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Abstract

The use of music and specifically tempo-matched music has been shown to affect running

performance. But can we maximize the synchronization of movements to music and does

maximum synchronization influence kinematics and motivation? In this study, we explore

the effect of different types of music-to-movement alignment strategies on phase coher-

ence, cadence and motivation. These strategies were compared to a control condition

where the music tempo was deliberately not aligned to the running cadence. Results show

that without relative phase alignment, a negative mean asynchrony (NMA) of footfall timings

with respect to the beats is obtained. This means that footfalls occurred slightly before the

beat and that beats were anticipated. Convergence towards this NMA or preferred relative

phase angle was facilitated when the first music beat of a new song started close to the

step, which means that entrainment occurred. The results also show that using tempo and

phase alignment, the relative phase can be manipulated or forced in a certain angle with a

high degree of accuracy. Ensuring negative angles larger than NMA (step before beat)

results in increased motivation and decreasing cadence. Running in NMA or preferred rela-

tive phase angles results in a null effect on cadence. Ensuring a positive phase angle with

respect to NMA results in higher motivation and higher cadence. None of the manipulations

resulted in change in perceived exhaustion or a change in velocity. Results also indicate

that gender plays an important role when using forced phase algorithms: effects were more

pronounced for the female population than for the male population. The implementation of

the proposed alignment strategies and control of beat timing while running opens possibili-

ties optimizing the individual running cadence and motivation.

Introduction

Sports and exercise activities are generally believed to benefit from music listening. Under par-

ticular conditions music has been shown to capture attention, raise spirits, trigger a range of

emotions, alter or regulate mood, evoke memories, increase work output, heighten arousal,

induce states of higher functioning, reduce inhibitions, and encourage rhythmic movement [1,

2]. Effects of music during exercise can even be enhanced when certain types of music are con-

sidered [3, 4], especially when a certain level of synchrony between the musical stimuli and the
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listener’s movements occurs [5–8]. A much-researched topic concerns the synchrony between

music and running, measured by beat and footfall as markers of the rhythm that drives syn-

chronized running. However, synchronizing one’s footfall with the musical beat is not a

straightforward endeavor. Some people easily synchronize, while others need an instruction to

synchronize [9]. Some music facilitates movement (such as groove [10]) and running (such as

activating music), while other music is less effective [3, 4]. In short, the use of music and specif-

ically tempo-matched music has been shown to affect running performance, but it is an open

question whether we can maximize the synchronization of movements to music and whether

this maximum synchronization somehow influences kinematics and motivation.

In this context, we define synchronization as the stable maintenance over time of the senso-

rimotor coupling between beat and footfall. We define entrainment as the process that realizes

the sensorimotor coupling, more specifically the process that brings the (perceived) beat and

the (performed) footfall towards a stable timing. Rather than through pull and push forces (as

in a dynamical system) it is straightforward to assume that prediction error minimization is a

mechanism for entrainment [11]. For an in depth explanation of the factors that determine the

strength of the sensorimotor coupling and entrainment, see Leman [12].

The tempo of running is expressed in steps per minute (SPM), i.e. cadence, and for music it

is expressed in beats per minute (BPM). The tempo of running, or cadence, refers to the fre-

quency of steps, whereas speed (expressed in km/h) refers to the total distance travelled in a

certain amount of time. In previous studies, the preferred exercise intensity was often mea-

sured before the actual experiment and the music tempo was generally rather coarsely matched

to a subject’s spontaneous or comfort tempo (e.g., within a 10% range of the assessed cadence)

[13, 14]. However, such an approach disregards the fact that the comfort tempo of an individ-

ual might be different at the time of the test, or that it might fluctuate during the test period.

As a result, the contrast between the tempo of the music and the tempo of the exercise perfor-

mance is likely to become too considerable to enable spontaneous entrainment. For that rea-

son, we measure comfort tempo in the first part of each running task. In addition, a study by

Van Dyck et al. [15] unveiled that uninstructed synchronization of running cadence to musical

tempo occurs spontaneously when the tempo of the music does not deviate more than 2.5%

from the initial running cadence. This finding highlights that conditions of entrainment yield

affordances for sensorimotor adaptation to be effective, provided that the tempo of the music

can be matched to the person’s comfort tempo with high accuracy. Other research that

addressed the particular relations between entrainment conditions and sensorimotor adapta-

tion is, however, scarce [12, 16].

Another aspect that is likely to be important in terms of spontaneously manipulating run-

ning cadence is the anticipation effect reported in sensorimotor synchronization studies

(SMS). For example, people typically tend to tap a little bit before the auditory stimulus, which

is indicated by a slightly negative phase angle of the tap relative to the click, also referred to as

negative mean asynchrony (NMA) [11]. They do this, presumably, because the sensing of the

tapping has a longer delay than the sensing of the click [17]. Synchronization at brain level

therefore means tapping before the click. Being able to continuously manipulate the exact

moment of the beat might therefore prove to be a very accurate way to match and influence

people’s running capacity.

In the present study we focus on very precise sensorimotor (beat-footfall) alignment strate-

gies during running. In fact, some of those strategies manipulate only the timing of the beat

and it is expected that the timing of the footfall is somehow influenced by this manipulation.

Moens et al. [16] describe four different strategies that manipulate sensorimotor alignment.

However, these alignment strategies were not yet compared with each other within a single

study, nor with the same musical test samples. Therefore, the purpose of this study is to
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contribute to a high definition sensorimotor alignment strategy that accounts for each person’s

sensorimotor ability. In particular, we aim at comparing different beat-footfall alignments

using a randomized experimental setup where different strategies for supporting such align-

ments are applied. We hypothesized that strategies employing phase alignment to adjust the

time of the musical beat relative to the time of the footfall during running would result in the

highest level of sensorimotor synchronization and have a bigger effect on kinematics (cadence

and speed) compared to strategies using period alignment instead. In addition, we expect that

a high degree of synchronization would have an effect on motivation.

While our main aim is to discover whether different music-to-movement alignment strate-

gies affect kinematics (cadence and speed) and/or motivation in distinct ways, we also want to

address possible gender differences in entrainment capacity. The study by Van Dyck et al. [15]

unveiled higher levels of entrainment for female compared to male runners. Other research

shows that, when people are requested to rate the motivational qualities of musical excerpts,

women pay closer attention to the rhythmical qualities of the stimuli compared to their male

counterparts [18]. In addition, musical preference seems to affect women differently than

men: when female runners listen to highly preferred stimuli, they tend to perform better than

when listening to non-preferred music. In comparison, musical preference does not seem to

affect the performance of male exercisers [19]. From the above-described findings, we

expected to uncover differences between men and women regarding their ability to entrain

and synchronize with the beats of the music. Such differences would be particularly relevant in

terms of designing a more individualized music-technology approach.

