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Abstract salt marshes are important coastal areas that consist of a vegetated intertidal marsh platform
and a drainage network of tidal channels. How salt marshes and their drainage networks develop is not
fully understood, but it has been shown that the biogeomorphic interactions and feedbacks between
vegetation development and channel formation play an important role. We examined the relationships
among tidal channel sinuosity, marsh roughness, vegetation type (pioneer, Elymus athericus or Phragmites
australis), and patch size at different spatial scales using a high-resolution vegetation map (derived from
aerial photography) and lower-resolution satellite imagery processed with linear spectral mixture analysis.
The patch-size distribution in all vegetation types corresponded to a power law, suggesting the presence
of self-organizational processes. While small vegetation patches are more dominant in pioneer vegetation,
they were present in all vegetation types. The largest patch size is restricted to E. athericus. We observed
an inverse logarithmic relationship between channel sinuosity and vegetation patch size in all vegetation
types. The fact that this relationship is observed in both pioneer and later successional stages suggests that
after the establishment of a drainage network in the dynamic pioneer stages of salt marsh development,
the later stages of salt marsh succession largely inherit the meandering pattern of the early successional
stages. Our study confirms recent evidence that no significant changes in the specific features of tidal
channel networks (e.g., channel width, drainage density, and efficiency) take place during the later stages of
salt marsh development.

1. Introduction

Coastal transitional environments are highly dynamic and complex systems. This complexity is particularly
evident in salt marshes, which are natural landforms shaped by the interactions among hydrodynamic forces,
sediment input, and vegetation (Temmerman et al., 2007). Salt marshes represent one of the most important
types of coastal wetlands, both for their ecological value and for their coastal defense characteristics (Adam,
1990; Kirwan et al.,, 2016; Yapp et al, 1916, 1917). Salt marshes can be divided into three characteristic
components based on their elevation: (i) a tidal flat of unvegetated sediment, usually lying below the mean
high water level; (ii) a marsh platform colonized by halophytic vegetation and located at the transition
between the emerged and submerged environments; and (iii) a drainage channel network that breaks up
the vegetated surface and controls tidal flow in and out of the marsh, hence controlling exchanges between
the marsh interior and exterior. These three zones interact on different scales, resulting in the formation of
highly intricate patterns of vegetated areas and tidal channel systems (Bouma et al., 2009).

Salt marshes display a high degree of heterogeneity at multiple spatial scales, which is caused by different
internal and external forces; specifically, sea level and tides are the most important external stress factors,
while the dominant internal force is the halophytic vegetation itself (Allen, 2000). Strong interactions
between vegetation and physical forces shape salt marsh initiation and development (Beeftink,
1966; Boon, 1975; Boon & Byrne, 1981; Bouma et al., 2009; French & Stoddart, 1992; Novakowski et al.,
2004; Pethick, 1980; van Wesenbeeck et al., 2008), the hydrodynamics of salt marsh channels (Fagherazzi
et al.,, 2008; Temmerman, 2005), and their morphometric features (Fagherazzi et al., 2004, 2012; French,
1993, 2006; Marani et al., 2003, 2006; Rinaldo et al., 1999a, 1999b). Although modeling studies have enhanced
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our knowledge about the long-term biomorphodynamic evolution of intertidal areas and salt marshes in par-
ticular (D'Alpaos, Lanzoni, Marani, Fagherazzi, Rinaldo, 2005; D'Alpaos et al., 2006; Fagherazzi & Furbish, 2001;
Fagherazzi & Sun, 2004), comparatively little empirical knowledge is available on the evolution of salt
marshes in response to changes in intertidal vegetation and platform elevation (D’Alpaos et al., 2007, 2006;
Defina et al., 2007; Fagherazzi et al., 2006); moreover, there is particularly limited information available on
the transition dynamics during the establishment of channel sinuosity in relation to the main patterns of spa-
tial vegetation (Foti & Ramirez, 2013; Temmerman et al., 2007; Vandenbruwaene et al., 2012). During the
initial stages of salt marsh development (i.e, from the unvegetated tidal flat to the vegetated stage), the
establishment of vegetation can have both erosional and stabilizing effects (Friedrichs, 1995; Friedrichs &
Aubrey, 1988). The importance of these effects depends on the channel incision and slope. If channels were
already formed in the unvegetated mudflat stage, then vegetation will mainly have a stabilizing effect.
However, if channels are not yet fully formed, biological-physical feedbacks (Bouma et al., 2016; Corenblit
et al, 2015; Hu et al,, 2015) between vegetation tussocks (e.g. the pioneer Spartina) and sediment will
enhance erosion and, hence, channel incision between the vegetation patches (Bouma et al., 2007; Schwarz
et al,, 2014, 2015; Vandenbruwaene et al,, 2011; van Wesenbeeck et al., 2008). Either way, once vegetation
is established, an increase in channel branching and meandering is observed (Pestrong, 1965), which results
in increased channel drainage density (Temmerman et al., 2007; Vandenbruwaene et al., 2012) and efficiency
(Kearney & Fagherazzi, 2016). Sediment trapping by the pioneer vegetation will lead to an increase in sedi-
ment stability and elevation, which enables the later successional vegetation stages to colonize (D'Alpaos,
Lanzoni, Marani, Bonometto, et al., 2005). At the same time, smaller patches can begin merging into larger
patches; over time, this process will lead to the formation of a marsh platform that is dissected by major chan-
nels, as has been observed in studies using aerial photography and remote sensing (RS) approaches
(Temmerman et al., 2007; Vandenbruwaene et al., 2011; Wang & Temmerman, 2013). Currently, it is not com-
pletely clear what happens to the geometry of the drainage networks in these later stages of salt marsh devel-
opment (Maréchal et al, 2012; Mariotti & Fagherazzi, 2010). Modeling approaches suggest that after
vegetation has established, further planimetric network evolution is mainly characterized by meander forma-
tion and evolution (D’Alpaos et al., 2007; Schwarz et al., 2014); however, empirical work has shown that, after
vegetation establishment and patch-size growth, the presence of vegetation will freeze the structure of the
channel network (as evidenced by, e.g., no further changes in channel density and channel width;
Vandenbruwaene et al., 2012). Studies on fluvial systems and megadeltas (Passalacqua et al., 2013; Perron &
Fagherazzi, 2012) have highlighted that plants established on freshly deposited areas of a braidplain during
low flow had the effect of progressively focusing the high flow so that a single dominant channel developed
over a wide range of spatial scales (Fagherazzi, 2008; Garofalo, 1980). Further changes in channel geometry
and, more specifically, sinuosity are then mainly related to changes in flow resistance caused by changes in
topography and/or vegetation abundance; moreover, denser vegetation leads to increases in sinuosity as
long as the slope remains constant (Lazarus & Constantine, 2013). Likewise, it has been hypothesized that
higher vegetation abundance in salt marshes will lead to increased channel density (Temmerman et al., 2007).

