
Page | 1/15

Introducing Development Features for Virtualized Network Services
Steven Van Rossem, Wouter Tavernier, Didier Colle and Mario Pickavet and Piet Demeester
Authors are with Ghent University - imec, IDLab, Department of Information Technology
iGent Tower - Department of Information Technology
Technologiepark-Zwijnaarde 15, B-9052 Ghent, Belgium
Email: {steven.vanrossem, wouter.tavernier, didier.colle, mario.pickavet, piet.demeester} @ugent.be

Abstract – Network virtualization and softwarizing network functions, are trends aiming at higher network
efficiency, cost reduction and agility. They are driven by the evolutions in Software Defined Networking
(SDN) and Network Function Virtualization (NFV). This shows that software will play an increasingly
important role within telecommunication services, which were previously dominated by hardware
appliances. Service providers can benefit from this, as it enables a faster introduction of new telecom
services, combined with an agile set of possibilities to optimize and fine-tune their operations. However,
the provided telecom services can only evolve if the adequate software tools are available. In this article,
we explain how the development, deployment and maintenance of such an SDN/NFV-based telecom
service puts specific requirements on the platform providing it. A Software Development Kit (SDK) is
introduced, allowing service providers to adequately design, test and evaluate services before they are
deployed in production and also update them during their lifetime. This continuous cycle between
development and operations, a concept known as DevOps, is a well-known strategy in software
development. To extend its context further to SDN/NFV-based services, the functionalities provided by
traditional cloud platforms are not yet sufficient. By giving an overview of the currently available tools
and their limitations, the gaps in DevOps for SDN/NFV services are highlighted. The benefit of such an SDK
is illustrated by a secure content delivery network service (enhanced with deep packet inspection and
elastic routing capabilities). With this use-case, the dynamics between developing and deploying a service
are further illustrated.

Keywords: Network Function Virtualization, Software Defined Networking, Service Function Chaining,
Software Development Kit, DevOps, SDN/NFV-based telecom service

1 Introduction
Modern-day telecom services show an increasingly dynamic behavior, causing network operators and
service providers to adopt a more unified and elastic deployment approach. They move away from
(vendor-) specific hardware middleboxes at centralized locations and instead use resource virtualization,
distributed cloud-based platforms and global partnerships to respond efficiently to market demands.
Economic viability requires high automation and scalability of resources, while still meeting stringent
customer requirements such as: fast deployment, zero perceivable interruption and high personalization
of services [1]. In this context, we investigate how to provide telco-grade solutions for the service
development process.

1.1 The Evolution of SDN/NFV Development
A full-fledged development environment for NFV/SDN-based services builds upon the evolutions in three
overlapping areas: programming languages or software tools in general, SDN/NFV related techniques and
service platforms [2]. Figure 1 describes this evolution. NFV/SDN-based network services rely on a wide
set of standards and technologies ranging from virtualization and network programming techniques to
automation and monitoring tools. Auxiliary features help to deploy, configure and scale the service

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/188648308?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Page | 2/15

components in different infrastructure environments. An all-inclusive role is played by the Management
and Orchestration (MANO) platforms, providing functions for automated deployment and operation of
network services. This calls for dedicated support to adequately test and debug those service control
mechanisms, before they are actually deployed in production.

Figure 1: Evolution of the SDN/NFV eco-system. Growing functionality integration and abstraction

require a growing set of dedicated tools for development, testing and debugging.

The next step would be to consolidate all these discrete NFV/SDN related tools into a unified SDK
environment. But before we select the most interesting tools, let us have a deeper look into the specific
components and characteristics of a modern network service.

1.2 Service Function Chaining
NFV and SDN are two main advancements that fundamentally change the way how network services are
deployed. NFV aims at softwarizing (hardware-based) network functionalities like: packet filtering and
forwarding, Network-Address-Translation (NAT), Quality-of-Service (QoS) management, WAN
optimization… The new Virtualized Network Function (VNF) is now an isolated software ‘image’, ready to
be deployed on generic, common-of-the-shelf servers. The infrastructure is now virtualized, enabling
more fine-grained ways to consume compute, storage, and network resources. Complementary to NFV,
SDN allows flexible and easier control of the networking between VNFs. The intelligence or algorithm
which decides where traffic should be steered to, is implemented in a separate, over-looking control entity
or SDN-controller. This control plane instructs the underlying packet forwarding devices or data plane
using a well-defined protocol such as Openflow or NETCONF. The result is a centralized and programmable
network management.

The flexibility provided by above described technologies, leads to the concept of Service Function Chaining
(SFC). VNFs are deployed on infrastructure nodes which can be located at both the network edge and
core. The telco-grade network service is now deployed as a chain of VNFs, dynamically connected into
various topologies, as SDN provides ways to programmatically setup network links between several
servers in one or more data centers. In the next section, we sketch a practical example of this.

