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On the fidelity of mixed states of two qubits.
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We consider a single copy of a mixed state of two qubits and show how its fidelity or maximal
singlet fraction is related to the entanglement measures concurrence and negativity. We characterize
the extreme points of the convex set of states with constant fidelity, and use this to prove tight lower
and upper bounds on the fidelity for a given amount of entanglement.

The concept of fidelity [1], also called maximal singlet
fraction [2], is of central importance in the field of quan-
tum information theory. It is defined as as the maximal
overlap of the state with a maximally entangled state
(ME)

F (ρ) = max
|ψ〉=ME

〈ψ|ρ|ψ〉. (1)

An explicit value for the fidelity has been derived by
Horodecki [3]. If one considers the real 3 × 3 matrix
R̃ = Tr (ρσi ⊗ σj) with {σi, i = 1..3} the Pauli matrices,
then

F (ρ) =
1 + λ1 + λ2 − Sgn(det(R̃))λ3

4

with {λi} the ordered singular values of R̃ and
Sgn(det(R̃)) the sign of the determinant of R̃.

The concept of fidelity appears in the context of
entanglement distillation [1, 4] where it quantifies how
close a state is to a maximally entangled one, and in
the context of teleportation [5] where it quantifies the
quality of the teleportation that can be achieved with
the given state. Due to the linearity and the convexity of
the definition (1), this measure has very nice properties
that make it also possible to derive upper bounds for
the entanglement of distillation [6].

Despite the importance of the concept of fidelity,
no rigorous comparison appears to have been made
before between the value of the fidelity on one side and
entanglement measures on the other side. This paper
aims at filling this gap and gives explicit tight lower and
upper bounds of the fidelity for given concurrence [7]
and negativity [8].

At first we will explicitly derive the possible range of
values of the fidelity in function of its concurrence [7] or
entanglement of formation. Next we show that the states
that minimize (maximize) the fidelity for given values of
the entanglement of formation are also extremal for given
negativity [8]. Following [9, 10], we use the following
definition of negativity:

N(ρ) = max
(

0,−2λmin(ρ
Γ)
)

with λmin the minimal eigenvalue of the partial transpose
of ρ denoted as ρΓ.

Theorem 1 Given a mixed state of two qubits ρ with
negativity equal to N and concurrence equal to C, then
its fidelity F is bounded above by

F ≤ 1 +N

2
≤ 1 + C

2
.

Moreover, the first inequality becomes an equality iff N =
C, and this condition is equivalent to the condition that
the eigenvector corresponding to the negative eigenvalue
of the partial transpose of ρ is maximally entangled.

Proof: The fidelity of a state ρ is given by

max
UA,UB∈SU(2)

Tr
(

(UA ⊗ UB)|ψ〉〈ψ|(UA ⊗ UB)†ρ
)

=

1

2
max

UA,UB

Tr

















1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









(UA ⊗ U
∗
B)†ρΓ(UA ⊗ U

∗
B)









with |ψ〉 = (|00〉 + |11〉)/
√
2. An upper bound is read-

ily obtained by extending the maximization over all uni-
taries instead of all local unitaries, and it follows that
F ≤ Tr

(

ρΓ
)

= (1 + N)/2. Equality is achieved iff the
eigenvector of ρTΓ corresponding to the negative eigen-
value is maximally entangled. As shown in [10], this
condition is exactly equivalent to the condition for N
to reach its upper bound C, which ends the proof.

Note that the upper bound is achieved for all pure
states.

A more delicate and technical reasoning is needed to
obtain a tight lower bound on the fidelity. We will need
the following lemma:

Lemma 1 Consider the density operator ρ and the real
3× 3 matrix R̃ with coefficients R̃ij = Tr (ρσi ⊗ σj) with
1 ≤ i, j ≤ 3. Then ρ is as a convex sum (i.e. mixture)
of rank 2 density operators all having exactly the same
coefficients R̃ij .
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Proof: Consider the real 4× 4 matrix R with coefficients
Rαβ = Tr (ρσα ⊗ σβ), parameterized as

R =









1 x1 x2 x3
y1
y2
y3

R̃









.