To date, the relationships among the vegetation successional stage, vegetation patch size, and sinuosity have
not been thoroughly explored in salt marshes. More specifically, it is not known how vegetation patch size is
distributed from the early-stage pioneer zone to the later successional stages in the high marsh platform; it is
also unclear how patch size is related to sinuosity.

To this end, most RS studies have focused on detecting spatial patterns through the use of aerial sensors (e.g.,
Ibrahim & Monbaliu, 2011; Temmerman et al., 2007; van de Koppel et al., 2005) and lower-resolution images
(Frazier & Page, 2000; Taramelli et al., 2017). However, the use of spatial variables derived from RS imagery
offers an ideal tool to study the relationships among vegetation type, patch-size distribution, and channel
sinuosity (Jefferies et al., 2006; Méléder et al., 2010; Moffett et al.,, 2015; Vande Castle, 1998; Wang et al.,
2007). In fact, to capture smaller-scale variation, linear spectral mixture analysis (LSMA) allows the considera-
tion of subpixel variation (Manzo et al., 2014; Valentini et al., 2014) and provides a validated tool that can be
used to study temporal multiscale channel and vegetation variability in tidal ecosystems (Taramelli et al.,
2017; Taramelli, Valentini, et al., 2014).

In the present study, we examine the relationships between vegetation patch size and channel sinuosity in a
salt marsh in the Netherlands. We hypothesized that as the marsh matures from pioneer to later stages, sinu-
osity will increase because the denser vegetation (i.e., the later successional stages) would increase flow
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resistance. We used a combination of RS observations to investigate whether the same relationships hold at
different spatial scales (Sousa & Small, 2017; Van Belzen, 2011), including a high-resolution vegetation map
based on aerial photography and medium-resolution RS data (SPOT, Satellite Pour I'Observation de la
Terre), to characterize vegetation by applying the LSMA and to extract the channel sinuosity for the optical
RS images (Frazier & Page, 2000; Mason et al., 2006).

This paper is organized as follows. The first part of section 2 introduces the study area and discusses the field
and the Earth observation data used. The LSMA, which considers subpixel variation, and its main ecological
and physical assumptions (e.g., vegetation patches and sinuosity) are discussed in the second part of
section 2. Section 3 presents and discusses the main results obtained by applying the power law conceptual
model for explaining why annealing patches are merging across salt marshes, which are then inherited in a
later stage. Finally, a set of conclusions close the paper.

2, Study Area

The study area is located in the Scheldt estuary (Figure 1) in the Netherlands, specifically in a catchment area
that covers one of the most densely populated regions in Europe, with a total of 10 million people (Meire
et al, 2005). The river Scheldt originates in northern France and flows through Belgium and the
Netherlands into the North Sea, with a total length of 355 km (Meire et al.,, 2005). The Scheldt estuary
(Baeyens et al.,, 1997) has a mesotidal to macrotidal regime across the entire estuary (up to Ghent). The tidal
excursion is variable within the estuary. At the mouth, the average tidal range is 3.8 m (between 2.81 m at
neap tide and 4.85 m at spring tide).

The study site, which is called the Verdronken Land van Saeftinghe, is a nature reserve located in the brack-
ish (oligohaline) section. Saeftinghe is the largest salt marsh in the estuary (approximately 30 km?) and
ranks among the largest in Europe. The average tidal range at the site is 4.88 m (Vandenbruwaene et al.,
2012). In the 1930s, only 25% of the area was covered by salt marsh vegetation, while the rest of the area
consisted of mudflats and tidal channels (Vandenbruwaene et al., 2012). Today, the proportions are
reversed: Saeftinghe consists of 30% mudflats and channel systems, while the remaining 70% of the surface
is covered by salt marsh vegetation. In Saeftinghe, climax stands of common reed (Phragmites australis) can
be found. Sea couch (Elymus athericus), an upper-marsh species with a highly competitive capacity for
nitrogen assimilation, is the dominant grass species. The pioneer zone is mainly colonized by patches
of Spartina.

