
Solving Navigation-Based Goal Recognition Design Problems with Action Graphs

Helen Harman and Pieter Simoens
Department of Information Technology - IDLab

Ghent University - imec
Technologiepark 15, B-9052 Ghent, Belgium
{helen.harman, pieter.simoens}@ugent.be

Abstract

To proactively assist humans robots require the ability to
recognise a human’s goal. Unfortunately, as plans can often
start with the same actions, i.e. are initially non-distinctive,
it is often impossible to determine which goal a human is
aiming to achieve until they have neared their goal. By mod-
ifying the environment we aim to force humans into re-
vealing their goal sooner without increasing the cost of the
optimal plan to any of the possible goals. Previously pro-
posed approaches, that apply classical planning techniques to
this problem, are very computationally expensive. This paper
presents an early version of our work, in which we propose
transforming goal recognition design problems into Action
Graphs. Experiments show that our approach is able to force
humans into revealing their goal sooner in environments with
various numbers of goals and of differing sizes in an aver-
age time of 1.42 seconds, whereas a current state-of-the-art
approach often breaches a 10 minute timeout.

1 Introduction
Increasingly robots and smart devices are being deployed to
help humans with the daily activities. To proactively provide
assistance it is essential for a robot to understand the inten-
tions of humans. Besides robotic environments, discovering
the intentions of humans can be beneficial in many different
situations including: monitoring where people are walking
in an airport for security reasons (Keren, Gal, and Karpas
2014); crowd monitoring at events such as festivals; and in
hospitals to determine where a patient or staff member is
heading.

Often a person’s intentions cannot be determined until
they near their goal, this is due to multiple goals being reach-
able by initially performing identical actions. By modifying
the initial environment the number of actions a human per-
forms before their intentions are revealed can be reduced.
We have identified 2 ways in which an environment, prior
to humans occupying it, can be modified: 1) prevent actions
from being performed, e.g. by blocking a person from navi-
gating between two locations, and 2) modify the state of an
object, e.g. change its location. In this paper we focus on the
first aspect, which in realistic human occupied environments
is, as far as we are aware, only applicable to navigation do-
mains.

To clarify the problem we provide an example. Figure 1
shows two goals, these goals could indicate the location of
e.g. a coffee machine and fridge in a smart house, or a shop
and terminal in an airport. At worst the plans for these two
goals have a non-distinctive plan prefix containing 3 actions,
i.e. the Worst Case Distinctiveness (WCD) for this environ-
ment is 3. By placing an obstacle (e.g. a wall) at a strategi-
cally chosen position, the action to move from position (2,3)
to position (2,2) becomes impossible and the WCD of the
sample environment is reduced to 0. The term goal recogni-
tion design and the WCD metric were introduced by Keren,
Gal, and Karpas (2014).

Figure 1: In this grid-based navigation example a human can
only move horizontally and vertically. There are multiple
optimal plans to each of the goals, but for readability only
a single plan to each goal is shown (indicated with arrows).
The longest non-distinctive plan prefix from the start loca-
tion (S), which is part of an optimal plan for the two goals
(G1 and G2) is indicated by red arrows. The WCD for the
environment on the left is 3. The image on the right shows
that by preventing the human from perform a single action
the goal of the human can be determined from their first ac-
tion, i.e. the WCD is 0.

Goal recognition design is a complex problem. Rather
than finding a single optimal solution to reach a goal like
in task planning, all possible optimal plans that have non-
distinctive prefixes are required. Thus, current approaches
to goal recognition design (Wayllace et al. 2016; Son et al.
2016; Wayllace et al. 2018; Keren, Gal, and Karpas 2018)
are computationally expensive. In this paper we present a
novel approach, which transforms goal recognition design
problems into Action Graphs. Non-distinctive plan prefixes
are extracted from the graph and processed to determine the

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Ghent University Academic Bibliography

https://core.ac.uk/display/188644754?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


actions whose removal reduces the WCD without increasing
the cost of the optimal plan from the initial state to any of
the goal states. The removed actions indicate the locations
obstacles should be placed within the environment to make
goal recognition less challenging.

