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Dear Editor, 

Recently, Ren et al. reported an extensive analysis of the incidence of whole genome duplications (WGDs) 

throughout the evolutionary history of extant angiosperms (Ren et al., 2018). Examining a wealth of genomic data 

(36 complete genomes and 69 transcriptomic data sets) using commonly applied methods, they detected and 

located 55 WGDs throughout the angiosperm phylogeny. Furthermore, they provided estimates of the dates for 

these important events and discuss correlations with global climatic change during the Cenozoic as well as species 

diversification shifts. However, we are concerned that methodological flaws and misinterpretations render some 

of their analyses unreliable. We would like to address these issues in this letter, as we feel these are of general 

importance for the field of plant evolutionary genomics. 

Ren et al. used two common approaches to detect WGDs in genomic and transcriptomic data sets, namely gene 

tree – species tree reconciliation and age distributions of paralogs based on the estimated number of synonymous 

substitutions per synonymous site (KS), where the number of gene duplicates is plotted against the age of the 

duplication event, measured by KS, and where peaks in the distribution are thought to reflect signatures of potential 

WGD events (Lynch and Conery, 2000; Vanneste et al., 2013). Gene tree – species tree reconciliation methods 

have been widely used for the detection (and phylogenetic placement) of WGDs (Jiao et al., 2011; Li et al., 2015; 

McKain et al., 2016; Yang et al., 2018) and the main reason for their adoption was that (1) within-species co-

linearity information — often considered the strongest evidence for WGD — requires high-quality genome 

assemblies, whereas (2) KS distributions cannot be used to reliably detect very ancient WGDs and are not directly 

comparable between lineages due to differences in molecular evolutionary rates. The general idea of gene tree – 

species tree reconciliation methods is that a high concentration of gene duplication nodes reconciled onto a 

particular branch of the species tree can be considered as support for a potential WGD on that branch. We would 

like to stress here that these methods are not without serious caveats, related to, for example, the prevalence of 

small-scale duplication (SSD, see below), the assumption of a known gene and species tree and inherent biases in 

the reconciliation algorithms used (e.g. Hahn, 2007). The reliability of commonly employed reconciliation 

approaches for WGD inference remains to be explored. Therefore, analyses using these approaches should be 

interpreted with appropriate caution. 
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A major confounding factor in both reconciliation and KS based WGD inference is the presence of duplicates 

originating from SSD events. The failure to account for this is the major issue underlying most of the analyses in 

the study by Ren et al. It has been observed that duplication ages (measured by KS) from SSDs (only) are 

approximately exponentially distributed (somewhat ‘L’-shaped), which is the expected outcome of a quasi-

equilibrium birth-death process, with most extant small-scale duplicates being of fairly recent origin and few 

paralogs being retained from very old duplication events (Lynch and Conery, 2000; Blanc & Wolfe, 2004; Lynch, 

2007). We stress that, under common molecular evolutionary assumptions, this exponential decay is expected to 

be present in any KS distribution (i.e., independent of whether the genome did or did not have any WGD(s)); 

although in some rare cases, large numbers of retained duplicates from a very recent WGD event may overshadow 

this ‘L’-shape signature in a visualization of the distribution (e.g., as in Glycine max, Supplementary Figure 1A, 

where structural genomic data confirmed this signature to be a WGD). In the absence of the structural information 

provided by genomes, it is impossible to discriminate whether individual duplicates are the result of an SSD or 

WGD event, especially for those of recent origin. For this reason, researchers who adopted reconciliation-based 

methods for WGD inference in the absence of structural information have generally avoided inferring recent 

lineage- or species-specific WGDs because of the abundancy of SSDs on such terminal branches (Jiao et al., 2011; 

Li et al., 2015; Yang et al., 2018). However, it seems that Ren et al. fail to recognize these issues and use gene 

tree – species tree reconciliation to infer 27 recent lineage-specific WGDs in their transcriptomic data sets, 

including 15 newly-identified ones. Inspection of the corresponding KS distributions for these species should have 

alerted them that most of these events cannot be distinguished from recent rounds of SSD, i.e., from the ‘L’-shaped 

signature caused by SSDs. However, it seems that the authors failed to interpret these correctly. 