NFV service programming models:
TOSCA, ETSI-NFV, Heat, JuJu, …

SDN based network programming:
Openflow, Frenetic, Merlin, P4, …

Application programming:
C, C++, Java, Python, HTML,
PHP, Ruby, Node.js, Go, …

Networking test tools:
ping, tcpdump, traceroute, iperf, tcpreplay,
scapy, wireshark, ostinato, TRex… Optimized software-based packet processing:

OpenvSwitch, netmap, DPDK, SR-IOV, FD.io …

VIM APIs:
OpenStack API, Google Cloud Platform (gcloud),
Azure CLI, Amazon AWS CLI, …

SDN controllers:
Ryu, OpenDaylight, OpenContrail, ONOS, …

VNF implementations:
Click, quagga, Snort, pfsense, squid, …

Virtualization techniques and tools:
VM-based: KVM, Vmware, VirtualBox, Vagrant, …
Container-based: LXC, Docker, rkt, …

MANO platforms:
Cloudify, Open-MANO, UNIFY, T-NOVA,
Open-Baton, OSM, SONATA, ONAP…

Operating systems or hardware platforms
(server/mobile) :
Windows, Linux, iOS, Android, x86, ARM, FPGA…

Container orchestration platforms:
Kubernetes, Docker Swarm, Nomad, Mesos,
OpenStack Magnum, …

Configuration management:
Chef, Puppet, Ansible, …

Network and compute simulation/emulation:
ns-3, Omnet++, CloudSim, Mininet, MeDICINE, …

Service Platform evolution

Monitoring tools and frameworks:
NetFlow, sFlow, Nagios, Prometheus,
Graphite, Grafana …

NFV development and deployment:
SONATA, ECOMP, ONAP, OPNFV, OSM,
NGPaaS …

Automated SW deployment and testing:
Jenkins, Travis, Cucumber…

Agile SW management and issue tracking:
GitHub, JIRA, …

Software evolution SDN/NFV evolution

Page | 3/15

1.2.1 Example Use-Case: Secure Content Delivery
To illustrate better the dynamics enabled by NFV, SDN and SFC, a typical telco service example is given in
Fig. 2. It is a secured Content Delivery Network (CDN) where service subscribers can both download and
upload content using their local user applications. Downwards, media can be streamed from a cloud VM
which serves as a central database, or from Cache-VNFs which cache often streamed data in edge servers
for faster delivery. Upwards, end-users push content to the cloud VM, by first passing through a Deep
Packet Inspection (DPI)-VNF for security reasons. Both DPI and Cache VNFs are deployed in a distributed
way, near the network edge, which enables better quality of experience by locating these functions closer
to the (mobile) end-users. A Router-VNF aggregates the traffic before it reaches the cloud VM. The Router
allows easier measurement of parameters like data volume, needed for billing or Service-Level-Agreement
(SLA) monitoring. It isolates the service-dedicated routing process into a dedicated VNF. In case of flash
crowds or other sudden data volume changes, the different VNFs can elastically scale, in function of the
needed packet rate. We will use this use-case throughout the article to illustrate how SDN/NFV-based
services are deployed and how this impacts their development environment.

Figure 2. Example of an SDN/NFV-based Service Function Chains providing a secure CDN where each
network function is implemented as a VNF.

1.3 Cloud Application vs. SDN/NFV-based Service
We want to highlight that SDN/NFV-based telecom services extend the classic cloud applications to many

additional domains. Cloud applications are generally application-layer based, with a three-tier

architecture consisting of a web-, application- and database server in the backend. A local or mobile device

is used in the frontend. Moreover, cloud application software is typically not tuned for rapid lower-layer

packet processing, needed in for example DPI, Cache or Router VNFs. Instead, cloud apps focus on

Access/
aggregation

network

Access/
aggregation

network

Access
NodesService

subscribers

Data Center

DPI

Router

Cloud VM

DPI

Data Center

Data Center

Core
Network

User
application

User
application

Cache

Cache

Page | 4/15

endpoint functionality like web applications. The generic cloud eco-system is basically a connection from

user to data center, where the network infrastructure in between is not leveraged. This is different from

the SFC example in Fig. 2, where orchestration also needs to reach the access and core networks. A wider

orchestration domain enables better optimization regarding the placement and resource use of the

network functions, especially in case of large-scale services where many users are distributed over

multiple access networks. It is envisioned that next generation of telecom services will rely heavily on

dynamic service chains in the provider networks [1].

Cloud applications have limited, often single data center, orchestration possibilities. Therefore only sub-

optimal scaling strategies can be used in certain cases. Typically this means cloning VNF images and

putting a load-balancer in front of them, or adding more resources to the VNF like CPU and memory. In

high-speed NFV-based services, adding a load-balancer is not always optimal, because a simple load-

balancing action might have a processing cost in the same order as the original packet-handling itself, thus

not leading to any improved processing speed. Instead, placing the VNFs closer to the edge might prove

a better solution, as shown with the DPI and Cache VNFs in Fig. 2. During scaling, stateful VNFs might also

require a more intelligent state migration strategy instead of simple cloning. The foregoing indicates that

pre-defined auto-scaling and data-analytics provided by the operator do not always unlock the full

potential of NFV/SDN-based services. Customized and service-specific actions defined by the service

developer can handle certain lifecycle events more optimally by controlling scaling and placement

mechanisms more closely [3, 4].

