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Abstract

Novelty detection or one-class classification starts from a model describing some type of
‘normal behaviour’ and aims to classify deviations from this model as being either novelties
or anomalies.

In this paper the problem of novelty detection for point patterns S = {x1, . . . ,xk} ⊂
Rd is treated where examples of anomalies are very sparse, or even absent. The latter
complicates the tuning of hyperparameters in models commonly used for novelty detection,
such as one-class support vector machines and hidden Markov models.

To this end, the use of extreme value statistics is introduced to estimate explicitly a
model for the abnormal class by means of extrapolation from a statistical model X for
the normal class. We show how multiple types of information obtained from any available
extreme instances of S can be combined to reduce the high false-alarm rate that is typically
encountered when classes are strongly imbalanced, as often occurs in the one-class setting
(whereby ‘abnormal’ data are often scarce).

The approach is illustrated using simulated data and then a real-life application is used
as an exemplar, whereby accelerometry data from epileptic seizures are analysed - these
are known to be extreme and rare with respect to normal accelerometer data.

Keywords: Sequence classification; novelty detection; extreme value theory; class imbal-
ance; asymptotic theory

1. Introduction

Novelty detection is a particular example of pattern recognition that addresses the problem
of identifying new patterns in data that are previously unseen. It shares many similarities
with anomaly detection where one also wishes to detect abnormalities, but where in the
latter these may not necessarily be entirely novel; i.e. a small amount of the training data
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may contain outliers or anomalies. Novelty detection has a broad range of applications
ranging from intrusion detection in computer related systems; industrial damage detection;
to healthcare (Pimentel et al., 2014). All these applications have in common the fact
that data describing failure conditions (or other abnormal behaviour) are rare or even
absent, such that traditional classification methods may perform suboptimally. Novelty
detection provides an alternative approach that starts from a model of normal behaviour
and then detects deviations from this model (Bishop, 1994). It is for this reason that
novelty detection is also termed one-class classification where there is no explicit model for
‘abnormal behaviour’. It may also be described in terms of a hypothesis test, in which the
null-hypothesis is described by the model of normality.

This article considers one-class classification of ‘point patterns’, defined as sets of vectors
S = {x1, . . . ,xk}, k ∈ N0 located in data space Rd where each xi is a realization of a
random variable X1. We propose a statistical approach that starts from a probability
density function (PDF) y = p(x) associated with X that models the normal behaviour
described by a dataset D ⊂ Rd. Novelty detection then addresses the question of whether
a set S of vectors is drawn from the distribution X or not.

In this article the use of the use of extreme value theory (EVT) is introduced to tackle
classification of sets S (Embrechts et al., 1997). The Poisson point process (PPP) character-
ization of EVT is used to extract count data describing the number of times measurements
in S fall in low-density regions defined by X. Furthermore, asymptotic results are provided
in this article that allow us to unify this count information with the mean and maximal
excess in p(S) with respect to a low threshold e−u. The method is evaluated using synthetic
as well as real-world data, and is compared with commonly used algorithms for outlier de-
tection such as one-class support vector machines (OCSVMs) and hidden Markov models
(HMMs).

In contrast to existing novelty detection methods, EVT enables us to define a model
for the abnormal class, where data are sparse or even unobserved. This enables us to
circumvent the optimization of hyperparameters that is typically encountered in using one-
class classifiers and which often requires data from the abnormal class. In essence, the
use of EVT relies on extrapolation from the normal class, providing a class of models for
low-density regions; the latter are particularly beneficial for novelty detection, because the
decision boundary is expected to be situated in regions where data are sparse.

The remainder of this paper is organized as follows. Section 2 is devoted to related work
on sequence classifications and provides an introduction to EVT. Subsequently, Section 3
introduces the EVT-based one-class classifier. In Section 4, the method is evaluated and
its limitations are discussed.

2. Related work and EVT

This section starts with a short review of related work on sequence classification. The
necessary background of EVT is then reviewed.

1. The common convention in statistics is used that applies capital letters to refer to population attributes
and lower-case letters to refer to sample attributes.
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2.1 Related work

The problem setting in this article is an example of a collective novelty detection problem
where the individual instances within a set S are not classified with respect to the distribu-
tion X. Instead, the entire set S of vectors is considered to be one single instance that is
assigned a single label. This contrasts with conventional one-class classification, in which
every element of S is classified independently. Closely related to this problem is that of
sequential learning. However in the latter each instance of the set S is given a different
label. Widely-used machine learning techniques for sequential learning, such as HMMs and
conditional random fields (CRFs), are not able to learn from one class only (Bishop, 2006;
Sutton and McCallum, 2011). A commonly-used technique to tackle sequence classification
is to concatenate the separate labels that are obtained by applying a one-class classifier
(e.g., an OCSVM) to each instance xi separately. The mean novelty score of all instances,
for example, can be used to decide whether or not S is novel (Dietterich, 2002). This latter
approach, however, is more naturally expressed by taking a point-wise approach where,
from a statistical point of view, a number (k) of hypothesis tests are considered:

H0 : xi is a realization of X
H1 : xi is novelty with respect to X,

where H0 denotes the so-called null-hypothesis and H1 the alternative hypothesis. Due to
the multiple hypothesis-testing problem, the number of false alarms can increase consider-
ably for k > 1. Indeed, while each hypothesis test is chosen to have a small type-I error α
(i.e., the probability of wrongly classifying xi as being novel, which is a false positive), the
error of making at least least one type-I error among the k hypothesis tests corresponds to
α = 1− (1− α)k; e.g., when α = 5% and k = 6, α = 26%.