Harman, Chintamani, and Simoens (2018) introduced the
concept of creating Action Trees using techniques from clas-
sical planning, to perform goal recognition. We build on the
work described in their paper. As the model produced did not
work well for navigation domains, we have changed how the
model (i.e. Action Tree/Graph) is generated.

Section 2 provides an overview of related work. How ac-
tion Graphs are generated, the non-distinctive plan prefixes
found and the WCD reduced is described in Section 4. Our
initial experiments that compare our approach to a state-of-
the-art approach (Keren, Gal, and Karpas 2014), are pre-
sented and discussed in Section 5.

2 Related Work
There are several different methods for intention recogni-
tion, including searching a dictionary/library of predefined
plans (Goldman, Geib, and Miller 1999; Zhuo and Li 2011;
Holtzen et al. 2016); processing labelled data (e.g. videos)
to train a model (Singla, Cook, and Schmitter-Edgecombe
2010; Bisson, Larochelle, and Kabanza 2015); and solving
a symbolic goal recognition problem defined in a planning
language such as Planning Domain Definition Language
(PDDL) (Ramırez and Geffner 2010; Freedman and Zilber-
stein 2017; Pereira, Oren, and Meneguzzi 2017; Harman,
Chintamani, and Simoens 2018). By modifying the envi-
ronment the intention recognition process can be made less
challenging.

The term goal recognition design was recently coined
by Keren, Gal, and Karpas (2014). In their approach the
WCD of a problem is calculated by transforming the goal
recognition problem into multiple planning problems con-
taining pairs of goals. An optimal plan, with the longest pos-
sible non-distinctive prefix, to each pair of goals is searched
for. The longest non-distinctive plan prefix, across all joint
plans, is the WCD. To reduce WCD an increasing number of
actions are removed until either the WCD is 0, or the search
space has been exhausted in which case the best environ-
ment design discovered so far is returned. We will compare
our solution to their pruned-reduce algorithm, and show that
for navigation domains we have greatly reduced the time
required to solve goal recognition design problems. Their
approach has been extended for non-optimal agents (Keren,
Gal, and Karpas 2015), and to determine where to place sen-
sors within the environment (Keren, Gal, and Karpas 2016).
In this paper we assume the agent/human is optimal and do
not investigate sensor placement.

Wayllace et al. (2016; 2018) investigate goal recognition
design involving stochastic action outcomes using Markov
decision processes (MDPs). To calculate WCD the MDP for
every goal is created, the states which are common to pairs
of goals are discovered and the Bellman equation is used
to calculate the cost of reaching a state. To reduce the WCD
their algorithm removes a set of actions, checks that the opti-
mal cost to reach a goal has not been affected, and calculates

the WCD to find out if it has been reduced. Their approach
creates a MDP multiple times for each of the goals, which
results in large computational costs. In our approach a single
model (Action Graph) is created, which contains the actions
to reach all goals, moreover it is only created once.

Son et al. (2016) propose an approach based on Answer
Set Programming (ASP) to reduce the computational cost,
as an alternative to the Planning Domain Definition Lan-
guage (PDDL) which the previously mentioned approaches
use. Their results only show a maximum of two actions be-
ing removed, which greatly limits how much WCD can be
reduced. In our approach we use PDDL, a popular domain-
independent logic based formalism to represent planning
problems, as we build on the work from (Harman, Chinta-
mani, and Simoens 2018), which performed well (i.e. com-
putational time and accuracy) on goal recognition problems.

3 Background
Planning problems P are often specified in PDDL which
consists of: a problem file containing a list of objects, the
initial state and a goal state; and a domain file containing
a set of action definitions. Formally they can be defined as
P = (F, I,A,G). Where F is a set of atoms, I ⊂ F is the
initial state, G ⊂ F is a goal state, and A is a set of ac-
tions along with their preconditions apre ⊂ F and effects
aeff ⊂ F (Ramırez and Geffner 2010). A planner, for in-
stance Fast Downward (FD) (Helmert 2006), solves a plan-
ning problem by finding the least costly sequence of actions
leading from the initial state to the goal state.