Materials and methods

Subjects

To establish sample size, a power analysis for a repeated-measures design was conducted using

G�Power 3.1.9.2 [20]. Based on a small effect size (.25) with alpha set at .05 and power at .95, it

was estimated that at least 28 participants would be required. In total, 36 healthy, adult partici-

pants (19 males) took part in the study. All participants were recreational runners (Mage =

31.22 years; SDage = 8.13 years) and indicated to be capable of running 30 minutes continu-

ously. Of all participants, 38.89% were trained in music (Pearson Chi-Square test showed no

significant relation between gender and musical background, χ2(1) = 1.22, p = .27). In addi-

tion, about half of them (55.56%) reported to generally run without music, 22.22% indicated to

usually run with music, and 22.22% ran both with and without musical accompaniment. The

study was approved by the Ethics Committee of the Faculty of Arts and Philosophy of Ghent

University and was in accordance with the statements of the Declaration of Helsinki. Written

informed consent was obtained from all the participants before the start of the experiment.

Experimental design

Stimuli. A music database consisting of music tracks in the tempo range of 120–200 BPM

(the range of natural running cadence) was created. The database included musical stimuli

from a previous running experiment [15]. Using the Brunel Music Rating Inventory-2 (BMRI-

2) test [21], all stimuli were rated as highly motivational for running. Additional tracks were

selected to ensure complete coverage of the tempo range. In total, 43 tracks with clear beat infor-

mation were selected. The tempo stability throughout each entire track was validated and intros

lacking clear beats were cut from the stimuli using Audacity (http://audacity.sourceforge.net).

BeatRoot [22] was applied to track the beats and tempo of each music track, while Adobe Audi-

tion (http://www.adobe.com) was used to normalize perceived loudness and minimize possible
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imbalances in sound pressure level using the ITU-R BS.1770-3 standard at -23 LUFS which is

commonly used in audio broadcasts [23].

Apparatus. Data was collected using a 7" tablet (Panasonic FZ-M1) running Windows

8.1, which was strapped to a backpack. In addition, a pair of sensors, headphones, and a man-

agement computer was employed. The tablet operated as the main hub that handled incoming

sensor data and provided the musical stimuli.

To detect footfall instants, participants were equipped with two iPods (4th generation); one

attached at each ankle. Using the Sensor Monitor Pro application on the iPods, data from

accelerometers and gyroscopes was streamed wirelessly to the tablet at a sampling rate of 100

Hz. Step timings were extracted from the signal using an approach based on Pappas et al. [24].

Speed measurements were performed using a sonar system (MaxBotix LV-MaxSonar-EZ:

MB1010) connected to the tablet through a Teensy 3.1 micro-controller. It detected marker

rods of 1.90 m high, placed at a regular interval of 10 m around the running track. Through

computation of the time it took to cover each interval, absolute speed was determined. The

analogue signal was sampled at 30 Hz and digitized using the Teensy.

The wireless connection between the tablet, iPods, and management computer was provided

through a Wi-Fi router (TP-Link M5360), firmly strapped to the backpack, ensuring reliable

communication between all crucial components. The management computer was applied to

initiate the experimental sessions and to monitor sensor data in real-time. Musical tempi were

manipulated using a phase vocoder based on the technology of Élastique Pitch of ZPlane.de

[25]. The phase vocoder manipulates tempo in real-time without modifying pitch using a com-

bination of frequency and time-domain methods. The system logged all data and calculations in

real-time. Music tempo was adapted based on the selected alignment strategy (for the imple-

mentation of the music alignment strategies, see Moens et al. [16]). Finally, the aligned music

was sent back to the participant using Sennheiser HD60 headphones connected to the tablet.

Procedure. All experiments took place in the Flanders Sports Arena of Ghent, Belgium.

After being equipped, participants were asked to run on a 200 m running track for five minutes

continuously, and this for six consecutive times. In each of the six 5-minute runs, a different

alignment strategy was tested and it was ensured that all orders could occur only once.

Participants were instructed to run at their own comfortable pace. No information was dis-

tributed concerning the purpose of the experiment and all participants ran in solo conditions.

After each 5-minute run, participants were allowed to take a break for several minutes in

which they rated their perceived exertion (RPE) on the Borg Scale [26]. This way we could

determine whether fatigue was influenced by the different music alignment strategies. In addi-

tion, they rated the level of physical enjoyment on the 8-item version of the Physical Activity

Enjoyment Scale (PACES) [27, 28], a single factor scale to assess the level of enjoyment during

a physical activity in adults across exercise modalities.

Each of the 5-minute runs started with 25 seconds of silence, followed by five musical

excerpts of equal length (55 s) with an original tempo approaching the average cadence of the

last seven footsteps. Musical tempo was then manipulated based on the selected alignment

strategy, presented in the following section.

Conditions or alignment strategies. In the control alignment strategy (S0), music and

running performance behave in a completely allochronic fashion (in our case: music is played

20 BPM faster/slower than the assessed running cadence). This strategy is used as a control

condition to compare against five other music-to-movement alignment strategies.

Two strategies (S1, S2) involve the alignment of the music tempo to the runner’s cadence.

The tempo matching occurs either at the beginning of a song only (S1), or continuously

throughout the exercise (S2). Tempo-matching alone, however, does not consider the exact

matching of the musical beats to the footfall instants; hence it neglects the phase (or the time
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between musical beat and footfall) while it maintains the period (for the musical beat and foot-

fall, independently). In the adaptive tempo conditions, participants were still able to change

their timing with respect to the beats as it takes several steps to determine the runners’ cadence.

Three strategies (S3, S4, S5) involve the alignment of the music tempo of the runner’s cadence

using relative phase angle manipulation. The relative phase angle expresses the footfall-beat time

as a segment of the previous beat-period, which is defined as having 360˚. Steps and beats are

recurring events, hence cyclic in nature. Hence, the difference in timing between a beat and the

nearest footfall can be expressed with a relative phase angle (-180˚ to +180˚), where a 0˚ angle

indicates that the beat and footfall instant coincide exactly. Alignment strategies that employ

such phase manipulation minimize the relative phase angle between the beat and footfall instant,

and therefore, they drive the alignment to any desired relative phase angle. In S3 the relative

phase angle is minimized to 0˚ once, at the beginning of the exercise. The tempo of the music is

however adapted continuously. The final two strategies (S4, S5) involve continuous relative phase

angle adaptation starting at the beginning of the exercise. S4 guides the runner towards a prede-

fined phase angle by adjusting the phase and hence tempo of the music at each step, thus at dis-

crete timing intervals. In previous research, feedback from participants indicated that such a

music adaptation sometimes felt unnatural or forced due to sudden tempo changes. Hence a new

strategy is introduced (S5) based on adaptive oscillators [29], which results in continuous relative

phase alignment towards a predefined relative phase angle using smoother tempo adaptations.