In the remainder of this article, section 2 discusses the different actors and position of the SDK in the
telco-grade eco-system. In section 3, we detail the necessary features for the SDK environment to support
all aspects of the SDN/NFV-based network service in practice. We conclude in section 4 with an overview
of the SDK’s challenges and opportunities.

2 The Service Development and Deployment Process
To understand the requirements for the SDK environment, we give an overview of the deployment

process of NFV/SDN-based services, as presented in Fig. 3. We categorize three main groups of

stakeholders in the service’s lifecycle: Vendors or Service Developers use the SDK to create or edit

services and package them, ready to deploy. The Operator or Service Provider receives the service

package compiled by the SDK. They deploy and manage the service in its operational state by addressing

the Infrastructure Providers at the bottom, to lease the necessary compute, storage and network

capacity. The economic viability of a network service improves greatly if these virtualized resources can

be optimally scaled to fit real-time performance needs, without any noticeable interruption for the service

users. The operational cost would also further decrease if the service is controlled and managed

automatically. NFV and SDN have proven added value regarding resource virtualization and automated

network control, and the SDK should assist in integrating these technologies. Moreover, vendors have

proprietary knowledge about how the service internally works, while operators have their own private

systems to deploy and manage the service. The SDK offers a way to bridge this gap by facilitating the

interfacing between the involved parties and allowing closer cooperation during the service’s lifetime.

Page | 5/15

2.1 The MANO Platform
Service Operators need to have an adapted deployment system to support the dynamicity enabled by

NFV/SDN. Such a system is the Management and Orchestration (MANO) platform, as can be seen on Fig.

3. In accordance with the ETSI1 defined framework for management and orchestration [5], the high-level

functional blocks are these:

- The NFV Orchestrator (NFVO) maintains a global overview of the service topology. It calculates
the placement and orchestrates the (scaled) VNFs and network links onto the available
infrastructure. In the described use-case, the NFVO would decide where the Cache and DPI VNFs
would be placed in the available access networks.

- The VNF Manager (VNFM) controls the lifecycle events of a single VNF such as instantiation,
configuration and scaling. The VNFM of the Router in the selected use-case, could decide to scale
in or out according to the required traffic rate.

- Virtualized Infrastructure Manager (VIM) adapters provide the NFVO and VNFM an interface to
control the compute and storage nodes. Specialized VIMs control the network between the
different infrastructure nodes or cloud data centers: a centralized SDN-controller for example, to
setup the required links between VNFs in different access networks.

The communication between the different modules in the MANO platform happens by using pre-defined
messages over a message broker, or the modules address each other’s API directly. Additional features
related to monitoring and automated healing of network services are also possible parts of the MANO
framework [6].

Some of the automated NFVO and VNFM control functionalities, such as VNF startup and shutdown, can
be quite generic. Other VNF lifecycle events, such as configuration, updating, migration or scaling, are
likely to include very service-specific logic, custom-built by the developer. Therefore MANO platforms
would need to plug-in customized control functions, shown in Fig. 3. Each service has its own NFVO and
each VNF has its own VNFM. Suppose a scale-out would be required as traffic increases: The scaled-out
topology is calculated by the specific VNFM, orchestrated by the service’s NFVO and deployed using the
involved VIM adapters. A more detailed explanation of the MANO framework is out of the scope of this
article, but it is important to understand that the modular approach and split-up of the various service
management and control features must be taken into account during service development.

1 ETSI, NFV research group, https://irtf.org/nfvrg, accessed on 27 June 2017

https://irtf.org/nfvrg

Page | 6/15

Figure 3: The SDK produces a Service Package which describes the chained VNFs in the network service
and the required functions for customized management and control. This is deployed through the Service
Provider’s MANO platform.

2.2 The Service Package
To abstract the wide range of deployment and operational aspects of an SDN/NFV-based service, a
programming model is helpful [7]. Essentially, network services can be seen as graphs, like the SFC
example in Fig. 2. The VNFs are the nodes which can be enriched with annotations such as their resource
requirements (number of CPU cores, amount of memory and storage), or other requirements like high
availability. The edges are the links in the infrastructure network, specified by necessary bandwidth or the
maximum delay, further constraining the placement in the physical infrastructure. Other abstractions, like
network resiliency, can be mapped to redundant link configurations for example. Several flavors of such
a model are being devised by ETSI-NFV [5] and several research projects such as UNIFY, T-NOVA, OSM and
SONATA. Also open-source initiatives like TOSCA and OpenStack/HEAT have own models.

The service package includes everything needed to deploy the service in the operator’s environment and

bridges the boundary between vendors and operators. Figure 3 shows that the package should at least

consist of:

- References to the actual VNF images to deploy on the infrastructure.

- A service graph that describes how the VNFs in the service are connected.