We do endorse a strategy to corroborate reconciliation-based findings with analysis of KS distributions, as these 

can be more useful for identifying relatively recent, lineage-specific WGDs if their signature peaks in a KS age 

distribution are clearly distinct from the background exponential decay of SSDs. In such cases these distinct peaks 

provide strong support for WGDs. However, almost all KS distributions for the newly-identified WGDs (as well 

as some of the ‘Calibrated WGDs’, see below) in Ren et al. do not seem to display such a clear distinctive peak. 

It appears that the authors base their inference of WGD peaks on kernel density estimates (KDEs) of KS values 

from paralogs falling on specific branches (panel B in Figure 1 and Supplemental Figures 4–65 of Ren et al.). 

Most of the distributions show a prominent KDE peak in the low-KS region with a mode close to zero (KS ≈ 0.1). 

Kernel density estimation is a powerful non-parametric method to visualize the empirical distribution of a data set. 

However, Ren et al. seem not to correct for boundary effects that are well known to plague KDEs and tend to 

result in underestimation at the boundaries (here at KS = 0). This effect is even aggravated when very low KS values 

are filtered out, as is often done (to remove allelic variants for instance). We are convinced that accounting for 

these effects would lead them to conclude that most of these so-called peaks are KDE artifacts and actually reflect 

the exponentially-distributed SSDs (see Figure 1A & B for an example). This should have been obvious if the 

authors would have shown the associated histograms. Therefore, we strongly suspect that there is no conclusive 

evidence for novel WGDs on most tip branches, and the peak KS values that are reported actually reflect the KS 

values of the recent SSDs that map on this branch. 

Additionally, Ren et al. followed a common strategy by fitting Gaussian mixture models (GMMs), and show 

significant Normal components as additional support for WGDs  (we note however that Ren et al. did not use these 

GMMs for inference purposes). However, mixture models are likely to ‘overcluster’ the data (Naik et al., 2007), 
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especially when applied to KS distributions where the number of data points is large. Also, there is a widespread 

misconception that peaks originating from WGDs are expected to show a Normal distribution. A simple model of 

synonymous substitution after WGD already indicates otherwise; if we consider synonymous substitution as a 

Poisson process, and synonymous substitution rates for different duplicate pairs sampled from some Gamma 

distribution, the expected distribution of number of synonymous substitutions will follow a Negative binomial 

distribution (which is well approximated in the continuous case by the Gamma or log-normal distribution). This 

indicates that the KS distribution induced by a WGD will have a positive skew, and this effect will be stronger the 

more recent the WGD. Normal GMMs are not able to account for this effect, and neither can they cope with the 

background exponential decay from SSDs. As a result, one or even multiple spurious components will often be 

fitted to the heavy right tail of either a recent WGD or SSD peak (Figure 1 B), further strengthening 

misinterpretations such as found in the study of Ren et al. 

Acknowledging the presence of SSDs and the described issues with mixture modeling and boundary effects in 

KDEs would have cautioned Ren et al. from identifying many of the recent WGDs they report, which would 

thoroughly alter their study as a whole. Indeed, the most important criterion on which Ren et al. based their final 

inference of ‘newly identified’ WGDs is dictated by their survivorship model, which is itself based on the median 

KS values they inferred for previously reported putative WGDs, referred to as ‘Calibrated WGDs’ by the authors 

(Figure 2 & 3 (purple dots) and Supplemental Table 3 in Ren et al.). However, most of the peak (median) KS values 

they estimated for these ‘Calibrated WGDs’ are inaccurate because of the reasons described above and either 

reflect SSD events or are at least strongly affected by these (Supplementary Table 1). Moreover, their estimates 

often differ considerably from previously reported values. We believe neglecting the effects of SSDs has caused 