The first experiment in the present study intended that S4 and S5 guided the runner

towards a 0˚ relative phase angle, or a perfect synchrony between footfalls and musical beats.

However, after the experiment it became clear that an inaccuracy in the calibration led both

alignment strategies towards -70˚ instead of 0˚. This resulted in musical beats occurring after

the footfall, while they were intended to occur simultaneously. For clarity, we henceforth refer

to S4 and S5 as strategies with a configurable relative phase angle. A second (follow-up) experi-

ment was then performed to assess the influence of our initially intended S4 [0˚] and S5 [0˚]

strategies, which is reported subsequently. Based on the results of the first experiment, we also

added an additional condition, which forced a +30˚ angle (beat before the step), and this is

also reported later in this paper. In the discussion we consider the results from both experi-

ments. A summary of the different strategies is provided in Table 1.

Although we are aware of the phenomenon of NMA in SMS studies, little is known about

the magnitude of such a NMA for running and whether this is similar for all participants. We

therefore decided to use 0˚ as a target relative phase and discuss our results taking into account

the knowledge on NMA.

Measurements

Cadence and speed. We examined the effect of the different alignment strategies on kine-

matic parameters such as cadence and speed. Average cadence and speed values during music

playback are compared to those in the preceding 25 seconds of silence. The resulting depen-

dent variables are expressed in percentages, where zero indicates no difference, while a nega-

tive or positive value indicates a respective decrease or increase in cadence or speed compared

to the silent part of the condition.

Synchronization and phase angles. The level of synchronicity with the music, or rather,

the stability and timing of the relation between a runner’s footfall and the musical beat, is typi-

cally represented by the resultant vector or R. The length of this vector is a measure of tempo

entrainment, ranging from zero to one with one representing perfect entrainment [30]. In addi-

tion, the angle of the resultant vector represents the average relative phase angle and reveals

whether footfall instants occur before the beat is played (negative phase) or after (positive phase).
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The resultant vector represents an average of a time period, and is calculated based on a distribu-

tion of individual phase angles or timing differences between each step and the closest beat [31].

Each relative phase angle is calculated with the formula below, where St refers to a step at time t.
B1 is the time of the beat that occurred before St and B2 is the time of the first beat after St.

φ ¼ 360 �
St � B1

B2 � B1

Since 0˚ and 360˚ are in fact the same angles, the average relative phase angle is calculated

with directional (or circular) statistics [30]. Our reference frame for calculating relative phase

angles is the closest beat, so it makes sense to map the 0 to 360˚ relative phase to a -180˚ to 180˚

on the circular plane. Therefore, when φ was larger than 180˚ we transform it to the negative

equivalent: φ ¼ φ � 360 if φ > 180ð Þ. As such, a negative phase angle indicated the step

occurred before the closest beat, while a positive phase angle indicates the step occurred after the

closest beat. All data and plots are reported in this format.

Data analysis

Each of the five music-to-movement alignment strategies was compared to the allochronic

control strategy. Depending on how the data were distributed (normally or not), the analyses

were either performed with repeated-measures ANOVA (e.g., for cadence and speed) or Fried-

man’s ANOVA tests (e.g., for synchronization and motivation). When necessary, contrastive

comparisons were performed (Wilcoxon signed-rank tests in case of non-parametric testing).

Circular statistics equivalents where applicable (Wheeler-Watson Mardia tests are used for

checking whether N circular distributions were homogeneous) [30, 32, 33].

Table 1. Description of different alignment strategies.

Strategy Short name Type of music adaptation

S0 Allochronic music Allochronic music (tempo differs at least 20 BPM from cadence),

making it impossible to synchronize gait to music

S1 Fixed Tempo One-time tempo matching at the beginning of a song

S2 Continuous tempo adaptation Continuous tempo adaptation so BPM matches SPM each step

S3 Continuous tempo adaptation, in

phase start.

Continuous tempo adaptation and in-sync (0˚ or -70˚) relative phase

start

S4 [x˚] Forced Relative Phase

coherence–Algorithmic

Forced relative phase synchronization by continuous tempo

alignment and relative phase adjustment towards configurable x˚

relative phase, updated each step.

Initial experiment conditions:

S4 [-70˚] provided music where the beats occurred avg 60ms after the

footfalls.

Follow-up experiment conditions:

S4 [0˚] guided runners towards perfect phase synchrony with the

beat.

S5 [x˚] Forced relative phase coherence–

adaptive oscillator

Forced phase synchronization by continuous tempo and phase

alignment towards configurable x˚ relative phase, updated using

adaptive oscillators.

Initial experiment conditions:

S5 [-70˚] provided music where the beats occurred avg 60ms after the

footfalls.

Follow-up experiment conditions:

S5 [0˚] guided runners towards perfect phase synchrony with the

beat.

S5 [+30˚] provided music where the beats occurred avg 30ms prior to

footfalls.

https://doi.org/10.1371/journal.pone.0208702.t001
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Results

Synchronization

A Friedman’s ANOVA showed a main effect of the strategy on resultant vector length, χ2(5) =

147.705, p < .001. Wilcoxon tests were used to follow up this finding. A Bonferroni correction

was applied and so all effects are reported at a .003 level of significance. Results reveal that all

six strategies differ with respect to the resultant vector length, except S2 versus S3 and S4

[-70˚] versus S5 [-70˚]. All comparisons are summarized in Table 2.

The circular Wheeler-Watson Mardia test was used to verify that all phase angle distribu-

tions were significantly different and thus not homogenous (W = 5113.6, p< .001), meaning

the alignment strategies had a significant influence on the relative phase angles.

Cadence

One of the dependent variables of interest is the change in cadence from running in silence to

running with music. A 2x6 mixed-design ANOVA test with gender (male, female) as between-

subjects variable and condition (S0 to S5 [-70˚]) as within-subjects variable revealed a signifi-

cant main effect of the strategy on the change in cadence, F(5,170) = 16.46, p< .001. Contrasts

revealed that for S4 [-70˚], F(1, 34) = 17.23, p< .001, r = .58, and S5 [-70˚], F(1, 34) = 29.48, p

< .001, r = .68, running cadence decreased significantly more (M = -1.81%, SE = 0.37, and M

= -2.15%, SE = 0.34 respectively) compared to S0 (M = -0.53%, SE = 0.27).

There was no significant main effect of gender, indicating that on average there were no dif-

ferences in change in cadence between male (M = -1.06%, SE = 0.15) and female participants

(M = -0.93%, SE = 0.22), F(1,34) < 1, p = .78, r = .05.