3. Materials and Methods

3.1. Available Data

3.1.1. High-Resolution Vegetation Map and Digital Terrain Model

We used a vegetation map and a digital terrain model (DTM), both of which were acquired in 2010, to
characterize the vegetation (e.g., typology and spatial distribution) and the geomorphic characteristics of
the study site (e.g., marsh elevation and tidal channel sinuosity). The vegetation map of the western
Scheldt salt marshes was provided by Rijkswaterstaat (hereafter RWS; part of the Dutch Ministry of
Infrastructure and the Environment) and is available upon request from the RWS Servicedesk Data (http://
www.rijkswaterstaat.nl/water/waterbeheer/natuur-en-milieu/ecotopen/meer-weten/index.aspx). The data
set was obtained through stereoscopic interpretation of false-color aerial images at a 1:50,000 scale through
the use of a digital photogrammetric system. The vegetation mapping was performed according to the
landscape-guided and photo-guided methods (Tiner, 2016). This method is a variant of the landscape-guided
method and is generally used when the complete area can be visited in the field (Janssen, 2001). In both
methodologies, the interpretation was also supported by fieldwork, and finally, the maps were digitized
and stored in a geographical information system, GIS (Tolman & Pranger, 2012).

The RWS vegetation map was integrated with the DTM of 2010, which was obtained from a light detection
and ranging (LiDAR) survey (2 x 2-m spatial resolution and a maximum vertical error of +0.05 m) and
provided by RWS. The elevation DTM was also used to determine the elevation range of the different
vegetation types (see end of section 3.2) and to improve the vegetation classification of the satellite imagery
(see RS data set below).
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Figure 1. (top) False color aerial image of the salt marsh and location of sampling points of spectroradiometric measure-
ments. Landsat satellite image of the Scheldt estuary (bottom left), close up of the Saeftinghe salt marsh (bottom right), and
the Scheldt estuary location in the northern part of Europe (top right).

3.1.2. Lower-Resolution Satellite Imagery (SPOT)

To test the effects of the decreasing spatial resolution on the relationships between vegetation and geo-
morphic features, we also analyzed lower-resolution RS images taken during low tide for two different time
points in 1999 and 2012. For 1999, we used an archived SPOT-4 satellite image (Spot Image, 2002), while the
2012 image was acquired through a SPOT-4 overpass of the Saeftinghe salt marsh (Table 1) during the field
campaign (see below). The satellite carries the High-Resolution Visible and Infrared optical sensor, which
measures the radiance of the Earth’s surface in three bands in the visible-near infrared and one in the middle
infrared, with a ground resolution of 20 m. The High-Resolution Visible and Infrared sensor characteristics and
details on the overpass are described in Table 1, as is the tidal level for the reference station of Bath
(The Netherlands).
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Table 1
Characteristics of the SPOT4 HRVIR Sensor (Spot Image, 2002), the Archived Image (1999) and Overpass Details (2012
Campaign), and the DTM (2010) Used in This Study

1999 2012 Digital terrain model (DTM) 2010
Platform SPOT-4 Satellite SPOT-4 Satellite Airborne LiDAR
Spatial resolution (m) 20 x 20 20 x 20 2x%x2
Spectral range (nm) 500-1750 500-1750 n/a
Bands 4 4 1
Acquisition date 1 May 1999 4 July 2012 25-28-29 April 2010 14/05/2010
Flight time (ECT) 11:03 10:30 n/a
Tidal level —2.14m —2.23 m (Normal Amsterdam Level) n/a

Note. HRVIR = High-Resolution Visible and Infrared; LiDAR = light detection and ranging; SPOT-4 = Satellite Pour
I'Observation de la Terre 4; ECT = European Connoisseurs Travel.

The SPOT images were preprocessed for radiometric correction first by a transformation to at-sensor
radiances using gain and offset information, and then to at-sensor reflectance to compensate for variations
in the illumination conditions and solar irradiance (Chander & Markham, 2003). After the radiometric correc-
tions, the images were georeferenced into a standard map projection (Universal Transverse Mercator datum
WGS 1984) and georeferenced through a set of ground control points that were selected based on a refer-
ence Landsat image (30-m resolution).

3.1.3. In Situ Field Observations: Spectroradiometric Measurements of Macrophytes

Field observations (macrophytes and spectroradiometric measurements) were carried out simultaneously
with the SPOT RS acquisition of 2012. The total extent of the study area (30 km?) made a detailed analysis
of the distribution of vegetation and sediment for the entire site impossible. For this reason, we used the pre-
liminary analysis of the 1999 SPOT image to identify a subarea (Figure 1, top) that represented the full range
of the vegetation type and drainage heterogeneity of the area as much as possible.

A total of 12 stations were sampled on the salt marsh in the subarea (Figure 1). We focused on three
main vegetation types that were taxonomically and structurally uniform: the pioneer and low-vegetation
zone (vegetation height: 0-30 ¢cm) that was mainly colonized by Spartina, the high vegetation zone
(30-100 cm) that was colonized by E. athericus, and the high vegetation zone that was dominated by
stands (> 1 m) of P. australis. For each sampling station, the coordinates were collected using a Trimble®
GeoXT™ handheld Global Positioning System. At each sampling site, the vegetation presence/absence
was recorded together with the identification of the dominant plant species and its maximum height.
The spectral signature of the vegetation was acquired for every sampling station using an Analytical
Spectral Devices Hi-Res Fieldspec® 3 portable spectroradiometer. For each station, first a white reference
spectrum of the Spectralon panel mounted on a tripod was acquired at a distance of 15 cm, and then 10
subsequent spectra of the same target from a distance of 1 m were collected to account for measure-
ment errors and variability. The 10 spectra were then averaged to obtain a single spectrum for
each station.