Ren et al. to effectively fit an exponential decay distribution to a set of spurious ‘peak’ KS values that themselves 

stem from or are affected by the exponential decaying distributions of SSDs. Consequently, many (though not 

necessarily all) of both the ‘newly identified’ and ‘Calibrated’ recent WGDs based on transcriptomic data are 

likely to be false, and reflect no more than the continuous birth and death of SSDs. We do not exclude the 

possibility that some of the proposed WGDs do in fact correspond to real events, however, we stress that this 

cannot be concluded from the types of analyses performed by Ren et al. (Supplementary Figure 1). 

This also explains the inflation of apparent WGDs identified from transcriptomes that are dated at around 10 

million years ago (Figure 6 in Ren et al.), mostly reflecting date estimates for spurious peaks stemming from SSDs. 

However, even if the chosen peak (median) KS values would represent bona fide WGD peaks (as we might expect 

for most of the reported and often older WGDs based on genome data), we think the absolute dating approach used 

by Ren et al. is much too simplistic to allow any confident interpretation of the resulting estimates. The authors 

assume a strict global molecular clock as well as species divergence times known without uncertainty and report 

point estimates without confidence intervals, practices that have been well criticized for over a decade already 

(Graur and Martin, 2004).  We also find it striking that the authors did not compare and discuss their newly-

estimated dates with previously reported estimates which often differ by tens of millions of years (Cheng et al., 

2018; Van de Peer et al., 2017; Vanneste et al., 2014). To conclude, we are convinced that the careless adoption 

of reconciliation methods, the misinterpretation of KS distributions and model-fitting issues render the WGD 

inferences of Ren et al. highly unreliable. Consequently, we fear that any speculation by Ren et al. concerning 

links of polyploid establishment with climatic change and rates of species diversification is unjustified.  
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In summary, we fear that while Ren et al. took considerable effort in generating and analyzing huge amounts of 

data, their study suffers from flawed methodology and misinterpretations. We hope that by highlighting some of 

these issues here, our commentary will benefit future efforts in plant palaeopolyploidy research. With the wealth 

of genomic data that is now becoming available, many analyses can be performed in a high-throughput fashion. 

Nevertheless, awareness of the limitations of different approaches and careful interpretation of results remains 

critical. While we could not discuss all issues at length here (but see Supplementary Information), we hope to have 

clearly expressed our concerns and hope that the results presented in Ren et al. will be interpreted with appropriate 

caution.  

 

Sincerely, 

Arthur Zwaenepoel, Zhen Li, Rolf Lohaus and Yves van de Peer  
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Figure 1: Modeling of KS distributions and the effect of small scale duplications on WGD inference. (A) A 

KS distribution with two KDEs for Selaginella moellendorffii is shown, a species for which there is consensus that 

it probably did not undergo WGDs. When the boundary effect is not accounted for (black line), a suggestive peak 

appears. This peak clearly disappears when adopting reflection around KS = 0 (which is arguably the most 

straightforward technique to account for the boundary effect). The dashed line indicates the median KS value. (B) 

Log-normal (left) and normal (right) Gaussian mixture models (GMMs) for the S. moellendorffii KS  distribution 

using 1 to 8 components (only models with up to three components are shown in the histogram plots). The BIC 

values keep decreasing for more components in the case of the Normal mixture, which is indicative for 

overclustering. For the log-normal mixture similar overclustering is observed, but here a five-component model 

gave an optimal fit. Note how the log-normal model with one component already gives a very appealing visual fit 

and how the ΔBIC values between successive components are much smaller than for the normal GMMs. We note 

that, based on uncorrected KDEs and Normal GMMs, one could be inclined to infer a spurious recent WGD in S. 

moellendorffii. 
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Supplementary information - Finding evidence for whole genome 

duplications: a reappraisal 

Arthur Zwaenepoel, Zhen Li, Rolf Lohaus & Yves Van de Peer 

 

Additional methodological remarks 

Here we report some additional remarks concerning the study of Ren et al. (2018) concerning issues which hamper 

clear interpretation of their paper. We do not collect conceptual errors here but rather several of the methodological 

ambiguities in Ren et al. that are relevant for the argument in our letter. 