NFVO2

Cloud VM
Tenant #1
(Service 1)

Cloud VM
Tenant #2
(Service 2)

Home or Enterprise
Service subscribers

SDN
controller

Cloud data center

Infrastructure
nodes VNF1

(DPI)
VNF3

(Router)

VNF2
(Cache)

VIM

User
application

Infrastructure network

Infrastructure
Provider

Operator /
Service Provider

Vendor /
Service Developer

VIM VIMAdapters

M
essage B

ro
ke

r / A
P

I

MANO
platform

NFVO1

SDK
environment

service update
(scaled VNF2)

service update
(scaled VNF1)

service update
(scaled VNF3)

…

VNFM3VNFM2VNFM1 ……VNF
Manager

Service
Manager

Service
Update

Service Package
including:

VNF1

VNF2

VNF3

• VNF and SFC descriptors
• Service-specific managers (NFVO)
• VNF-specific managers (VNFM)

• Feedback analysis

• Operation-aware
testing

• Operation-aware
development

LB

LB LB

VNFM1

VNFM2

VNFM3

NFVO1

Page | 7/15

- All service or VNF specific logic in the form of NFVOs or VNFMs that can be plugged into the

operator’s platform.

Optionally, a definition of the expected feedback from the operator can be added. This can include a set

of metrics to be monitored or certain alarms, triggered by a given threshold. Also shown in Fig. 3 is how

multiple, in parallel deployed, service packages support a multi-tenancy scenario. In our example a second

service using only DPI and Router VNFs is added, reaching a second VM in the cloud data center. The

modules of the service package are developed by the vendor, and the operator should deploy all

components on the infrastructure while respecting the constraints defined in the service package. It can

be seen that service abstraction into packages allows vendors and operators to work in much closer

collaboration, with still enough room for proprietary knowledge on either side. The role of the SDK is to

support the creation and validation of this service package.

2.3 Telco-grade DevOps
The softwarized nature of SDN/NFV-based services, makes them a good fit for DevOps processes. A well-

known methodology from the IT-world for building and maintaining software projects, but now applied

to a collaboration between network service developers and telecom operators [4, 6]. At a high level, it

resembles the “design for manufacturing” engineering concept, where the design facilitates the

manufacturing process [1]. But in a telco-grade solution, the design should facilitate the operator’s

deployment. As explained above, the service package allows the operator to deploy the modular service

on its own MANO platform. By using the SDK, the vendor or service developer has the ability to do

operation-aware development and testing: After deployment, monitoring data can be analyzed to detect

failures and debug any VNF or service-related functionality. As shown in Fig. 4, the service can re-iterate

through the SDK, where it is edited and packaged again with any needed updates. This also enables

continuous integration and continuous deployment (CI/CD), another common practice in software

development. CI/CD merges development with testing, allowing to build code collaboratively and

automatically check for issues. Figure 4 also depicts that an execution environment can be chosen from

the SDK, so the service can be checked in parallel to production. The SDK features are detailed in the next

section.

3 Introducing SDK Features for SDN/NFV - based Services
In the previous section we have explained how the service package enables an open interface between

vendors and operators. As depicted in Fig. 4, we use the service package to implement two main

categories of SDK features: formal pre-deployment checks and a functional verification of the service.

The toolset allows a developer or vendor to fully validate service updates and minimize the risk of failures,

before deployed in production.

Page | 8/15

Figure 4: The SDK can edit and verify different parts of the service package before initiating service
deployment in various execution environments.

3.1 Formal Verification Methods
By using formal verification methods, the service package can be logically checked for correctness, to

make sure that the MANO platform is able to accept and deploy the network service. Service Graph

Analysis can report issues such as invalid connection points, repeated paths and existence of cycles in the

forwarding graphs which provide hints about the service integrity and deployability. The severity of a

found issue may also depend on the VNF’s capabilities, e.g. a cycle in a forwarding graph may not be

problematic if an involved VNF is able to steer traffic and avoid endless loops. Possible bottlenecks for

network congestion can be detected by analyzing the requested bandwidth for each link in the service

and the performance specifications of the VNFs. If the SDK is tightly coupled to the targeted MANO

platform, a formal Control Function Analysis can verify the code correctness or malicious code presence

in any custom VNFM and NFVO. For example, it might be required that they are based on provided

templates or parent classes, to make sure that they can be plugged into the MANO platform used by the

operator. Practically, formal methods can be integrated into editors for generating network service

descriptions. They can also be reused at the MANO entry point, to validate incoming service packages.