3.2. Spectral Mixing Analysis

The first processing step for both of the calibrated SPOT images was LSMA. SMA is a commonly used
technique used to obtain quantitative results at subpixel resolution since it can provide information on the
abundance of surface components inside the fundamental elements constituting the image (Boardman,
1993) without assigning each pixel to a single class as is done in hard classifications (Taramelli & Melelli,
2009). Therefore, this method represents one of the most suitable processing techniques for
heterogeneous environments.

The methodology is based on the fact that within pixels, the spectral signature of a pure pixel represents
a fundamental physical component (e.g., water) and not a mixed signal that results from a mixture of
components (Adams et al., 1986; Johnson et al.,, 1983; Smith et al., 1985). The technique allows the deter-
mination of mixed fractions within each pixel based on the identification of pure spectra, also called
end-members, that mix with each other and give rise to the spectral response of each surface element
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Figure 2. Spectral signatures of the five end-members selected for the spectral mixing analysis in the Saeftinghe salt
marsh.

in the scene. The results are fraction estimates of end-member abundance at the subpixel scale, on the
basis of the pure spectra found in the image. The image will then be represented by a spatially
continuous map of fractional abundance for each physical surface component (Adams et al., 1986; Small,
2004; Smith et al., 1985).

End-member selection first involves determining the mixing space topology and structure through princi-
pal component analysis and then determining the dimensionality and linearity to select spectral end-
members. The choice of the end-members is made on the basis of a 2-D scatterplot between the first three
principal components of the multispectral image. Pure spectra are located at the apexes of the
mixing space.

Prior to image processing, a mask was created for the area of interest based on the boundaries of the
Saeftinghe Nature Reserve. This step was performed to exclude anthropogenic and agricultural areas from
the spectral unmixing and from the analysis of vegetation spatial patterns. We then processed the image
using two different linear unmixing models. More specifically, we applied (a) a linear three-end-member
model (vegetation, soil and wet) (Taramelli, DiMatteo, et al., 2014; Valentini et al., 2014) to identify the channel
network and the vegetated marsh platform as a whole, and (b) a linear five-end-member model (pioneer
vegetation (Spartina anglica), E. athericus, reed stands (P. australis), soil and wet) to map—in detail—the
typology of the vegetation cover (see Figure 2 for the spectral signatures of the five end-members). The soil
and wet end-members were extracted from the mixing space of the image, and by using RGB for substrate
(S), vegetation (V), and dark (D), respectively, the vegetation areas that were in contrast with the low-albedo
soil substrates (including channels) were identified. The three vegetation end-members (S. anglica, E. ather-
icus, and P. australis) were imported from the field spectral library. The final classification used both field and
image spectral libraries and shows the fractional composites for the Saefthinghe salt marsh that are gener-
ated by assigning three end-members to the red, green, and blue layers of both SPOT images (Taramelli,
Pasqui, et al., 2013). Thus, the final vegetation classification map is a continuous variable that corresponds
to the green vegetation fraction covering a unit of ground area as seen from the nadir direction (Filipponi
et al, 2018). It depends on the canopy and gives information about the vegetation pixel purity representing
the quantitative measurements of the physical properties and abundance of vegetation. The measurements
yield quantitative estimates of the areal abundance (named the fractional cover) within each pixel of the
vegetation cover that is identified by the selected end-members.

We then built and implemented a decision tree classification algorithm that classified each pixel based on the
abundance categories from fractions of cover typologies and named each pixel based on the strongest
Pearson correlation between the selected spectral profiles and the field spectral library (Manzo et al., 2014;
Valentini et al., 2014). Every pixel in the image was assigned to a certain class using a threshold value in
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Table 2
Confusion Matrix for SPOT Classification of the Saeftinghe Salt Marsh, Expressed as the Percentage of Correctly Classified Pixels
in Each Class

Ground truth: RWS 2010 vegetation map (percent)

Classes Pioneer vegetation Climax Elymus athericus Climax reed Total
Pioneer vegetation 60.37 38.46 1.17 100
Elymus athericus 4.3 94.85 1.02 100
Reed 0.56 39.56 59.89 100

Note. Overall accuracy (irrespective of classes): 90.8%, K coefficient: 0.56. The diagonal bold values are the average clas-
sification rate. SPOT = Satellite Pour I'Observation de la Terre.

fractional cover (i.e., > 0.5552 for the wet class; > 0.5950 for the soil class; > 0.4992 for P. australis; > 0.5507 for
E. athericus; and > 0.8945 for pioneer vegetation). The LiDAR elevation ranges for each vegetation type, which
were obtained from the RWS vegetation map, were used to determine the vegetation class for the pixels
where the threshold was not reached and, therefore, could not be classified (Taramelli & Melelli, 2009;
Taramelli, Pasqui, et al.,, 2013). These pixels were classified by performing principal component analysis
between the three fraction maps and the elevation value of the LiDAR survey provided by RWS based on
information on the distribution of vegetation classes in the LIDAR-elevation range value (Hladik et al.,
2013; Taramelli, Valentini, et al., 2013). The method reassigned classes using these elevation ranges within
the mixing space and resulted in a final overall classification accuracy of 90% between the SPOT 2012
image classification and the RWS vegetation map of the Saeftinghe salt marsh from 2010 (cf. above). Both
class-by-class accuracy and overall accuracy were computed to identify the proportion of correctly
classified pixels with respect to the total pixels in the class and the overall mapping accuracy (see
Section 4.1 and Table 2). The final results were two classification maps, one for 1999 and one for 2012.

