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Entanglement flow in multipartite systems
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We investigate entanglement dynamics in multipartite systems, establishing a quantitative concept
of entanglement flow : both flow through individual particles, and flow along general networks of
interacting particles. In the former case, the rate at which a particle can transmit entanglement
is shown to depend on that particle’s entanglement with the rest of the system. In the latter, we
derive a set of entanglement rate equations, relating the rate of entanglement generation between
two subsets of particles to the entanglement already present further back along the network. We
use the rate equations to derive a lower bound on entanglement generation in qubit chains, and
compare this to existing entanglement creation protocols.

PACS numbers: 03.67.-a,03.67.Mn

I. INTRODUCTION

New fields of physics often give rise to new physical
quantities to study, and quantum information theory has
proved a rich source of study material. As an amalgam of
quantum mechanics and information theory, many of the
new quantities are quantum analogues of familiar friends
from classical information theory: the qubit, for instance,
measures quantum information just as the bit measures
classical information [1]. Other quantities have no ob-
vious classical counterpart. The best-known example is
entanglement. Originally seen as the phenomenon that
epitomized quantum weirdness, it has become established
over the last decade as as a physical quantity, on a par
with, say, energy.

The analogy with energy can be pushed quite far: en-
tanglement has a number of similar properties. Like en-
ergy, entanglement can be quantified in a meaningful
way [2], allowing us to say that one state is more en-
tangled than another. Like energy, entanglement can be
converted from one form to another [3]. And like energy,
it is a resource that can be used to carry out useful tasks,
such as teleportation [4].

Until recently, work concentrated on understanding
these static properties of entangled quantum states. Al-
though we are some way from a complete understand-
ing of entanglement statics, there has been significant
progress: for instance, bipartite pure-state entanglement
is now well understood. This begs the question: what
happens if we allow the state to evolve?

The move from entanglement statics to entanglement
dynamics raises many new and interesting questions.
How does entanglement evolve as particles interact [5]?
How good is a particular interaction at creating entan-
glement [5, 6, 7]? More generally, how good is an inter-
action at simulating various non-local processes [8, 9]?
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Or, turning this on its head, how ‘non-local’ is a given
process (e.g. a quantum gate) [10, 11]? This article ex-
tends the first of these — how entanglement evolves as
particles interact — to multipartite systems.

The Schrödinger equation already implicitly describes
the complete dynamics of a quantum system, but to gain
insight into entanglement dynamics, we need equations
that explicitly involve the entanglement of the system,
without reference specific features of the Hamiltonian.
One of the first steps along this path was taken by Dür
et. al. who investigated the rate of entanglement gener-
ation in two-qubit systems [5]. They derived an equation
relating the rate of entanglement creation to the existing
entanglement in the system, along with a factor depend-
ing on the form and strength of the interaction. This
latter led to a pleasingly simple quantity measuring the
entanglement generating capacity of two-qubit interac-
tions [6, 7].

In a system of two particles coupled by a Hamiltonian,
the only entanglement dynamics that can take place is
creation of entanglement between the two particles. A
simple tripartite system already raises other interesting
questions. For instance, in a chain of three particles,
how does entanglement ‘flow’ through the middle one?
Surprisingly, we showed in previous work [12] that, in
just such a chain, entanglement can be created between
the two end particles, without the middle particle ever
becoming entangled. This would seem to put an end to
notions of entanglement ‘flow’. However, we also gave a
simple proof that this phenomenon is only possible for
mixed initial states; for pure states, the middle particle
necessarily becomes entangled during the evolution.

This suggests there is a connection between pure-state
entanglement of a mediating particle and entanglement
flow through that particle: if it is not entangled, no en-
tanglement flows. In section II, we show that there is
indeed a quantitative relation describing how the entan-
glement of a particle with the rest of the system limits
the flow of entanglement through that particle. We first
consider a three-qubit system, before dealing with gen-
eral systems. The concept of entanglement flow through
particles is therefore put on a quantitative footing for
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systems in pure states. This contrasts strongly with the
mixed-state case, in which entanglement can seemingly
‘tunnel’ through mediating systems.
Flow through individual particles is one aspect of en-

tanglement dynamics in multipartite systems. But in a
network of many interacting particles, we may also be in-
terested in how entanglement flows along the whole net-
work. We develop these ideas in the second half of this
article.
The inspiration is loosely based on the Arrhenius equa-

tions for chemical reactions. The reaction mechanism of a
chemical reaction describes the steps by which reactants
are transformed, via successive intermediate compounds,
into the final products. The rate at which a compound is
produced depends on the amounts of its immediate pre-
cursors that are present. Thus the complete reaction is
described by a set of coupled rate equations, one for each
step in the reaction mechanism.
In section III, we derive a set of differential equations

