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Reactive oxygen species in plant development
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ABSTRACT
Reactive oxygen species (ROS) are produced bymetabolic pathways
in almost all cells. As signaling components, ROS are best known for
their roles in abiotic and biotic stress-related events. However, recent
studies have revealed that they are also involved in numerous
processes throughout the plant life cycle, from seed development and
germination, through to root, shoot and flower development. Here, we
provide an overview of ROS production and signaling in the context of
plant growth and development, highlighting the key functions of ROS
and their interactions with plant phytohormonal networks.
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Introduction
Plant development, growth and survival are continuously shaped
and driven by genotypic and environmental cues. As plants are
sessile, they have evolved mechanisms that allow them to take
advantage of their metabolism and thus grow in highly variable
environments, for instance by integrating primary metabolic
products into vital processes. Reactive oxygen species (ROS) are
one such example of metabolic products that regulate plant growth
and development (Foyer and Noctor, 2009; Mittler, 2017; Noctor
et al., 2017). ROS levels are determined by a tightly controlled
balance between production and breakdown that is achieved via
sophisticated and highly complex antioxidant systems (Mittler et al.,
2011; Noctor et al., 2012). Together, these systems and the tight
control of ROS-associated pathways determine plant plasticity and
flexibility under fluctuating conditions and, thus, control plant
growth and survival (Mittler, 2017; Waszczak et al., 2018).
What are ROS? ROS refer to any oxygen derivative that is more

reactive than an oxygen molecule (O2) itself (Foyer and Noctor,
2009; Mittler, 2017). Every type of ROS has unique and distinct
chemical properties (Fig. 1). For example, singlet oxygen (1O2) can
oxidise lipids, proteins and guanidine residues of DNA; superoxide
(O†�

2 ), like singlet oxygen, has a half-life time of 1-4 µs and reacts
with Fe-S proteins; and hydroxyl (OH•) radicals are extremely
reactive and unstable with a half-life time of 1 ns (Mittler, 2017;
Waszczak et al., 2018). In contrast, hydrogen peroxide (H2O2) is
fairly stable (more than 1 ms) and, therefore, is considered as the
predominant ROS involved in cellular signaling. ROS can interact
with various cellular components, including those that play a role in
regulating ROS intracellular levels, hereafter referred to as ‘ROS
processing systems’ (Fig. 2). Hydrogen peroxide, for instance, can
be processed by several enzymes, including catalases (CATs) and
ascorbate peroxidases (APXs), which are the main players involved

in H2O2metabolism. H2O2 and other peroxides can also be processed
by glutathione S-transferases (GSTs) (Dixon and Edwards, 2010)
and peroxiredoxins (PRXs) (Dietz, 2011) including glutathione
peroxidases (GPXs), which were misleadingly named because of
their homology to animal GPX, but are now considered to act as
thioredoxin (TRX)-dependent peroxiredoxins (Iqbal et al., 2006;
Bela et al., 2015). These systems rely on the regeneration of
reductants, such as ascorbate, glutathione and TRX, and ultimately
depend on NADPH. Whereas the main superoxide-processing
enzymes are superoxide dismutases (SODs), hydroxyl radicals and
singlet oxygen are mainly metabolized by non-enzymatic reactions
(Fig. 2) (Fridovich, 1997; Triantaphylides̀ and Havaux, 2009; Noctor
et al., 2012; Richards et al., 2015).

In plants, ROS are produced during basal metabolism at various
subcellular sites (Fig. 2), including during mitochondrial
respiration, during photosynthesis in chloroplasts, in peroxisome-
localized photorespiratory reactions, and by apoplastic NADPH
oxidases [such as the respiratory burst oxidase homologs (RBOHs)]
and other oxidases. This compartmentalization of ROS production
and oxidation-reduction (redox)-associated reactions ensures the
further control of ROS levels and allows redox signaling between
organelles and the nucleus (Mignolet-Spruyt et al., 2016; Noctor
and Foyer, 2017). ROS are also highly interconnected with other
metabolites, including phytohormones such as salicylic acid (SA),
jasmonic acid (JA), ethylene (ET), abscisic acid (ABA) and
gibberellic acid (GA). Indeed, crosstalk between ROS and
phytohormone-modulating stress response reactions, such as those
involving SA and JA, is well documented (Noctor et al., 2015). In
addition, interplay between ROS and development-associated
hormones, such as auxin and cytokinin, has been reported,
although specific insights are rather scarce and many questions
remain outstanding (Considine and Foyer, 2014; Diaz-Vivancos
et al., 2015; Tognetti et al., 2017).

ROS have long been recognized for their roles in mediating the
response to abiotic and biotic stress conditions. However, in recent
years, a number of studies have uncovered key roles for them during
plant growth and development. Here, we discuss these emerging roles
of ROS and redox-dependent mechanisms during plant development,
highlighting their interactions with plant phytohormonal networks.
First, we discuss howROS can affect basic cellular processes, such as
the cell cycle and division, and then review the roles of ROS at
various stages of plant development, within seeds andmeristems, and
during organ and tissue development.

ROS-mediated control of the cell cycle, cell division, cell
expansion and cell death
In plants, exposure to stress is often accompanied by decreased
growth and cell cycle arrest, although the mechanisms underlying
this response remain largely unexplored. In particular, the molecular
factors of the cell cycle that are influenced by ROS or redox-
dependent mechanisms are rather poorly studied in plants. It is
known that redox cycles are conserved within the cell cycle and that
reductive and oxidative signals are required for transitions within
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the cell cycle phases (Menon and Goswami, 2007; Diaz-Vivancos
et al., 2015; de Simone et al., 2017). These phase-to-phase
progressions and transitions are mainly governed by a complex
machinery of interacting cyclins (CYCs) and cyclin-dependent
kinases (CDKs), and recent studies have begun to elucidate how
ROS and changes in redox states can influence these factors.
Both the activities and transcript levels of CYCs and CDKs are

