully validate service updates and minimize the risk of failures, 

before deployed in production. 
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Figure 4: The SDK can edit and verify different parts of the service package before initiating service 
deployment in various execution environments. 
 

3.1 Formal Verification Methods 
By using formal verification methods, the service package can be logically checked for correctness, to 

make sure that the MANO platform is able to accept and deploy the network service. Service Graph 

Analysis can report issues such as invalid connection points, repeated paths and existence of cycles in the 

forwarding graphs which provide hints about the service integrity and deployability. The severity of a 

found issue may also depend on the VNF’s capabilities, e.g. a cycle in a forwarding graph may not be 

problematic if an involved VNF is able to steer traffic and avoid endless loops. Possible bottlenecks for 

network congestion can be detected by analyzing the requested bandwidth for each link in the service 

and the performance specifications of the VNFs. If the SDK is tightly coupled to the targeted MANO 

platform, a formal Control Function Analysis can verify the code correctness or malicious code presence 

in any custom VNFM and NFVO. For example, it might be required that they are based on provided 

templates or parent classes, to make sure that they can be plugged into the MANO platform used by the 

operator. Practically, formal methods can be integrated into editors for generating network service 

descriptions. They can also be reused at the MANO entry point, to validate incoming service packages.  

Previously validated functions or templates can be made available via a Catalogue for easy access by the 

SDK and integration into new services. Different data modelling languages can be used to define a service 

description (e.g. XML, JSON, YANG, YAML). With an associated schema, formal verification of the 

descriptor itself can be done. The integrity is further examined by ensuring all VNF references and images 

are accessible. Finally, the service model is packaged by the SDK, meaning that all required information to 

deploy the service is compiled into one single entity. By pushing the service package to the MANO 
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platform, it is not needed to replicate all deployment mechanisms inside the SDK. For added security the 

package can be digitally signed, to trust that it was created by a known user, and to check if the package 

file was altered. The same key pair used for signing the package can also be used for user management in 

the execution environment to authenticate and authorize the SDK user. This adds a level of security to 

verify if the pushed package can be trusted or not. 

 

3.2 Functional Verification Methods 
As shown in Fig 4, the SDK has one main southbound interface: an adapter to push the service package 

to multiple execution environments. On one hand, deployment goes through the operator’s MANO 

platform (e.g. leasing operation-qualified hardware configurations or operating system versions).  On the 

other hand, a local emulation or simulation environment [8-10] can be used as a sandbox to test the 

service. This is likely to be less performant, but can be a cheaper and easier alternative for quickly checking 

basic functionality, to try configuration settings or generate test traffic in (parts of) the network service.  

To gain operational insights, monitor data can be received through a second interface of the SDK 
platform. This interface can also be used to query the internal state of a VNF. Monitoring agents or traffic-
generating test VNFs could be inserted at any location in the service, by simply updating the service graph. 
Mathematical techniques from regression analysis or machine learning can be used to process the 
monitored metrics through Performance Profiling of the VNF [11]. The performance profile enables 
predictable VNF performance and optimized resource usage. Automated scaling functions manipulate the 
service graph, as exemplified in Fig. 3 by load-balancing, hub-and-spoke or full-mesh topologies which can 
be seen as templates where any VNF can be plugged-in to. The SDK could provide these templates to the 
developer for integration into a custom scaling algorithm. If the scaled topology is combined with the 
VNFs’ profiling data, the performance of the scaled topology can be estimated before it is deployed. 
 
With a minimized pay-per-use cost model, over-provisioning should be limited and scaling algorithms 
must be well tested and fine-tuned. The Emulation of Service Control Functions in the SDK can reveal for 
example bugs in the service-control functions (VNFM, NFVO) that cause an exponential cost increase 
because too many resources are requested. To investigate placement algorithms, the SDK is not required 
to implement the full orchestration. It would be sufficient to check the NFVO function’s graph output, 
showing onto which infrastructure nodes the VNFs in the service are mapped. A graph visualization in the 
SDK, could for example be helpful to evaluate the outcome of these algorithms. As shown in Fig. 4, the 
graph output of the service’s control functions can in fact be fed back into the SDK’s formal analysis tools 
for verification. 
 