To obtain the correct decision boundary corresponding to the significance level α, Clifton
et al. (2011) considered the univariate distribution over the probability density values p(x)
on the image Im(p) = {p(x) | x ∈ D} by reducing the multivariate analysis of the mul-
tidimensional data set D to an univariate analysis on Im(p). The PDF y = p(x) can be
obtained, for example, using a kernel density estimator (Scott, 1992). The distribution Y
of these densities is strongly related to that of X, with a density defined by:

q(y) =
dQ

dy
(y) and Q(y) =

∫
p−1(]0,y])

p(x)dx. (1)

As will be made clear in the following section, univariate EVT can then be used to describe
sets S = {x1, . . . ,xk}, which have a typical minimal density with respect to y = p(x). In
this way, a distribution is obtained for the most ‘extreme’ vectors that possibly occur in
(truly ‘normal’) samples S drawn from X. A new set S it then evaluated by comparing
its most extreme vector w.r.t. this model of extremes. Although this approach enables
one to obtain a correct statistical type I-error α in testing S, its main drawback is that
is captures limited information concerning the set S (Luca et al., 2014b). Indeed, only
the single most extreme element in S is used to obtain a decision, while (non-extreme)
information contained in the remaining part of the set is discarded. In this article we show
how EVT can be used to include information contained in the remaining part of the pattern
S while maintaining the correct statistical type I-error when testing S.
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2.2 An introduction to EVT

EVT is a statistical discipline where the objective is to model the stochastic behavior of a
univariate process at unusally large (or small) levels. It has already been used for many ap-
plications ranging from biomedical engineering, structural health monitoring, meteorology,
and risk assessment in financial domains (Embrechts et al., 1997).

The central result in EVT is the Fisher-Tippett theorem concerning the limiting distri-
bution of maxima of a sequence of independent and identically distributed (i.i.d.) random
variables X1, . . . Xk according to a common distribution X:

Mk = max{X1, . . . , Xk},

as k → +∞. It states that when the following convergence in distribution appears:

P

(
Mk − ck
dk

≤ x
)
→ Gξ(x), as k → +∞ (2)
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Figure 1: Different members of the GEV family in Eq. (3), with different values of the
shape parameter ξ. The dot in the figures indicates the abscis z = −1

ξ , where
the density is zero, (a) ξ = −2 where we see that when ξ ≤ −1 a short tail with
an upper bound is described (b) ξ = −0.4 where we see that when −1 < ξ < 0
maxima have an upper bound (c) ξ = 0 where the maxima have no upper- or
lower bound. Finally, (d) ξ = 0.8 where we see that for ξ > 0 the maxima have
a lower bound.
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for some normalizing constants ck, dk, the limiting distribution Gξ(x) is a member of the
so-called family of generalized extreme value (GEV) distributions:

Gξ(x) =


exp

{
− [1 + ξx]

− 1
ξ

}
, ξ 6= 0

exp {− exp(−x)}, ξ = 0.

(3)

For ξ 6= 0 the domain of the distribution is restricted to the set {x | 1 + ξx > 0}. When
the shape parameter ξ is negative, zero, or positive, the subset of members of the family
correspond to the Weibull, Gumbel and Fréchet families respectively. The shape parameter
thus determines the behaviour in the tail of the distribution of X, as shown in Figure 1.

The normalizing constants in (2) prevent a degenerate limit of the distribution of Mk,
because clearly:

lim
k→+∞

P (Mk ≤ x) = lim
k→+∞

k∏
i=1

P (Xi ≤ x)

which approaches zero for each x < x+, where x+ (possible +∞) denotes the rightmost
endpoint of the support of X.

The GEV family provides a model for block maxima, obtained by blocking (or window-
ing) the training data into blocks of equal length, and then fitting the GEV to the obtained
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Figure 2: Different members of the GPD family in Eq. (3). The dot in the figures indicates
the abscis z = −1

ξ , where the density is zero, (a) ξ = −2, where ξ < −1, an

asymptote occurs at z = −1
ξ . (b) ξ = −1 corresponds to an uniform distribution

of excesses. (c) Different types of behaviour for −1 < ξ < 0 corresponding to
excesses with an upperbound. (d) For ξ > 0 the density has an intercept at
(0, 1).
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set of block maxima. However, when these block are relatively large, this leads to using
only a few block maxima, which can bias the estimation process. An alternative approach
to overcome this problem is the so-called peaks over threshold (POT) method. In this
approach, complete tails of a distribution X are modelled, defined as those measurements
Xi of a sequence X1, X2, . . . that fall above some threshold u. A basic result of EVT states
that when (2) holds for some member Gξ(x) of the GEV-family, the distribution of the
exceedances X − u, conditional on X > u, satisfies the limiting property:

lim
u↑x+

P

(
X − u
a(u)

< x | X > u

)
= Hξ(x) (4)

for some appropriate scaling factor a(u) and

Hξ =

{
1− (1 + ξx)−1/ξ if ξ 6= 0

1− e−x if ξ = 0
(5)

denotes the family of generalized Pareto distributions (GPDs) where x ≥ 0 for ξ ≥ 0 and
0 ≤ x ≤ −1

ξ for ξ ≤ 0, as shown Figure 2. For the Gumbel case ξ = 0, the scaling factor
a(u) is given by E(X − u|X > u).

2.3 Poisson point processes and EVT

An elegant way to describe extremes, and one that unifies the block and POT approaches
is based on Poisson point processes (PPPs). Any inference made using one of both above
approaches could equally be made using the PPP model because it can be parametrized
in terms of the GEV- and GPD- parameters. In this way, no extra computational effort is
needed when using the PPP model.