affected by redox perturbations (Reichheld et al., 1999; Féher et al.,
2008; Foyer et al., 2018). For instance, redox reactions directly
affect cell cycle components via the TEOSINTE BRANCHED1-
CYCLOIDEA-PROLIFERATING CELL FACTOR1 (TCP)
transcription factors (Kadota et al., 2005). TCPs transcriptionally
regulate CYCs levels, possibly through interactions with CYC
promoters, and have a conserved redox-sensitive cysteine residue
that is required for DNA binding. This suggests that, under
oxidizing conditions, the interaction between a TCP transcription
factor and its promoter might be inhibited as a result of disulfide
bond formation (Viola et al., 2013, 2016).
CYKs and CDKs are functional in the S1-to-M phase transition

of the cell cycle, and their differential expression has been
associated with cell cycle arrest in the Arabidopsis glutathione-
deficient ROOTMERISTEMLESS (rml1) mutant (Vernoux et al.,
2000; Schnaubelt et al., 2015). Glutathione is the most important
redox buffer in plants and, hence, the strong growth defect
phenotype of rml1 mutants demonstrates the importance of
glutathione-buffered redox homeostasis during cell division.
Although glutathione is recruited into the nucleus during cell
division, it has been reported that glutathione pools in the nuclei are
in equilibrium with those in the cytosol but that glutathione is more

easily depleted from the cytosol than the nucleus after treatment
with buthionine sulfoximine (García-Giménez et al., 2013; Pellny
et al., 2009). Of note, a redox cycle within the cell cycle has been
described in which ROS levels along with ascorbate and glutathione
fluctuate, with the reduced versus oxidized pools of these
metabolites regulating the transition through specific cell cycle
checkpoints (Diaz-Vivancos et al., 2010; Schnaubelt et al., 2015;
Diaz-Vivancos et al., 2015; Tognetti et al., 2017). In line with these
reports, it has also been shown that ascorbate deficiency increases
the oxidation degree of the nucleus and delays cell cycle progression
(de Simone et al., 2017).

ROS and redox homeostasis are also required for cytokinesis.
Pharmacological perturbation of ROS homeostasis in wheat
(Triticum sp.) and Arabidopsis root tip cells induces mainly
atypical tubulin polymer formation and affects efficient cell plate
formation, ultimately resulting in perturbed cytokinesis (Livanos
et al., 2012a,b). Similarly, the genetic disruption of NADPH
oxidases (ROS generators) and mitogen-activated protein kinases
involved in ROS signaling leads to tubulin disorganization and,
hence, reinforces the necessity of a tightly controlled ROS balance
during cytokinesis (Foreman et al., 2003; Takeda et al., 2008;
Kosetsu et al., 2010; Yao et al., 2011).

ROS are also able to modulate cell expansion, via their effects
on the cell wall. Apoplastic H2O2, hydroxyl radicals and
superoxides, for example, influence cell wall stiffness and
relaxation and hence affect cell expansion rates. Various
oxidant sources are recognized, although their regulation
remains poorly understood. In addition to NADPH oxidases,
amine and oxalate oxidases, the peroxidative and hydroxylatic
activities of apoplastic class III peroxidases have antagonistic
effects on rigidity of cell walls (Passardi et al., 2004; Schmidt
et al., 2016). In general, in a peroxidative modus, peroxidases
regulate the levels of H2O2 by oxidizing various substrates. In
this way, they contribute to the crosslinking of phenolics and
extensins, which leads to increased stiffening, and hence reduced
elongation capacity, of the cell walls. On the other hand,
hydroxyl radical formation has been demonstrated to cleave
xylogucans and pectins and thereby facilitate cell wall loosening
(Fry, 1998; Passardi et al., 2004). This feature of peroxidases
being associated with both cell elongation and growth-
restricting processes is reflected by their contrasting effects on
growth rates, as revealed by genetic perturbations of various
class III peroxidases (Lu et al., 2014; Raggi et al., 2015; Schmidt
et al., 2016). The concerted transcriptional repression of at least
seven peroxidases by a MYB-like transcription factor, KUODA1,
positively correlates with growth elongation capacities. Increased
peroxidase activities lead to restricted leaf growth, without
affecting cell division (Lu et al., 2014). The above concept of
transcriptional repression of ROS production to favor organ
growth can certainly not be generalized to different organs. For
example, in Arabidopsis roots, the absence of the repressive
transcription factor UPBEAT1 leads to an increased number of
meristem cells and an increase in the length of cortical cells
(Tsukagoshi et al., 2010).

Increased ROS production, in either a transient or a stable
manner, also known as an oxidative burst, occurs in response to
various stimuli, including development and bacterial challenges,
and can initiate signaling towards cell death (Van Breusegem and
Dat, 2006). Development-associated programmed cell death
(PCD) occurs in various tissues and organs, such as the tapetum,
seed coat, endosperm and lateral root cap (Daneva et al., 2016).
For example, tapetal cells undergo PCD that is essential for
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Fig. 1. Atmospheric oxygen-derived reactive oxygen species. A number of
oxygen-derived reactive oxygen species (ROS) are known to exist in plants.
The excitation of oxygen (O2) produces singlet oxygen (1O2), while
reduction produces superoxide radicals (O†�

2 ), hydrogen peroxide (H2O2) and
hydroxyl radicals (OH†). The Lewis structure of each of these ROS is
presented in blue, with impaired electrons highlighted in red. The half life (t1/2)
is given for each type of ROS and is colour coded with highest value for
H2O2 (red) and lowest value for OH• (yellow).
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microspore development. Interestingly, the rice (Oryza sativa)
mutant defective in tapetum cell death 1 (dtc1) fails to accumulate
ROS and shows delayed tapetum PCD resulting in male sterile
plants (Yi et al., 2016). Despite the potential role for ROS here,
the type of ROS and the mechanisms by which they trigger
developmental cell death are unclear (Van Aken and Van
Breusegem, 2015). In this context, the apoplastic RBOHs have
been implicated in the control of development-related processes,
such as proper growth of pollen tube and the self-incompatibility
response. The altered expression of RBOH also drives altered
PCD (Xie et al., 2014; Duan et al., 2014; Serrano et al., 2015;
Jiménez-Quesada et al., 2016). Moreover, intracellular H2O2,
produced via photorespiration, triggers lesion formation in leaves
in a photoperiod-dependent manner (Queval et al., 2007). The
factors necessary for the development of such lesions include
salicylic acid and glutathione (Chaouch et al., 2010; Mhamdi
et al., 2010b; Han et al., 2013a).
Overall, the effects of ROS on basic cellular processes – the cell

cycle, cell division, cell expansion and cell death – are thought to
contribute, acting in concert via interactions between plant
phytohormonal pathways, to the multiple functions of ROS
during the plant life cycle.