describing entanglement flow, analogous to the rate equa-
tions for a chemical reaction. The rate at which entangle-
ment is generated between two sets of particles is shown
to depend on the amount of entanglement already present
further back along the network. The entanglement dy-
namics of the complete system is described by a coupled
set of such entanglement rate equations, one for each step
in the interaction network.
Unlike the equations describing flow through individ-

ual particles, these entanglement rate equations apply
equally well to both pure and mixed states. Therefore,
they establish a concept of entanglement flow along gen-
eral networks of interacting particles (even though the
concept of flow through individual particles in the sys-
tem may be meaningless).
In section IV, we apply our new understanding of en-

tanglement flow to investigate entanglement generation
in chains of interacting particles. First, we briefly re-
view some existing entanglement generation protocols for
qubit chains, in the context of the rate equations derived
in section III. Finally, we use the rate equations to prove
a universal lower bound on the time it takes to create en-
tanglement, or more precisely the scaling of this with the
length of the chain (the results can easily be extended to
general networks).

II. FLOW THROUGH PARTICLES

In this section, we will investigate entanglement flow
through mediating particles. Specifically, we will con-
sider flow through the middle particle in tripartite chains.
The results of [12] show that this concept does not make
sense if the whole system is in a mixed state. But for
pure states, the rate at which entanglement is generated
between the end particles is indeed zero if the middle
particle is not entangled.
The latter is suggestive: is there a general quantita-

tive relationship between the entanglement of a particle,

and the rate at which entanglement can flow through it,
for systems in pure states? If the middle particle is only
slightly entangled, does entanglement flow only slowly?
We will derive just such a relationship, first for the sim-
plest tripartite system: a three-qubit chain, then for gen-
eral tripartite chains.
When investigating (bipartite) entanglement flow

through mediating particles in more general settings, the
system can always be described as a tripartite chain: the
mediating particles form one party, and the sets of par-
ticles each side, which are becoming entangled, form the
other two. Thus the equation for tripartite chains can in
fact be applied generally to describe entanglement flow
through mediating systems.

A. The three-qubit chain

Consider a chain of three qubits, labeled a, b, and c,
with nearest neighbour interactions described by Hamil-
tonians Hab and Hbc. We will restrict the overall state of
the system, |ψ〉abc to be pure. However, the reduced state
of the two end qubits, ρac, need not remain pure during
the evolution (if b is to become entangled at any point,
ρac will necessarily become mixed). To quantify the en-
tanglement between a and c, we need an entanglement
measure valid for mixed states. The natural choice is
the concurrence [13]. Though it is an entanglement mea-
sure in its own right, its interest lies in its is equivalence
to one of the important, physically meaningful entangle-
ment measures: the entanglement of formation [14].
We can write the overall state of the system in its

Schmidt decomposition with respect to the partition
(b : ac): |ψ〉abc = λ1 |ϕ1〉ac |χ1〉b + λ2 |ϕ2〉ac |χ2〉b. The
Schmidt coefficients, λ1 and λ2, determine the non-local
properties of the state with respect to this partition, in-
cluding entanglement of the middle qubit b with the rest.
Meanwhile, the entanglement of the reduced state of the
end two qubits, ρac, can be measured by the concur-
rence, denoted Cac. Following [15], the state of par-
ticles a and b can be represented by a 4 × 2 matrix
X = (λ1 |ϕ1〉 , λ2 |ϕ2〉). The concurrence can be calcu-
lated from the singular values ς1 ≥ ς2 of A = XTΣX ,
where Σ = σy⊗σy: Cac = ς1− ς2 =

√

trA†A− 2| detA|.
Taking the time-derivative of this and simplifying the
resulting exact expression (see Appendix A for details)
leads to the following bound on the entanglement rate:

dC2
ac

dt
≤ 8 ‖H‖λ1λ2.

The factor ||H || = ||Hab||1 + ||Hbc||1 measures the
strengths of the interactions. ||H ||1 =

∑

ij |Hij | denotes
the l1 norm, where the Hamiltonians are written in the
product basis H =

∑

ij Hijσi ⊗ σj , and the Pauli ma-
trices σ1,2,3 = σx,y,z are defined in the Schmidt basis
{|χ1〉 |χ2〉}. (Local terms σi ⊗ 1 or 1⊗ σj in the Hamil-
tonian can not alter the entanglement of the system, so
do not contribute).
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In the context of entanglement dynamics, the impor-
tant part of the relation is the product of Schmidt coeffi-
cients λ1λ2, which is a pure-state bipartite entanglement
measure. (In fact, up to a numerical factor, it is the
concurrence.) Thus the differential equation tells us that
the entanglement of the middle qubit limits entanglement
generation between the end qubits: not only must b be
entangled for entanglement to be generated between a
and c (precisely what was shown not to hold for mixed
states in [12]), but the rate at which it is generated can
be larger the more entangled b is.
At first sight, the inequality may appear too weak, as

it does not seem to imply that the derivative is zero once
qubits a and c are maximally entangled. However, Cac
and λ1λ2 are not independent quantities. When a and c
are maximally entangled, they can not be entangled with
anything else, thus λ1λ2 = 0, and the derivative is zero
after all.
A complete quantitative description of entanglement

creation in the three-qubit chain would require an equa-
tion describing the evolution of the Schmidt coefficients.
However, (b : ac) forms a bipartite, pure-state system.
Entanglement creation in bipartite systems and the evo-
lution of the Schmidt coefficients has been investigated
in [5].