3.3. Mapping Vegetation Patches

The spatial vegetation structure was characterized as the size-frequency distribution of the vegetation
patches (the number of contiguous pixels showing the same typology of vegetation), with patches that occur
at sizes within the pixel resolution of SPOT imagery (20 x 20 m), defined as the areas that maintained homo-
geneity with respect to a quantitative radiometric measurement (Forster & Jesus, 2006; Silvestri et al., 2002,
2003; Small, 2004), such as those in the pioneer zone. The second step was to define the boundaries of each
pattern based on the binary image for each class. Patterns were delimited using the von Neumann neighbor-
hood algorithm (von Neumann, 1951). Patch boundaries were defined based on the connectivity of each
vegetation pixel to its four neighboring (i.e., adjacent) pixels. The area (number of pixels) was calculated
for each patch. Raster maps of vegetation patterns were imported into GIS software (ArcMap 10.0) and con-
verted into a polygonal shapefile to create a layer that was complementary to channel sinuosity.

3.4. Patch-Size Distribution

Based on the vegetation patterns defined in the previous step, we calculated the size-frequency distribution
of patch size, and we investigated whether the relationship could be described by a power law to detect the
presence of scale-invariant patterns (Newman, 2005). A power law distribution of patch sizes can be inter-
preted as a sign of self-organization (Rietkerk & van de Koppel, 2008; Scanlon et al., 2007; Schoelynck et al.,
2012; Small & Sousa, 2016). A typical power law distribution can be described as a cumulative distribution
indicating the probability P(X > x) that a patch-size X is larger than or equal to x. In this case, the power
law is of the following form:

P(X=x)<x~* (1)

where x is the patch size, and a is the scaling exponent of the distribution (Clauset et al., 2009).

In particular, we were interested in understanding whether the spatial structure of the vegetation patches
carried any signature of the processes responsible for marsh formation and evolution and whether a statis-
tical analysis of vegetation metrics highlighted the scaling breaks and the characteristic scales of marsh-
forming processes (Taramelli et al., 2015; Temmerman et al., 2007; van de Koppel et al., 2005).
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We fitted the power law to the data using the methods of Clauset et al. (2009), through which we estimated o
and the lower limit of the observed power law behavior, Xpin, using the method of maximum likelihood,
which uses the scaling parameter for both the discrete and the continuous cases and is derived from the
width. The hypothesis is then tested using the Kolmogorov-Smirnov (KS) statistic for the goodness of fit
between the empirical data and a large number of synthetic data sets; the latter is sampled from a true power
law distribution using the same scaling parameter a and lower limit x,i, of the distribution that best fit the
empirical data. Each synthetic data set is then fitted to its own power law model, and the KS statistic is calcu-
lated for each case considering the best fit power law for that data set—and not for the original distribution
from which the sample was drawn. This generates a p value that quantifies the plausibility of the hypothesis:
if greater than 0.1, then the power law is plausible for the data since the actual KS statistic is better than that
of 10% of those generated for the synthetic distributions.

3.5. Channel Network Characterization

The geomorphological characterization was based on the calculation of channel geometric properties, more
specifically, channel sinuosity. From the DTM of 2010 provided by RWS, we extracted the channel network
using literature algorithms (Fagherazzi et al, 1999; Taramelli et al., 2008), as explained below. From the
SPOT images, the channel network was extracted from fraction maps using the same methods as those used
for marsh vegetation patterns; however, in this case, the processing started from the wet end-member.

Once the SPOT images were exoatmospherically corrected, the Substrate Vegetation Dark (SVD) end-
member fractions and field work radiometry were used to spectrally unmix the scenes (Valentini et al.,
2014). As in Small (2004), a unit sum constraint was applied. At this stage, the channel fraction maps were
converted into presence/absence images based on a threshold fraction value that was estimated using
wet/dark and vegetation end-members after a linear dark shadow function was removed (Small & Sohn,
2015; Taramelli & Melelli, 2009). To build and implement the final classification algorithm, we applied a linear
function of wavelength 1 as a result of the upward curvature of the bottom of the distribution (i.e., the lowest
dark fraction at each illumination value) in the mixing space, where 1 corresponds to channel and 0 to marsh
vegetation (Mason et al., 2006). To address the dark end-member fraction component related to illumination,
the linear trend between the incidence angle and the dark fraction should be minimized, and this process
was achieved using a pixel-by-pixel correction equation with an illumination function solving for the slope
value that minimized the correlation between the dark end-member fraction and the incidence angle.
Since a unit sum constraint was applied, the fraction added or removed from the dark end-member was dis-
tributed proportionally to the dark and vegetation end-members, which allowed for a match between the
coarse-scale vegetation analysis and a comparably coarse channel network (Small & Milesi, 2013).

In both SPOT images, the reclassified image was imported in MATLAB for network extraction using the ske-
letonization algorithm (Gonzalez et al., 2004). This morphological operation is used on binary images to
reduce each pixel element of the channel network to the thickness of a single row of pixels and to obtain
the object’s skeleton while still preserving the original shape and connectivity. The algorithm from
Gonzalez et al. (2004) was repeated until further reiterations did not impose any changes on the skeleton
structure. Linear and short segments were not considered in the analysis (Figure 3a).

The degree of meandering of the channel network was then measured quantitatively through the calculation
of channel sinuosity. Sinuosity was calculated as the ratio s = I/L between the along-stream length / to the
straight-line distance L between the starting and ending points (i.e., the two nodes of each channel;
Barbour, 2008; Stark et al., 2010; Taramelli & Barbour, 2006). Branch points (points of channel bifurcation)
were detected and subtracted from the channel network skeleton to obtain isolated branches. We calculated
the along-path distance I for each skeletonized branch and the straight-line distance L between its endpoints.