However, an interaction effect between the strategy and the gender of the participant was

observed, F(5, 170) = 4.97, p< .001, indicating that the change in cadence differed between

men and women for different strategies. Contrasts were performed, revealing interaction

effects between gender x S0 x S4 [-70˚], F(1, 34) = 9.10, p = .005, r = .46, and gender x S0 x S5

[-70˚], F(1, 34) = 6.40, p = .016, r = .40. This indicated that although, for both males and

Table 2. Significant differences in phase coherence (resultant vector length R).

Comparisons (Mdn) z pa r
S0 (0.03) vs. S1 (0.65) -5.232 < .001 -.62

S0 (0.03) vs. S2 (0.80) -5.232 < .001 -.62

S0 (0.03) vs. S3 (0.80) -5.232 < .001 -.62

S0 (0.03) vs. S4 [-70˚] (0.94) -5.232 < .001 -.62

S0 (0.03) vs. S5 [-70˚] (0.94) -5.232 < .001 -.62

S1 (0.65) vs. S2 (0.80) -3.268 .001 -.39

S1 (0.65) vs. S3 (0.80) -3.991 < .001 -.47

S1 (0.65) vs. S4 [-70˚] (0.94) -5.232 < .001 -.62

S1 (0.65) vs. S5 [-70˚] (0.94) -5.232 < .001 -.62

S2 (0.80) vs. S3 (0.80) -0.644 .519 -.08

S2 (0.80) vs. S4 [-70˚] (0.94) -5.185 < .001 -.61

S2 (0.80) vs. S5 [-70˚] (0.94) -5.059 < .001 -.60

S3 (0.80) vs. S4 [-70˚] (0.94) -5.122 < .001 -.60

S3 (0.80) vs. S5 [-70˚] (0.94) -5.001 < .001 -.59

S4 [-70˚] (0.94) vs. S5 [-70˚] (0.94) -0.055 .956 -.01

a p values were calculated with Wilcoxon signed-rank tests comparing all six alignment strategies with each other.

https://doi.org/10.1371/journal.pone.0208702.t002
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females, cadence decreased substantially during S4 [-70˚] and S5 [-70˚] compared to S0, this

decrease was more pronounced for female runners.

Speed

No main effect of the type of strategy on change in speed was uncovered, F(5, 165) = 1.02, p =

.407, nor was there a significant main effect of gender, F(1, 33) = 1.36, p = .25, r = .20. Besides,

there was no interaction effect between strategy and gender, F(5, 165) = 2.16, p = .061.

Motivation and perceived exertion

No significant differences were revealed for perceived exertion (RPE) with a Friedman’s

ANOVA, χ2(5) = 6.64, p = .25.

Wilcoxon signed-rank tests (comparing each strategy with S0) were performed on the

scores of the PACES scale. A Bonferroni correction was applied and so all effects are reported

at a .01 level of significance. The motivational scores were higher for S5 [-70˚] (Mdn = 71.38)

compared to S0 (Mdn = 67.25), z = -2.662, p = .008, r = -.31. None of the other strategies dis-

played significant differences in motivation when compared to the allochronic strategy (S0).

Table 3 summarizes the motivational comparisons. The median value for S5 [-70˚] is not that

different from S1-4. The reason, however, that ratings for S5 [-70˚] are significantly different

from S0, while the other alignment strategies are not, is due to differences in ranking: a higher

percentage of the ratings where in favor of S5 [-70˚] over S0 than in the other comparisons.

Follow-up experiment

The data analysis of the first experiment showed surprising results of S4 and S5, leading to an

investigation of the apparatus’ calibration. As we noted earlier, S4 and S5 were initially aimed to

obtain a 0˚ phase synchronization. However, the system incorrectly forced a -70˚ relative phase

angle. We believed that the non-intended forced -70˚ angle was the main cause of the observed

cadence decrease and motivational increase for these strategies. Therefore, it was decided to do

a follow-up experiment introducing correct 0˚ strategies. As the procedure and apparatus is

almost identical, we only elaborate on the differences and results for cadence and motivation.

Materials and methods

Tests took place at the same location of the first experiment. We recruited 11 of the initial par-

ticipants (6 female, 5 male, Mage = 39.27 years; SDage = 9.82 years) to have a similar population

and to be able to compare both experiments.

Strategies S0, S1 and S2 were identical to the initial experiment. The -70˚ strategies (S3 [-70˚],

S4 [-70˚], S5 [-70˚]) were replaced by their intended counterparts (S3 [0˚] S4 [0˚] and S5 [0˚]),

where the beats coincide with the footfalls as initially intended. One additional strategy was added

Table 3. Differences in motivation (PACES ratings).

Comparisons (Mdn) z pa r
S0 (67.25) vs. S1 (69.88) -.718 .487 -.08

S0 (67.25) vs. S2 (73.19) -1.987 .048 -.23

S0 (67.25) vs. S3 (73.31) -1.327 .196 -.15

S0 (67.25) vs. S4 [-70˚] (71.75) -1.581 .109 -.18

S0 (67.25) vs. S5 [-70˚] (71.38) -2.662 .008 -.31

a p values were calculated with Wilcoxon signed-rank tests comparing five alignment strategies with the allochronic

control condition (S0).

https://doi.org/10.1371/journal.pone.0208702.t003
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to explore possible inverse effects of the negative phase angle, namely S5 [+30˚]. This strategy

placed the beat slightly before the footfall, implying that the musical beats preceded the runner.

For methodological reasons, this S5 [+30˚] strategy occurred at the end of the experiment and

was optional, to exclude influences of potential dropouts on our comparison with the earlier

experiment. A summary of the different strategies is provided in Table 1.

Results

All 11 participants completed all seven conditions. In total, two out of 77 trials were invalid

due to sensor errors. Given our initial experimental results, this section focuses on phase

angles, cadence, and motivation.

Phase angles and synchronization. As for the initial experiment, a repeated-measures

ANOVA showed a main effect of the strategy on resultant vector length, F(6,54) = 103.794, p

< .001. The circular Wheeler-Watson Mardia test was used to verify that all phase angle distri-

butions were significantly different and thus not homogeneous (W = 1664.7, p< .001), mean-

ing that the alignment strategies had a significant influence on the relative phase angles.

Cadence. In order to confirm that the retrieved effect on cadence from the initial experi-

ment was due to the phase angle being targeted at -70˚, we expected to find no effects on

cadence for S4 and S5 targeted at 0˚. Therefore, as in the initial experiment, a 2x6 mixed-

design ANOVA test with gender (male, female) as between-subjects variable and condition

(S0 to S5 [0˚]; excluding S5 [+30˚]) as within-subjects variable was performed. Indeed, no

main effect of the strategy on the change in cadence was revealed, F(5,40) = 1.210, p = .322. In

addition, no significant main effect of gender was observed, F(1,8) = 4.128, p = .077, r = .58,

nor an interaction effect between the strategy and the gender of the participant, F(5, 40) =

1.149, p = .351.