The role of ROS during germination
In dry and dormant seeds, plant embryos and the surrounding
endosperm display very limited metabolic activities, and ROS
production is thus speculated to be very low (Bailly et al., 2008).
However, after seed imbibition and during germination, metabolism
rapidly resumes (Rajjou et al., 2012) and such a swift metabolic start
seems to be correlated with increased ROS production via various
pathways and at various subcellular sites. This includes production
via NADPH oxidases, lipid catabolism and lipid β-oxidation in the
glyoxysomes and mitochondrial respiration (Rajjou et al., 2012;
Wojtyla et al., 2016; Ishibashi et al., 2017). The spatiotemporal
correlation of increased ROS production and accumulation during
the onset of germination has been corroborated with experiments in
which exogenously applied oxidants, such as H2O2 (El-Maarouf-
Bouteau et al., 2015), and a pharmacologically or genetically

provoked decrease in catalase or in other antioxidant activities, were
shown to positively influence the release of dormancy and the onset
of germination (Fig. 3) (Leymarie et al., 2012; Cembrowska-Lech
et al., 2015; Basbouss-Serhal et al., 2017). Reciprocally,
overexpression of CAT in barley (Hordeum vulgare) seeds was
shown to suppress precocious germination (Ishibashi et al., 2017).
Therefore, increased ROS levels are key to proficient germination
and are positive signals for the release of dormancy (Bailly et al.,
2008; Singh et al., 2016).

ROS levels increase after seed imbibition and act as a positive
signal for germination. However, above certain limits, ROS are
either too low to allow germination or too high and affect embryo
viability and therefore prevent or delay germination (Bailly et al.,
2008). Thus, ROS homeostasis during germination needs to be
tightly controlled and this creates an ‘oxidative window’ for
germination that restricts proficient seedling development within
certain borders of increased ROS levels (Stacey et al., 2006; Bailly
et al., 2008). Consistently, several phenotypes are observed in
mutants with perturbed antioxidant homeostasis. For instance,
knocking out cytosolic APX6, the transcript levels of which are
usually high in dry seeds, leads to reduced germination rates owing
to increased protein carbonylation (Chen et al., 2014). These apx6
mutants also exhibit increased sensitivity to stress and to ABA,
triggered by disturbed ABA and auxin signaling. This suggests
that these signaling pathways are interdependent, and that ABA
and auxin accumulation and activation of ROS and redox signals
are required. By contrast, mitochondrial thioredoxin O1 (trxo1)
mutants exhibit accelerated germination together with increased
H₂O₂ levels (Ortiz-Espín et al., 2017). It was also recently shown
that, in Arabidopsis thaliana, the transcription factor ABI5
regulates H2O2 homeostasis in addition to its core role in ABA-
dependent signaling; specifically, ABI5 assists the germination
process by binding to the promoter of the CATALASE 1 gene and
regulating its expression and hence H2O2 levels (Skubacz et al.,
2016; Bi et al., 2017).

ROS concentrations also increase during endosperm weakening,
cell wall loosening and radicle elongation. Accordingly, the
treatment of pea (Pisum sativum) seeds with H2O2 facilitates seed
germination and seedling growth (Barba-Espin et al., 2010). ROS-
mediated effects on germination in Arabidopsis are inhibited by
ABA, and this can be counteracted by the action of GA (Müller
et al., 2009). In barley, H2O2 is required for alleviating dormancy
and this relies on GA accumulation and the expression of GA
synthesis and signaling genes, rather than on the repression of ABA
signaling (Bahin et al., 2011; Graeber et al., 2010). In the ascorbate-
deficient Arabidopsis mutant vtc1, ABA levels are increased due to
upregulation of synthesis genes (Pastori et al., 2003), and it has also
been shown that ascorbate-defective vtc2 vtc5 mutants show
seedling-lethal phenotypes that can be rescued by treating with
ascorbate or its precursor galactose (Dowdle et al., 2007). In the
same way, the apx6 mutants show moderate changes in the
ascorbate pool (Chen et al., 2014).

Overall, these findings reinforce the notion that ROS action
during seed germination relies heavily on interactions with ABA
and GA, the two main phytohormones that antagonistically
participate in regulation of the seed germination process (Fig. 3).
Certainly, a better understanding of the molecular mechanisms that
underlie ROS function in seed physiology (Oracz et al., 2007; Bazin
et al., 2011; El-Maarouf-Bouteau et al., 2015; Wojtyla et al., 2016)
will open up new routes for improving seed quality and tolerance to
pathogen infection and provide new directions for engineering
germination-recalcitrant species.
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Fig. 2. An overview of the major ROS production sites and processing
pathways in plants. Oxygen and oxygen-derived ROS are aligned in the
middle and highlighted in blue. Major subcellular sites involved in ROS
production are listed below the ROS and the key ROS processing pathways
are highlighted above.
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The interplay between phytohormones and redox-linked
reactions dictates meristem development
In both the shoot apicalmeristem (SAM) and the root apicalmeristem
(RAM), stem cells are organized in a central zone (CZ) surrounding
an organizing center,which is termed the organizing zone (OZ) or the
quiescent center (QC) in shoots and roots, respectively. The
maintenance of both meristems relies on signal exchange between
the CZ and the OZ/QC but also on feedback from the already
differentiated tissues. The major difference between both systems is
the gene network that regulates their activity and their sensitivity to
growth hormones, such as cytokinins and auxins. In short, while
SAM activity is determined by WUSCHEL (WUS) and CLAVATA
(CLV) peptides, QC establishment and stem cell maintenance in
roots is ensured by SCARECROW (SCR), SHORT ROOT (SHR)
and PLETHORA (PLT) (Stahl and Simon, 2010). Importantly,
studies have revealed that the activities of both the SAM and the
RAM are affected by interactions between ROS, redox components
and phytohormones (Schippers et al., 2016).
RAM activity is highly sensitive to alterations in cellular redox