A goal recognition design problem can be defined asD =
(F, I,A,G), where G is the set of all possible goals. These
can also be defined in PDDL, i.e. a domain file, template
file (problem without the goal statement) and hypothesis file
containing the list of all possible goals. We aim to find a
subset of actions Â ∈ A which can be removed to reduce
the WCD without increasing the cost of the optimal plan to
any of the goals G. In this paper the cost of a plan is its
length.

4 Action Graphs for Goal Recognition
Design

In this paper, we introduce a novel method for goal recogni-
tion design, which creates Action Graphs to model the con-
straints between actions. Action Graphs are produced from
Domain Transition Graphs (DTGs), which to be generated
require a planning problem (i.e. a PDDL problem and do-
main file). Our system begins by inserting a goal contain-
ing all of the possible goals G in an or statement into the
template, to form a PDDL problem file. This problem along
with its domain are transformed into a set of DTGs using the
method developed by Helmert (2006) for FD. Every variable
has its own DTG, which describes how the variable changes
state. For instance, how a human’s location changes from
one position to the next. Subsequently, these DTGs are con-
verted into an Action Graph.

After creating an Action Graph, actions belong to multi-
ple goals are identified to formulate a set of non-distinctive



(a) The Action Graph creation starts by inserting the actions that re-
sult in the goal being reached (i.e. Ag = {a | aeff = g}), and
their dependencies. The two goal actions, move(0 1, 0 0) and
move(1 0, 0 0) are inserted into the BFS queue. If any of the goal
actions are applicable to the initial state a threshold on the number of
allowed steps away from the goal action is set to 0.

(b) move(0 1, 0 0) is popped from queue and the algorithm it-
erates over its dependencies, i.e. move(0 0, 0 1), move(0 2,
0 1) and move(1 1, 0 1). These actions also all have dependen-
cies. All the dependencies of move(0 0, 0 1) have already been
inserted into the graph, and connecting it to its dependencies would
result in its dependencies being further from the goal, so the action
is removed. For the remaining actions, i.e. move(0 2, 0 1) and
move(1 1, 0 1), their dependencies are successfully inserted into
the Action Graph, and these two actions are appended to the queue.

(c) The next item in the queue, move(1 0, 0 0), is processed in
the same way. move(1 1, 1 0)’s dependencies already exist in the
Action Graph, therefore it can be link to these without the need to
create any action nodes.

(d) As a dependency of move(0 2, 0 1) is applicable to the ini-
tial state the threshold on the number of actions required to reach
the goal is set to 2. Adding the dependencies for move(0 1, 0 2)
and move(0 3, 0 2) would result in the threshold being breached,
therefore these actions are removed. No further actions are inserted
into the queue.

(e) The items in the queue continue to be processed as described in
the previous steps until the queue is empty. This figure shows the
resulting Action Graph, after a single goal has been inserted.

Figure 2: Example of the steps taken to create an Action Graph, when the initial state is (human-at 1 2) and the first goal
is (human-at 0 0). Actions which result in the goal state being reached are highlighted in green, yellow boxes with a thick
border indicates actions applicable to the initial state, red indicates actions that are being removed, actions with a dashed border
are currently in the BFS queue and the bold actions indicate the action which has just been popped from the queue.

plan prefixes. To reduce WCD, the non-distinctive plan pre-
fixes are iterated through to discover which actions should
be removed. This section first describes how Action Graphs
are created, then how the non-distinctive plan prefixes are
found and finally how WCD is reduced.