As a final elaboration in the attempt to evaluate the morphometric relationship between sinuosity and flood-
plain roughness relative to slope in respect to vegetation, we used the calculation of the ratio of roughness
(R) to slope (S; Lazarus & Constantine, 2013). The slope was obtained from the DTM and calculated, for each
cell, as the maximum rate of variation of the dimension value of a pixel compared to its eight adjacent cells.
The maximum variation of elevation over the distance between the reference cell and its eight neighbors
identifies the slope value. The slope was then averaged within the cells forming a vegetation patch so that
the value could be related to the sinuosity value of the channel bounding that patch. Roughness was
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Figure 3. (a) Total channel network; (b) detail of vegetation mapping classification and computed channel sinuosity (numbers in white) for the SPOT-4 image of
2012. SPOT-4 = Satellite Pour I'Observation de la Terre 4.

calculated from the DTM as the standard deviation of elevation within each vegetation patch. This index is
useful as a measure of topographic variability and is used to characterize landscape features.

3.6. Relationship Between Vegetation and Sinuosity

To calculate the relationship between vegetation patches and channel sinuosity, we performed a spatial ana-
lysis in which patches were associated with the channels that bounded them, both on the RWS vegetation
map (DTM [2010]) and on the SPOT images (1999 and 2012). To perform this analysis on the SPOT images,
we employed the classification map where the vegetated marsh is then divided into three different classes.
In this case, each vegetation class was attributed the same sinuosity value as that of the channel bordering
it (Figure 3b).

To perform this operation, the network skeleton was imported into the GIS software, each branch was
converted into a polyline with its sinuosity as an attribute, and then a spatial analysis was performed with
respect to the vegetation map layer. Based on their spatial location, vegetation polygons were joined to
the channel network layer and were given the sinuosity attributes of the channel closest to their boundaries.
The nearest channel is defined as the one that is geographically closest to the boundary of the vegetation
patch: proximity is based on the Euclidean distance, which is the straight-line distance between the features.
The distance in meters between the polygon and the channel was recorded, and polygons with a maximum
distance of ~40 m (equal to 2 pixels in the SPOT image) from a channel were included in the statistical
analysis on plant distribution and sinuosity.

4, Results
4.1. Image Classification and Validation

The vegetation classification of the SPOT 2012 image (Figure 4) was validated against the RWS vegetation
map of the Saeftinghe salt marsh (2010). Our classification identified the E. athericus vegetation class with
the highest accuracy (95%). The classification of the other two classes (i.e., pioneer vegetation and reed
stands) showed lower accuracy, and there was an underestimation of the high vegetation zone, mainly for
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E. athericus, which is the dominant species in the Saeftinghe area (Table 2). The differences between the
LSMA classification and the high-resolution RWS map were due to the validation methodology, which for
the LSMA classification was mainly based on field radiometry (Rapinel et al., 2015; Small, 2002).

4.2, Relationship Between Vegetation Type and Patch-Size Distribution

For the SPOT 2012 image, a total of 2,469 patches were mapped. The results of the power law analysis for
the three different vegetation classes show that their size-frequency distributions are consistent with power
laws (Figure 5), with patches being present over a significant range of scales (KS statistic, p > 0.1). Therefore,
the distribution shows a signal of self-organization. In the E. athericus vegetation class, the observed values
deviate from the power law in the upper tail of the distribution. This deviation indicates that there are more
large patches than would be expected in the power law tail. Among the three classes, the pioneer vegeta-
tion has the highest scaling exponent (Figure 5), highlighting that smaller patches are more abundant in
this class.

4.3. Relationship Between Channel Sinuosity and Vegetation Patch Size and Type

To investigate the relationship between patch size and maximum channel sinuosity, and whether the rela-
tionship holds true at various spatial scales, we first analyzed the 2010 vegetation map (DTM) and then
repeated this analysis on the two SPOT-4 satellite acquisitions (1999 and 2012). The patch sizes calculated
for the vegetation map and both SPOT-4 images were related to channel sinuosity for each vegetation typol-
ogy (Figure 6). The relationship between patch size and maximum channel sinuosity calculated for the vege-
tation map showed a significant negative logarithmic relationship, where high-sinuosity channels were
mainly associated with small patches, and large patches were always associated with low-sinuosity channels.
This pattern was independent of vegetation type and was significant for all three vegetation classes (r* = 0.47,
p < 0.0001 for pioneer vegetation; r* =048, p < 0.0001 for Elymus vegetation; and 2 = 0.34, p = 0.0004 for
reed vegetation).

When the spatial resolution is decreased (SPOT images), the negative logarithmic relationship between patch
size and sinuosity is maintained: in the SPOT 1999 image, the relationship is significant for all three vegetation
classes (* = 0.33, p = 0.0004 for pioneer vegetation; r* = 0.19, p = 0.02 for Elymus vegetation; and r* = 0.48,
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Figure 5. Patch-size distribution of pioneer (yellow), Elymus athericus (pur-
ple), and reed (P. australis) vegetation (red) of the classification of the two
SPOT-4 satellite images (1999 and 2012) and the RWS vegetation map (2010)
for the Saeftinghe salt marsh. The x axis indicates the size of each patch

(as number of pixels), and the y axis indicates the frequency of each patch
size. The graph is in log-log scale, with the dotted line representing the
distributional model and the circles representing the observed data. SPOT-
4 = Satellite Pour I'Observation de la Terre 4; RWS = Rijkswaterstaat.

p =0.0001 for reed vegetation). In the SPOT 2012 image, the relationship is
significant for the pioneer and Elymus vegetation (r* = 0.4, p = 0.001 and
r? = 0.26, p = 0.003, respectively) but not for the reed vegetation class
(* = 0.21, p = 0.09). In addition, considering the images of 1999, 2010,
and 2012, the temporal trend suggests a decrease in the largest patch
sizes and an increase in channel sinuosity for both the pioneer and the
Elymus vegetation but not the reed vegetation.