status. For example, treatment with H2O2 decreases the number of
meristem cells (Tsukagoshi et al., 2010). DNA damage also
promotes H2O2 accumulation, through FLAVIN-CONTAINING
MONOOXYGENASE 1 (FMO1), and reduces root meristem size,
hence indicating H2O2 as a negative regulator of the RAM
(Tsukagoshi et al., 2010; Chen and Umeda, 2015). In addition,
ROS gradients have been described in different zones of the root,
with superoxide maxima correlating with cell division zones, and
H2O2 maxima occurring in the elongation zone (Dunand et al.,
2007; Tsukagoshi et al., 2010; Tsukagoshi, 2016), suggesting that
superoxide and H2O2 act antagonistically. The molecular
mechanism underlying the antagonistic actions of superoxide and
H2O2 has been elucidated in the context of the SAM (Zeng et al.,
2017). This study showed that superoxide is associated with

transcriptional upregulation of the transcription factor WUS,
whereas H2O2 displays an inhibitory action, accumulates in the
peripheral zone and is associated with cell differentiation.

Within the RAM, QC cells are in a highly oxidized environment
compared with their adjacent rapidly dividing cells. Both
ascorbate and glutathione are mainly present as oxidized forms
[dehydroascorbic acid (DHA) and glutathione disulfide (GSSG)]
and NADPH is hardly detected, while higher antioxidant
capacities and a more reducing environment is detected in the
adjacent cells (Jiang et al., 2003). In line with this, cell type-
specific transcriptomic analyses have revealed that ROS-
associated genes are differentially expressed in specific SAM
and RAM tissues (Tognetti et al., 2017 and references therein). In
addition, specific glutathione- and thioredoxin-dependent
reductive systems seem to be essential for appropriate meristem
development. For instance, while the cytosolic form of glutathione
reductase 1 (GR1) is not needed for development, loss of function
of the chloroplast/mitochondrial form (GR2) is embryonic lethal,
pointing to a key role for glutathione reduction in chloroplasts and
mitochondria during early development (Chew et al., 2003;
Tzafrir et al., 2004). In addition, a weak GR2 allele increases
oxidized glutathione levels and provokes strong defects in the root
meristem. This oxidizing environment (and the accumulation of
GSSG) triggers decreased expression of the auxin efflux facilitator
PIN-formed, PLT1 and PLT2 genes, clearly demonstrating that
reduced glutathione is required for functional auxin signaling in
the RAM (Yu et al., 2013).

Disrupted glutaredoxin (GRX) activity is also associated with
meristem deficiencies. In Arabidopsis, GRXS17 regulates auxin
sensitivity and transport (Cheng et al., 2011; Knuesting et al., 2015;
Schippers et al., 2016) and in maize (Zea mays) GRX ABERRANT
PHYLLOTAXY (ABPHYL2) influences shoot meristem size and
phyllotaxy, probably through post-translational modification of the
bZIP transcription factor FASCIATED EAR4 (Yang et al., 2015;
Pautler et al., 2015). This was also demonstrated earlier for the
Arabidopsis GRXs ROXY1 and ROXY2, which reduce disulfide
bonds in the heteromeric TGA9/TGA10 transcription factor complex,
a reductive step that is necessary to activate gene expression during
floral transition (Murmu et al., 2010). Intriguingly, the auxin-
synthesizing flavin monooxygenase YUCCA6 also exhibits thiol
reductase activity, thereby hinting towards an intimate link between
redox and auxin pathways (Cha et al., 2015).

Besides affecting auxin signaling and transcription factors,
the redox environment affects the cell-to-cell communication
events and other hormonal pathways that are needed for SAM
maintenance. The plastidial thioredoxin, TRXm3, regulates ROS
homeostasis in the vicinity of plasmodesmata and is proposed to
affect callose deposition and hence transport through plasmodesmata
(Benitez-Alfonso et al., 2009). ROS also interact with the plant
defense hormone SA. In both rice and Arabidopsis, ABNORMAL
INFLORESCENCE MERISTEM (AIM1), which is involved in SA
biosynthesis, is needed for meristem development (Bussell et al.,
2014; Xu et al., 2017). This interplay acts at the transcriptional level:
SA downregulates a couple of plant-specific WRKY transcription
factors and thereby alleviates their repressive effects on the expression
of several antioxidative enzymes, such as CATs, GSTs and PRXs
(Xu et al., 2017).

ROS homeostasis drives organ growth
The indeterminate growth characteristics of most plant roots not
only entails continuous cell division and cell expansion of the
primary root, but also the development of lateral roots (LRs) and

GA
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synthesis

Seed germination

Ascorbate
APX6

TRX o1
CAT1

ROS
targets?

ABA
synthesis

ABA

ABA signaling
pathways

ROS

Fig. 3. ROS interactions with the ABA and GA pathways during seed
germination. The accumulation of ROS (triggered by pharmacological or
genetic approaches) positively influences the release of dormancy and favors
the onset of germination. Metabolites and enzymes that have potentially
important roles in keeping ROS levels under control in germinating seeds are
shown at the top. In this context, ROS functions rely mainly on interactions with
the ABA and GA signaling pathways, although some more direct effects
(represented by dashed arrows) also occur.
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root hairs. Studies have shown that altered ROS homeostasis
affects all of these processes, restricting growth of the primary
root, triggering LR emergence, and enhancing root hair growth
(Table 1) (Foreman et al., 2003; Orman-Ligeza et al., 2016). An
overview of ROS function in controlling root growth and
development was recently provided by Tsukagoshi (2016) and
highlights that interactions between ROS and auxin signaling,
which play a crucial role in shaping root architecture (Du and
Scheres, 2018), partially govern root growth and development.
In root hairs, for example, the auxin-controlled transcriptional

regulation of NADPH oxidases and class III peroxidases promotes
root hair elongation through at least two auxin-regulated
transcriptional regulators: ROOT HAIR DEFECTIVE 6-LIKE
4 (RSL4) and MEDIATOR 25 (MED25) (Foreman et al., 2003;

Sundaravelpandian et al., 2013; Mangano et al., 2017). In addition,
an analysis of ROS levels has suggested that a fine-tuned balance
between H2O2 and superoxide levels acts as a signal determining
root hair cell differentiation (Sundaravelpandian et al., 2013).