4.1 Creating an Action Graph
Action Graphs allow to model the order constraints, i.e. de-
pendencies, between actions; they are similar to AND-OR
trees as they contain OR, AND and leaf nodes. Leaf nodes are
also referred to as action nodes, as each one is associated
with an action. An AND node’s children must be performed
in order, and for OR nodes one or more of its children can
be completed. Action, OR and AND nodes can have multiple
parent nodes, as the Action Graph contains only one action
node per action. Unless otherwise stated, the term parent(s)

always refers to the direct parent(s) of a node.
An Action Graph is generated by performing a Breadth

First Search (BFS) backwards from each goal g ∈ G to the
initial state I . Figure 2 shows an example of the steps exe-
cuted to insert all the plans for a single goal into an Action
Graph. The graph is initialised with an OR node as the root
and will receive a new child for every action whose effects
result in a goal state being reached. Each goal g ∈ G is in-
serted in turn.

Actions which result in the goal state being reached
(Ag = {a | aeff = g}) are found and inserted into to
the graph along with their direct dependencies, as shown in
Figure 2a. These goal actions and their dependencies are dis-
covered by searching the DTGs. If any of the goal actions are
applicable to the initial state, AI = {a | a ∈ Ag ∧ apre =
I}, the maximum number of steps to reach the goal is 0;



and no other actions, including any other goal actions (where
ÂI = {a | apre 6= I}), are inserted into graph. If no goal
action is applicable to the initial state all goal actions’ de-
pendencies are inserted.

When an action has dependencies (ÂI = {a | apre 6=
I}) an AND node is inserted with the dependencies preceding
the action as its children. As multiple actions (dependencies)
can have the same effects, OR nodes are inserted to indicate
the different paths. Once inserted into the graph, each goal
action is appended onto a BFS queue.

For each action in the queue our algorithm iterates over
their dependencies, to insert the dependencies’ dependencies
into the Action Graph. An example is provided in Figure 2b.
We process actions and dependencies in this way because
it is simpler to remove the action when none of its depen-
dencies’ dependencies can be inserted, e.g. if inserting them
would result in a sub-optimal appearing in the graph. Depen-
dencies are actions, thus in the subsequent text we refer to a
dependency’s dependencies as an action’s dependencies.

If an action’s dependencies have already been inserted
into the graph, for the current goal, and connecting it to its
dependencies would cause the dependencies to be further
from the goal (i.e. create a cycle within the graph) the ac-
tion is removed. After an action’s dependencies have been
inserted, the action is appended to the queue. This continues
until an action that has no dependencies (AI = {a | apre =
I}) is reached (Figure 2d).

When the initial state is reached a threshold on the num-
ber of allowed steps away from the goal is set, to prevent
plans longer than the optimal from being inserted. Any ac-
tions with dependencies that would result in this maximum
being breached are removed from the graph. If all an action’s
dependencies have been removed, then so too is the action it-
self. When an OR node contains only one child it is removed,
i.e. the OR nodes parents become its child’s parents. The pro-
cess is completed when the BFS queue is empty. An exam-
ple of an Action Graph produced by this process is shown in
Figure 2e.

After all the plans to the first goal have been inserted, the
same process is performed on the subsequent goal. The order
the goals are processed does not affect the resulting Action
Graph. When inserting the actions that lead to the subse-
quent goals, the algorithm also checks if an action was al-
ready inserted when processing a previous goal. If so, there
is no need re-insert the action’s dependencies; the threshold
on the number of actions to reach the goal is set to the cur-
rent action’s distance from the goal plus the cost of its plan
to reach the initial state, which is discovered by traversing
the graph (see Algorithm 2).

4.2 Find all Non-Distinctive Plan Prefixes
Once an Action Graph has been created, the non-distinctive
plan prefixes need to be discovered, and the WCD calcu-
lated, before iterating over the prefixes to remove the ac-
tions that result in a reduced WCD. In our approach finding
non-distinctive plan prefixes involves two steps: 1) set which
nodes in the graph belong to which goals and 2) find all the
plans from the initial state up to and including each of the

actions belonging to more than one goal, if an action is con-
tained within another action’s plan there is no need to also
find its plan. This sections describes these two steps in more
detail.