A comparison of the distribution of the channel sinuosity values among
vegetation types for the RWS 2010 map revealed no significant difference
in average sinuosity among the three classes (one-way analysis if variance
[ANOVA], F3, 3203 = 1.863, p = 0.155; Figure 7a). By repeating the analysis on
the SPOT 1999 image, significant differences were found in sinuosity
between vegetation types (one-way ANOVA, F, 1410 = 17.75, p < 0.001;
Figure 7b), with significantly higher sinuosity in the reed class than in
the pioneer and Elymus vegetation (Tukey’s Honest Significant Difference
[HSD], p < 0.001 and p = 0.01, respectively); however, no significant differ-
ence was found between the pioneer and Elymus vegetation (Tukey’s HSD,
p = 0.43). The analysis of the SPOT 2012 image also revealed significant dif-
ferences in sinuosity among vegetation types (one-way ANOVA, F
1102 = 3.982, p = 0.01; Figure 7c), with significantly higher sinuosity in the
Elymus class than in the pioneer vegetation (Tukey’s HSD, p = 0.03) but
not in the reed class (Tukey's HSD, p = 0.09). Within each vegetation type,
significant differences in average sinuosity between years were found in
both pioneer vegetation and Elymus but not in the reed class (Wilcoxon
rank sum test, W = 28775, p = 0.36). In the pioneer vegetation, average
sinuosity increased significantly over time from 1999 to 2012 (Wilcoxon
rank sum test, W = 227000, p < 0.0001). In the Elymus class, average sinu-
osity increased significantly from 1999 to 2012 (Wilcoxon rank sum test,
W = 32968, p = 0.0002).

According to Lazarus and Constantine (2013), the value of roughness rela-
tive to slope (R/S) controls sinuosity rather than the roughness linked to
topography and vegetation density or slope. The illumination reflection
is determined by the salt marsh orientation and the location of the Sun.
This relationship (between salt marsh orientation, Sun location, and illumi-
nation reflection) has been explored previously (Gu & Gillespie, 1998;
Riafio & Chuvieco, 2003). Thus, it is assumed that the first-order reflected
illumination can be determined from the incidence (illumination) angle.
Therefore, we recalculated the substrate and vegetation fractions by parti-
tioning the removed topographic shadow (~50%) among the substrate
and vegetation in proportion to their respective contributions to the non-
shadow fraction. Thus, the fraction added or removed from the dark end-
member was distributed proportionally to the dark and vegetation end-
members, allowing us to match a coarse-scale vegetation analysis to a
comparably coarse channel network; we assumed that a mostly flat sur-
face should have no change after correction, and the Sun-facing and
Sun-backing slopes should have the same removable linear trend (Kane
et al., 2008). The results show that when the slope exceeds the resistance

term (R/S < 1), the pioneer vegetation types exhibit lower sinuosity, while the Elymus vegetation types exhibit

higher sinuosity (Figure 8).

The equation of the linear dark shadow function that we used incorporates the Sun elevation and azimuth
information that represent the specific time of interest, and this includes the slope (including vegetation
roughness) and the azimuth information derived from the DTM. The LIDAR DTM data were, in fact, subset
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to be the same size as each SPOT, and the solar incidence angle was calculated. Thus, sinuosity seemed to be
higher for Elymus than for pioneer vegetation where there was moderate vegetation roughness with very

low slope.

4.4. Relationship Among Marsh Elevation, Vegetation Type, and Patch Size

We found no significant relationship between patch size and marsh elevation for the Elymus and reed vege-
tation in the RWS map (* = 0.0001, p = 0.51 and r* = 0.009, p = 0.11; Figure 9a). The relationship was
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Figure 7. Boxplot of the distribution of channel sinuosity values within each vegetation typology, on the RWS vegetation map and on the SPOT satellite images from
1999 and 2012. Different letters denote significant differences among the three vegetation classes (ANOVA, p = 0.05). SPOT = Satellite Pour I'Observation de la Terre;
RWS = Rijkswaterstaat; ANOVA = analysis of variance.
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5. Discussion

R/S

In the present study, we performed an analysis of the relationship
between vegetation patterns (i.e., vegetation type and patchiness)
and salt marsh geomorphology (viz. channel geometry, i.e, sinuosity
and elevation) of three RS-based data sets of a Dutch salt marsh
obtained in three different years and with different spatial resolu-
tions (2-20 m).

Our results first show that the patch-size distributions of the three main vegetation types (pioneer, Elymus and
reed) are consistent with power law relationships (Figure 5), implying there was scale invariance and a lack of
characteristic patch size. This result indicates the presence of self-organizational processes that are mediated
by scale-dependent biogeomorphic feedback mechanisms (Pascual et al., 2002; Rietkerk & van de Koppel,
2008; Weerman et al.,, 2010, 2012). These observations support recent hypotheses on the importance of reci-
procal interaction feedbacks between vegetation establishment and channel formation in salt marshes
(Bouma et al., 2007, 2009; Temmerman et al.,, 2007). To our knowledge, however, such feedbacks have only
been reported for pioneer vegetation thus far. The fact that similar power law relations are observed in vege-
tation types typical of later successional stages in salt marshes either implies that similar biogeomorphical
feedback mechanisms are actually at play in more mature salt marsh vegetation as well or this result could
imply that these patterns are inherited from the pioneer stage as Elymus and reed become established.