By contrast, the RBOH-peroxidase system, which also generates
ROS, regulates LR emergence independently of auxin (Li et al.,
2015; Manzano et al., 2014). Double rbohD rbohF mutants exhibit
early emerged LRs and enhanced density of LR primordia
associated with increased levels of superoxides in the root tip (Li
et al., 2015). Genetic manipulation of LR-specific peroxidases also
abolishes LR emergence (Manzano et al., 2014). However, it is
worth mentioning that all RBOH transcripts are auxin inducible and
that H2O2 generation mediated by RBOHD and RBOHE facilitates
LR emergence by promoting cell wall remodeling in the overlying

Table 1. Overview of development and growth defects linked by perturbation of ROS and ROS-processing systems

Protein Gene locus Subcellular localization Mutant phenotypes References

Oxidases, superoxide dismutases and catalases
RBOHC AT5G51060 Plasma membrane rhd2, root hair defective Foreman et al. (2003)
RBOHD AT5G47910 Plasma membrane Atypical tubulin formation Yao et al. (2011)
RBOHD/RBOHF AT5G47910/AT1G64060 Plasma membrane Early emergence of LR and enhanced density

of LRs
Li et al. (2015)

RBOHE AT1G19230 Plasma membrane Aborted pollen and reduced fertility Xie et al. (2014)
RBOHH/RBOHJ AT5G60010/AT3G45810 Plasma membrane Root hair defective Mangano et al. (2017)
RBOHH/RBOHJ AT5G60010/AT3G45810 Plasma membrane Reduced fertility and impaired pollen tube growth Kaya et al. (2014)
MSD1 AT3G10920 Mitochondria Defect in embryo sac development Martin et al. (2013)
CAT2 AT4G23100 Peroxisomes Delayed growth and small hyponastic leaves Queval et al. (2007)

Ascorbate synthesis and dependent enzymes
VTC1 AT2G39770 Cytosol, nucleus Early flowering and senescence Barth et al. (2004)
VTC2 AT4G26850 Cytosol, nucleus Early flowering and senescence Kotchoni et al. (2009)
VTC3 VTC3 – Early flowering and senescence Kotchoni et al. (2009)
VTC4 AT3G02870 Cytosol Early flowering and senescence Kotchoni et al. (2009)
VTC1/VTC2 AT2G39770/AT4G26850 Cytosol, nucleus Seedling lethal Dowdle et al. (2007)
APX1 AT1G07890 Cytosol Reduced growth and embryo defects Pagnussat et al. (2005)
APX6 AT4G32320 Cytosol Reduced germination Chen et al. (2014)

Glutathione synthesis and reduction
GSH1 AT4G23100 Chloroplasts rml1, arrest of cell cycle on G1 Vernoux et al. (2000)

cad2, pad2, rax2, defect in LR development Marquez-Garcia et al.
(2014)

GSH2 AT5G27380 Chloroplasts/cytosol Seedling lethal Pasternak et al. (2008)
GR2 AT3G54660 Chloroplasts/

mitochondria
Embryo lethal Tzafrir et al. (2004)

Defects in root growth and in RAM maintenance Yu et al. (2013)
Glutaredoxins and thioredoxins
GRXS17 AT4G04950 Nucleus, cytosol Compromised SAM, growth arrest and delayed

bolting
Knuesting et al. (2015)

GRXS13 AT1G03850 Nucleus, cytosol Reduced growth Laporte et al. (2012)
ROXY1 AT3G02000 Nucleus, cytosol Impaired petal development Xing et al. (2005)
ROXY2 AT5G14070 Nucleus, cytosol Defective anther development Xing and Zachgo (2008)
GRXC11/ROXY4 AT3G62950 Nucleus, cytosol Defective anther development Hou et al. (2008)
MIL1 OS07G05630 Nucleus, cytosol Defective anther development and impaired

meiosis
Hong et al. (2012)

MSCA1 CAX52135 Nucleus, cytosol Male sterile Chaubal et al. (2003)
NTRa/NTRb AT2G17420/AT4G35460 Cytosol/nucleus/

mitochondria
Growth defect and reduced fertility Reichheld et al. (2007)

NTRc AT2G41680 Chloroplasts Retarded growth of shoots and roots and
defective LR formation

Kirchsteiger et al.
(2012)

TRXm3 AT2G15570 Chloroplasts Embryo lethal, impaired meristem development Benitez-Alfonso et al.
(2009)

TRX z AT3G06730 Chloroplasts Albino phenotype Arsova et al. (2010)
TRX o AT2G35010 Mitochondria Accelerated germination Ortiz-Espín et al. (2017)
TRX h9 AT3G08710 Cytosol Impaired growth of shoots and roots Meng et al. (2010)
NRX1 AT1G60420 Nucleus, cytosol Impaired fertility Marchal et al. (2014)
PDI1 AT2G47470 Cytosol Defect in embryo development Pagnussat et al. (2005)

Glutathione peroxidases and peroxiredoxins
GPX5 AT3G63080 Plasma membrane Defect in embryo development Pagnussat et al. (2005)
GPX1/GPX7 AT2G25080/AT4G31870 Chloroplasts Altered root architecture Passaia et al. (2014)

For genes that are described together, single mutants do not show phenotypes, and phenotypes are revealed only by additive mutations for the respective genes.
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cell layers. RBOH loss-of-function mutants show delayed LR
emergence, whereas targeted RBOHD expression in LR primordia
promotes organ development (Orman-Ligeza et al., 2016).
Interestingly, H2O2 treatment restores LR formation in mutants in
which auxin-mediated cell wall accommodation and remodeling are
disrupted, such as the aux1 lax3 and pCASP1::shy2-2 mutants
(Orman-Ligeza et al., 2016).
Consistent with the described roles for glutathione in cell cycle