If ρ is full rank, then a small perturbation on the val-
ues {xi}, {yi} will still yield a full rank density operator.
Consider a perturbation on x′1 = x1 + ǫ and the corre-
sponding ρ′. As the set of density operators is compact,
there will exist a lower bound lb < 0 and an upper bound
ub > 0 such that ρ′ is positive iff lb < ǫ < ub. Call
ρlb, ρub the rank three density operator obtained when
ǫ = lb and ǫ = ub respectively. It is easy to see that
ρ = (ubρlb + lbρub)/(lb+ ub), such that it is proven that
a rank four density operator can always be written as a
convex sum of two rank three density operators with the
same corresponding R̃.
Consider now ρ rank three and its associated ”square
root” ρ = XX† with X a 4 × 3 matrix. A small pertur-
bation of the form ρ′ = ρ+ ǫXQX†, with Q an arbitrary
hermitian 3×3 matrix Q =

∑9
i=1 qiGi and Gi generators

of U(3), will still yield a state of rank three. Moreover,
there always exists a non-trivial Q such that R̃ is left
unchanged by this perturbation. This is indeed the case
if the following set of equations is fulfilled:

∑

i

qiTr
(

GiX
†(σα ⊗ σβ)X

)

= 0

for (α, β) = (0, 0) and α, β ≥ 1. It can easily be veri-
fied that this set of 10 equations only contains at most
8 independent ones irrespective of the 4 × 3 matrix X ,
and as Q has nine independent parameters there always
exists at least one non-trivial solution to this set of ho-
mogeneous equations. A similar reasoning as in the full
rank case then implies that one can always tune ǫ such
that ρ can be written as a convex sum of two rank two
density operators with the same R̃, which concludes the
proof.

This lemma is interesting if one wants to maximize a
convex measure of a density operator (such as the entropy
or an entanglement monotone) under the constraint that
the fidelity is fixed: indeed, the fidelity is only a func-
tion of R̃, and by the previous lemma we immediately
know that states with maximal entropy for given fidelity
will have rank two. Note that exactly the same reason-
ing applies when one wants to maximize a convex mea-
sure under the constraint that the CHSH Bell-violation
is fixed [8], as this CHSH Bell-violation is also solely a
function of R̃. This is in exact correspondence with the
results derived in [8], where it was proven that the states
exhibiting the minimal amount of Bell violation for given
entanglement of formation are rank 2.
We are now ready to prove a tight lower bound on the

fidelity:

Theorem 2 Given a mixed state of two qubits ρ with
concurrence equal to C, then a tight lower bound for its
fidelity F is given by:

F ≥ max

(

1 + C

4
, C

)

.

Proof: A direct consequence of lemma (1) is that to find
states with minimal fidelity for given concurrence (i.e.
maximal concurrence for given fidelity), it is sufficient to
look at states of rank two. Consider therefore a rank
2 state ρ and associated to it the real 4 × 4 matrix R
with coefficients Rαβ = Tr (σα ⊗ σβρ). As shown in [8,
10, 11, 12], if R is multiplied right and left by proper
orthochronous Lorentz transformations leaving the (0, 0)-
element equal to 1, then a new state is obtained with the
same concurrence. Moreover the fidelity of a state ρ is
variationally defined as

F (ρ) = min
OA,OB∈SO(3)

Tr

(

M

(

1 0
0 OA

)

R

(

1 0
0 OTB

))

with M = diag(1,−1,−1,−1) (M is the representation
of the singlet in the R-picture). The minimal fidelity
for given concurrence can therefore be obtained by min-
imizing the following constrained cost-function over all
proper orthochronous Lorentz transformations L1, L2:

K = Tr
(

ML1RL
T
2

)

− λTr









L1RL
T
2









1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

















.