Set Which Nodes Belong to Which Goals Each goal ac-
tion Ag = {a | apre = g ∈ G}, which requires dependen-
cies, has an AND node as its parent, all the AND node’s chil-
dren including non-direct children (e.g. children’s children)
belong to the same goal as the goal action. Therefore, by
performing a depth first tree traversal starting from the AND
node, each node is provided with a list of goals it belongs to.

Algorithm 1 Get non-distinctive plans from Action Graph
1: function GET NON DISTINCTIVE PREFIXES(graph)
2: non distinctive prefixes = ∅
3: for a ∈ graph.get all actions do
4: if a only belongs to 1 goal or

a ∈ non distinctive prefixes then
5: continue
6: end if
7: plan = GET PLAN(a) . gets any plan
8: for p ∈ non distinctive prefixes do
9: if p.last action = a then

10: non distinctive prefixes.rm(p)
11: break
12: end if
13: end for
14: end for
15: sort(non distinctive prefixes) . Longest 1st
16: WCD = non distinctive prefixes[0].size
17: return non distinctive prefixes
18: end function

Algorithm 2 Get any plan containing the given action. Re-
turned plan ends with the action itself.
1: function GET PLAN(a)
2: plan = ∅
3: if a.parents.size = 1 and a.parent is AND node then
4: GET PLAN FOR NODE(a.parent, plan)
5: end if
6: plan.append(a)
7: return plan
8: end function
9: function GET PLAN FOR NODE(node, plan)

10: child = node.children[0]
11: if child is AND node then
12: plan.append(GET PLAN(child.children[1]))
13: else if child is OR node then
14: plan.append(GET PLAN FOR NODE(child))
15: else . node is an action node
16: plan.append(child)
17: end if
18: end function

Find Non-Distinctive Plan Prefixes To find the non-
distinctive plan prefixes, Algorithm 1 iterates over all the
actions which belong to more than one goal, and adds their
plans to a list of non-distinctive plan prefixes. We use the
term action’s plan to refer to a plan from the initial state



which ends with that action. To prevent multiple (sub-)plans
being repeated, if the action has already been inserted into
one of the non-distinctive plan prefixes it is ignored, and the
algorithm removes plans from the list which end with an ac-
tion in a newly found plan (lines 8-13). The WCD is the
length of the longest non-distinctive plan prefix.

An action’s plan is discovered by traversing the Action
Graph depth first (Algorithm 2). When an OR node is en-
countered a single child is selected. It does not matter which
one of an action’s plans are discovered, as those actions not
traversed will also appear, within a different plan, in the list
of non-distinctive plans. Thus, will still be processed during
action removal to reduce WCD (see Section 4.3). As only
optimal plans have been inserted into the Action Graph, this
does not affect calculating WCD.

4.3 Action Removal to Reduce WCD
We aim to reduce the WCD without increasing the cost of
the optimal plan to any of the goals, by preventing actions
from being performed. This section describes how the ac-
tions to remove are selected. In Figures 3, 4 and 5 we pro-
vide some simple examples to illustrate how our approach
works; our approach is applicable to environments of any
size with any number of goals.

The list of non-distinctive plan prefixes is sorted, most
costly first; so the worst is processed first. In turn, each prefix
is removed from the list, and its actions iterated over to find
one in which all the goals it belongs to have an alternative
action.

(a) The image on the left shows an example of an environment
with a single non-distinctive plan prefix containing 1 action (shown
as solid red arrow), for which each goal has an alternative action
(dashed green arrows). As each goal has an alternative, the non-
distinctive action can be removed, resulting in a WCD of 0 (right).

(b) The action graph for the example environments. The action
which is removed is shown highlighted in the image on the left
(white text with red background). The Action Graph after the WCD
has been reduced is shown on the right.

Figure 3: Example goal recognition design problem, in
which both goals have an alternative to the plan(s) contain-
ing the non-distinctive prefix.