regulation and meristem development, glutathione-deficient
mutants, such as pad2, cad2 and rax2, exhibit defects in LR
formation (Table 1) (Marquez-Garcia et al., 2014; Schnaubelt et al.,
2015). Furthermore, the pharmacological inhibition of glutathione
synthesis affects root development and associated gene expression,
similarly to phytohormone treatments and, in particular, exogenous
auxin treatment (Koprivova et al., 2010). Unlike glutathione,
ascorbate functions in root development are controversial and seem
to be more subtle; ascorbate-deficient vtc mutants display only
slightly altered root architecture and gravitropism (Olmos et al.,
2006; Barth et al., 2010). The importance of redox control is further
evidenced by altered root architecture phenotypes in individual
mutants of all Arabidopsis GPX genes, although the chloroplastic
isoforms GPX1 and GPX7were found to be the major players in this
context (Passaia et al., 2014; Attacha et al., 2017).
A number of mutants exhibiting growth defects related to the

misexpression of ROS processing system components have been
reported, and these include a non-exhaustive list of mutants with leaf
growth defects (Table 1). The detailed analysis of some of these
mutants has, again, revealed interplay between ROS processing
systems and hormone signaling pathways. In particular, new
insights have been gained from the analysis of cat2 mutants,
which are characterized by growth inhibition due to increased
availability of photorespiratory H2O2, which triggers SA
accumulation and activation of a pathogenesis-related pathway in
a photoperiod-dependent manner (Queval et al., 2007; Mhamdi
et al., 2010a). Furthermore, although some ROS components are
dispensable for the normal growth and placement of leaves (i.e. into
a ‘rosette’ formation) in Arabidopsis, they have been shown to play
specific functions in transmitting H2O2 signals and in linking H2O2

to phytohormone pathways (Mhamdi et al., 2010b; Tognetti et al.,
2010; Vanderauwera et al., 2011; Han et al., 2013a,b; Kerchev et al.,
2015, 2016; Waszczak et al., 2016; Rahantaniaina et al., 2017).

Redox signaling in flower development
The crucial involvement of ROS during the development of
plant reproductive organs and tissues has recently been reviewed
(Jiménez-Quesada et al., 2016; Schippers et al., 2016). Briefly, and as
we highlight below, ROS play key roles in petal development, pollen
tube development and gametophyte development.
The functions of glutathione/GRX systems in flower development

have been evidenced by the analysis of plant-specific class III
CC-type GRXs, known as ROXYs (Fig. 4) (Gutsche et al., 2015).
The Arabidopsis roxy1 mutant was shown to exhibit an intriguing
defect in petal development (Xing et al., 2005). Furthermore, it
was shown that the phenotype of PETAL LOSS ( ptl) mutants
(Lampugnani et al., 2013) depends on ROXY1 function, and that
PTL and ROXY1 interact to limit growth within and between
sepals but to promote petal initiation (Quon et al., 2017). In this
context, ROXY1 regulates petal development through TGA
transcription factors, including PERIANTHIA and TGA2/
TGA3/TGA7 (Li et al., 2009).
Pharmacological approaches and ROS-staining experiments

have also indicated that ROS accumulation at the tip of pollen

tubes is necessary for their efficient growth toward the female
gametophyte (Potocký et al., 2012). Genetic evidence for the role
for two RBOH genes (RBOHH and RBOHJ; Fig. 4) in pollen
tube growth has been reported and has demonstrated the need
for the activation of these NADPH oxidases by calcium and
phosphorylation to allow proper growth (Duan et al., 2014; Kaya
et al., 2014; Lassig et al., 2014). In particular, it was revealed that
the growth rate oscillations of rbohH rbohJ pollen tubes show
strong fluctuations in amplitude and frequency, ultimately leading
to pollen tube collapse (Lassig et al., 2014). Interestingly, Rho-type
GTPase (ROP1)-mediated spatial localization of these NADPH
oxidases might steer ROS production and pollen tube growth
(Kaya et al., 2014; Duan et al., 2014). Similar to the ROS-driven
directional growth of root hairs, the presumed mode of action of
ROS is to affect cell wall extensibility and strength. Within
this specific context, cell wall loosening of the female tissues
has been proposed to allow a more fluent pollen tube penetration
(Smirnova et al., 2014;Wudick and Feijó, 2014). The spatiotemporal
expression of RBOHE has also been reported, and mutation of
RBOHE or RBOHCwas reported to result in a significant proportion
of aborted pollen grains, severely compromised pollen development
and reduced fertility (Xie et al., 2014). In female gametophytes, by
contrast, mitochondrial ROS sources rather than RBOHs seem to be
required; in particular, the absence of the mitochondrial manganese
SOD (MSD1) is associated with defective embryo sac development
(Martin et al., 2013, 2014).

Glutathione, GRXs and TRXs have been shown to be required for
proper gametophyte development (Fig. 4; Table 1). Arabidopsis
ntra ntrb mutants, in which the genes encoding for two NADPH-
dependent thioredoxin reductases are knocked out, show decreased
fertility and slower growth (Reichheld et al., 2007). When
glutathione deficiency (i.e. crossing with cad2 and rml1 mutants)
is introduced in this background, meristem maintenance, growth

ROXY1

MSD1
ROXY1 ROXY2

Male gametophyte
development

Pistil 

Anther

RBOHC
RBOHE
RBOHH
RBOHJ
NTRA NTRB GR1
PAD2
ROXY1 ROXY2
MSCA1
MIL1

Female gametophyte
development

Petal and
sepal development

Microspore
mother cell 

Meiosis 

Pollen tube 

Mitosis

Pollen 

Sepal

Fig. 4. ROS-associated genes involved in the control of flower and
gametophyte development. Genes involved in ROS production and
processing are presented. Genetic analyses have reported that loss of function
of these candidates is associated with abnormalities during flower and
gametophyte development and thus revealed their functions in petal
development and in determining fertility and development of both gametophytes.
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and flower development are severely inhibited (Reichheld et al.,
2007; Bashandy et al., 2010). The ntra ntrb phenotypes can also be
exacerbated, resulting in male sterility, if the gr1 mutation is
introduced, whereas the lack of GR1 alone does not trigger
developmental defects (Marty et al., 2009; Mhamdi et al., 2010b).
Altogether, these results indicate the importance of cell thiol status
and the interplay between TRX/NTR and glutathione systems
during plant reproductive organ development.
ROXY1 and ROXY2 are also expressed with overlapping patterns

during anther development. The Arabidopsis single roxy1 and roxy2
mutants produce normal anthers whereas roxy1 roxy2 double
mutants are sterile (Xing and Zachgo, 2008). This effect is not only
due to the function of ROXY1/ROXY2 in pollen production, but
also to their function in female gametophyte development, with
both functions being mediated via the regulation of gene expression.
Consistently, the nuclear activity of ROXY genes and their
interaction with TGA9/TGA10 has been shown to be necessary for
anther development (Murmu et al., 2010). The roles of GRX
activity are conserved in rice and maize. Over-accumulation of
ROS, lack of MALE STERILE CONVERTED ANTHER1 (MSCA1)
or MICROSPORELESS1 (MIL1) trigger defects in anther
development and are linked to male sterility in maize and rice
(Chaubal et al., 2003; Kelliher and Walbot, 2012; Hong et al.,
2012). Moreover, the rice genes OsROXY1 and OsROXY2 fully
complement the Arabidopsis roxy1 mutant (Wang et al., 2009).