Previously validated functions or templates can be made available via a Catalogue for easy access by the

SDK and integration into new services. Different data modelling languages can be used to define a service

description (e.g. XML, JSON, YANG, YAML). With an associated schema, formal verification of the

descriptor itself can be done. The integrity is further examined by ensuring all VNF references and images

are accessible. Finally, the service model is packaged by the SDK, meaning that all required information to

deploy the service is compiled into one single entity. By pushing the service package to the MANO

Service Control Functions

Infrastructure Provider

MANO Platform (light-weight) MANO Platform

Test – Infrastructure
(eg. Emulation or Simulation,

Test traffic generation)

ca
ta

lo
gu

e
ac

ce
ss

Service Graph Analysis

Create/Validate Service
Package

Ops Dev

SDK environment

Analysis of Monitor Data

Emulate Service Control
Functions

Performance Profiling

Formal Verification Functional Verification

Develop

TestOperate

Service
Package

Service Deployment

push service
package

feedback monitor
data/ VNF state

Deployed
VNFs

Control Function Analysis

execution environment
adapters

Page | 9/15

platform, it is not needed to replicate all deployment mechanisms inside the SDK. For added security the

package can be digitally signed, to trust that it was created by a known user, and to check if the package

file was altered. The same key pair used for signing the package can also be used for user management in

the execution environment to authenticate and authorize the SDK user. This adds a level of security to

verify if the pushed package can be trusted or not.

3.2 Functional Verification Methods
As shown in Fig 4, the SDK has one main southbound interface: an adapter to push the service package

to multiple execution environments. On one hand, deployment goes through the operator’s MANO

platform (e.g. leasing operation-qualified hardware configurations or operating system versions). On the

other hand, a local emulation or simulation environment [8-10] can be used as a sandbox to test the

service. This is likely to be less performant, but can be a cheaper and easier alternative for quickly checking

basic functionality, to try configuration settings or generate test traffic in (parts of) the network service.

To gain operational insights, monitor data can be received through a second interface of the SDK
platform. This interface can also be used to query the internal state of a VNF. Monitoring agents or traffic-
generating test VNFs could be inserted at any location in the service, by simply updating the service graph.
Mathematical techniques from regression analysis or machine learning can be used to process the
monitored metrics through Performance Profiling of the VNF [11]. The performance profile enables
predictable VNF performance and optimized resource usage. Automated scaling functions manipulate the
service graph, as exemplified in Fig. 3 by load-balancing, hub-and-spoke or full-mesh topologies which can
be seen as templates where any VNF can be plugged-in to. The SDK could provide these templates to the
developer for integration into a custom scaling algorithm. If the scaled topology is combined with the
VNFs’ profiling data, the performance of the scaled topology can be estimated before it is deployed.

With a minimized pay-per-use cost model, over-provisioning should be limited and scaling algorithms
must be well tested and fine-tuned. The Emulation of Service Control Functions in the SDK can reveal for
example bugs in the service-control functions (VNFM, NFVO) that cause an exponential cost increase
because too many resources are requested. To investigate placement algorithms, the SDK is not required
to implement the full orchestration. It would be sufficient to check the NFVO function’s graph output,
showing onto which infrastructure nodes the VNFs in the service are mapped. A graph visualization in the
SDK, could for example be helpful to evaluate the outcome of these algorithms. As shown in Fig. 4, the
graph output of the service’s control functions can in fact be fed back into the SDK’s formal analysis tools
for verification.

3.3 SDK Use-Case: Horizontal and Vertical Scaling
We revisit the SFC example of Fig. 2 to investigate how an SDK environment could support this service.
Different aspects are highlighted in Fig. 5: Custom horizontal scaling is implemented on the Router VNF,
which aggregates most of the service traffic and will therefore be more prone to changing loads (such as
temporarily popular streams or night/day differences). The router VNF is made elastic, it changes the
number of dedicated data-plane servers to forward the traffic. After deploying the updated topology, the
forwarding tables in the new data-plane servers are configured accordingly. Details on the
implementation can be found in [12]. A local emulation environment [10] is used to audit the scaling
algorithm under test-traffic. By monitoring the throughput rate and packet loss of the elastic router, the
scaling procedure can be validated. Additionally, updated placement or custom orchestration is
implemented by the NFVO. More or less DPI and Cache VNFs can be part of the service, in function of the

Page | 10/15

location and amount of service users. By checking the service graph modifications, the custom NFVO
algorithm can be verified in the SDK.

The vertical scaling capabilities of the Cache VNF are also examined in Fig. 5. Using the automated
profiling features demonstrated in [13], the throughput of the Cache VNF is tested under increasing CPU
resource allocation. After statistically analyzing the time-series data, the SDK generates a more
comprehensible way to describe the performance of the VNF. This helps to define the resource boundaries
for a specific VNF performance. The performance thresholds can be filled in a VNFM function that will
assign the required resources and optionally re-configure the VNF to use the newly allocated resources.
Also, while testing the VNF under different resource allocations, implementation issues can be discovered
[8] e.g. Is multi-threading support working correctly? Is the performance scaling linearly while adding
resources?

This use-case exemplifies how the SDK should assist in validating the custom VNFM or NFVO control
functions that can be plugged into the MANO platform. Using an execution environment, configuration
and operation is functionally tested. At the end of the development process, a fully validated service
package with highly automated control functions can be handed over to the operator/MANO platform.

Figure 5: Custom control functions for the CDN service that can be created and validated using the SDK.