Generally a point process P on a subset U ⊂ Rd is a stochastic model for which any one
realization consists of a set of points {x1,x2, . . .xN} that are randomly located in U and
of which the number N is a random variable. The point processes closely related to EVT
are the point processes of exceedances and consider those observations from sequences of
random variables X1, . . . Xk which exceed a threshold u.

In particular, for a fixed choice of k ∈ N, the point process of exceedances Pk is defined
on regions of the form U =]0, 1[ × ]u,+∞[ and considers those points that are situated in
the intersection:

Pk(ω) =

{
(

i

k + 1
,
Xi(ω)− ck

dk
) | 1 ≤ i ≤ k

}
∩ ]0, 1[ × ]u,+∞[, (6)

where ck and dk are normalizing constants and ω denotes the stochastic event corresponding
to a realization Pk(ω) of the point process of exceedances. The indices are divided by the
factor k+ 1 to rescale the process to the interval ]0, 1[, as illustrated in Figure 3. The point
processes Pk can be characterised by random counting measures, which assign to each subset
of the form A = [t1, t2] × ]u+ x,+∞[ ⊂ ]0, 1[ × ]u,+∞[ a random variable NA describing
the number of points of a realization that fall in region A:

Nk
A : ω 7→ “number of points of Pk(ω) in A”
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A

Figure 3: A realization Pk(ω) of a point process of exceedances with Nk
A(ω) = 2.

Indeed the values of these counting measures Nk
A for all subsets A give sufficient information

to reconstruct completely those Xi that fall above a threshold of value ck + dku. In fact,
setting A = { i

k+1} × ]z,+∞[, Nk
A(ω) > 0 only applies when Xi(ω) > ck + dkz.

The point process characterization of EVT is obtained by letting k → +∞. It is known
(Embrechts et al., 1997) that when (2) holds for some normalization constants ck and dk,
then the corresponding point processes of exceedances Pk will converge to a PPP P for
u > x− where x− denotes the leftmost endpoint of the support of the GEV-distribution in
(2). This means that the following convergence of distributions holds:

Nk
A

d→ Poi [Λ(A)] as k → +∞ (7)

on sets A =]t1, t2[ × ]u+x,+∞[⊂ U and where the distributions of Nk
A on non-overlapping

sets A are mutually independent; i.e., the occurence of a point at a location should not
influence the probability of the occurence of other points at other locations. In the limiting
case, the rate parameter of the Poisson distribution Λ(A) depends on the set A and is called
the intensity measure Λ(A) of the PPP. The fact that the PPP-characterization of extremes
unifies the block and POT approach is due to the fact that the values of Λ(A) in (7) can
be written as a function of ξ (Embrechts et al., 1997):

Λ(A) = (t2 − t1) (1 + ξ(u+ x))−1/ξ = (t2 − t1)λ
(

1 + ξλξx
)−1/ξ

(8)

with λ = (1 + ξu)−1/ξ. Therefore any inference made using the PPP limit of extremes
yields immediately the shape parameter ξ in (2) and (21). In this way EVT describes three
equivalent limiting properties (2), (4), and (7).

3. Learning from sparse data regions

In this article, a learning algorithm is proposed that explores the link between the three
representations of extremes as introduced in the previous section. For this purpose so-called
EVT-based features will be introduced in section 3.1 that describe characterizing measures
of a set S = {x1, . . . ,xk} of vectors independently drawn from a distribution X. In Section
3.2, a joint asymptotic distribution of these features is calculated as k → +∞. Subsequently,
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analytical expressions of cumulative scores with respect to this distribution are obtained
that will be used as novelty scores to evaluate the novelty of S with respect to X for large
k.

3.1 EVT-based features

Consider a d-dimensional random variable X with PDF y = p(x). The transformation
Z = − log p(X) allows us to study multivariate low-density regions {x | p(x) < e−u}, with
u some large real number, as a convex univariate region {z | z > u}. Associated with a
sequence of i.i.d. random variables X1, . . . Xk, we define the following associated features
based on the log-transformed sequence Z1, . . . Zk, Zi = − log p(Xi):

1. The number of exceedances among Z1, . . . Zk above some threshold uk:

Nk =

k∑
i=1

I{Zi>uk},

where I{Zi>uk} denotes an indicator function taking the value 1 when Zi > uk and zero
otherwise. This feature describes the number of multivariate points from a sequence
{X1, . . . , Xk} that are situated in a low density region Rk = {x | p(x) < e−uk}.

2. The mean exceedance among Z1, . . . Zk above some threshold uk:

Vk =
1

Nk

k∑
i=1

(Zi − uk)I{Zi>uk}

A high value of Vk indicates that, on average, the points of the sequence X1, . . . Xk

are outlying with respect to the locus of the training data while a low value indicates
that the sequence is situated near the locus of the training data.

3. The maximal exceedance among Z1, . . . Zk above some threshold uk:

Mk = max
1≤i≤k

{Zi − uk | Zi > uk}

corresponding to the most outlying point of X1, . . . Xk with respect to to the training
data.

Note that the mean exceedance Vk and the maximal exceedance Mk are only well-
defined when Nk ≥ 1. The features above provide a natural way to summarize the extent
to which densities of observations falling in low-density regions exceed some low threshold
e−uk . Therefore when a set S = {x1, . . .xk} of k observations is novel with respect to
the distribution X, it is expected that the corresponding features vS , mS , and nS of the
sample S have a higher cumulative score given their respective distributions Vk, Mk, and
Nk. Hence these features allow us to summarize the information contained in the tail of a
d-dimensional distribution X (that can be of arbitrarily high dimension) in a 3-dimensional
distribution. To determine the joint distribution of these EVT-based features, the PPP
characterization (7) is applied to the univariate random variable Z whose tail describes the

8



One-class classification of point patterns of extremes

multivariate points X that are lying in low-density regions. In the next section we will
determine the joint distribution of these 3 features to fuse the information from each.