When we included S5 [+30˚], and performed a 2x7 mixed-design ANOVA, we did find a

main effect on cadence, F(6,48) = 3.693, p = .004, and a small but significant gender effect, F

(1,8) = 5.412, p = .048, r = .64. No gender x strategy interaction effect was found, F(6,48) =

1.306, p = .273.

Concerning the impact on cadence of different target phase angles in the configurable

phase angle strategy (S5), additional tests were performed. To compare S5 [-70˚] from our ini-

tial experiment with S5 [0˚] from the follow-up experiment an independent samples t-test was

executed. This test revealed that the decrease in cadence for S5 [-70˚] was significantly larger

(M = -2.15%, SE = 0.34) than for S5 [0˚], (M = -0.09%, SE = 0.51), t(45) = -3.034, p = .004, r =

.41. Furthermore, a paired samples t-test was used to compare S5 [+30˚] with S5 [0˚] from the

follow-up experiment. Results showed that the change in cadence for S5 [+30˚] was signifi-

cantly larger and even positive (M = 0.68%, SE = 0.59) compared to S5 [0˚], (M = -0.40%,

SE = 0.44), t(9) = -2.970, p = .016, r = .70.

Motivation. Wilcoxon signed-rank tests (comparing each strategy with S0) were per-

formed on the scores of the PACES scale. A Bonferroni correction was applied and so all

effects are reported at a .008 level of significance. Only the motivational scores for S5 [+30˚]

showed a trend towards being significantly higher (Mdn = 44.00) than for S0 (Mdn = 38.00), z

= -2.661, p = .008, r = -.57. No other differences were found. Table 4 summarizes the motiva-

tional comparisons.

Discussion

The goal of the present study is whether we maximize the synchronization of perceived musical

beat and footfall during running, and whether this maximum synchronization influences kine-

matics and motivation. Table 5 summarizes the results, showing the different phase angle
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distributions for conditions and experiments. We then consider the effects of synchronization,

cadence, and motivation. The last section discusses possible gender differences for these effects.

Preferred phase angles, synchronization, and phase locking

The data from the different alignment strategies reveal differences and preferences in synchro-

nization behavior. Fig 1 provides a visual summary of the different strategies that were tested

in terms of timing information of the step versus the beat (i.e. the relative phase angle) and the

synchronization stability or phase coherence (i.e. resultant vector length).

In Fig 1, condition S0 clearly visualizes what the control condition was designed for, i.e.

that runners don’t synchronize, nor phase-lock (because they cannot). S0 can thus provide a

baseline or comparison for later tests.

Since strategy S1, S2, and S3 did not use continuous relative phase angle manipulation, they

gave a good idea of the (average over song) relative phase angle when runners ran with music

at their (previously measured) preferred tempo. Once the song starts, the tempo remains con-

stant (S1), or is continuously adapted to match the runners’ preferred tempo, which may

change during the song (S2 and S3). These conditions allowed for self-selected relative phase

Table 4. Differences in motivation (PACES ratings) for follow-up experiment.

Comparisons (Mdn) z pa r
S0 (38.00) vs. S1 (42.00) -1.721 .085 -.37

S0 (38.00) vs. S2 (42.00) -1.736 .083 -.37

S0 (38.00) vs. S3 (41.00) -0.949 .343 -.20

S0 (38.00) vs. S4 [0˚] (41.00) -1.961 .050 -.42

S0 (38.00) vs. S5 [0˚] (42.00) -1.661 .097 -.35

S0 (38.00) vs. S5 [+30˚] (44.00) -2.661 .008 -.57

a p values were calculated with Wilcoxon signed-rank tests comparing six alignment strategies with the allochronic

control condition (S0).

https://doi.org/10.1371/journal.pone.0208702.t004

Table 5. Circular descriptives of the phase angle distributions for all strategies. Initial experiment data is abbreviated as I.E., while follow-up experiment data is abbre-

viated as F.U.E. For each alignment strategy the distribution of relative phase angles is described, using the following parameters: the mean angle ø representing the mean

direction, the resultant vector length R and the circular variance CV, angular deviation s (dispersion around the mean), circular skewness b (asymmetry) and the circular

kurtosis k (peak load). See [30] for more information.

Alignment Strategy S0 S1 S2 S3 S4–70˚ S4 0˚ S5–70˚ S5 0˚ S5 30˚

Short name Allochronic Music Fixed Tempo Continuous

Tempo

Adaptation

Continuous

Tempo

Adaptation, in

phase start

Forced Phase

Coherence—

Algorithmic

Forced Phase Coherence—

Adaptive Oscillator

Forced phase angle start / goal -70˚ 0˚ -70˚ 0˚ -70˚ 0˚ +30˚

Experiment I.E. F.U.E. I.E. F.U.E. I.E. F.U.E. I.E. F.U.E. I.E. F.U.E. I.E. F.U.E. F.U.E.

N Steps 26326 7246 26445 7285 26275 7451 26199 6709 25980 7466 25773 7419 6772

N Songs 180 55 180 55 180 55 180 50 180 55 180 55 50

Mean relative phase angle ø 138˚ 165˚ -13.7˚ -17.7˚ -8.04˚ 3.61˚ -22.1˚ -39.2˚ -70.3˚ -1.95˚ -75.5˚ -9.66˚ 17.4˚

Resultant Vector Length jRj 0.0034 0.0085 0.424 0.402 0.196 0.136 0.671 0.667 0.911 0.912 0.925 0.936 0.895

Circular Variance CV 0.997 0.991 0.576 0.598 0.804 0.864 0.329 0.333 0.0891 0.0877 0.0747 0.0645 0.105

Angular Deviation s 1.4 1.4 1.1 1.1 1.3 1.3 0.81 0.82 0.42 0.42 0.39 0.36 0.46

Circular Skewness b 0.00048 -0.0006 0.02 0.03 -0.014 -0.035 -0.031 0.024 -0.0049 0.0074 0.0011 0.02 0.011

Circular Kurtosis k -0.0016 0.0026 0.22 0.19 0.062 0.04 0.46 0.36 0.74 0.74 0.79 0.82 0.74

https://doi.org/10.1371/journal.pone.0208702.t005
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angles. Since S2 and S3 used an adaptive tempo strategy, there was less freedom to deviate

from the initial relative phase angle between footfall and beat (for S2 this relative phase angle is

random, for S3 it is around -70˚ or 0˚ for initial and follow-up experiment).

Of particular interest was condition S1, where, due to the fixed tempo of the song, the high-

est degree of freedom was implemented with regard to the selection of the relative phase angle.