ROS metabolism and senescence
Plant senescence is a slow process and is accompanied by extensive
reprogramming of gene expression (Breeze et al., 2011). A number
of studies have revealed that developmentally regulated senescence
is also associated with increased availability of ROS, which assist in
degradation of cellular contents for recycling purposes but also play
a role in initiating the senescence process (Guo and Gan, 2012;
Munné-Bosch et al., 2013; Rogers and Munné-Bosch, 2016).
Moreover, it is now known that ROS signaling impinges on the
diverse hormone pathways that regulate senescence (Lim et al.,
2007), including the auxin pathway, which is involved in regulating
the timing of senescence (Mueller-Roeber and Balazadeh, 2014),
and signaling via cytokinin, which is described as a senescence-
delaying hormone (Swartzberg et al., 2011).
The expression of several ROS-induced transcription factors,

including a significant proportion of genes encoding members of
the NAC and WRKY gene families, is deregulated during
senescence (Rosenwasser et al., 2011; Allu et al., 2014).
Interestingly, NAC genes induced by H2O2 were found to
determine senescence responses and stress tolerance. The effects
on senescence gene expression driven by NAC3/ORS1, similarly to
those driven by NAC2/ORE1, involve crosstalk with H2O2-
dependent signaling pathways (Balazadeh et al., 2010, 2011).
Overexpression of the NAC factor JUNGBRUNNEN 1 also results
in stress tolerance and is accompanied by enhanced expression of
ROS-responsive genes (Wu et al., 2012). More recently, reports
suggest that the molecular link between age-dependent increased
ROS and SA require WRKY75 (Guo et al., 2017), which promotes
SA synthesis by inducing SA INDUCTION-DEFICIENT2 (SID2)
and suppresses H2O2 metabolism by inhibiting CAT2 transcription
(Guo et al., 2017).
Redox metabolism has also been directly implicated in the

regulation of senescence. CAT2 levels drop in senescing leaves,
allowing peroxisomal H2O2 to increase (Zimmermann et al., 2006).
This CAT2 downregulation at the transcriptional level appears to be
the initial trigger of the H2O2 peak during bolting time, whereas a

decrease in APX1 activity is thought to be a secondary and
amplifying effect (Zimmermann et al., 2006). Ascorbate levels also
decrease during senescence (Bartoli et al., 2000); accordingly,
ascorbate deficiency (e.g. in vtc1 mutants) enhances senescence
and senescence-associated gene expression (Barth et al., 2004;
Kotchoni et al., 2009). Senescence timing is also dependent on the
regeneration of reduced glutathione by GR2. The GR2-RNAi lines
exhibit early senescence phenotypes and increased levels of the
senescence markers SENESCENCE-ASSOCIATED GENES
SAG12 and SAG13 (Ding et al., 2016). In line with the above
findings, the profiling of redox compounds during Arabidopsis
rosette development has revealed that ascorbate levels are higher
during bolting and decrease significantly after flowering. By
contrast, glutathione levels are maintained throughout development
and tend to increase significantly with developmental age (Queval
and Noctor, 2007). Changes in the redox states of ascorbate and
glutathione do not occur, and both metabolites remain more than
80% reduced at all stages (Queval and Noctor, 2007). Of note, the
least variable redoxmetabolite is NADPH, which is required for the
regeneration of reduced glutathione.

Concluding remarks and perspectives
Over the last few decades, accumulating evidence has pointed to a
crucial role for redox homeostasis in plant development. ROS
production and ROS-related signaling has been implicated in almost
all aspects of plant growth and development in a variety of organs
and tissues (Table 1). A significant part of our current understanding
of ROS functions has been gained through analyses of ROS-related
components, the lack of function of which triggers aberrant
developmental phenotypes. The analyses of development
defective mutants clearly indicates that the spatial, temporal and
compartment-specific distribution of ROS is governed by a complex
network. However, currently, comprehensive insights into ROS
production units, their interactions with the antagonistic ROS-
processing pathways, and the precise in vivo modes of action of
various ROS on both cellular building blocks and molecular
processes are not available. This is, in part, due to the currently
imperfect means to accurately monitor changes in ROS levels and
associated redox perturbations in plant cells and tissues (Box 1). It
should be noted that, although the studies cited in this Primer show
howROS distribution controls various developmental processes, we
need to be cautious when interpreting data that are solely based on
tissue staining methodologies. Current protocols that are used to
visualize or quantify ROS signals are debatable and, in some cases,
are not suitable or reliable for quantification (Box 1). This might be
due to specificity issues and interference with other metabolites that
might be present in the same tissue (Noctor et al., 2015, 2016;
Ortega-Villasante et al., 2017). Quantitative information on ROS
levels (steady state or inducible) in organelles, in specific cell types,
or tissues is hence very scarce. New tools that facilitate ROS
quantification in vivo with standardized protocols that are specific
for individual ROS will hopefully help us to better elucidate the
causes and consequences of ROS in plant developmental processes
(Waszczak et al., 2014). Certainly, the development of sensors and
reporters for in vivo imaging is a fast growing area that will allow us
to solve the difficulties surrounding ROS assays. However, most of
the commonly used fluorescent probes are from prokaryotic origin
and are not plant specific and thus require further development. The
recent discoveries of ROS gene networks, mainly via analyses of
transcriptomes and protein-protein interactions, offer the possibility
to test new candidates for the development of novel tools for ROS
imaging that are plant specific. The use of such new technologies
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will be particularly relevant to addressing the key outstanding
questions related to retrograde signaling, compartment-specific
functions during development and the role of each ROS in