To apply the PPP characterization to Z, we consider the sequence of point processes
Pk on R2 associated with Z = − log p(X):

Pk =

{(
i

k + 1
, Zi

)
| 1 ≤ i ≤ k

}
.

From the limiting property (7), the point processes Pk will converge to a PPP as k → +∞
on regions of the form ]0, 1[ × ]uk,+∞), with uk = ck + udk, u ∈ R, and with ck, dk being
the normalizing constants as in (6). Block maxima of Zi are not bounded from above or
below, and so the Gumbel distribution is the only possible limiting EVT distribution for
this one-class formulation; i.e., ξ = 0 in the limiting property (7). For the Gumbel case it
is known that the normalizing constants can be chosen as (Embrechts et al., 1997)2:

ck = inf

{
z | P (Z ≤ z) ≥ 1− 1

k

}
and dk = E(Z − ck|X > ck). (9)

The intensity measure of the limiting PPP can be obtained by letting ξ → 0 in (8):

Λ(A) = (t2 − t1)e−(x+u) = (t2 − t1)λe−x, with λ = e−u (10)

and where the parameter λ is given by the expected number of exceedances of Z above
uk(x) = ck +(u+x)dk. We can now state the following theorem that is proved in Appendix
A.1 and that characterizes the distribution of the EVT features defined above.

Theorem 1 Consider the random variables Nk, Vk and Mk associated with sets S of k
observations {X1, . . . , Xk} drawn from a d-dimensional random variable X. Denote y =
p(x) the PDF of X and suppose Z = − log p(X) satisfies the following limiting property:

lim
w→+∞

P

(
Z − w
a(w)

> x | Z > w

)
= e−x, ∀x ∈ R+ (11)

where a(w) = E(X −w|X > w). Denoting, for u ≥ 0, the following sequence of thresholds:

uk = ck + udk, with ck = inf

{
z | P (Z ≤ z) ≥ 1− 1

k

}
, dk = a(ck),

the following limiting properties hold as k → +∞:

(i) The distribution Nk of the number of observations among k of X that fall in regions
{x | p(x) < e−uk} converges to a Poisson distribution with a rate λ = e−u:

lim
k→+∞

P (Nk = n) =
λn

n!
e−λ (12)

2. The operator inf in (9) refers to the infimum or greatest lower bound.
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(ii) After normalization, the distribution of the maximal exceedance Mk above threshold
uk converge in distribution to a Gumbel member of the GEV family with µ = log λ
that is conditioned on the positive real line; i.e.,

lim
k→+∞

P

(
Mk

dk
≤ m|Nk ≥ 1

)
=

exp

{
− exp

[
− (m− log λ)

]}
− e−λ

1− e−λ (13)

(iii) After normalization, the mean exceedance Vk above uk converges in distribution to a
random variable distributed according to a cumulative distribution function:

lim
k→+∞

P

(
Vk
dk
≤ v|Nk ≥ 1

)
= 1− 1

eλ − 1

+∞∑
l=1

l−1∑
j=0

λl

l!j!
(lv)j e−lv

 (14)

Figure 4 illustrates the limiting properties obtained in Theorem 1 based on a two-
dimensional distribution X given by a Gaussian mixture model (GMM) of two standard
normal distributions centred at the origin and (1, 1) respectively. The constants ck and dk
were estimated by an empirical estimation of (9) based on a simulated sample of length
5× 106 from the mixture. Setting u = 0, the empirical distributions of Nk,Mk and Vk were
estimated based on 5× 103 sets of lengths k ∈ {5, 20, 50} and compared with the analytical
expression obtained in Theorem 1. The figure shows that the distributions are approximat-
ing the limiting case more closely as k increases, while for k ≥ 20 this approximation may
already be seen to be satisfactory.

3.2 EVT-based one-class classifier

A joint distribution is here calculated to fuse the information from the EVT-based features
Mk, Nk, and Vk, as introduced in Section 3.1. For this purpose, we suppose that at least one
exceedance of − log p(Xi) above uk is observed in a sequence S = {X1, . . . , Xk} of length
|S| = k. The proof of the following theorem can be found in Appendix A.2.

Theorem 2 Consider the random variables Nk, Vk, and Mk associated with sets S of k
observations {X1, . . . , Xk} drawn from a d-dimensional random variable X. Denote y =
p(x) the density function of X and suppose Z = − log p(X) satisfies the following limiting
property:

lim
w→+∞

P

(
Z − w
a(w)

> x | Z > w

)
= e−x, ∀x ∈ R+ (15)

where a(w) = E(Z − w|Z > w). After normalization, the joint cumulative distribution
function of (Nk, Vk, Mk) conditioned on Nk ≥ 1 and related to the sequence of thresholds
uk as in Theorem 1:

Fk(v,m, n) = P

(
Vk
dk
≤ v, Mk

dk
≤ m,Nk ≤ n | Nk ≥ 1

)
, (16)

converges on D = {(v,m, n) | mn ≤ v ≤ m} to a mixture of translated chi-squared distribu-
tion as k tends to infinity:

F (v,m, n) = lim
k→+∞

Fk(v,m, n) =
n∑
l=1

λle−λ

l!(1− e−λ)

r∑
i=0

(−1)i
(
l

i

)
e−imχ2l (2(lv − im)) (17)
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Figure 4: Comparison between limiting distribution as k → +∞ and empirical distribution
functions for k ∈ {5, 20, 50} using simulated data from a GMM when u = 0. (a)
- (c) Differences between empirical distribution and asymptotic distribution for
Nk, Mk, and Vk respectively. (d) - (f) Limiting PDFs pN , pM , and pV from Eqns.
(12) - (14) as k → +∞ for Nk, Mk, and Vk respectively.

where r = b lvmc (i.e. lv
m ∈ [r, r+1[, for 0 ≤ r ≤ l−1), χp denotes the cumulative chi-squared

distribution function with p degrees of freedom and λ = e−u is the exceedance rate of the
limiting Poisson distribution of Nk as in Theorem 1-(i).

Note that the term in (17) for l = 1 has the identity line m = v as its domain and the

expression reduces to λe−λ

1−e−λ (1− e−m). The corresponding limiting joint density function of
(Nk, Vk, Mk) on D can be found by partial derivation of formula (17):

f(v,m, n | n ≥ 1) =


e−nv

bnv
m
c∑

i=1

cin(nv − im)n−2 , n ≥ 2

λ
eλ−1e

−mIv=m , n = 1

(18)

where cin are constants defined for 1 ≤ i ≤ n as:

cin = − nλn

(eλ − 1)Γ(n)Γ(n− 1)
(−1)i

(
n− 1

i− 1

)
.

and where Iv=m(v,m) is an indicator function taking the value 1 when v = m, and which
is zero elsewhere.

To apply Theorem 2, note that (15) implies that an exponential approximation of the
exceedances is valid from some high threshold u0:

P (Z − u0 > x|Z > u0) ≈ e−
x
σ (19)

11
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with σ = a(u0) = E(Z − u0|Z > u0) and σ ≈ dk. Then, based on Theorems 1 and 2, a
novelty score of a sequence S with corresponding EVT features (vS ,mS , nS) can be defined:

χS =

{
P (Nk < nS) + P (Vk ≤ vS ,Mk ≤ mS , Nk = n) when nS > 0

P (Nk = 0) when nS = 0

and for large k this is approximated by:

χS ≈


(
nS−1∑
l=0

λl e
−λ

l!

)
+ F (vSσ ,

mS
σ , nS)− F (vSσ ,

mS
σ , nS − 1) when nS > 0

e−λ when nS = 0

(20)

These novelty scores quantify the ‘extremity’ of a sequence S by cumulatively summing the
probability of having fewer than nS exceedances, while the mean and maximal exceedances
with respect to the threshold u0 do not exceed vS and mS respectively. There is a valid
probabilistic interpretation to χS making it a risk metric that quantifies the risk that S is
novel; i.e., that S has some distribution other than X.

The choice of u0 in the approximation (19) can be assessed by means of a mean excess plot
which is a graphic diagnostic in which the sample means of the excesses (Z−u) are plotted
against a range of thresholds along with the confidence intervals (Embrechts et al., 1997).
The threshold is chosen to be the lowest level where all the higher threshold-based sample
mean excesses are consistent with a horizontal line. Alternatively an empirically driven rule-
of-thumb can be chosen that specifies the tail fraction which satisfies the approximation in

(19) and where u0 is estimated as the quantile at 1 − n2/3

n log log(n) of a sample of length n

of the distribution (Scarrot and MacDonald, 2012). The parameters σ and λ can then be
estimated by means of maximum likelihood estimation (Falk et al., 2011).

Figure 5(a)-(b) illustrates the limiting joint PDF (18) on the domain D conditioned on
the number of exceedances for n = 3 and n = 5 for a GMM X of two standard normal
distribution centred at (0, 0) and (1, 1). As the number of exceedances increases, the mode
of the distributions moves diagonally upwards. Figure 5(c) shows a probability-probability
(P-P) plot assessing the limiting property (17) for k = 20. For this purpose a sample of
5×103 sets of length k = 20 were simulated from X to estimate the cumulative probabilities
Fk(v,m, n) empirically, on a grid of (v,m, n) ∈ [0, 10] × [0, 10] × {2, 3, 5} consisting of 300
vertices and compare these estimations with F (v,m, n).

4. Experiments

In this section, the validity of our proposed method is illustrated using both artificial and
real-world data sets. The novel EVT algorithm is compared with the conventional sequence
classifiers HMMs and OCSVMs. To this end, 5-fold cross-validation is performed where in
each run a random subset of the data from the normal class is used for training and the
remainder of the data is split evenly between validation and test data. The randomized
runs are kept the same across the different classifiers to allow a consistent comparison. The
novelty score of a sequence with respect to a HMM or OCSVM is calculated as being the
mean of the likelihoods assigned by the model to each individual instance of the sequence.

12
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Figure 5: (a) - (b) Limiting joint PDF (18) on the domain D conditioned on n = 3 and
n = 5 respectively, for a GMM X consisting of two standard normal distribution
centred at (0, 0) and (1, 1). (b) A probability-probability (P-P)-plot comparing
the joint empirical cumulative distribution of (Vk,Mk, Nk) for k = 20 with the
limiting joint distribution.

Both HMMs and OCSVMs depend on hyperparameters, the value of which are esti-
mated using the validation sets by maximizing a cost-function. For the HMM, the number
of states varies from 1− 4 (Rabiner and Murray, 1989), while for the OCSVM the standard
hyperparameters (σ, ν) are optimized that respectively denote the kernel width of the Gaus-
sian kernel that is used and an upper bound on the fraction of outliers (Schölkopf et al.,
2001). The threshold on the novelty scores is optimized using the validation data.

