Teaching Computing in primary school: Create or Fix?

Tom Neutens
IDLab, Department of Information Technology, Ghent
University - imec
Ghent, Oost-Vlaanderen, Belgium
Tom.Neutens@UGent.be

ABSTRACT

We describe the setup of an experiment conducted in the spring
of 2018. The experiment aims to identify the differences between
teaching computing through creating programs as opposed to fix-
ing them. Quantitative and qualitative data are collected in the
forms of pre- and post- knowledge tests, pre- and post- attitude
tests, programming environment logging data and student interac-
tion video’s. The logging data shows that starting from incorrect
program leads to less interactions with the code. However it leads
to more testing in simulation and on the physical system.

KEYWORDS

Computer science education, STEM education, Creating, Debug-
ging, physical computing

ACM Reference Format:

Tom Neutens and Francis wyffels. 2018. Teaching Computing in primary
school: Create or Fix?. In Proceedings of the 13th Workshop in Primary and
Secondary Computing Education (WiPSCE ’18), October 4—6, 2018, Potsdam,
Germany. ACM, New York, NY, USA, Article 4, 2 pages.

1 INTRODUCTION

Improving our knowledge about primary computer science (CS) ed-
ucation is key to enabling its implementation in the classroom. The
way teachers decide to teach a specific CS topic in the classroom has
consequences in multiple dimensions. These dimensions include:
learning efficiency, motivation, attention, level of understanding,
time required, course materials and many others. Identifying which
educational design strategies work in certain situations and which
do not is important to provide teachers with sufficient theoretical
knowledge when choosing an implementation.

Several studies have aimed at identifying better methods for
teaching CS. In [5] the authors examine the effect of subgoal labels
in a K-3 LightBot course. They showed that subgoal labels signifi-
cantly improve the speed at which students can progress through
exercises. The authors of [1] show the importance of teaching a
conceptual framework of program execution to improve perfor-
mance in the KODU programming exercises. The learners who
were introduced to the framework were more capable at explaining
and predicting a program its behavior. In [3] the authors analyze
which CS concepts should be thought at what age.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

Postdam, October 2018, Potsdam, Germany

© 2018 Copyright held by the owner/author(s).

Francis wyffels
IDLab, Department of Information Technology, Ghent
University - imec
Ghent, Oost-Vlaanderen, Belgium
Francis.wyffels@UGent.be

In the CS education community it is generally believed that
teaching computing does not only provide students with knowl-
edge about computing but also trains them in higher level concepts.
These concepts are mostly grouped under the umbrella term com-
putational thinking. Many definitions of computational thinking
exist in literature, one of the more popular definitions is the one
by J. Wing [8]. She defines computational thinking as: The thought
processes involved in formulating a problem and expressing its so-
lution(s) in such a way that a computer -human or machine- can
effectively carry out. In practice computational thinking is split into
multiple dimensions. These dimensions are not consistent in litera-
ture however, most include: abstraction, decomposition, evaluation,
algorithms and logic. Training students in mastering these compu-
tational thinking skills is important since it should enable them to
apply these principles in many different contexts. Consequently,
it is essential to identify which teaching techniques affect which
computational thinking principles.

Previous research has shown that learning debugging skills, ap-
posed to just learning how to program, are transferable to other
domains [2]. However, debugging requires a deeper understanding
than just writing a program from scratch. This might detrimental to
the motivation of students who learn about programming through
debugging [6]. Consequently, we designed an experiment to assess
the effect of two different teaching methods on the learners’ compu-
tational thinking ability and attitude. One teaching method focuses
on learning to program by creating applications from scratch. The
second method teaches them the same concepts but does this by
letting the students debug the code provided to them.

2 EXPERIMENTAL SETUP

To conduct our experiment we designed two similar robotics work-
shops. These workshops both consist of three two hour sessions.
The content and structure of both workshops is exactly the same.
However, in the first workshop students write their code from
scratch, the second workshop provides the students with an incor-
rect program and challenges them to fix the code. Both types of
the workshop were given to five different groups. These groups
have a size varying between 14 an 24 primary school students aged
10 to 12. In total 203 students participated in our experiment, 105
students participated in the "create" workshop the other 97 students
in the "fix" workshop. The workshops were conducted in different
schools across the country by two teachers. One of the teachers
always taught the first session of the workshop the other teacher
the second and third session. The three sessions of each workshop
were conducted within the same week.