Each song started at a random relative phase angle (random time with respect to footfall), but

the distribution ended up with a clear clustering around negative relative phase angles (-14º
and -18 º for initial and follow-up experiment respectively). In addition, there was a large

spread in resultant vector lengths: in some cases people’s footfalls showed a constant timing

relative to the timing of the beats for a song (the dots on or near the circle perimeter, represent-

ing a high resultant vector length), in other cases this relation was less stable, or even almost

absent (the dots close to the center of the circle, representing a low resultant vector length).

This indicates that there was a convergence during the song from the starting angle towards

the final angle. The average resulting relative phase angle, as indicated by the arrows in Fig 1

Fig 1. Circular scatter plots of resultant vectors. Each dot represents the resultant vector (both angle and length) per song per participant. A negative angle indicates that

during that specific song, the footfall (averaged over the song) occurred before the musical beat (runner is first), while a positive angle indicates that the footfall occurred

after the beat (music is first). The distance from the center indicates the resultant vector length. The closer the dot is to the circle perimeter, the higher the phase coherence,

i.e. the more steps were taken towards this average phase angle. The arrows indicate the resultant vector length and average phase angle of the complete distribution of

songs, thus providing a general overview of all participants’ behavior to all songs, in a specific condition. The color and form of each dot indicate whether the data point

was from the initial or the follow-up experiment, which is denoted in the legend of the figures.

https://doi.org/10.1371/journal.pone.0208702.g001
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and the resultant vector length value (length of the arrow in Fig 1, see also Table 5), show a pre-

ferred relative phase angle around -15˚. This confirms the preference for a slight negative

mean asynchrony, and that runners prefer the footfalls occurring just prior to the beats.

In S2, the tempo of the music was continuously matched to the tempo of the runner. The

figure shows high amounts of synchronization (runners consistently keeping their initial rela-

tive phase) but with a slight clustering around the same negative relative phase angles. This

indicates that phase attraction towards the preferred relative phase angle found in S1 still hap-

pened with adaptive tempo conditions, but it is less pronounced and it occurs only when start-

ing close to this preferred angle.

S3 further elaborated on this finding. The blue dots on Fig 1.S3 indicate data from the fol-

low-up experiment, where each song started around 0˚, that is, the beat is perfectly in sync

with the footfall. These participants deviated towards -40˚, thus increasing their relative phase

angle. For the initial experiment, we discovered a reverse effect: participants started in -70˚

and finished in on average -22˚, thus reducing their relative phase angle. This indicates that

there is a ‘phase attractor’ between -20˚ and -40˚, and that when the starting relative phase was

close to these angles, participants tended to get phase-locked around their preferred relative

phase angle.

Note that this attractor effect was not clearly visible in S2 as there was no clear clustering

around these relative phase angles. In this condition, the starting relative phase angle was ran-

dom. To explain why runners starting in these random relative phase angles were not attracted

to their own preferred angle, we refer to a mathematical model which is used in movement

coordination: the HKB model [34]. This model shows an attraction basin around the preferred

relative phase angle, but if a relative phase angle deviates too far from this preferred relative

phase angle, the attraction is not present. This could explain why there are high synchroniza-

tion scores, or resultant vector lengths, at all different relative phase angles. Additionally, when

participants were eventually attracted towards this preferred angle, another issue arose: since

the songs lasted only 55 seconds, it is likely that runners did not have enough time to converge

towards their preferred relative phase angle. Fig 1.S2, visualizes this phenomenon with lower

resultant vector lengths between -90º and 0˚ (compared to S1), which can be attributed to this

time-consuming convergence. A transition from one relative phase angle to a completely dif-

ferent relative phase angle results in a wide distribution and thus a lower resultant vector

length. We assume that if the song would have been longer, the same clustering as in S1 and S3

might have been discovered in S2 for starting relative phase angles close to the preferred rela-

tive phase angles.

S1 and S3, both the initial and the follow-up experiments, clearly revealed a negative mean

asynchrony (NMA), i.e. the participants showed a tendency to anticipate the beats (from -40˚

to -14˚). This is in accordance with other studies concerning sensorimotor synchronization.

On average, the runners put their feet down 40 to 15 ms before they perceive the musical beat.

This asynchrony could be explained by the fact that the tactile signal takes longer than the

audio signal to reach the brain. To synchronize in the brain, the tactile signal needs to occur

before the audio signal, hence the asynchrony of about -15º in relative phase. This is in line

with the nerve-conduction hypothesis, where peripheral processing time is dependent on the

distance of feedback (tactile or auditory) to the brain [17] and the sensory accumulator model

assuming that synchrony is established at the level of central representations [35]. Another

group of explanations is based on the onset computation or P-center hypothesis [36]: if an

event (e.g., a tap or a footstep) is extended over time, the perceptual center (P-center) differs

from the onset of the event. For tapping, it is suggested that rather than the initial surface con-

tact, the moment of peak force is the meaningful target in timing control [37].
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In terms of attraction towards the NMA or preferred phase angle, we found that our results

from S1—S3 are in line with Haken-Kelso-Bunz (HKB) model [34]. This model depicts inter-

limb coordination and phase transitions between different states. It shows a strong attraction

basin around the 0˚ phase angle and a secondary attractor near 180˚ (antiphase), inducing phase

transitions from the current angle towards the closest attractor. The model also shows that the

strength of this attraction force decreases with increasing movement frequency, and at higher

tempi (such as running at a higher cadence than 150 SPM) the secondary antiphase attractor dis-

appears and only relative phases close to 0˚ get attracted. This is remarkably similar to the find-

ings of S1 through S3 (although with a rotation towards the NMA or preferred relative phase

angle of the participants): (1) if the starting phase differs enough from the NMA, no attraction is

present when both systems operate at the same frequency (music is matched to cadence) and (2)

when the starting phase is close to the NMA, participants converge towards their NMA.

S4 and S5 were designed to keep a constant relation between the moments of the footfall

and the beat. This is clearly illustrated in Fig 1 by the concentrations of dots on the circle

perimeter near the target phase angle that was implemented in these strategies: -70˚ in the ini-

tial experiment (in red), 0˚ (in blue) and +30˚ (in green) in the follow-up experiment. This

indicates that the software works as configured, and that we can force users towards a certain

relative phase angle. Later sections of the discussion will look into possible kinematic and

motivational effects of certain relative phase angles.

To summarize, we found that the three conditions allowing self-selected relative phase angles
show that the preferred angle does not approximate 0˚, but is slightly negative–following the

NMA displayed in sensorimotor synchronization experiments [11, 38]. We also found indica-

tions for an attraction force towards this preferred relative phase angle, especially when the initial

relative phase was close to the preferred relative phase. When the initial starting relative phase

was not near to this attractor, a stable relative phase was kept at this angle. Hence, to reach the

preferred self-selected relative phase angle, the starting relative phase is important. If we want to

design future music-to-movement alignment strategies that support the runners’ natural and

individual interactive behavior with music, not only should the technique be capable of selecting

music that matches the preferred tempo of the runner, it should also be able to apply the preferred

relative phase angle (as measured for instance with a fixed tempo strategy like S1 and fine-tuned

with a strategy similar to S3) as a target relative phase angle in strategies similar to S4 and S5.