For the EVT model, no validation step is performed and no data from the abnormal
class are considered during training. A threshold of 95% is chosen on the novelty score
(motivated from a probabilistic viewpoint). The density of the distribution X describing
the normal class is estimated using a kernel density estimation with Gaussian kernels, and
where the kernel width is estimated by minimization of the mean integrated squared error
(Scott, 1992).

4.1 Synthetic data set

In order to validate the use of our EVT-based method a simulated dataset is constructed
where data from the abnormal class are situated in the tail regions of a planar Gaussian
mixture X consisting of two components located at (−2,−2) and (0, 0) repsectively with
covariance matrix 1

2I2, with I2 the identity matrix in R2×2. The training data of the normal
class consisted of 100 sets of length k = 20 points drawn from X. Several experiments were
performed where the proportion of abnormal instances in the validation and test sets varied
in the range pa ∈ {0.01, 0.05, 0.1, 0.5}. The abnormal class of patterns contained a mixture
of normal instances from X and abnormal instances coming from the tail region where the
density p(x) ≤ 5×10−4. In a 5-fold cross-validation experiment, the ability of the detection
of these patterns between an OCSVM, a HMM, and our EVT model is compared.

Figure 6(a) shows the contours of the tail region obtained from applying the Gumbel
model of Mk on the densities that are estimated using a kernel density estimation of X.
The dark contour surrounding the central region indicates the tail region estimated by the
Gumbel model. In this region, the dark contour corresponds to an empirical estimation of
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Figure 6: (a) The estimation of the tails of a Gaussian mixture X using a Gumbel model
on the distribution of densities (1). The bold contour indicates the estimation
of the EVT threshold e−uk for k = 20 on the likelihoods as defined in Theorem
1. (b) F1-scores averaged over the runs of a 5-fold-validation experiment across
different ratios of available abnormalities.

the threshold uk = ck+udk where u is set to zero (see Theorem 1). It is with respect to this
threshold that the number of exceedances Nk and the maximal and mean exceedance Mk

and Vk are calculated. Using our EVT-based method method, an abnormal sequence can
be evaluated as a cumulative probability score (20) with respect to the joint distribution
of the EVT-based features. For example, the sequence of gray points shown in Figure 6
contains three exceedances with respect to the threshold uk and has a score χS = 98.97%
such that it is classified as being novel with respect to X. Figure 6(b) shows the F1-scores
of the classifiers, averaged over the 5 folds in our cross-validation experiment. When the
ratio of abnormal patterns in the training phase is 50% the classifiers perform equally well.
EVT, however, is able to outperform the classifiers when data from the abnormal class
become sparse, as is typically the case for novelty detection problems. When there is a
lack of examples from the abnormal class, the optimization of the hyperparameters and
the novelty threshold in a HMM and an OCSVM is suboptimal. EVT, on the other hand,
provides a class of models for the tail region where training data are sparse and is able
to estimate the threshold exactly by using a statistical distribution that is obtained by
extrapolation from the normal class (where data are usually abundant).

4.2 Accelerometer data for the detection of epileptic seizures

In this section, a case study in the healthcare domain is considered using a set of acceleration
data collected from movements of patients suffering from epilepsy (Cuppens et al., 2013).
The acceleration data were recorded during several nights using four 3D acceleration sensors
attached to the extremities of 7 children with hypermotor seizures, all between the age of
5 and 16 years. Hypermotor seizures are epileptic convulsions that are marked by a strong
and uncontrolled movement of the arms and legs that can last from a couple of seconds to
a number of minutes. Due to the exaggerated movement involved, the patient can injure
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themselves during the seizure, which increases the need for an alarm system with high
sensitivity to abnormality.

In a pre-processing phase, movement events Es are extracted from the data set using
an energy-based threshold. We denote the acceleration vectors in these events as

Es = {~atl|1 ≤ t ≤ T, 1 ≤ l ≤ 4}

where the indices refer to the time index and the limb respectively (1 = left arm, 2 = right
arm, 3 = left leg, 4 = right leg). Cuppens et al. (2013) performed a feature analysis where
3 features were identified as being relevant to this application:

i) Movement length, f1 = |Es| = T

ii) Average energy in a movement:

f2 =
1

T

∑
t,l

‖~atl‖2

iii) The maximal energy in an arm movement:

f3 = max
1≤t≤T

{
‖~at1‖2, ‖~at2‖2

}
The features are calculated within sliding windows containing 125 samples (Luca et al.,
2014a) which are randomly subsampled to obtain sets S = {x1, . . . ,xk} of fixed length
k = 20 containing data instances xi = (f i1, f

i
2, f

i
3) ∈ R3 on which the EVT algorithm for

sequence classification can be applied.
The data are highly unbalanced as may be seen in Table 1. Only three patient recordings

contain more than 3 examples of seizures. For these patients, an OCSVM and HMM were
trained in a 5-fold cross-validation experiment where in each fold the seizures are randomly
split between validation and test sets to optimize the following cost-function (Cuppens et al.,
2013):

C(λ) = 2 · SS(λ) + PPV (λ)

with respect to the hyper-parameters λ of the model. Here, the weight of the sensitivity
(SS) is higher than the weight of the positive predictive value (PPV), because missing a

Table 1: Overview of epileptic accelerometry data set.
Patient Nights of Hypermotor Normal
number monitoring seizures movements

pat 1 1 2 117
pat 2 2 9 287
pat 3 2 2 439
pat 4 1 2 239
pat 5 5 26 784
pat 6 2 7 381
pat 7 2 3 468

total 15 51 2715
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Table 2: SS and PPV scores of different approaches used in the detection of epileptic seizures
(a) OCSVM, (b) HMM, and (c) EVT. Mean and standard deviations (SD) are
calculated over the folds in a 5-fold-cross-validation experiment.