 The authors do not describe in their Methods how they fitted the distributions in panel B of Figure 1 and 

Supplementary Figures 4–65. We assume these are kernel density estimates (KDEs), since we are not aware 

of any other methods than KDEs and histograms to plot the empirical distribution of a data set. Note that 

variants of histograms (e.g., smoothed or average-shifted histograms) are all specific cases of KDEs, and 

hence also sensitive to the discussed boundary effects. We also assume the authors chose some automatic 

rule for bandwidth selection in their KDEs, however this is not specified. Although KDEs are very common, 

the authors should still describe their usage and their methodology for fitting them (if these were not KDEs 

they should definitely specify the method they used). More importantly, we note that relevant detail in a 

distribution could be lost in KDEs and thus (also) showing the underlying histogram is highly preferred. 

 The authors do not describe the details of the Gaussian mixture modeling (GMM). For example, how many 

components were tested? Which criterion was used for assessing the optimal number of components? 

Although most of their argument is not based on these GMMs, we feel these should have definitely been 

mentioned. 

 The method used to construct KS distributions is poorly described. It is unclear which (if any) procedure was 

used to correct for redundant KS estimates (Barker et al., 2008; Lynch and Conery, 2003; Maere et al., 2005; 

Vanneste et al., 2013). This renders (some of) their KS distributions hard to interpret. The authors report 

median KS values for putative WGDs, but they do not describe anywhere from which specific set of KS values 

the median was exactly calculated. We assume this would be the median KS among all gene duplicates (GD) 

mapping on the branch/node of interest, provided they met the minimal length requirement and did not belong 

to species-specific families (column ‘Gene Duplication’ in Supplemental Table 3 of Ren et al.). However, 

for some WGDs it seems impossible that the reported median is in fact the median of the KS values of these 

duplicates. As an example, we may consider Eucalyptus grandis, for which the authors report a median KS 

of 1.27, whereas, judging from Supplemental Figure 17 in Ren et al., this value should be somewhere around 

0.25. Furthermore, the authors do not provide any rationale for the usage of the median KS value. Why not 

the arithmetic or geometric mean or the mode? If peaks from WGDs are approximately log-normal, as we 

suggested, the geometric mean would give a more natural estimate of the central location (Morrison, 2008). 

Intuitively, the mode may be used to represent the peak value. While the median may be more robust to 

outliers, we do not see a clear meaning for this value in the way it seems to be used.  

 The authors do not clearly describe which gene families were used in the reconciliation pipeline. It is however 

implied that all families that were not species-specific were used (using only genes meeting the minimum 
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length requirement). Additionally they do not describe how the resulting trees were rooted (which can be 

non-trivial for large gene families even when the species tree is known). 

 The authors fail to recognize or discuss the impact of taxon sampling on their results. It is however obvious 

that the criterion that at least 1000 GDs should map on a branch to infer a WGD (criterion 2 on p. 425 in Ren 

et al.) is highly sensitive to the taxon sampling at hand. As an example we note that, if the authors would not 

have used the dense sampling they have within the Brassicaceae, and would for example not have sampled 

Arabidopsis lyrata and Capsella rubella, they would have been forced to conclude a WGD happened in the 

branch leading to Arabidopsis thaliana after divergence from Brassica based on this criterion (it may fail to 

meet another criterion however). As a result we suspect that if some clades would have been more thoroughly 

sampled (breaking up long terminal branches), Ren et al. would not have inferred some WGDs using the 

same identification criteria. We do acknowledge it is unfeasible to gather a more dense taxon sampling in 

many cases, but still think a reflection on these issues is appropriate. 
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Supplementary Methods 