B. Fidelities and entangled fractions

The three-qubit result can not directly be extended
to higher dimensional systems. Whilst we can restrict
the system to pure states for the same reasons as in the
three-qubit case, the reduced density matrix of the two
end particles can again become mixed during the evo-
lution. And no closed-form expression is known for the
entanglement of formation of mixed states, other than in
the two-qubit case.
Before turning to higher-dimensional systems, it is in-

structive to consider more carefully the setting in which
we wish to investigate entanglement dynamics. Entangle-
ment measures are defined in the LOCC paradigm: lo-
cal operations and classical communication (LOCC) can
only decrease the entanglement of a state. This is the nat-
ural paradigm when thinking about entanglement from
an information-theorist’s point of view, in which entan-
gled states are shared between different parties who are
free to act locally on their part of the state.
But we are considering entanglement dynamics from

a physical standpoint. In a system of interacting parti-
cles, it is not clear what classical communication means.
Any transfer of classical information between particles
would still have to take place via the (quantum) inter-
actions. It could be argued that it makes more sense in
this context to define entanglement in the local-unitary
paradigm: any change to a state due to local terms in the
interaction Hamiltonian should not change the entangle-
ment.
A physical way of measuring entanglement in this

paradigm is to use the fidelity [16], which measures the
distance between states [34]. The entangled fraction of
a state ρ is then defined as the maximum fidelity with a
maximally entangled state:

F (ρ) := max
|φ〉∈M.E.

〈φ| ρ |φ〉 ,

where the maximization is over all maximally entangled
states |φ〉 in the bipartite Hilbert space of ρ. (For two-
qubit states, it is also called the singlet fraction.) It
measures how close a given state is to any maximally
entangled state, and is invariant under local unitary op-
erations, as required.
The entangled fraction is also an experimentally rele-

vant quantity. When trying to engineer an evolution to
produce a particular state (a highly entangled one, for
instance), we want to know how close the actual state is
to the desired one — precisely what is measured by the
fidelity. For example, in teleportation experiments, it is
the entangled fraction of the entangled pair that deter-
mines how close the teleported state is to the original [17].
Therefore, in the remainder of this article, we will

consider evolution of the entangled fraction and related
quantities. Though it is a well-motivated quantity to
study in its own right, it can also be used to give upper
and lower bounds on entanglement measures such as the
concurrence [18] (and hence entanglement of formation).
In particular, if a state is separable, its entangled fraction
is less than or equal to 1/n (with n the dimension of the
smaller of the two Hilbert spaces making up the bipartite
space). Whereas if (and only if) the entangled fraction
is equal to one, the state must be maximally entangled.
In the final section, we will use our results to derive

bounds on how long it takes to entangle particles when
the system starts in a separable state. In this context,
any quantity that takes different values for separable and
maximally entangled states is equally good in principle:
we can bound the time required to change from one value
to the other. The entangled fraction, for example, must
increase from 1/n to 1.

C. General tripartite chains

The tripartite chain is a prototype for all indirect (bi-
partite) entanglement creation. We can always divide a
system into three: two systems that are being entangled,
and everything else lumped into one mediating system.
We can then investigate entanglement flow through this
mediating system.
In a general tripartite chain, consisting of systems A,

B and C of arbitrary dimension, interacting by nearest-
neighbour interactions HAB and HBC , the Schmidt de-
composition has the form |ψ〉ABC =

∑

i λi |ψi〉AC |i〉B,
where we sort the Schmidt coefficients λi in descending
order. By re-expressing the entangled fraction as a max-
imization over purifications using Uhlmann’s Theorem
(see Appendix B), we can derive an exact expression for
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the time derivative of the entangled fraction. Simplifying
the exact result to separate out the entanglement depen-
dence yields a relation analogous to the three-qubit case
(see Appendix C for details):

Ḟ (ρAC) ≤ 2 |H |
√

F (ρAC)
(∑

ij

λiλj − λ21

)

Again, the factor |H | = |HAB|∞ + |HAB|∞ measures the
interaction strengths, independent of the system state
(|H |∞ = maxij |Hij | denotes the l∞ norm).
The quantity in brackets is closely related to the en-

tangled fraction of |ψ〉ABC in the (B : AC) partition:
F (|ψ〉〈ψ|) = 1

n

∑

ij λiλj (with n the smaller of the di-

mensions of B and AC). Subtracting λ21 re-scales this
entangled fraction so that it is zero when the state is sep-
arable. Therefore, the entanglement of B with the rest
of the system limits the rate at which entanglement can
flow through B. As in the three-qubit case, the deriva-
tive implicitly goes to zero when systems A and C be-
come maximally entangled, since they can not then be
entangled with B.