OCSVM SS PPV F1
mean SD mean SD mean SD

pat2 100.0 0.00 48.03 13.19 64.07 11.62
pat5 64.62 18.53 34.08 2.68 43.59 2.22
pat6 100.00 0.00 31.85 7.20 47.96 8.14

(a)

HMM SS PPV F1
mean SD mean SD mean SD

pat2 70.00 20.92 89.33 15.35 76.83 14.09
pat5 56.92 8.77 46.57 16.75 49.71 10.40
pat6 80.00 29.81 85.00 13.69 77.43 15.53

(b)

EVT SS PPV F1
mean SD mean SD mean SD

pat2 100.0 0.00 69.65 21.38 80.63 14.75
pat5 35.38 10.32 21.80 2.73 26.80 4.95
pat6 100.0 0.00 48.21 15.15 64.05 12.34

pat1 100.0 0.00 19.68 9.55 32.05 13.08
pat3 100.0 0.00 56.67 25.28 70.00 18.26
pat4 100.0 0.00 48.33 30.28 61.33 23.64
pat7 100.0 0.00 66.67 31.18 76.67 22.36

(c)

seizure is more costly than generating a false-positive classification for this type of seizure.
Tables 2(a) and 2(b) show the mean performance scores calculated over the different test
sets in the runs for three patients of which more than 3 examples of seizures were available
for the training of these models. As there are at most 3 seizures present for the remaining
patients, at most two seizures could be used in the validation set when training the HMMs
and OCSVMs. In this way at most one of the seizures could be held out and detected by
the algorithms during the different cross-validation experiments.

Table 2(c) shows performance scores related to the EVT approach. In contrast to the
OCSVM and HMM, performance scores could easily be obtained for all patients without
the need for optimization using validation data. As hypermotor seizures are marked by
strong and uncontrolled movements, the use of EVT is very suitable in this application to
recognize this type of ‘extremity’ from the class of normal movement events. In contrast
to an OCSVM our EVT-based method was able to improve PPV values in patients 2 and
6 (averaged over the folds, a decrease of 3 false alarms while testing 50 normal movements
was obtained) while the SS scores remained 100%. The OCSVM was able to outperform
the EVT method for patient 5. This is mainly due to (i) the seizures for this patient are
less extreme than in the rest of the data (Cuppens et al., 2013); (ii) a sufficient amount
of seizures is present giving the OCSVM the ability to perform a thorough optimization of
the hyperparameters during the training phase. A HMM was not able to detect all seizures
and obtained better PPV values compared to our EVT-based method.

5. Conclusion

This article focuses on the problem of novelty detection, where data instances from the
normal class are abundant but where examples from the abnormal class are sparse. In
particular a new approach is introduced that is based on the use of EVT and which is
particularly well-suited to detecting outliers that present ‘extreme’ behaviour with respect
to a statistical model X. It is shown how EVT can be adapted to define a model over
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regions where data are sparse (or even unavailable) circumventing the need for optimization
of hyperparameters as otherwise occurs when using conventional OCSVMs or HMMs. This
leads to a more robust and exact estimation of the support of X when abnormal data are
limited in availability.

One of the main challenges in novelty detection is to improve the PPV. Indeed, when
classes are highly unbalanced, an unusually high accuracy is required to overcome a high
false-alarm rate. Therefore rich models that combine several types of information in a
natural way are needed to increase the PPV of a novelty detector. An estimation procedure
from EVT is proposed that encodes the three different types of EVT-based information for
a sequence S. Given a treshold u and an estimation y = p̂(x) of the density of X, the
following types of information were fused: (i) the maximal exceedance of − log p(S) above
u; (ii) the mean exceedance of − log p(S) above u; and (iii) the number of exceedances of
− log p(S) above u.

We have demonstrated the use of this method on both artificial data and a real-world
set of acceleration data collected from movements of patients that suffer from epilepsy.
By applying the proposed method, it was shown that SS scores and PPV scores could
be improved compared to the use of conventional HMMs and OCSVMs, especially when
examples from the abnormal class are sparse.
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Appendix A. Proofs

In this appendix we prove the results obtained in Section 3.

A.1 Proof of Theorem 1

Proof In terms of the normalized sequence of random variables Z−ci
di

, it can be shown that
(11) is equivalent to:

lim
i→+∞

P

(
Z − ci
di

< u+ x

∣∣∣∣Z − cidi
> u

)
= 1− e−x (21)

with u ∈ R and x ≥ 0 (Falk et al., 2011, p.21). The statements (i)-(iii) can now be proven
as follows.