3.4 Limitations in Existing SDK Environments
Future NFV-based service deployments must tackle a wide spectrum of use-cases [2] (e.g. the 5G, IoT or
Telco related service space). Customizable management and control is therefore an inevitable aspect of
the service platform and should be supported from the design-phase onwards. Existing SDKs focus
primarily on cloud applications, which have a very different nature compared to network services. Major
commercial cloud providers follow a simplified model in their SDK. (i) One part of the toolset focuses on

(emulated) service users

CDN: service scaling

Cache - VNFM function:

Update VNF performance

Estimate resources using pre-measured VNF profile

update service graph
and re-orchestrate via NFVO

configure new Cache VNFs

DPIDPI

0

20

40

60

Time

Restricted CPU usage (%)

0

10

20

30

40

Time

Download speed (Mb/sec)

(test traffic: 50% cached + 50 % non-cached downloads)

0

5

10

15

20

25

30

35

0 10 20 30 40

D
o

w
n

lo
ad

 s
p

ee
d

 (
M

b
/s

ec
)

CPU allocation (%)

Cache VNF performance profile

Cache

Router

Cloud
VM

Service
Access
Points

Service Graph

Analyzed VNF performance under
varying resource allocation:

resource
boundaries

VNF
performance

Monitoring router throughput
(packet loss 0%)

trigger scaling
action

100

150

200

250

300

350

400

450

eg
re

ss
 p

ac
ke

t
ra

te
 (

p
p

s)

Time

Router: Horizontal scaling

Cache: Vertical scaling

VNF scale-out
period

performance
fluctuation during
scale-out

Monitored metrics:

Router - VNFM function:

Receive scale alarm

Update service graph
and re-orchestrate via NFVO

Re-configure forwarding table(s)

DP2DP1

DP3

DP

DP: dedicated Data Plane server

Service graph change
during scaling

CDN service - NFVO function:

Monitor users’ location

Calculate optimal placement
of new DPI and Cache VNFs

Update service graph
and (re-)orchestrate

Page | 11/15

the application development: operating system or programming language specific. (ii) Another part helps
the developer to connect to the data center, deploy the application and monitor it. Some cloud platforms
support the execution of custom event handling code through the use of certain hooks inside the
application2. There is however no test-environment available to trigger and validate the custom event
handlers, without fully deploying the service.

Distinct open-source tools implement a specific part of the envisioned SDK environment, such as monitor
data analysis [12, 13]. Adapters for light-weight or specialized environments [8-10] can deploy chained
virtual machines or containers for testing or emulate the execution of service control functions on large
scale data center topologies. A federated testbed uniting different technologies and administrators, is
described in [14]. This shows the practical implementation of a distributed test-infrastructure across
multiple owners.

Existing NFV technology overviews [2] can be updated with new concepts of customizable service
management, implemented by recent open-source projects. The focus shifts to telco-grade NFV, beyond
cloud provider functionality as mentioned earlier. Both UNIFY [3] and SONATA [4] define a MANO
architecture that allows custom, service-specific control functionality, like scaling, configuration and
placement. UNIFY has a SP-DevOps toolkit [6] for post-deployment troubleshooting and SONATA provides
a pre-deployment tool-chain to describe, validate and package complete service chains [13]. OSM3 and
ONAP4 are MANO platforms devised by industry-driven consortia, and have a clear roadmap towards an
NFV-related SDK. Like SONATA, they both offer a set of design-time tools for easy service graph editing
and packaging. ONAP additionally implements a Policy Subsystem that allows the creation of easily-
updatable conditional rules, executed by ONAP’s own control, orchestration, and management functions.
A formal validation can detect policy conflicts. This framework, as explained in [15], implies however that
the execution of the policy rules is embedded into ONAP and not modifiable by the service developer. The
VNF management is enhanced by OSM and Open-Baton5 with a set of libraries to implement a VNFM with
specific VNF configuration scripts and an interface to the NFVO. Recent initiatives such as OPNFV and
NGPaaS focus on facilitating NFV development and deployment across multiple open source eco-systems.
Neither of the described platforms has already full development support for integrating customized
service control.

4 Challenges and Opportunities
To avoid the need for bulky and unified development software, we proposed a limited but specialized
feature-set for the SDK, built around the service package, as illustrated in Fig.4. This development
environment is extended with key functional verification tools, based on feedback analysis of monitor
data and VNFM/NFVO output. The main features are summarized in Table 1. We see however some
challenges to fit the SDK into the real-world telco eco-system:

- A DevOps mindset between operators and vendors should be cultivated, bringing the Ops
environment closer to development.