Effect on cadence

The combined results of the initial and the follow-up experiment indicate that strategy S1, S2,

and S3 have no significant effect on cadence when compared to the allochronic music strategy

(S0). Runners can be phase-locked, i.e. maintain a stable footfall-to-beat relation (seen best in

S1, S2 and S3), and in general running with these strategies reflects a natural preference for a

slightly negative phase angle relation (NMA). In contrast, our main results do show an effect

of the alignment strategy on cadence with S4 and S5. This is further elaborated on with the fol-

low-up experiment: the effect appears to be dependent on the target phase angle settings in the

strategy. Fig 2 shows the resulting cadence change based on the forced relative phase angle.

For this discussion, we group several conditions based on the forced relative phase angle:

(0) control or asynchronous music, (1) self-selected relative phase angles, (2) forced at -70˚, (3)

forced at 0˚, and (4) forced at +30˚. Fig 2 visualizes the effect of forced relative phase angles on

cadence.

There was no difference between self-selected angles and the control condition in terms of

the cadence change, meaning participants did not show any difference in running behavior in

their self-selected angle compared to allochronic music. There was however an effect of 0˚:
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cadence seemed to increase to a minor extent, while this increase was more pronounced at

+30˚. At -70˚, we noticed a clear decrease in cadence. Thus, to have a neutral null-effect, the

optimal relative phase angle would be the preferred relative phase angle as found in S1 and S3,

similar to our earlier findings on synchronization.

The decrease in cadence observed in S4 and S5 at -70º could be explained by the fact that

the beats were continuously perceived approximately 70 ms after the moment of the footfall.

The participant was therefore constantly urged to lengthen the duration of his or her next step

to reach the preferred -20˚ attractor. We theorize that, in order to deal with the perceived sen-

sorimotor error, the brain continuously adapts in order to try to minimize the perceived senso-

rimotor error (i.e., obtain NMA). Although that error persists (due to our matching

algorithm), the entrainment (or brain-driven sensorimotor error minimization) persists as

well, and the outcome is a decrease in cadence. Conversely, the introduction of the beat prior

to the footfall instant (positive relative phase angle) might rather induce a feeling of ’being

late’, which could in turn stimulate the runner to speed up. This was indeed observed in the

follow-up experiment, where S5 at +30˚ resulted in an increase in cadence compared to S0.

To further explore these results, a correlation analysis was performed to see a potential rela-

tion between the relative phase angle and the cadence change. This analysis only considers the

data of conditions where phase manipulation was used (S4 [-70˚], S4 [0˚], S5 [-70˚], S5 [0˚]

and S5 [+30˚]).

A Kolmogorov-Smirnov test indicated that the data were not normally distributed (p<

.01), hence a Spearman’s Rho correlation test was performed. We assumed that participants

would have tried to reach their preferred relative phase angle around -20˚, hence a one-tailed

test was performed as this assumption implies that a negative relative phase angle would result

Fig 2. Cadence change compared to initial silence over time. Conditions are grouped based on the forced relative phase angle to improve visual representation. Self-

selected relative phase angles include S1 through S3, Forced at -70˚ are S4 [-70˚] and S5 [-70˚], forced at 0˚ include S4 [0˚] and S5 [0˚], and finally forced at +30˚ is S5

[+30˚]. Self-selected relative phase angles induce little to no cadence change compared to the control condition, while the -70˚, 0˚ and +30˚ conditions have an effect over

time. Error bars represent 1 SE. The error bars are noticeably higher in the 0˚ and +30˚ conditions, as the amount of participants (N = 11) for the follow-up experiment

was lower than the amount of participants in the initial experiment (N = 39).

https://doi.org/10.1371/journal.pone.0208702.g002
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in a lower cadence and vice versa. We uncovered a positive correlation between the relative

phase angle and cadence change (r = .293, p< .001, n = 681), showing that a connection

between cadence change and the forced relative phase angle indeed exists.

Furthermore, the influence of the relative phase angle appeared to build up over time. Fig 2

shows the evolution of cadence change for different strategies over the five songs. When look-

ing at the average cadence change over time, it was evident that the influence was not immedi-

ate, but increased over time. The lowering-cadence effect seemed to stop around 2.2%

slowdown (similar to the tempo basin found by Van Dyck et al. [15]), while the cadence

increasing effect was less pronounced. This shows that the relative phase angle manipulation

effect was ’limited’ towards the influence on cadence.

Motivation

In the initial experiment, as well as in the follow-up experiment, similar results were obtained

when comparing the enjoyment ratings of the different strategies to S0. The strategies that did

not significantly affect running cadence (S1, S2, S3, S4 [0˚], and S5 [0˚]) were not rated differ-

ently from S0. However, in the two conditions that affected cadence most (S5 [-70˚] and S5

[+30˚]) a small but significantly higher enjoyment rate, or a tendency towards such an effect,

was observed. According to literature on gaming [39] and exergames [40] the balance between

skill and challenge is crucial for being intrinsically self-rewarding. When challenged at a level

that the gamer perceives as pleasant, he or she is more likely to have a positive experience. As

such, it could be suggested that a small deviation from a preferred cadence, such as realized by

continuously manipulating the relative phase angle to a non-preferred phase angle (S5–70˚

and +30˚), might imply a more challenging or rewarding running exercise. A challenge that is

not too demanding for the runner’s skills (note that no significant increases in RPE were

observed) could result in a more pleasant and rewarding experience than when the runner is

not challenged or manipulated to change his or her preferred running behavior. According to

Fritz et al. [41] moving in synchrony with music can evoke a sense of agency, or a feeling of

’being in control’. Combined with a certain amount of physical exertion, this sense of agency

might contribute to a perceived positivity bias [42]. As such, our results seem to suggest that

finding a new phase angle balance induces such feelings of agency. Similar to the skill-chal-

lenge balance [39, 40], being in and out of balance with a slightly demanding phase angle

seems to more positively impact enjoyment levels compared to maintaining a preferred, less

demanding, phase angle. Alternatively, error minimization towards NMA can be seen as a reg-

ulatory mechanism to homeostasis (an equilibrium state consisting of predictive, expressive

and effort processes) [12].

Fig 3 summarizes our findings concerning the influence of forced relative phase angles. We

note 3 regions: the neutral ’self-selected’ or negative mean asynchrony near -20˚ (footfalls

slightly before beats), the cadence increasing larger angles between -10˚ and 30˚ (steps simulta-

neous or after the beats) and the lower angles between -40˚ and -90˚ (steps noticeably before

the beats). The effects of running in these regions are shown in the legend.