(i) This result follows by applying the link between the limiting properties (2), (4) and (7)
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on the transformed variable Z = − log(p(X)) as discussed in Sections 2.2 and 2.3. The
exceedance rate of the PPP can be found by calculating the limit:

lim
k→+∞

kP (Z ≥ ck + dku) = lim
k→+∞

P (Z ≥ ck + dku)

P (Z > ck)
, as P (Z ≤ ck) = 1− 1

k

= lim
k→+∞

P (Z ≥ ck + dku|Z > ck)

= lim
k→+∞

P

(
Z − ck
a(ck)

≥ u|Z > ck

)
, as dk = a(ck)

= lim
w→+∞

P

(
Z − w
a(w)

≥ u|Z > w

)
, as lim

k→+∞
ck = +∞

= e−u

(ii) The limiting distribution of the maximal exceedance Mk conditioned on the number of
exceedances Nk ≥ 1 is obtained as:

lim
k→+∞

P

(
Mk

dk
≤ m|Nk = l

)
= lim

k→+∞
P

(
Z − uk
dk

≤ m
∣∣∣∣Z > uk

)l
uk=ck+udk

= lim
k→+∞

P

(
Z − ck
dk

− u ≤ m
∣∣∣∣Z − ckdk

> u

)l
= (1− e−m)l. (22)

where we used (21). The distribution of Mk is found by marginalization over the number
of excesses 1 ≤ l ≤ k conditionned on Nk ≥ 1. From (i) one finds:

lim
k→+∞

P

(
Mk

dk
≤ m|Nk ≥ 1

)
= lim

k→+∞

k∑
l=1

P

(
Mk

dk
≤ m|Nk = l

)
P (Nk = l|Nk ≥ 1)

=
1

1− e−λ
+∞∑
l=1

(1− e−m)l
(
λl

l!
e−λ
)

Further simplification leads to:

lim
k→+∞

P

(
Mk

dk
≤ m|Nk ≥ 1

)
=

e−λ

1− e−λ
+∞∑
l=1

(λ(1− e−m))l

l!

=
e−λ

1− e−λ
[
exp

{
λ− λe−m

}
− 1

]

=

exp

{
− exp

[
− (m− lnλ)

]}
− e−λ

1− e−λ

which is the cumulative distribution function of a Gumbel member of the family (3) located
at µ = lnλ and conditioned on the positive real line.

(iii) From (21) it follows that the excesses Z−ci
di
−u converge in distribution to an exponential

distribution as i → +∞. Therefore, from the continuous mapping theorem (stating that
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convergence is preserved by continuous transformation (Embrechts et al., 1997, p. 561)),
the mean of n such independent excesses converges to the distribution of a mean of n
independent variables that are distributed according to an exponential distribution. Thus
the limiting distribution conditioned on Nk = l ≥ 1 is given by an Erlang distribution with
shape-parameter l and rate parameter l (Feller, 1971, p. 11) with a cumulative distribution
function:

lim
k→+∞

P

(
Vk
dk
≤ v|Nk = l

)
= 1−

l−1∑
j=0

1

j!
(lv)j e−lv

Marginalisation over the number of exceedances leads to:

lim
k→+∞

P

(
Vk
dk
≤ v|Nk ≥ 1

)
= lim

k→+∞

k∑
l=1

P

(
Vk
dk
≤ v|Nk = l

)
P (Nk = l|Nk ≥ 1)

=

+∞∑
l=1

1−
l−1∑
j=0

1

j!
(lv)j e−lv

(λl
l!

e−λ

1− e−λ
)

=
1

eλ − 1

(eλ − 1)−
+∞∑
l=1

l−1∑
j=0

λl

l!j!
(lv)j e−lv


= 1− 1

eλ − 1

+∞∑
l=1

l−1∑
j=0

λl

l!j!
(lv)j e−lv



A.2 Proof of Theorem 2

Proof Convergence in distribution is expressed in terms of the joint (cumulative) distri-
bution of the features Vk,Mk and Nk conditioned on Nk ≥ 1:

Fk(v,m, n) = P

(
Vk
dk
≤ v, Mk

dk
≤ m,Nk ≤ n | Nk ≥ 1

)
. (23)

Clearly, the mean v of a sequence of n positive numbers is situated between m
n and m such

that the support of Fk is situated in D = {(v,m, n) | mn ≤ v ≤ m}. The conditioned joint
distribution (23) can be written as:

Fk(v,m, n) =
n∑
l=1

P
(
Vk
dk
≤ v, Mk

dk
≤ m,Nk = l

)
1− P (Nk = 0)

=

n∑
l=1

P
(
Vk
dk
≤ v | Mk

dk
≤ m,Nk = l

)
P
(
Mk
dk
≤ m | Nk = l

)
P (Nk = l)

1− P (Nk = 0)
(24)

The limiting distribution of (23) can be obtained by considering the limit of each factor in
the nominators of the terms in (24) as k → +∞. Firstly, from Theorem 1-(i), it follows
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that:

lim
k→+∞

P (Nk = l) =
λle−λ

l!
, λ = e−u. (25)

Secondly, the limiting distribution of P
(
Mk
dk
≤ m | Nk = l

)
is given by (22). Thirdly, the

distribution P
(
Vk
dk
≤ v | Mk

dk
≤ m,Nk = l

)
corresponds to the distribution of the mean of l

independent exceedances that each converge in distribution to an exponential distribution
truncated at m:

lim
k→+∞

P

(
Z − uk
dk

≤ v | Z − uk
dk

≤ m
)

= lim
k→+∞

P

(
Z − ck
dk

− u ≤ v | Z − ck
dk

− u ≤ m
)

=
1− e−v
1− e−m .

Therefore, according to the continuous mapping theorem (Embrechts et al., 1997), the dis-
tribution of lVk converge in distribution to the sum of l truncated exponential distributions
such that (Bain and Weeks, 1964):

lim
k→+∞

P

(
Vk
dk
≤ v | Mk

dk
≤ m,Nk = l

)
=

1

(1− e−m)l

r∑
i=0

(−1)i
(
l

i

)
e−imχ2l (2(lv − im))

for r = b lvmc. Substituting the latter expression together with (22) and (25) in the factori-
sation (24) gives the desired result.
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