

*DEPARTMENT OF ELECTRICAL ENERGY, METAL, MECHANICAL CONSTRUCTION AND SYSTEMS (EEMMCES)

**DEPARTMENT OF PHYSICAL MEDICINE AND ORTHOPAEDIC SURGERY

TEKSCAN FORCE MEASUREMENT ACCURACY FOR BIOMECHANICAL JOINT CONTACT MEASUREMENTS

ir. Stijn Herregodts*,**, PhD ir. Matthias Verstraete**, Prof. Patrick De Baets* and Prof. Jan Victor**

Accuracy? 8%

Aim of this study: Improve and determine the accuracy and reliability of Tekscan intra-articular contact pressure measurements after arthroplasty

Hydraulic homogeneous pressure applicator

- Application of homogeneous pressure up to 30 Mpa to mimic the contact pressure in a knee joint with implants
- The volumetric plunger system is loaded in a conventional MTM
- The oil pressure is transferred to the sensor by the membrane

Dynamic sensor preconditioning

- Four Tekscan 4000 sensors are loaded and unloaded cyclically with a homogeneous pressure of 15 MPa and a cycle time of 15 min
- The figure on the right shows the total sensor output as a function of time and load cycle
- The change in sensitivity and drift is calculated and presented as a function of the number of applied cycles
- After 10 cycles the sensor output is stabilized

Sensor equilibration

Standard approach:

- Equilibration with air pressure at 0,6 Mpa

Optimized approach:

- Equilibration with hydraulic pressure at 30 MPa
- Test load at 30 Mpa
- Homogeneous pixel sensitivity in whole measurement range
- Precondition at level test pressure essential!

Overview error sources in true application conditions

- The error is quantified going from the ideal to the real application conditions
- A stepped and random load profile is applied to each configuration
- The difference between the applied load and the total measured load by the sensor is calculated

	Ideal conditions —					—	Application conditions				
	R500		R50		R 25 mm						
Loading conditions.	Ideal conditions		Smaller load area		Smaller load area Curved contact surface		Variable load area Curved contact surface		Flexion-extension motion Constant force		
Load type	Stepped	Random	Stepped	Random	Stepped	Random	Stepped	Random	100 N	180 N	300 N
Mean error [N]	22,3	27,6	22,1	26,2	15,0	24,0	18,4	17,5	17,9	12,3	53,1
Standard deviation [N]	18,8	26,0	18,1	13,8	16,6	23,1	18,3	15,2	10,8	13,1	21,0
Applied force range ¹	0 to 2000 N		0 to 450 N		0 to 350 N		0 to 300 N		0 to 300 N		
Percentage error ² [%]	1,2	1,5	5,5	5,8	5,0	6,8	6,1	5,8	17,9	6,8	17,7
Standard deviation [%]	1,0	1,4	4,5	3,0	5,5	6,6	6,1	5,1	10,8	7,2	7,0

Conclusions:

- Inadequate preconditioning of the sensor can lead to a measurement error of 21.1% (SD=6.2%)
- Reduction of contact area and introduction of motion decreases the accuracy significantly
- With optimal sensor preconditioning and data post-processing by drift compensation, an error of 17.9 % (SD=10.8 %) can be expected for tibiofemoral implant contact measurements

Contact Stijn.Herregodts@UGent.be www.ugent.be

Universiteit Gent

@ugent