III. FLOW ALONG NETWORKS

In the previous section, we examined entanglement
flow through the middle particle in a tripartite chain, and
noted that the results can be applied to flow through in-
dividual particles in general systems, by viewing the sys-
tem as a tripartite chain. However, in a large multipar-
tite system, this approach means lumping many particles
together into single composite particles, hiding much of
the entanglement dynamics. Can we more fully describe
entanglement flow in networks of interacting particles?
In this section, we derive a set of differential equations

describing the entanglement dynamics, analogous to the
rate equations for a chemical reaction. These show that
the rate at which entanglement is created between two
sets of particles depends on the existing entanglement
further back along the network. Intuitively, this can be
interpreted as entanglement flowing through the network.

A. Generalized singlet fraction

As in the previous section, we must first address the
problem of how to measure entanglement in large sys-
tems. Even before that, we must decide what entan-
glement to measure, since multipartite systems provide
a plethora of possibilities. What questions are we in-
terested in investigating using our putative equations?
Perhaps the most natural goal, given a system of many
interacting particles, is to entangle a particular pair of
them: the end qubits in a chain, for example. We will
take this as our motivation for again considering entan-
gled fractions of the two particles. We will also need to

define a new fidelity-based quantity to measure bipartite
entanglement embedded in larger systems.
First note that, since any maximally entangled state

can be reached by acting with local unitaries on a partic-
ular maximally entangled state, we can of course maxi-
mize over unitaries rather than states in the definition of
the entangled fraction:

F (ρ) = max
Ua,Ub

〈φ|U †
a ⊗ U †

b ρab Ua ⊗ Ub |φ〉

We can equally well think of the unitaries as acting on ρ
rather than on the entangled state |φ〉ab. This suggests an
alternative interpretation of the singlet fraction: as the
maximum fidelity with a particular maximally entangled
state (e.g. the singlet) that can be achieved by acting
with local unitaries.
Based on this interpretation, we define the generalized

singlet fraction, a measure of two-qubit entanglement for
bipartite systems of arbitrary dimension (it can be ex-
tended in the obvious way to measure general bipartite
entanglement [19]):

F (ρAB) = max
UA,UB

〈φ| tr/ab(UA ⊗ UB ρAB U †
A ⊗ U †

B) |φ〉 ,
(1)

where a and b are qubit systems embedded in A and B re-
spectively, |φ〉ab is the singlet state, and the notation tr/ab
indicates the partial trace over all systems other than a
and b. It measures the maximum fidelity with the singlet
achievable by local unitaries.
Note that, in two-qubit systems, this generalized sin-

glet fraction reduces to the usual singlet fraction. For
any system, it takes values between 0 and 1, and for sep-
arable states it is less than or equal to 1/2. Also, from
the definition, if A and B are subsystems of A′ and B′,
so that ρAB = tr/AB(ρA′B′), then F (ρAB) ≤ F (ρA′B′).

B. Entanglement rate equations

We are now ready to state our main result: a set of cou-
pled differential equations describing entanglement flow
in networks of interacting particles. For simplicity, we as-
sume that among the set of interacting particles S, there
are at least two qubits a and b, the premise being that
we are interested in entangling these. (The results can
easily be generalized: see [19] and Conclusions.) Let A
and B be disjoint subsets of S. The equations describe
the rate at which the generalized singlet fraction of ρAB
can increase.
Define A′ and B′ to be the sets of particles directly

connected by an interaction to at least one particle in A
or B respectively (i.e. A′ is the set of particles at most
‘one-away’ from A, thus A ⊆ A′; see Fig 1). If A′ and B′

are disjoint (as in Fig. 1), then the time derivative of the
generalized singlet fraction is bounded by

Ḟ (ρAB) ≤ 2 ‖H‖
√

F (ρAB)
√

F (ρA′B′)− F (ρAB), (2a)
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FIG. 1: A network of interacting particles, showing inter-
actions and sets defined in the entanglement rate equations.
Interactions ‘crossing the boundaries’ of A or B are indicated
by thicker lines.

whilst if A′ and B′ have one or more particles in common,
then

Ḟ (ρAB) ≤ 2 ‖H‖
√

F (ρAB)
√

1− F (ρAB). (2b)

The factor ‖H‖ is a sum of strengths of those interactions
that connect a particle in A or B to one outside A or B
respectively (i.e. interactions that ‘cross the boundary’
of A or B; see Fig. 1):

‖H‖ =
∑

i∈A,j /∈A;
i∈B,j /∈B

‖Hij‖HS ,

where ‖ •‖HS denotes the Hilbert-Schmidt norm.
The first step in the proof of these entanglement rate

equations to rewrite the generalized singlet fraction (1) in
terms of purifications of ρAB using Uhlmann’s theorem
(Appendix B). This leads to the following exact expres-
sion for the derivative of the generalized singlet fraction:

Ḟ (ρAB) =
√

F (ρAB) · max
UA,UB

|χ〉

1

i

∑

i/∈A(B)
j∈A(B)

〈ϕ|Hij |ψ〉−〈ψ|Hij |ϕ〉

where |ψ〉 is a purification of ρAB, |χ〉 is an extension
of the singlet state to the Hilbert space of |ψ〉, and

|ϕ〉 = U †
A ⊗ U †

B |χ〉. Using Lemma 3 (Appendix B), the
terms inside the sum can be bounded by 1

i (〈ϕ|Hij |ψ〉 −
h.c.) ≤ 2 ‖Hij‖HS

√

(tr |Xij |)2 − (tr(ReXij))2, where
Xij = tr/ij |ψ〉〈ϕ|. Finally, the quantities under
the square-root can be related to generalized singlet
fractions: (tr(ReXij))

2 = F (ρAB) and tr(|Xij |)2 ≤
F (ρA′B′), which concludes the proof. (The proof is given
in full detail in Appendix B).
We can gain some insight into entanglement dynamics

by considering the qualitative meaning of the rate equa-
tions, before thinking about solving them. They divide
a network of interacting particles into pairs of concentric
sets, surrounding qubits a and b. For example, in Fig. 1
there are three such pairs: the qubits a and b themselves,
the sets labeled A and B, and those labeled A′ and B′.
The rate equations tell us that entanglement must first
build up between the largest sets, before it can cascade
down successively smaller ones, finally reaching the two

qubits (just as in a chemical reaction, intermediate com-
pounds in the reaction mechanism must be created before
the final product is reached). What is more, the rate at
which the entanglement flows from one level to the next
depends on the difference in entanglement between the
two levels (somewhat like the rate of a reversible chem-
ical reaction, which depends on the difference between
the concentrations of reactants and products; or like flow
in fluids, in which the flow rate depends on the pressure
difference).
The number of pairs of sets is equal to half the ‘inter-

action distance’ of the two qubits (rounded down to the
nearest integer), i.e. half the smallest number of links in
the network needed to connect a to b (in Fig. 1, their in-
teraction distance is 5). A generalized singlet fraction can
be defined on each pair of sets, along with an accompany-
ing rate equation describing its evolution. Therefore any
network has the same rate equations as a chain whose
length is equal to the interaction distance, and whose
interaction strengths along each link of the chain equal
the factors ||H ||; all entanglement flow is equivalent to
flow along a chain. This is qualitatively similar to results
from quantum random walks, in which a quantum walk
over a network is equivalent to a quantum walk along a
chain [20].
Note that the factor ||H || in the rate equations indis-

criminately includes all interactions that cross the bound-
ary. We might expect different interactions to contribute
differently, depending on their location in the network.
In fact, in Appendix B, we derive a more general version
of the rate equations, which accounts for each possible in-
teraction pathway separately, and can therefore take into
account the different roles different particles play in the
entanglement dynamics, due to their differing connectiv-
ity. The inequality in the corresponding rate equations
is therefore tighter, but it leads to exponentially (in the
number of particles) more equations describing the en-
tanglement dynamics of a system, and gives a less intu-
itive picture of entanglement flow. We will find that the
simpler form given here is sufficient to derive a number
of interesting results.

C. Limits from the rate equations

It is straightforward to prove inductively that the
curves produced by saturating the inequalities in the rate
equations (2a,2b) constitute upper bounds on the evolu-
tion of the generalized singlet fractions; i.e. the fastest
possible evolution allowed by the rate equations is that
which saturates the rate equations at each point in time.
If the interaction distance between the qubits we intend

to entangle is d, then the full set of rate equations involve
⌊d/2⌋ generalized singlet fractions, which we will denote
Fk(t), k = 1 . . . ⌊d/2⌋. (⌊•⌋ denotes rounding down to
the nearest integer.) We number them such that F⌊d/2⌋

is the singlet fraction of the two qubits. If we define
F0 = 1, then the evolution of each Fk(t) is described by
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equation (2a).
Let fk(t) be the curves that saturate the rate equa-

tions, i.e. fk(t) is the solution to

ḟk = 2 ‖H‖
√

fk
√

fk−1 − fk,

with f0 = 1. (For simplicity, we can take all coupling
strengths ||H || to be 1.) Assume that fk(t) is an upper
bound on Fk(t), i.e. fk(t) ≥ Fk(t) for all t. If fk+1(t)
is not an upper bound on Fk+1(t), then Fk+1(t) must
cross it at some point. If this occurs at t = t0, then
Fk+1(t0) = fk+1(t0) and Ḟk+1(t0) > ḟk+1(t0) [35]. But
Fk+1(t) must still satisfy the inequality in equation (2a).
Thus

Ḟk+1 ≤ 2
√

Fk+1(t0)
√

Fk(t0)− Fk+1(t0)

≤ 2
√

fk+1(t0)
√

fk(t0)− fk+1(t0) = ḟk+1(t0),

which contradicts the assumption that Fk+1(t) crosses
fk+1(t) at t0. Thus if fk(t) is an upper bound, then so is
fk+1(t).
The initial step in the induction (that f1(t) is an upper

bound) follows from the second of the rate equations (2b),
and the fact that the generalized singlet fraction is upper
bounded by 1. Fig. 2 shows numerically calculated curves
fk(t) saturating the rate equations.