Note that λ is a Lagrange constraint. Without loss of
generality we can assume that the lower 3× 3 block R̃ of
R is diagonal and of the form R̃ = diag(−|s1|,−|s2|,−s3)
with |s1| ≥ |s2| ≥ |s3|, as this is precisely the form needed
for maximizing the fidelity over all local unitary opera-
tions. The cost-function K can be differentiated over
L1, L2 by introducing the generators of the Lorentz group
(see e.g.[8]), and this immediately yields the optimality
conditions (λ = 0,MRM = RT ) or (λ = 2, R = RT ).
Note however that the above argument breaks down in
the case that |s2| = −s3. Indeed, the fidelity cannot be
differentiated in this case as for example a perturbation
of s3 of the form s′3 = s3+ǫ always leads to a perturbation
of the fidelity F ′ = F + |ǫ|. In this case the conditions
x2 = y2, x3 = y3 or x2 = −y2, x3 = −y3 vanish, and if
also |s1| = |s2| = −s3 there are no optimality conditions
on {xi, yi} left.
Let us first treat the case with R symmetric and s1 ≥
s2 ≥ |s3|:

R =









1 x1 x2 x3
x1 −s1 0 0
x2 0 −s2 0
x3 0 0 −s3









.
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The condition that ρ corresponding to this state is rank
2 implies that all 3×3 minors of ρ are equal to zero. Due
to the conditions s1 ≥ s2 ≥ |s3|, it can easily be shown
that a state of rank 2 (and not of rank 1!) is obtained
iff x1 = 0 = x2 and x3 = ±

√

(1− s1)(1 − s2) and 1 −
s1 − s2 + s3 = 0. In this case the concurrence is equal
to C = s2 and the fidelity is given by F = (s1 + s2)/2,
and the constraints become 1 ≥ s1 ≥ s2 ≥ (1 − s1)/2
what implies that C ≥ 1/3. The minimal fidelity for
given concurrence occurs when s1 = s2 and then C = F
which gives the lower bound of the theorem in the case
of C ≥ 1/3.
Let us now consider the case where R =MRTM :

R =









1 x1 x2 x3
−x1 −s1 0 0
−x2 0 −s2 0
−x3 0 0 −s3









with again s1 ≥ s2 ≥ |s3|. Let us first note that, due
to the symmetry, R has a Lorentz singular value decom-
position [11] of the form R = L1ΣM̃MLT1M with Σ of
the form diag(|σ0|,−|σ1|,−|σ2|,−|σ3|) and M̃ of the form
diag(1, 1, 1, 1) or diag(1,−1,−1, 1) or diag(1,−1, 1,−1)

or diag(1, 1,−1,−1). It follows that Tr (R) = Tr
(

ΣM̃
)

,

and due to the ordering of the Lorentz singular values, M̃
has to be equal to the identity if Tr (R) ≤ 0. But Tr (Σ)
is just −2C with C the concurrence of the state, and
Tr (R) = 2 − 4F with F the fidelity of the state. There-
fore it holds that F = (1+C)/2 if Tr (R) ≤ 0 which corre-
sponds to the upper bound of the fidelity. Therefore only
the case where Tr (R) > 0 has to be considered for finding
lower bounds of the fidelity. The condition that the state
be rank 2 (and not rank 1) immediately yields: x3 = 0,
s1+s2−s3 = 1 and s1+s2 = x21/(1−s2)+x22/(1−s1). If
we only consider the case with Tr (R) > 0, it holds that
s3 < 0 and the inequality constraints become (1−s1)/2 ≤
s2 ≤ (1−s1) ≤ 2/3. The concurrence can again be calcu-
lated analytically and is given by C = (1−s1−s2−s3)/2,
and it follows that F = (1−C)/2. Note that the inequal-
ity constraints limit C to be in the interval C ∈ {0, 1/3},
and so this bound is less stringent then the one stated in
the theorem.
Let us now move to the degenerate case where s1 > s2 =
−s3:

R =









1 x1 x2 x3
y1 −s1 0 0
y2 0 −s2 0
y3 0 0 s2









.