2 Implementing custom lifecycle events can be done by e.g. Cloudify Lifecycle Events, AWS Lifecycle Hooks, Azure
Functions webhooks, and service control using Google Cloud App Engine.
3 Open-Source-MANO (OSM): https://osm.etsi.org/ (Accessed on 11 Sept 2017)
4 The Open Network Automation Platform (ONAP): https://www.onap.org/ (Accessed on 11 Sept 2017)
5 Open-Baton: Open-Source MANO framework: http://openbaton.github.io/ (Accessed on 11 Sept 2017)

https://osm.etsi.org/
https://www.onap.org/
http://openbaton.github.io/

Page | 12/15

- The same service package formats should be supported by the operator’s MANO platform and
the SDK. This would require a consolidation of several existing service package formats or the
need for multiple package format translators.

- Security risks should be mitigated by authorization and authentication of the SDK user when
pushing to the operator’s environment. Possible exploits in the service control functions must be
detected before deployment e.g. infinite scaling, unauthorized access to resources.

- Workflows for generic VNF tasks (orchestration, networking, start, update, terminate) should be
defined and guaranteed by the MANO platform, taken out of the hands of the SDK.

- VNFs should be developed with elasticity in mind.

The proposed SDK environment creates however many opportunities to optimize the service lifecycle:

- Modeling and packaging the service leads to easier validation, re-usability and (re-)deployment
speedup.

- Monitoring and profiling tools allow a reliable reproducibility and definition of the service
performance.

- Creating customized placement and scaling algorithms enable a more optimized resource usage.
- Implementing highly automated management functions decreases operational cost.
- Supporting a clear service package format lowers the barrier between vendors and operators.

Page | 13/15

Key Components
SDN/NFV related

aspect
SDK features

Service Package Network
Functions (VNFs)

-Support for NFV specific program languages, APIs or libraries
-VNF state verification

Networking
control

-Support for SDN specific program languages, APIs or libraries
-Visualization of the network state

Service
programming
model

-Service/VNF catalogue
-Re-usability of service templates
-Formal pre-deployment check
-Compilation into an easy-to-deploy service package
-Graphical verification of customized service graphs

Custom service
control functions
(NFVO/VNFM)

VNF
configuration

-Programming support for NFVO/VNFM functions, tightly coupled
to the MANO platform.
-Sandbox/emulator environment to test the VNF interfaces

Custom scaling

-Simulation of scaling triggers
-Customization of VNFM templates for high-availability (auto--
scaling, load-balancing)
-Verification of custom state migration procedures

Custom
placement

-Simulation of VNF orchestration
-Verification of NFVO output
-Visualization of the deployed service graph mapped on the
available infrastructure

Supporting
functions Monitored data

-Packet stream analysis
-Data analytics (Regression Analysis, Machine Learning)
-Generation of custom test traffic and monitoring VNF/service
metrics

Performance
profile

-Generation of a reliable VNF performance profile
-Capacity estimation and optimized resource planning
-VNF Benchmarking

Table 1: Specific aspects of SDN/NFV-based services, whose development is assisted by new SDK
features.

As advances in SDN and NFV help to transform telecom services into software-based network function

chains, it is important that development tools keep up with this evolution. The holistic setup of the

SDN/NFV-based service implies that different artefacts can be part of the service package, including elastic

scaling mechanisms and possible resource and placement constraints. It requires a generic service

programming model that is not yet standardized. While building further on DevOps principles and existing

NFV architectures, we identified new SDK features to streamline the development and deployment of

modern virtualized telecom services. We hope the presented development flow can give further

directions to the ongoing research in SDN/NFV-based service creation.

5 Acknowledgement
This work has been performed in the framework of the SONATA and NGPaaS projects, funded by the
European Commission through the Horizon 2020 and 5G-PPP programs. The authors would like to
acknowledge the contributions of their colleagues of the projects consortia.

Page | 14/15

6 References
[1] Weldon, Marcus K. The future X network: a Bell Labs perspective. (Chapter 13: The future of network

operations) Crc Press, 2016.

[2] Mijumbi R, Serrat J, Gorricho JL, Bouten N, De Turck F, Boutaba R. “Network function virtualization:
State-of-the-art and research challenges.” IEEE Communications Surveys & Tutorials. 2016 Jan
1;18(1):236-62.

[3] Szabo, Robert, Mario Kind, Fritz-Joachim Westphal, Hagen Woesner, David Jocha, and Andras

Csaszar. "Elastic network functions: opportunities and challenges." IEEE network 29, no. 3 (2015): 15-21.

[4] Karl, Holger, Sevil Dräxler, Manuel Peuster, Alex Galis, Michael Bredel, Aurora Ramos, Josep Martrat

et al. "DevOps for network function virtualisation: an architectural approach." Transactions on Emerging

Telecommunications Technologies 27, no. 9 (2016): 1206-1215.

[5] ETSI, Network Functions Virtualisation (NFV); Management and Orchestration. ETSI GS NFV-MAN 001

V1.1.1 (2014-12), accessed 10/07/2017, available: http://www.etsi.org/deliver/etsi_gs/NFV-

MAN/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf

[6] John W, Marchetto G, Nemeth F, Skoldstrom P, Steinert R, Meirosu C, Papafili J, Pentikousis K,
“Service Provider DevOps.” IEEE Communications Magazine 55.1 (2017): 204-211.