0 1 2 3 4 5 6 7
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

F
k(t

)

time t

FIG. 2: Numerically calculated generalized singlet fraction
curves fk(t) saturating the inequalities in the entanglement
rate equations (2a,2b). The final solid curve is for k = 50,
i.e. the singlet fraction of the end qubits in a separated by
an interaction distance d = 100. (The dashed curves show
the corresponding upper and lower bounds uk(t) and lk(t) for
k = 50, from subsection IVB).

IV. HOW FAST CAN ENTANGLEMENT BE

CREATED?

How fast can entanglement be generated in a system of
interacting particles? The question is both theoretically

interesting, and experimentally important. Many quan-
tum information processing tasks require entanglement,
and the faster this can be produced, the less the system
will suffer from decoherence. Quantum computing al-
gorithms often generate large amounts of entanglement
during their execution, so determining how fast entan-
glement can be generated can also provide bounds on
algorithm complexity [21].
In this section, we briefly review some existing entan-

glement generation schemes in the context of the entan-
glement rate equations derived in the previous section.
We then investigate what universal limits the rate equa-
tions put on how fast entanglement can be generated, or
more precisely, how the time required to entangle two
particles scales with the size of the system.

A. Entanglement generation schemes

How fast entanglement can be generated depends, of
course, on how we are able to manipulate the system. For
definiteness, consider entanglement generation in a qubit
chain. It turns out that measurement is a very power-
ful resource. If we are able to carry out local operations
on any qubit, including local measurements and classical
communication of the outcomes, then the end qubits in
a chain can be maximally entangled in a time indepen-
dent of the length of the chain. Though not discussed
in the context of entanglement generation, Briegel and
Raussendorf [22] showed that a cluster state can be cre-
ated in a chain in constant time, and local measurements
on a cluster state allow a Bell-state to be projected out
on any desired pair of qubits, including the end pair [23].
The constant scaling assumes we neglect the the time

required for classical communication of the measurement
outcomes to the ends of the chain. This can be justified
on theoretical grounds, since classical communication can
not create entanglement, and it makes sense to consider
the interactions as the resource. In many physical imple-
mentations, it is also reasonable on pragmatic grounds:
classical communication is usually much easier to imple-
ment than quantum processes. However, if the interac-
tions are really the only non-local resource, then classical
communication must also be implemented via the chain,
and local measurements are of no benefit, which is equiv-
alent to the local-control scenario described below. This
might be the relevant scenario, for instance, for quantum
computers.
If we can apply local unitary operations on any qubit in

the chain, but not measurements, then we can efficiently
simulate evolution under any Hamiltonian (this is true
for general systems of interacting particles, not just for
qubit chains [24, 25]). Again, it is reasonable to discount
local resources, which in this scenario means neglecting
the time required to carry out the local unitaries (the
‘fast local unitary’ approximation). And again, this can
also be justified on physical grounds, since local unitaries
are typically much faster than interactions.
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Khaneja and Glaser have developed an interesting pro-
tocol for state transfer in this scenario [26], in the context
of NMR spectroscopy, which can easily be transformed
into an entanglement generation protocol. First the mid-
dle qubits are entangled, then the state of each middle
qubit is encoded into a three-qubit state. The encoded
states are transferred along the chain towards the ends,
where they are decoded again. The protocol requires lo-
cal unitaries to be applied at discrete times. The evolu-
tion of the generalized singlet fractions is shown in Fig 3,
clearly reflecting the fact that the protocol is based on
moving states step-by-step along the chain. It achieves
a surprising three-fold speedup over the trivial swapping
protocol for entanglement generation in a chain (entan-
gle the middle qubits; move to the ends by swapping),
though the scaling of the time with the length of the
chain is still linear, as in the trivial protocol. In the next
subsection, we will use the entanglement rate equations
to derive a lower bound on the scaling in this local-control
scenario.
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FIG. 3: Entanglement dynamics in the entanglement gener-
ation protocol based on Khaneja and Glaser’s state transfer
scheme [26], for a chain of 10 qubits. Successive curves show
the evolution of generalized singlet fractions F1 through F5,
numbered as in subsection III C.