KS distribution construction 

All CDS sequence data was downloaded from PLAZA Dicots 4.0 (Van Bel et al., 2018). KS distributions were 

constructed using the ‘wgd’ package (Zwaenepoel & Van de Peer, 2019) following an approach based on Vanneste 

et al., 2013. In brief, within species paralogous gene family delineation was performed using all-versus-all Blastp 

(Altschul et al., 1997) with an e-value cut-off of  

10–10 and Markov Clustering (MCL) with the mcl program (v10-201) (van Dongen, 2000). The specific command 

in the version of wgd used was (example for Selaginella moellendorffii): 

    wgd mcl --mcl --cds -s cds.smo.fasta 

Multiple sequence alignments (MSAs) of paralogous protein sequences were constructed using MUSCLE 

(v3.8.31) (Edgar, 2004) with default parameters. This MSA is then used as a guide for a nucleotide level MSA. 

Subsequently, all pairwise KS estimates for sequence pairs with pairwise alignment length exceeding 300 

nucleotides were estimated by maximum-likelihood (ML) using the basic model of Yang & Nielsen (1998) as 

implemented in the codeml program (Goldman and Yang, 1994) from the PAML package (v4.4c) Yang (2007). 

Codon frequencies were determined using the F3X4 method based on the average nucleotide frequencies at the 

three codon positions. Codon model 0 was used for pairwise KS, KA and ω estimation, assuming a constant ω 

across sites and branches. This option is selected since one pair of sequences is usually not enough to detect 

selective pressure (Vanneste et al., 2013). Subsequently, an approximate maximum likelihood tree for the 

paralogous gene family is computed using FastTree (Price et al., 2010) and rooted using midpoint rooting. Weights 

for KS values are determined using a post-order traversal where at each joining node the m pairwise KS estimates 

between leaves of the left and right subtree are added with a weight 1/m to the KS distribution. Using this approach, 

the weights for each duplication event sum up to one and contribute accordingly to the empirical distribution. This 

procedure was performed using the following command with wgd (the `--pairwise` option was used 

as this is likely more similar to the analysis of Ren et al. than the default): 

    wgd ksd smo.mcl cds.smo.fasta --preserve --pairwise 

Kernel density estimation 

Kernel density estimation was performed on the node-averaged distributions using the seaborn library (v0.8.1) 

which uses the `gaussian_kde` function from the SciPy library (v1.1.0) in Python (3.6.2). We used the default 

bandwidth chosen by Scott's 'rule of thumb' (Scott, 1992) as we considered this would likely be similar to what 

Ren et al. used. We filtered out all KS values < 0.005 and KS > 2. KDEs were fitted both for the KS distribution as 

such as well as for a distribution with the same KS distribution reflected around zero added to it. This procedure 

amounts to mitigating the boundary effect induced by KDEs. We note that the implied assumption in this approach 

is that f’(KS  = 0) = 0. 

Gaussian mixture modeling 

For fitting Gaussian mixture models (GMMs) to node-averaged KS distributions, we used the 

`GaussianMixture` class as implemented in the mixture utilities from the `sklearn` library (v0.19.1) in 

Python (3.6.2) (Pedregosa et al., 2011). Again we filtered the KS distribution such that 0.005 < KS < 2. The 

Expectation-Maximization (EM) algorithm was initialized using k-means and was run until convergence (using a 

threshold of 10–3 on the lower bound of the average gain). Up to 8 components were fitted. We used the same 
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methods to fit normal and log-normal mixtures by fitting normal components to the log-transformed data and 

subsequent back-transformation to the original scale. We used both the Akaike and Bayesian information criteria 

(AIC & BIC) to assess relative model fit and report the BIC in our Figure 1. Python code for all analyses and plots 

can be obtained from a Jupyter notebook available at (https://github.com/arzwa/ksnotebooks). 
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Supplementary Figures 

 

 