Put name on Icd;
Introduce yourself using lcd;
Print poem on lcd;

Create Create poem using loop;
Interactive poem using lights
A
E)
2
5
g Code »| Build robot
g
=]
. - Change name on lcd;
Fix . o

Change location text on lcd:
Make your name disappear;

Add wait in introduction program;
Add clear lcd biock:

Add loop to make program shorter;
Change biink frequency of led;

Stop atwall;
Drive in straight line; _ Avoid wall
Drive in square shape; Turn 180° atwall;
) A
=
&
Code of Attach | S coge
sensor | &
g
S
v v
Stop robot spinning, drive Fix stop condition;
straight; - Correct speed so robot doesn't
Change timings to make hit the wall;
square; - Tum 180° at wall

Figure 1: Overview of the create and fix workshops. The workshop structure is similar, only the coding exercises are different.
Inside the blocks the session structure is shown. Above and below the coding exercises for each session type are shown.

2.1 Physical computing workshop

The workshop was designed in a physical computing context. Phys-
ical computing has the advantage that it can be easily linked to
STEM education which has recently been added to the regional cur-
riculum. Additionally, physical systems have been shown to have
a positive effect on motivation because it supports active learning
[4]. Within this context we designed two workshops, one in which
the students write all code from scratch and one where they get an
incorrect solution to the problem which they have to fix. We will
refer to the different workshops as the create- and fix-workshops
respectively. We designed both the create- and fix-workshop using
a similar structure show in Figure 1.

2.2 Data collection

To measure the effects of the different workshops we collected
many different types of data. (1) All participants take a pre- and
post- knowledge test. This test consists of five Bebras questions and
four basic programming questions. The programming questions
assess their understanding of the learned programming concepts
and the Bebras questions measure the effect on general computa-
tional thinking knowledge. (2) During five of the ten sessions (three
create and two fix) a thesis student joined the workshop and filmed
the interactions of two participating groups. This data will be used
to perform a qualitative analysis of the workshops. (3) The students
took a pre- and post- attitude test. The test measures the attitude
towards engineering. This test is based on the work of Summers
et al. on validation of attitudes towards science [7]. (4) To learn
more about how the students interact with the programming envi-
ronment and determine the strategies used to solve the different
problems, all interactions with the programming environment are
logged. All button clicks as well as code edits are timestamped and
saved to a database.

3 LOGGING RESULTS

The collected dataset contains 567408 logging entries, 363793 from
the create group and 203615 from the fix group. In table 1 an
overview of the number of times certain events occurred in each
workshop type. The table shows that there was a significant differ-
ence in the interactions with the environment between the create
and fix group. The create group had to build the code from scratch

so logically it had more code edits. When we compare the number
of runs inside the simulator, we see a significant difference since the
create group was not instructed to use it. However, some students
found their way to the simulator most likely by accident. Conse-
quently, the number of physical runs is higher in the create group.
However. If we add the number of simulated and real runs we can
see the fix group had more runs (5682) than the create group (4948).

Event Create | Fix

Code change 56563 | 33834
Start simulation 60 3430
Program physical robot | 4888 | 2252

Table 1: The number of log entries for selected events.

4 CONCLUSION

This abstract describes the setup of an experiment executed in
the spring of 2018. We have provided some preliminary statistics
extracted from our logging data. These show that starting from
incorrect program leads to less interactions with the code. How-
ever it leads to more testing in simulation and on the physical
system. A more extensive analysis of all data will be available in
later publications.

REFERENCES

[1] Ashish Aggarwal, David S Touretzky, and Christina Gardner-McCune. 2018.
Demonstrating the Ability of Elementary School Students to Reason about Pro-
grams. (2018).

[2] Sharon McCoy Carver. 1986. Transfer of LOGO Debugging Skill: Analysis, In-
struction, and Assessment. (1986).

[3] Diana Franklin et al. 2017. Using Upper-Elementary Student Performance to
Understand Conceptual Sequencing in a Blocks-based Curriculum. In Proceedings
of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education.
ACM, 231-236.

[4] ScottFreeman et al. 2014. Active learning increases student performance in science,
engineering, and mathematics. Proceedings of the National Academy of Sciences
111, 23 (2014), 8410-8415.

[5] Johanna Joentausta and Arto Hellas. 2018. Subgoal Labeled Worked Examples in
K-3 Education. In Proceedings of the 49th ACM Technical Symposium on Computer
Science Education. ACM, 616-621.

[6] Zhongxiu Liu et al. 2017. Understanding problem solving behavior of 6-8 graders
in a debugging game. Computer Science Education 27, 1 (2017), 1-29.

[7] Ryan Summers and Fouad Abd-El-Khalick. 2018. Development and validation of
an instrument to assess student attitudes toward science across grades 5 through
10. Journal of Research in Science Teaching 55, 2 (2018), 172-205.

[8] Jeannette M Wing. 2008. Computational thinking and thinking about computing.
Philosophical transactions of the royal society of London A: mathematical, physical
and engineering sciences 366, 1881 (2008), 3717-3725.

	Abstract
	1 Introduction
	2 Experimental setup
	2.1 Physical computing workshop
	2.2 Data collection

	3 Logging results
	4 Conclusion
	References