Finally, we may have no local control over the qubits,
only retaining the ability to switch on interactions in the
entire chain, and switch them off at some later time.
Christandl et. al. developed a state-transfer protocol for
qubit chains in this scenario [27], and Yung et. al. have
given a simple extension to entanglement generation [28].
The only local control required is fixing the coupling
strengths between different qubits, which must be inho-
mogeneous. Fig. 4 shows the entanglement dynamics for
the odd chain-length protocol of Ref. [28] — very differ-
ent to that of Fig. 3. If the strongest coupling strength is
normalized to some fixed value, then the time to create
a maximally entangled pair again scales linearly with the
length of the chain [29].
Osborne and Linden have also developed a protocol for
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FIG. 4: Entanglement dynamics in the entanglement gener-
ation scheme for odd chain lengths from Ref. [28], here for
9 qubits. Successive curves show the evolution of general-
ized singlet fractions F1 through F4, numbered as in subsec-
tion IIIC. (Note that times are not comparable to those in
Fig. 3, since interaction strengths in [28] are not normalized).

state transfer in qubit chains, which could be adapted
to entanglement generation, involving limited local con-
trol over a vanishingly small (in the limit of large chain
lengths) number of qubits at each end of the chain [30].

B. Bounds on entanglement generation

In this subsection, we will use the entanglement rate
equations to derive a lower bound on how the time to
create a maximally entangled state scales with the size
of the system.
Unfortunately, the set of differential equations defined

by the rate equations (2a,2b) has no known closed-form
analytic solution (at least, none that we could find in the
literature). Solving numerically can provide numerical
bounds on the time required for entanglement generation
(see Fig. 2). The interesting question, though, is how this
time scales with the size of the system (for instance, the
length of a chain), which requires an analytic result.
For simplicity, we will derive a bound on the scaling of

the time to entangle the end qubits in a chain of length
L. The ⌊L/2⌋ generalized singlet fractions Fk will be
numbered such that F⌊L/2⌋ is the singlet fraction of the
end two qubits. We assume all interaction strengths are
equal to 1, and that the chain is initially in a completely
separable pure state (thus Fk(t = 0) = 1/2 for all k). The
result can easily be generalized to different interaction
strengths, and indeed to general networks of particles
(c.f. discussion in subsection III B).
We are interested in the time at which F⌊L/2⌋ (the

singlet fraction of the two end qubits) reaches 1, as a
function of L. Though the rate equations do not have
an analytic solution, we can inductively prove a bound
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on the scaling of this time with L, using an argument
similar to that used in subsection III C.
There, we showed that the curves obtained when the

inequalities in the rate equations are saturated give up-
per bounds on the evolution of the generalized singlet
fractions. We can use the same argument to prove that
we still get upper bounds if we weaken the inequalities,
using the fact that Fk(t) ≤ 1, and instead solve

ḟk(t) = 2
√

fk−1(t)− fk(t).

We can use the argument a third time to prove that if
uk(t) is an upper bound on the new fk(t), then the solu-
tion uk+1(t) to

u̇k+1(t) = 2
√

uk(t)− uk+1(t) (3)

is an upper bound on fk+1(t). I.e. we have uk(t) ≥
fk(t) ≥ Fk(t). (As concerns boundary conditions, we
simply require that uk+1(0) ≥ fk+1(0) = Fk+1(0) =
1/2.)
Now assume there is a uk(t) of the form

uk(t) =
t2

ak
+

1 + ǫ

2
(4)

that is an upper bound on fk(t) for some positive con-
stants ak and ǫ. The differential equation for uk+1(t)
then has a solution of the same form as uk(t) (as can
be seen by direct substitution), with ak+1 given by the
recursion relation

ak+1 =
ak
2

+
ak
2

√

1 +
4

ak
.

Since uk+1(0) = (1+ǫ)/2, which is greater than the initial
condition fk+1(0) = Fk+1(0) = 1/2, uk+1(t) is an upper
bound on fk+1(t) by the argument above.
All that remains is the initial step in the induction:

that there is indeed a bound u1(t) on f1(t) with the form
assumed in (4), for some constants a1 and ǫ. Fortuitously,
the differential equation (2b) for F1(t) (the generalized
singlet fraction of the entire chain, split into two halves)
can be solved analytically when the inequality is satu-
rated (and without weakening the inequality). The solu-
tion has the form

f1(t) = sin2(t+ φ)

with φ an arbitrary constant. There is also a trivial so-
lution: f1(t) = 1. Since the chain starts in a completely
separable pure state, the initial condition is f1(0) = 1/2,
and the solution we require is

f1(t) =

{

sin2(t+ π/4) t ≤ π/4

1 t > π/4

The two parts to the solution merely reflect the fact that
once the generalized singlet fraction has reached its max-
imum value of 1, there is nothing to be gained by further

interaction, and the interactions affecting F1 (namely
the interactions in the middle of the chain) should be
switched off.
Knowing an explicit solution for f1(t), it is easy to find