As s1 > s2, optimality requires x1 = ±y1. We first treat
the case x1 = y1. Defining α = x3/y3, a set of necessary
and sufficient conditions for being rank 2 is given by:

0 = x1 = y1

0 = x2 + αy2

0 = α2 − α
1 − s1
s2

+ 1

0 = (x22 + x23)− αs2(1 + s1).

Under these conditions the concurrence can again be cal-
culated exactly and is given by C = s2, while the fidelity
is given by F = (1 + s1)/4. Note that the above set of
equations only has a solution if (1−s1)/2 ≥ s2, implying
that C ≤ 1/3. The fidelity will now be minimal when
s2 = s1, and then F = (1 + C)/4 which is the second
bound stated in the theorem.
Let us now consider the degenerate case with s1 > s2 =
−s3 but x1 = −y1. The rank 2 condition implies that
s1 + 2s2 = 1 and x2 = −y2 and x3 = y3. Some straight-
forward algebra leads to the condition

4
1− s1
1 + s1

x21 + 1− s21 − 2x22 − 2x23 = 0.

Taking into account the constraints, the concurrence is
again given by C = s2 = (1 − s1)/2 and bounded above
by 1/3, while the fidelity if equal to F = (1+s1)/4 = (1−
C)/2. This bound always exceeds the previously derived
bound F ≥ (1 + C)/4 for C ≤ 1/3, and is therefore
useless.
It only remains to consider the case where s1 = s2 = −s3:

R =









1 x1 x2 x3
y1 −s1 0 0
y2 0 −s1 0
y3 0 0 s1









.

Defining α = x1/y1, the rank 2 constraint leads to the
following set of necessary and sufficient conditions:

0 = x2 − αy2

0 = x3 + αy3

0 = s1α
2 + α(1 − s1) + s1

0 = α(x21 + x22 + x23) + s1(1 + s1).

The inequality constraint reads s1 ≤ 1/3, and the con-
currence can again be calculated exactly and is given by
C = s1. Therefore the fidelity of these states obeys the
relation F = (1 + C)/4 for C ≤ 1/3, which is the sharp
lower bound.

It might be interesting to note that all rank 2 states
minimizing the fidelity for given concurrence are quasi-
distillable [2, 11] and have one separable and one entan-
gled eigenvector. More specifically, the states minimizing
the fidelity for C ≤ 1/3 are, up to local unitaries, of the
form

ρ =









1+C
2 0 0 0

0 1−C+
√
1−2C−3C2

4 −C
2 0

0 −C
2

1−C−
√
1−2C−3C2

4 0
0 0 0 0









,
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FIG. 1: Range of values of the fidelity for given concurrence
and negativity.

and those for C ≥ 1/3 of the form

ρ =









1− C 0 0 0
0 C/2 −C/2 0
0 −C/2 C/2 0
0 0 0 0









.

Exactly the same states also minimize the fidelity
for given negativity. This leads to the following sharp
bounds for the fidelity versus negativity:

F ≥ 1

4
+

1

8

(

N +
√

5N2 + 4N
)

F ≥
√

2N(N + 1)−N

F ≤ 1 +N

2
.

The first condition applies when N ≤ (
√
5−2)/3 and the

second when N ≥ (
√
5 − 2)/3. A plot of these bounds

is given in figure (1). One observes that the difference
between the lower bound and the upper bound in terms
of the negativity becomes very small (≃ ǫ2/16) for
large negativity N = 1 − ǫ. Moreover the fidelity is al-
ways larger then 1/2 if the negativity exceeds (

√
2−1)/2.

In conclusion, we derived a tight upper bound for the
fidelity for given value of the concurrence and fidelity,

and we identified all states for which this upper bound
is saturated. Next we have characterized the extreme
points of the convex set of states with given fidelity, and
this enabled us to derive tight lower bounds on the fidelity
for given amount of entanglement.
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