A goal has an alternative action, if the action (or if the
action has dependencies its single AND parent) has an OR
node as a direct parent, and another one of the OR node’s
children belong to that goal. An example is provided in Fig-
ure 3. Moreover, the alternative cannot belong to any of the

other goals the (non-distinctive) action belongs to, e.g. the
first action in Figure 4a (left image). If all the goals, with
a plan containing the action from the non-distinctive plan
prefix, have an alternative action, the action is removed.

After checking all actions in a non-distinctive plan pre-
fix, if only a subset of the goals have an alternative action,
the action(s) directly after the non-distinctive prefix in their
plans are removed. An example is shown in Figure 4. If the
goals have an alternative action but their alternatives are the
same, the next (distinctive) action(s) for one of the goals is
removed (see Figures 5c-d). Our action removal method al-
ways checks that the action removed will not interfere with
any of the other goals, which do not have an alternative.

Once an action has been removed, which nodes belong to
which goal is re-evaluated (see Section 4.2) and the actions
in the non-distinctive plan prefix, prior to any removed ac-
tion, are checked to see if they should be inserted into the list
of non-distinctive plan prefixes (e.g. Figure 4a). The last ac-
tion in the plan prefix will not be processed again, if it is still
a non-distinctive action then the WCD will not be reduced
to 0. An example of an environment in which the WCD can-
not be reduced to 0, and the steps our algorithm performs, is
shown in Figure 5.

(a) Both actions have an alternative to the first action in the worst
non-distinctive plan prefix. The alternative action, move(1 2,
0 2), also belongs to both goals and is thus only taken into consid-
eration as a last resort. G1 has an alternative action to the second
action, whereas G2 does not. So, the next action in G1’s plan, which
contains the non-distinctive plan prefix, is removed. After remov-
ing an action (middle image), move(1 2, 1 2) is still a non-
distinctive action, thus is evaluated on the next iteration. This time
G2 is the only goal with an alternative action. The environment af-
ter all non-distinctive plan prefixes have be evaluated is shown in
the image on the right.

(b) Initial Action Graph shown on the left. The Action Graph after
the action removal process has completed is shown on the right

Figure 4: Example of WCD reduction, when only a subset
of the goals have an alternative action, to an action in the
non-distinctive plan prefix.

5 Preliminary Results
Through experiments we aim to show: 1) how well our ap-
proach scales as the number of goals and size of the environ-
ment is increased, 2) how much the WCD is reduced, and



(a) Initial environment. Only G2 has an al-
ternative action, for any action in the non-
distinctive plan prefix, so the next action in
G2’s plan which contains the non-distinctive
prefix is removed.

(b) After the first action has been removed
the second to last action in the original non-
distinctive plan prefix is still a non-distinctive
action, thus is evaluated in the next iteration.

(c) After the second action has been removed
the longest non-distinctive plan prefix belongs
to G1 and G2. Neither G1 nor G2 have an al-
ternative action, which does not belong to the
other. Therefore, the next actions(s) in only 1
of the goal’s plans are removed. In this situa-
tion, as G1 has no further actions, G2’s next
actions are removed.

(d) Two actions have been removed, since
there were two possible next actions to reach
G1 (discovered by detecting an OR node in the
Action Graph).

(e) G2 is now distinctive, but there still exists
a non-distinctive plan prefix for G1 and G3.

Figure 5: Example of a 3 goal environment, in which WCD cannot be reduced to 0. In each environment design a longest
non-distinctive plan is indicated with red arrows.

3) how many actions are removed. We compare our Action
Graph approach to the pruned-reduce method by Keren, Gal,
and Karpas (2014), by running both approaches on a dataset
we created containing grid-based navigation goal recogni-
tion design problems with randomly selected initial and goal
locations. This section presents a description of the experi-
ment setup followed by a discussion on the results.

5.1 Setup

To perform experiments we created two grid-based naviga-
tion datasets containing goal recognition design problems.
The first contains problems with an 8 by 8 grid and a vary-
ing number of goals. For each number of goals 8 problems
were generated by randomly selecting the human’s start lo-
cation and the goal locations. In total the dataset contains
112 problems.