Supplementary Figure 1: Modeling KS distributions for bona fide WGDs and the contribution of small scale 

duplications. (A) A KS  distribution for Glycine max, a species with a well-characterized recent WGD, dated to 

have occurred about 14 million years ago (Vanneste et al. 2014). A three-component mixture model is shown, 

which corresponds to the obvious 'knee' in the BIC plot. The bottom right plot shows the posterior probability to 

belong to each component for different pairwise KS  estimates. This plot clearly shows how a significant fraction 

(~18%) of duplicate pairs at KS = 0.13 (the median value Ren et al. chose to represent this WGD) stems from SSDs 

(given the fitted GMM). Such an issue can be avoided by using syntenic structural information to select a subset 

of paralogs that stem from the WGDs (e.g., as in Vanneste et al. 2014). (B) Similar to (A) but for Solanum 

lycopersicum, again the peak indicated at KS  = 0.69 reflects the value reported by Ren et al. Plots are shown for a 

two- and three-component log-normal GMM (the latter obviously giving a better fit even though the second peak 

does not correspond to any known biological features, this peak is for example not detected in KS distributions 

based on syntenic information (Vanneste et al. 2014)). Both panel A and B illustrate that, if we assume that these 

mixture models reliably reflect the underlying theoretical distribution, SSDs contribute significantly to peaks 

induced by WGDs. This effect becomes stronger the more recent the WGD, where reliable inference of WGDs 

from KS distributions eventually becomes impossible. We note that these plots can underestimate this effect for 

higher KS regions, as the fitted SSD decay peak is unable to model those SSDs that get fixed in the genome. 
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Supplementary information - Finding evidence for whole genome duplications: a reappraisal

Arthur Zwaenepoel, Zhen Li, Rolf Lohaus & Yves Van de Peer

Table 1: WGDs used by Ren et al. (2018) for the calibration of the survivalship curve for transciptomic data. The species included in this table
are those referred to by Ren et al. as species with ‘Calibrated’ WGDs (purple dots in their Figure 2 and 3). When we comment on evidence, we specifically mean
evidence as can be judged from the analyses in Ren et al. Where appropriate, we mention additional references that agree or disagree with the results presented by
Ren et al.

Species Median KS Comment
Olea europaea 0.13 KDE artifact (median KS reflects SSD peak); KS distribution differs strongly from Unver et al. (2017); Possibly

in agreement with Julca et al. (2018)
Lactuca sativa 0.91 Some evidence for WGD; Median KS affected by SSD peak
Flourensia thurifera 0.20 Strong evidence for WGD; Median KS may be affected by SSD peak
Asteraceaea 1.28 No clear evidence for WGD
Actinidia arguta 0.09 KDE artifact (median KS reflects SSD peak)
Hydrangea macrophylla 0.16 Some evidence for WGD; Median KS affected by SSD peak
Eschscholzia californica 0.18 Missing from supplementary material; Cui et al. (2006) reported a peak at KS ≈ 0.65
Chloranthales 0.89 No clear evidence for WGD; Reference in Supplementary Table 3 does not report ancient WGD but

neopolyploidy
Panicum virgatum 0.05 KDE artifact (median KS reflects SSD peak)
Yucca filamentosa 0.08 KDE artifact (median KS reflects SSD peak)
Asparagus officinalis 0.53 Some evidence for WGD; Median KS affected by SSD peak; In agreement with Harkess et al. (2017)
Asparagales 1.09 Missing from supplementary material; Zhang et al. (2018) suggest no shared WGD for Asparagales
Pinellia ternata 0.10 KDE artifact (median KS reflects SSD peak)
Acorus calamus 0.10 KDE artifact (median KS reflects SSD peak); Cui et al. (2006) reported a peak (or possibly two) at KS ≈ 0.5

for Acorus americanus
Cabomba caroliniana 0.16 KDE artifact (median KS reflects SSD peak); References in Supplementary Table 3 do not report ancient WGD

but neopolyploidy
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