[7] Garay, Jokin, Jon Matias, Juanjo Unzilla, and Eduardo Jacob. "Service description in the NFV

revolution: Trends, challenges and a way forward." IEEE Communications Magazine 54, no. 3 (2016): 68-

74.

[8] Peuster, Manuel, Holger Karl, and Steven Van Rossem. "MeDICINE: Rapid prototyping of production-
ready network services in multi-PoP environments." In Network Function Virtualization and Software
Defined Networks (NFV-SDN), IEEE Conference on, pp. 148-153. IEEE, 2016.

[9] Calheiros RN, Ranjan R, Beloglazov A, De Rose CA, Buyya R. “CloudSim: a toolkit for modeling and
simulation of cloud computing environments and evaluation of resource provisioning algorithms.”
Software: Practice and experience. 2011 Jan 1;41(1):23-50.

[10] Cerrato, Ivano, Alex Palesandro, Fulvio Risso, Marc Suñé, Vinicio Vercellone, and Hagen Woesner.

"Toward dynamic virtualized network services in telecom operator networks." Computer Networks 92

(2015): 380-395.

[11] Kousiouris, George, Andreas Menychtas, Dimosthenis Kyriazis, Spyridon Gogouvitis, and Theodora

Varvarigou. "Dynamic, behavioral-based estimation of resource provisioning based on high-level

application terms in Cloud platforms." Future Generation Computer Systems 32 (2014): 27-40.

[12] Van Rossem, S., Cai, X., Cerrato, I., Danielsson, P., Németh, F., Pechenot, P., Pelle, I., Risso, F.,
Sharma, S., Skoldstrom, P. and John, W.”NFV service dynamicity with a DevOps approach: Insights from
a use-case realization”. IM2017, the IEEE International Symposium on Integrated Network
Management (pp. 674-679), 2017.

[13] Van Rossem, Steven, Manuel Peuster, Luis Conceicao, Hadi Razzaghi Kouchaksaraei, Wouter
Tavernier, Didier Colle, Mario Pickavet, and Piet Demeester. “A Network Service Development Kit

Page | 15/15

Supporting the End-to-End Lifecycle of NFV-based Telecom Services." In IEEE NFV-SDN2017, the IEEE
Conference on Network Function Virtualization and Software Defined Networks, 2017. (Accepted, to be
published in the conference proceedings on 8 Nov 2017.)

[14] Berman, Mark, Jeffrey S. Chase, Lawrence Landweber, Akihiro Nakao, Max Ott, Dipankar

Raychaudhuri, Robert Ricci, and Ivan Seskar. "GENI: A federated testbed for innovative network

experiments." Computer Networks 61 (2014): 5-23.

[15] ONAP-ECOMP AT&T Technology and Operations, “Ecomp (enhanced control orchestration

management policy) architecture white paper,” 2016. Online Available:

https://about.att.com/content/dam/snrdocs/ecomp.pdf (Accessed on 11 Sept 2017)

https://about.att.com/content/dam/snrdocs/ecomp.pdf

Page | 16/15

7 Author biographies

Steven Van Rossem received a M. Sc. in Electrical Engineering in 2010 from K.U. Leuven (Belgium). After

a five-year period working in the telecom industry, he started a PhD with the IDLab, imec research group

at Ghent University in 2015. His research targets software-defined networking and network function

virtualization, focusing on elasticity and performance profiling of network functions/network services.

This work contributed to European research projects such as UNIFY, SONATA and NGPaaS.

Wouter Tavernier received a M.S. in computer science in 2002, and a Ph.D. degree in computer science

engineering in 2012, both from Ghent University. He joined the IDLab, imec research group of Ghent

University in 2006 to research future Internet topics. His research focus is on software-defined

networking, network function virtualization, and service orchestration in the context of European

research projects such as TIGER, ECODE, EULER, UNIFY, and SONATA.

Didier Colle is a full professor at Ghent University. He received a Ph.D. degree in 2002 and a M.Sc. degree

in electrotechnical engineering in 1997 from the same university. He is group leader in the imec Software

and Applications business unit. He is co-responsible for the research cluster on network modelling, design

and evaluation (NetMoDeL). This research cluster deals with fixed Internet architectures and optical

networks, Green-ICT, design of network algorithms, and techno-economic studies.

Mario Pickavet is professor at Ghent University since 2000 where he is teaching courses on discrete

mathematics, broadband networks and network modelling. He is leading the research cluster on Network

Design, Modelling and Evaluation, together with Prof. Didier Colle. In this context, he is involved in a large

number of European and national research projects, as well as in the Technical Programme Committee of

a dozen of international conferences.

Piet Demeester is a professor at Ghent University and director of IDLab, imec research group at UGent.

IDLab’s research activities include distributed intelligence in IoT, machine-learning and datamining,

semantic intelligence, cloud and big data infrastructures, fixed and wireless networking, electromagnetics

and high-frequency circuit design. Piet Demeester is a Fellow of the IEEE and holder of an advanced ERC

grant.