The second dataset consists of problems with differing
grid sizes, for all problems both the width and the height
are equal. For each grid size 8 problems with a random start
location and three random goals were selected. In total this
dataset contains 56 goal recognition design problems.

Experiments were ran on a server with 16GB of RAM
and a Intel Xeon 3.10Ghz processor. A timeout of 10 min-
utes per goal recognition design problem was set for all ex-
periments. The whole process, starting from converting the
PDDL into SAS+ (then creating the DTGs and building an
Action Graph) is included in the run-times for our approach.

5.2 Results and Discussion
The average time, WCD reduction and number of actions
removed for an increasing number of goals and an increase
grid size are shown in Figures 6 and 7 respectively. Both
experiment results follow a similar trend.

For each of the problems within the varying number of
goals dataset our Action Graph approach took less than
1 second to perform goal recognition design. Whereas,
pruned-reduced hit the timeout for the majority of problems
(Figure 6a). The standard deviation of the execution time
varies greatly between different problems (Figure 6b), as for
some problems removing a small number of actions reduces
WCD to 0 whereas for others WCD can only be partially re-
duced, and the optimal plans within the different problems
differ in length (longer plans take more time to find and iter-
ate over).

Our approach has managed to reduce WCD more than
pruned-reduce but has removed more actions. Pruned-
reduced attempts to remove an increasing number of actions
thus, as shown in Figure 6d, did not attempt to remove many
actions before the timeout was reached. This has resulted
in pruned-reduced not reducing the WCD as much as our
approach (Figure 6c). Having said that, our approach occa-
sionally removes more actions than is necessary, e.g. Fig-
ure 5, therefore in future work we will investigate different
methods of selecting which actions to remove, for instance
by reversing the order the non-distinctive actions are iterated
over. The same trends, as increasing the number of goals, are



(a) Average time per goal recogni-
tion design problem.

(b) Average time per goal recog-
nition design problem, for just our
approach.

(c) Average WCD reduction. (d) Average number of actions that
were removed.

Figure 6: Results for an increasing number of goals. The results of our Action graph approach is indicated by blue circles,
pruned-reduce (Keren, Gal, and Karpas 2014) is shown with red triangles. All times are given in seconds.

(a) Average time per goal recogni-
tion design problem.

(b) Average time per goal recog-
nition design problem, for just our
approach.

(c) Average WCD reduction. (d) Average number of actions that
were removed.

Figure 7: Results for an increasing grid size. The results of our Action graph approach is indicated by blue circles, pruned
reduce (Keren, Gal, and Karpas 2014) is shown with red triangles. All times are given in seconds

observed for an increasing grid size (Figure 7).
These experiments have proven that our Action Graph ap-

proach is more scalable than a current state-of-the-art ap-
proach to goal recognition design for grid-based navigation
domains. Our approach has managed to reduce the WCD of
168 grid-based navigation environments, with various num-
bers of goals and grid sizes, from an average of 6.29 actions
to 3.46 actions, in an average of 1.42 seconds per problem.

6 Conclusion and Future Work
In this paper we have described an early version of our work
on goal recognition design using Action Graphs for grid-
based navigation domains. Action Graphs are generated by
performing an adapted BFS backwards from each goal state
to the initial world state. Subsequently, the graph is traversed
to discover all the non-distinctive plan prefixes and to calcu-
late the WCD. Finally, the non-distinctive plan prefixes are
iterated over to search for actions that can be removed, to
reduce the WCD. Our initial experiments show promising
results, and we are currently looking at how to improve and
extend this work.

There are environments in which the overall WCD can-
not be reduced, however the distinctiveness between certain
goals can be. Therefore, in the future we will introduce a
new metric that better encapsulates the how distinctive each
of the goals are.

In realistic human occupied environments, the only fea-
sible domain, we can think of, in which actions should be
completely removed is navigation. For other domains, we
will investigate how the state of the environment can be
modified to reduce WCD. For instance, which cupboards
items should be placed in within a smart kitchen or smart
factory environment.