3.3 SDK Use-Case: Horizontal and Vertical Scaling 
We revisit the SFC example of Fig. 2 to investigate how an SDK environment could support this service. 
Different aspects are highlighted in Fig. 5: Custom horizontal scaling is implemented on the Router VNF, 
which aggregates most of the service traffic and will therefore be more prone to changing loads (such as 
temporarily popular streams or night/day differences). The router VNF is made elastic, it changes the 
number of dedicated data-plane servers to forward the traffic. After deploying the updated topology, the 
forwarding tables in the new data-plane servers are configured accordingly. Details on the 
implementation can be found in [12]. A local emulation environment [10] is used to audit the scaling 
algorithm under test-traffic. By monitoring the throughput rate and packet loss of the elastic router, the 
scaling procedure can be validated. Additionally, updated placement or custom orchestration is 
implemented by the NFVO. More or less DPI and Cache VNFs can be part of the service, in function of the 
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location and amount of service users. By checking the service graph modifications, the custom NFVO 
algorithm can be verified in the SDK. 
 
The vertical scaling capabilities of the Cache VNF are also examined in Fig. 5. Using the automated 
profiling features demonstrated in [13], the throughput of the Cache VNF is tested under increasing CPU 
resource allocation. After statistically analyzing the time-series data, the SDK generates a more 
comprehensible way to describe the performance of the VNF. This helps to define the resource boundaries 
for a specific VNF performance. The performance thresholds can be filled in a VNFM function that will 
assign the required resources and optionally re-configure the VNF to use the newly allocated resources. 
Also, while testing the VNF under different resource allocations, implementation issues can be discovered 
[8] e.g. Is multi-threading support working correctly? Is the performance scaling linearly while adding 
resources?  
 
This use-case exemplifies how the SDK should assist in validating the custom VNFM or NFVO control 
functions that can be plugged into the MANO platform. Using an execution environment, configuration 
and operation is functionally tested. At the end of the development process, a fully validated service 
package with highly automated control functions can be handed over to the operator/MANO platform. 
 

 
Figure 5: Custom control functions for the CDN service that can be created and validated using the SDK.  
 

3.4 Limitations in Existing SDK Environments 
Future NFV-based service deployments must tackle a wide spectrum of use-cases [2] (e.g. the 5G, IoT or 
Telco related service space). Customizable management and control is therefore an inevitable aspect of 
the service platform and should be supported from the design-phase onwards. Existing SDKs focus 
primarily on cloud applications, which have a very different nature compared to network services. Major 
commercial cloud providers follow a simplified model in their SDK. (i) One part of the toolset focuses on 
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the application development: operating system or programming language specific. (ii) Another part helps 
the developer to connect to the data center, deploy the application and monitor it. Some cloud platforms 
support the execution of custom event handling code through the use of certain hooks inside the 
application2. There is however no test-environment available to trigger and validate the custom event 
handlers, without fully deploying the service.  
 
Distinct open-source tools implement a specific part of the envisioned SDK environment, such as monitor 
data analysis [12, 13]. Adapters for light-weight or specialized environments [8-10] can deploy chained 
virtual machines or containers for testing or emulate the execution of service control functions on large 
scale data center topologies. A federated testbed uniting different technologies and administrators, is 
described in [14]. This shows the practical implementation of a distributed test-infrastructure across 
multiple owners.  
 
Existing NFV technology overviews [2] can be updated with new concepts of customizable service 
management, implemented by recent open-source projects. The focus shifts to telco-grade NFV, beyond 
cloud provider functionality as mentioned earlier.  Both UNIFY [3] and SONATA [4] define a MANO 
architecture that allows custom, service-specific control functionality, like scaling, configuration and 
placement. UNIFY has a SP-DevOps toolkit [6] for post-deployment troubleshooting and SONATA provides 
a pre-deployment tool-chain to describe, validate and package complete service chains [13]. OSM3 and 
ONAP4 are MANO platforms devised by industry-driven consortia, and have a clear roadmap towards an 
NFV-related SDK. Like SONATA, they both offer a set of design-time tools for easy service graph editing 
and packaging. ONAP additionally implements a Policy Subsystem that allows the creation of easily-
updatable conditional rules, executed by ONAP’s own control, orchestration, and management functions. 
A formal validation can detect policy conflicts. This framework, as explained in [15], implies however that 
the execution of the policy rules is embedded into ONAP and not modifiable by the service developer. The 
VNF management is enhanced by OSM and Open-Baton5 with a set of libraries to implement a VNFM with 
specific VNF configuration scripts and an interface to the NFVO. Recent initiatives such as OPNFV and 
NGPaaS focus on facilitating NFV development and deployment across multiple open source eco-systems. 
Neither of the described platforms has already full development support for integrating customized 
service control. 