regulating signaling and communication (Noctor and Foyer,
2017). Similarly, the advent of more sensitive redox proteomics
tools will start to allow the in vivo detection of proteins for which
function is directly modulated by ROS. In this context, the
identification of ROS sensitive targets within cell cycle regulators
is likely to provide a significant leap forward in our understanding
how ROS and redox perturbations affect the growth of organs and
organisms (Foyer et al., 2018). Overall, the implementation of these
new technologies will hopefully enable us to identify ROS targets at
the organ, cellular and subcellular levels, and will help us to further
elucidate the pathways that are modulated by ROS during growth
and development (Waszczak et al., 2014). Ideally, these targets will
be amenable (e.g. through genome-editing technologies) to genetic
alterations and might allow redox-based strategies to improve the
growth and reproductive features of both model plants and
economically relevant crops.
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Box 1. ROS detection assays in plants: limitations and
uncertainties
Various methods have been used for the detection and visualization of
ROS in plant tissues and organs. However, several points need to be
considered before making firm conclusions on ROS measurements in
plants when using these approaches; detailed guidelines are presented
in Noctor et al. (2016).

Biochemical assays
• As for other redox metabolites, ROS should not be extracted in

water or neutral buffers due to the presence of contaminating
antioxidant enzymes.

• Chemiluminescence probes have low selectivity and display high
background levels (e.g. luminol); these issues should be
considered when analyzing data.

Histochemical methods: diaminobenzidine (DAB) and nitro blue
tetrazolium (NBT) staining
Both methods are used to visualize hydrogen peroxide and superoxide
radicals, respectively. They gained their credibilitymostly from the argument
that they are widely used and hence accepted within the community.
However, DAB and NBT are not specific or direct measurements of both
ROS. Even if the difference in staining can be manipulated by treatment
with antioxidants, this is not a direct proof of ROS generation.
• Color formation does not always reflect measurement of the desired

ROS (H2O2 for DAB and O†�
2 for NBT).

• NBT staining can reflect the presence of ascorbate or the activity of
dehydrogenases; DAB brownish color accumulates in the presence
of higher peroxidase activity.

• Differences in the uptake or the permeability of both dyes can lead
to misinterpretation of the data.

Dichlorofluorescein (DCF)-derived fluorescent dyes
DCF is widely used for quantification for H2O2 in different systems.
However, thismethod isnot reliableand isnot specific.ROSimagingcanbe
further complicated by the presence of endogenous autofluorescent
compounds, in particular in leaf tissues (e.g. chlorophyll, flavonoids,
anthocyanins).Thepermeabilityof thedyeand itsstabilityover timearealso
factors thatmight contribute to the difficulties associatedwithROS imaging.

• Dichlorofluorescin (DCFH) does not react with H2O2 or other
ROS directly.

• DCF radicals can in fact produce O†�
2 or H2O2 via reaction with

oxygen and therefore an artificial increase of ROS can be generated.
• Other cell components (transition metals, cytochrome c and

peroxidases) can also enhance DCFH oxidation to DCF.
• Glutathione and NADPH can interact with the photoexcited DCF.

Genetically encoded probes
Genetically encoded sensors are more suitable for ROS imaging in plant
systems because they are non-invasive, flexible (stable or transient
expression in target tissues or compartments) andmore stable over time.
Ratiometric sensors offer the potential to overcome problems related to
photobleaching and the expression of the proteins in different conditions
(Ortega-Villasante et al., 2017).
• Fluorescent protein-based sensors are pH sensitive, and this has

an impact on accurate quantification in organelles with different pH;
therefore, pH controls need to be measured simultaneously.

• Silencing and problems with stable expression of sensors has been
reported in plant systems.

• The dynamics of the intracellular thiol systems (glutathione, GRX,
TRX, PRX, etc.) in plants expressing genetic probes (sensors are
often fused to redox proteins) might be worth considering. The
fluorescence signal of the probe depends on the equilibrium with
thiol systems, and at the same time their H2O2-driven oxidation
needs to be reversed by glutathione.
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Pagnussat, G. C. and Zabaleta, E. (2014). Role of mitochondria during female
gametophyte development and fertilization in A. thaliana. Mitochondrion
19, 350-356.

Marty, L., Siala, W., Schwarzländer, M., Fricker, M. D., Wirtz, M.,
Sweetlove, L. J., Meyer, Y., Meyer, A. J., Reichheld, J.-P. and Hell, R.
(2009). The NADPH-dependent thioredoxin system constitutes a functional
backup for cytosolic glutathione reductase in Arabidopsis. Proc. Natl. Acad. Sci.
USA 106, 9109-9114.

Meng, L.,Wong, J. H., Feldman, L. J., Lemaux, P. G. andBuchanan, B. B. (2010).
A membrane associated thioredoxin required for plant growth moves from cell to
cell, suggestive of a role in intercellular communication.Proc. Natl. Acad. Sci. USA
107, 3900-3905.

Menon, S. G. and Goswami, P. C. (2007). A redox cycle within the cell cycle: ring in
the old with the new. Oncogene 27, 1101-1109.

Mhamdi, A., Queval, G., Chaouch, S., Vanderauwera, S., Van Breusegem, F.
and Noctor, G. (2010a). Catalase function in plants: a focus on Arabidopsis
mutants as stress-mimic models. J. Exp. Bot. 61, 4197-4220.

Mhamdi, A., Hager, J., Chaouch, S., Queval, G., Han, Y., Taconnat, L.,
Saindrenan, P., Gouia, H., Issakidis-Bourguet, E., Renou, J.-P. et al.
(2010b). Arabidopsis GLUTATHIONE REDUCTASE 1 plays a crucial role in leaf
responses to intracellular hydrogen peroxide and in ensuring appropriate gene
expression through both salicylic acid and jasmonic acid signaling pathways.
Plant Physiol. 153, 1144-1160.

Mignolet-Spruyt, L., Xu, E. J., Idänheimo, N., Hoeberichts, F. A.,
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