We will also investigate extracting which actions need to
be sensed from the Action Graph. Moreover, goal recogni-
tion experiments will be performed in a real world smart
home to determine how much the designed environment has
improved the accuracy of recognising a human’s goal.

7 Acknowledgements
H.Harman is an SB fellow at FWO (prj.1S40217N). Part of
this research was funded via imecs RoboCure project.

References
Bisson, F.; Larochelle, H.; and Kabanza, F. 2015. Using a
recursive neural network to learn an agent’s decision model
for plan recognition. In Twenty-Fourth International Joint
Conference on Artificial Intelligence, 918–924.
Freedman, R. G., and Zilberstein, S. 2017. Integration of
planning with recognition for responsive interaction using
classical planners. In Thirty-First AAAI Conference on Ar-
tificial Intelligence, 4581–4588.



Goldman, R. P.; Geib, C. W.; and Miller, C. A. 1999. A new
model of plan recognition. In Proceedings of the Fifteenth
Conference on Uncertainty in Artificial Intelligence (UAI),
245–254.
Harman, H.; Chintamani, K.; and Simoens, P. 2018. Action
trees for scalable goal recognition in robotic applications. In
the 6th Workshop on Planning and Robotics (PlanRob), 90–
94.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Holtzen, S.; Zhao, Y.; Gao, T.; Tenenbaum, J. B.; and Zhu, S.-
C. 2016. Inferring human intent from video by sampling hi-
erarchical plans. In Proceedings of the 2016 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS
2016), 1489–1496. IEEE.
Keren, S.; Gal, A.; and Karpas, E. 2014. Goal recognition
design. In Proceedings of the Twenty-Fourth International
Conference on Automated Planning and Scheduling, ICAPS,
154–162. AAAI Press.
Keren, S.; Gal, A.; and Karpas, E. 2015. Goal recognition de-
sign for non-optimal agents. In AAAI Conference on Artificial
Intelligence, 3298–3304.
Keren, S.; Gal, A.; and Karpas, E. 2016. Goal recognition
design with non-observable actions. In AAAI Conference on
Artificial Intelligence, 3152–3158.
Keren, S.; Gal, A.; and Karpas, E. 2018. Strong stubborn
sets for efficient goal recognition design. In International
Conference on Automated Planning and Scheduling (ICAPS),
141–149.
Pereira, R. F.; Oren, N.; and Meneguzzi, F. 2017. Landmark-
based heuristics for goal recognition. In Thirty-First AAAI
Conference on Artificial Intelligence (AAAI-17). AAAI Press.
Ramırez, M., and Geffner, H. 2010. Probabilistic plan recog-
nition using off-the-shelf classical planners. In Proceedings
of the Conference of the Association for the Advancement of
Artificial Intelligence (AAAI 2010), 1121–1126.
Singla, G.; Cook, D. J.; and Schmitter-Edgecombe, M. 2010.
Recognizing independent and joint activities among multiple
residents in smart environments. Journal of ambient intelli-
gence and humanized computing 1(1):57–63.
Son, T. C.; Sabuncu, O.; Schulz-Hanke, C.; Schaub, T.; and
Yeoh, W. 2016. Solving goal recognition design using asp.
In AAAI Conference on Artificial Intelligence, 3181–3187.
Wayllace, C.; Hou, P.; Yeoh, W.; and Son, T. C. 2016. Goal
recognition design with stochastic agent action outcomes. In
the International Joint Conference on Artificial Intelligence
(IJCAI).
Wayllace, C.; Keren, S.; Yeoh, W.; Gal, A.; and Karpas,
E. 2018. Accounting for partial observability in stochastic
goal recognition design: Messing with the marauders map.
the 10th Workshop on Heuristics and Search for Domain-
Independent Planning (HSDIP) 33.
Zhuo, H. H., and Li, L. 2011. Multi-agent plan recognition
with partial team traces and plan libraries. In Proceedings of
the Twenty-Second International Joint Conference on Artifi-
cial Intelligence (IJCAI 2011), volume 22, 484.