Gender differences

Several studies gave direct and indirect proof or reason to expect differences in how men run,

entrain, and synchronize with beats of the music, compared to women [15, 18, 19]. And

although no main effect of gender was found on the change in cadence, some interesting inter-

action effects were uncovered that are worth discussing. Below, we compare the running

behavior of men and women from the perspective of preferred phase angle and synchroniza-

tion, cadence, and motivation.
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Gender differences: Preferred phase angle and synchronization. Analysis showed that

there is no significant difference between genders for average phase angles in all different con-

ditions. However, in the fixed music condition (S1), where participants had the most freedom

to self-select relative phase angles (and converge to their NMA), we noticed a slight difference

in distributions for males versus females. The relative phase angle distribution was slightly

more asymmetrical and wider than that for females, indicating a larger spread in relative phase

angles and a less consistent synchronization. When looking at the phase coherence or synchro-

nization of these angles (expressed by the resultant vector length), more pronounced differ-

ences emerge: women tend to reach higher synchronization scores than men in the fixed

music (S1) condition. Fig 4 shows the distribution of the resultant vector lengths for S1.

Analysis with independent t-tests confirmed that there was indeed a significant difference

in the resultant vector length for S1 (fixed tempo) for males (M = 0.57, SD = 0.27) compared

to females (M = 0.68, SD = 0.27), t(233) = -2.964, p = .003. Females thus obtained higher syn-

chronization scores. No other conditions showed such differences; perhaps because these con-

ditions (S2-S5) allowed less freedom to self-select phase angles.

Using a resultant vector length of .75 as a threshold to determine running in phase coher-

ence or not (similar to [4]), we see 52% of songs in phase coherence for women versus 23% for

men in the S1 (fixed tempo) condition.

Gender differences: Cadence. A study on running to music [15] reported differences

between male and female participants: women showed significantly higher levels of tempo

entrainment than men. This is in line with research by Karageorghis [18], who found that

women pay more attention to the rhythmic characteristics of music than men do. These find-

ings make it interesting to look at the before mentioned forced-phase influence on cadence

with the gender as a grouping factor.

Fig 3. Summary of the effects of running in a forced relative phase angle.

https://doi.org/10.1371/journal.pone.0208702.g003
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The main results showed an interaction effect between condition (alignment strategy) and

gender (F(5, 170) = 4.97, p< .001) for the cadence change, indicating that the change in cadence

differed between men and women for the different strategies. More in depth analysis showed a

more pronounced change in cadence between the strategies for female runners (see Fig 5). It

seems that, compared to their male counterparts, women demonstrated lower levels in cadence

change with S4 [-70˚] and S5 [-70˚], and higher ones when running with S1, S2, and S3.

A correlation test was performed on the forced relative phase angle conditions to test the

significance of the forced phase angle on cadence change. Fig 6 illustrates the dataset. Both

male and female distributions were non-normal (p< .01) as determined by the Kolmogorov-

Smirnov test. The Spearman’s Rho correlation test showed a difference in correlation coeffi-

cients for the different genders. While the male population showed a slightly positive and sig-

nificant correlation between relative phase angle and cadence change (r = .124, p< .01,

N = 363), the female population demonstrated a much higher correlation coefficient at a

higher level of significance (r = .449, p< .001). These results indicate that females might

indeed be more susceptible towards the influence of relative phase angles on cadence.

Gender differences: Motivation. With respect to gender, our interest was to find out if

there are differences in entrainment capacity and effects on cadence. For completeness sake,

we also report that no significant differences were observed for the enjoyment ratings

(PACES) between men and women: not in general, and not when the data were inspected per

strategy.

Fig 4. Resultant vector length or phase coherence for all songs in the S1 (fixed music) condition. A high level of phase coherence is observed for

most of the women, whereas the flatter distribution of the resultant vector length for men indicates that a higher percentage of men did not maintain a

phase-locked running behavior over the duration of a song.

https://doi.org/10.1371/journal.pone.0208702.g004
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Conclusions

Music-to-movement alignment strategies make it possible for everyone to keep running in

synchrony with a musical stimulus, without consciously manipulating your own behavior to

Fig 5. Cadence change compared to initial silence, split on gender. Conditions are grouped based on the forced relative phase angle to improve visual representation.

Self-selected angles include S1 through S3, Forced at -70° are S4 [-70˚] and S5 [-70˚], Forced at 0° include S4 [0˚] and S5 [0˚], and finally Forced at +30° is S5 [+30˚]. Both

the control and self-selected phase angles induced little to no cadence change, while the -70˚ and +30˚ conditions had an effect that was more pronounced for females.

Running at 0˚ phase angle seemed to have neutral effects for the males but a cadence increasing effect for females.

https://doi.org/10.1371/journal.pone.0208702.g005

Fig 6. Correlations between forced relative phase angle and cadence change. The effect is more visible for the female than the male population.

https://doi.org/10.1371/journal.pone.0208702.g006
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align with the music. Our study shows that strategies implementing a continuous relative

phase alignment achieve the highest level of synchronization (as intended) and are therefore

perfectly capable of spontaneously manipulating running behavior. A change in cadence is in

fact induced by deviating the relative phase angle continuously from a preferred phase angle

that is typically slightly negative: a more negative phase angle (step before beat) causes a slow-

down in cadence and a positive phase angle (step after beat) leads to an increase in cadence.

Not only was cadence affected by phase angles that diverged from the runners’ preferred

phase angles, also enjoyment levels were affected. Although differences in enjoyment were not

very obvious, small, slightly significant increases in enjoyment were reported for the strategies

that impacted cadence. Spontaneously guiding runners a little away from their preferred run-

ning behavior could add just enough challenge to their exercise, resulting in a more rewarding

experience [39, 40].

The general preference for the footfalls to occur prior to the beats suggests that future

music alignment strategies could be improved by considering the negative mean asynchrony

(NMA) rather than 0˚ as a reference point. A question for future research might be whether

the size of the NMA is task- and/or user dependent. For example, is human anticipation of a

beat different when running compared to tapping? Are there differences between people and

why? With respect to the latter, our results indicate that gender plays a role when using forced

phase algorithms: effects of phase coherence and change in cadence were more pronounced

for females compared to their male counterparts.

Practical applications

Music-to-movement alignment strategies enable us to continuously and closely follow a per-

son’s behavioral response to music. This is of great value for sports and rehabilitation pro-

grams where music-based biofeedback is employed to improve individual performance [43].

In the future, the aim is to further improve our alignment strategies and introduce musical

beats either slightly before or after the predicted footfalls. Such strategies could open up possi-

bilities to spontaneously (and imperceptibly) optimize cadence and step size [44].
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