Second, we observed an inverse logarithmic relationship between patch size and channel sinuosity, which
was independent of vegetation type and also independent of differences in plant structure and abundance
(fractional cover) between these vegetation types as well as the elevational ranges within which they occur.
Small vegetation patches are consistently found along channels with higher sinuosity (s > 1.5), while larger
patches are associated with almost straight-line paths (s ~ 1; Figure 6). These findings corroborate studies that
show that the establishment of vegetation on bare tidal flats (but also in fluvial systems) (Gabet et al.,, 2014;
Tal & Paola, 2010) leads to a marked change in channel geometry (Millar, 2000), with increases in channel
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drainage density and channel network efficiency (Kearney & Fagherazzi, 2016; Temmerman et al., 2007;
Vandenbruwaene et al,, 2012). These changes are most likely related to increases in channel branching
and/or meandering. Our analyses confirm that initial vegetation colonization in the form of small patches will
result in high sinuosity values, considering that the feedback between vegetation and sedimentation allows
the pioneer part of the marsh to gain elevation where incipient salt-marsh deposition starts developing
(D'Alpaos et al,, 2017). Moreover, our findings are in agreement with model predictions of sinuosity
(D'Alpaos et al,, 2007; Marani et al., 2010, 2002; Lazarus & Constantine, 2013; Schwarz et al., 2014), with
increasing vegetation fractional cover and, hence, increasing flow resistance.

Based on the above observations, we propose the following scenario for the evolution of sinuosity during salt
marsh development.

1. The settlement of minimum pioneer vegetation patches (e.g., Spartina spp.) on bare tidal flats enhance
channel formation (maximum sinuosity) but also increase drainage density and channel efficiency (e.g.,
Kearney & Fagherazzi, 2016; Temmerman et al.,, 2007; Vandenbruwaene et al.,, 2012). These characteristics
are limited at the pioneer stage and confirmed by the R/S relationship, which shows that the resistance
term is not strong enough relative to the slope to force higher sinuosity (Figure 8). The drainage network
that develops during the pioneer stage establishes the template for vegetation succession.

2. Up on the marsh platform, we observe that where slope is low, the effect of the roughness term is
greatest, as Elymus takes over (the largest and smallest patches are all in the Elymus, Figures 5 and 6),
suggesting that the interaction between sinuosity and patch size with channel density is positively related
to vegetation abundance (fractional cover, Temmerman et al., 2007). Where the channel network is
relatively weak (i.e., experiences less frequent flushing), patch merging might overprint channels to create
large patches (D’Alpaos, Lanzoni, Marani, Fagherazzi, Rinaldo, 2005; D'Alpaos et al., 2007; Thomson et al.,
2004). This process occurs where models predict that the merging of small pioneer patches into larger
patches leads to enhanced channel erosion and, finally, to the emergence of a salt marsh platform that
is dissected by tidal channels (Kirwan & Murray, 2008a, 2008b; D’Alpaos et al., 2010; Hu et al., 2015).

3. The fact that the observed power law patch-size distributions and the patch size-sinuosity relationships
are independent of vegetation type (and hence, also vegetation structure, fractional cover, and elevation
range) suggests that similar biogeomorphic processes operate under the weak relationship between the
sinuosity and slope/roughness effect due to the fractional vegetation cover. This is the case for the reedy
portion of the marsh.

4, Late successional vegetation types colonize pioneer patches of different sizes, provided that the
ecological conditions are suitable and that further vegetation development will continue to stabilize
the preexisting patterns. Interestingly, Vandenbruwaene et al. (2012), in an analysis of long-term change
in the same Saeftinghe salt marsh, also observed a lack of further change in channel drainage density (and
channel width) once vegetation was established. Of course, this does not mean that no change takes
place at all, as further patch mergers can occur in more mature vegetation types (resulting in the largest
patch sizes in these vegetation areas, Figure 5); this result confirms an inheritance of pioneer stage
morphology that then gets amended the most on the flattest parts of the platform (i.e., the smallest
and largest patches) where the vegetation effects are dominant.

The LSMA method we propose enables an improved long-term assessment of salt marsh evolution, and it can
give rise to a new methodology for detecting vegetation patchiness that could reflect the biotic processes
that shape the landscape. The method represents a significant step forward in respect to using classical
NDVI for vegetation detection (Kearney & Fagherazzi, 2016), and this step is necessary when considering
the complexity of ecological processes, such as vegetation succession, particularly in highly dynamic
ecosystems such as estuaries (Boerema et al., 2016; Bouma et al., 2016). By comparing the patterns in different
vegetation types, our methodology provides a tool that can be used to gain information about the
interaction of various successional stages of vegetation with geomorphology; this tool can also be used to
describe the tidal channel networks as a distinct topographic signature of life (Dietrich & Perron, 2006).

6. Conclusions

Our study aims to enhance process understanding of marsh dynamics by identifying the relation between
vegetation and geomorphology using an RS method that has already been tested in other estuaries and
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deltas. The methodology we developed and the relations we show among sinuosity, vegetation, patchiness,
and elevation at different spatial scales have the potential to provide information on the biogeomorphologi-
cal evolution of salt marshes over longer timescales using temporal series analysis. In particular, the method
enables the study of the relationship between sinuosity and vegetation patch size, irrespective of vegetation
type, as the tidal network changes from pioneer to later successional stages. We provide evidence for the
degree to which vegetation is related to tidal channel network characteristics in terms of the spatial
relationship between vegetation patch size and maximum sinuosity. This reciprocal interaction may modify
fundamental processes, such as the fluxes of water and sediment in the marsh, that lead to an increased
elevation of the vegetation patches. The intriguing results suggest that vegetation patches in intertidal areas
might be interpreted as a topographic signature of life.
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