4 Challenges and Opportunities 
To avoid the need for bulky and unified development software, we proposed a limited but specialized 
feature-set for the SDK, built around the service package, as illustrated in Fig.4. This development 
environment is extended with key functional verification tools, based on feedback analysis of monitor 
data and VNFM/NFVO output. The main features are summarized in Table 1. We see however some 
challenges to fit the SDK into the real-world telco eco-system: 
 

- A DevOps mindset between operators and vendors should be cultivated, bringing the Ops 
environment closer to development. 

                                                           
2 Implementing custom lifecycle events can be done by e.g. Cloudify Lifecycle Events, AWS Lifecycle Hooks, Azure 
Functions webhooks, and service control using Google Cloud App Engine. 
3 Open-Source-MANO (OSM): https://osm.etsi.org/ (Accessed on 11 Sept 2017) 
4 The Open Network Automation Platform (ONAP): https://www.onap.org/ (Accessed on 11 Sept 2017) 
5 Open-Baton: Open-Source MANO framework: http://openbaton.github.io/ (Accessed on 11 Sept 2017) 

https://osm.etsi.org/
https://www.onap.org/
http://openbaton.github.io/
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- The same service package formats should be supported by the operator’s MANO platform and 
the SDK. This would require a consolidation of several existing service package formats or the 
need for multiple package format translators. 

- Security risks should be mitigated by authorization and authentication of the SDK user when 
pushing to the operator’s environment. Possible exploits in the service control functions must be 
detected before deployment e.g. infinite scaling, unauthorized access to resources.  

- Workflows for generic VNF tasks (orchestration, networking, start, update, terminate) should be 
defined and guaranteed by the MANO platform, taken out of the hands of the SDK. 

- VNFs should be developed with elasticity in mind. 
 

The proposed SDK environment creates however many opportunities to optimize the service lifecycle: 

- Modeling and packaging the service leads to easier validation, re-usability and (re-)deployment 
speedup. 

- Monitoring and profiling tools allow a reliable reproducibility and definition of the service 
performance. 

- Creating customized placement and scaling algorithms enable a more optimized resource usage. 
- Implementing highly automated management functions decreases operational cost. 
- Supporting a clear service package format lowers the barrier between vendors and operators. 
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Key Components 
SDN/NFV related 

aspect 
SDK features 

Service Package Network 
Functions (VNFs) 

-Support for NFV specific program languages, APIs or libraries 
-VNF state verification 

Networking 
control 

-Support for SDN specific program languages, APIs or libraries 
-Visualization of the network state 

Service 
programming 
model 

-Service/VNF catalogue 
-Re-usability of service templates 
-Formal pre-deployment check 
-Compilation into an easy-to-deploy service package 
-Graphical verification of customized service graphs 

Custom service 
control functions 
(NFVO/VNFM) 

VNF 
configuration 

-Programming support for NFVO/VNFM functions, tightly coupled 
to the MANO platform. 
-Sandbox/emulator environment to test the VNF interfaces 

Custom scaling 

-Simulation of scaling triggers 
-Customization of VNFM templates for high-availability (auto--
scaling, load-balancing) 
-Verification of custom state migration procedures 

Custom 
placement 

-Simulation of VNF orchestration 
-Verification of NFVO output 
-Visualization of the deployed service graph mapped on the 
available infrastructure 

Supporting 
functions Monitored data 

-Packet stream analysis 
-Data analytics (Regression Analysis, Machine Learning) 
-Generation of custom test traffic and monitoring VNF/service 
metrics 

Performance 
profile 

-Generation of a reliable VNF performance profile  
-Capacity estimation and optimized resource planning 
-VNF Benchmarking 

Table 1: Specific aspects of SDN/NFV-based services, whose development is assisted by new SDK 
features. 

As advances in SDN and NFV help to transform telecom services into software-based network function 

chains, it is important that development tools keep up with this evolution. The holistic setup of the 

SDN/NFV-based service implies that different artefacts can be part of the service package, including elastic 

scaling mechanisms and possible resource and placement constraints. It requires a generic service 

programming model that is not yet standardized. While building further on DevOps principles and existing 

NFV architectures, we identified new SDK features to streamline the development and deployment of 

modern virtualized telecom services. We hope the presented development flow can give further 

directions to the ongoing research in SDN/NFV-based service creation. 
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