a bound u1(t) with the appropriate form. To make the
algebra simpler, we can upper-bound f1(t) by t + 1/2.
Thus a u1(t) with the form given in (4) that satisfies
u1(t) ≥ t + 1/2 will suffice to complete the proof. This
leads to the relation a1 ≤ 2ǫ. Any positive a1 and ǫ
satisfying this will give an appropriate u1(t) ≥ f1(t) ≥
F1(t), and will guarantee that u1(0) = (1+ǫ)/2 ≥ f1(0) =
F1(0) = 1/2. Therefore we have shown that an upper
bound on F1(t) with the appropriate form exists, which
completes the proof. For neatness, we can let ǫ → 0, so
that uk(0) → Fk(0) = 1/2 and a0 → 0 (as used to give
the curve u50(t) shown in Fig. 2).
Solving u⌊L/2⌋(t) = 1 gives a lower bound on the time

required for f⌊L/2⌋ to reach 1, which is itself a lower
bound on the time Tent required for the singlet fraction
of the end two qubits F⌊L/2⌋ to reach 1, or equivalently,
for the end qubits to become maximally entangled.
We are interested in the scaling of Tent for large chain

lengths, when ak becomes large. Rather than solving
u⌊L/2⌋(t) = 1 explicitly to obtain the bound, we can
Taylor expand the square-root in the recursion relation to
show that it asymptomatically approaches ak = ak−1+1,
or equivalently ak = a1 + k, as k → ∞. Thus for large
L, the bound tends to

Tent ≥
√

⌊L/2⌋
2

,

a square-root scaling with chain length (see Fig. 5).
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FIG. 5: Scaling with chain-length L of the time Tent re-
quired to create a maximally entangled state between the
ends. The points show numerical results obtained by saturat-
ing the rate equations (2a,2b). The solid and dashed curves

show the analytic lower and upper bounds, Tent ≥
√

⌊L/2⌋/2

and Tent ≤
√

⌊L/2⌋ respectively.

We have loosened many an inequality during the proof
of the square-root bound. Could the rate equations give
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a tighter bound? We can use essentially the same proof
with the inequalities reversed to prove that a square-root
bound is the best that can be obtained.
Instead of using Fk(t) ≤ 1 to weaken the inequality

right at the beginning, we use Fk(t) ≥ 1/2, which is
valid when the Fk(t) saturate the inequalities in the rate
equations, i.e. when Fk(t) = fk(t). Then, solutions of

l̇k(t) =
√
2
√

lk−1(t)− lk(t)

are lower bounds on fk(t). We can rescale the time τ =

t/
√
2 to so that the differential equation for lk(τ) has the

same form as that for uk(t) in the previous proof (Eq. 3).
Assuming solutions of the form lk(τ) = τ2/ak, solving
the resulting recursion relation, and proving there is a
lower bound on f1(t) of the appropriate form, leads to an
upper bound on the scaling, for any evolution saturating
the rate equations. For large chain lengths, the bound
tends to Tent ≤

√

⌊L/2⌋ — also a square-root scaling.
Therefore, the square-root bound we have derived is, up
to a

√
2 numerical factor, the best that can be obtained

from the entanglement rate equations (see Fig. 5).
How does our bound compare with the entanglement

generation protocols described in the previous subsec-
tion? The generalized singlet fractions evolve quite dif-
ferently in those protocols, compared to the evolution
that would saturate the rate equations (compare Figs. 3
and 4 with Fig. 2). All existing protocols that we know
of scale linearly with the length of the chain — no better
than the trivial swapping protocol (entangle the middle
qubits; move to the ends by swapping). It is an inter-
esting open problem to determine whether any protocol
can achieve a square-root scaling, or whether the bound
derived via the rate equations is too weak and can not
be saturated (which would suggest some improvement on
the rate equations might be possible).

V. CONCLUSIONS

We have investigated entanglement flow, both through
individual particles and along networks of interacting
particles. In both cases, we have derived differential
equations relating the rate of entanglement generation
to the existing entanglement in the system.
Entanglement flow through a particle is limited by the

entanglement of that particle with the rest of the sys-
tem, providing the system is in a pure state. (Previ-
ous work [12] has already shown that the entanglement
can be transmitted by a particle without that particles
becoming entangled at all, if the system is in a mixed
state.)
To describe entanglement flow along general networks

of interacting particles, we have derived a set of entangle-
ment rate equations, analogous to the rate equations for
a chemical reaction. These can intuitively be interpreted
as describing a flow of entanglement along the network.
We have used the rate equations to prove a square-root

lower bound on the scaling with system size of the time
required to create a maximally entangled state, and com-
pared this to existing entanglement generation protocols.
Whether this bound is achievable, or whether the rate
equations can be improved to give a tighter bound, re-
mains an interesting open problem.
The entanglement rate equations were derived in the

context of two-qubit entanglement creation. However,
since they involve fidelity-based quantities, they can eas-
ily be extended to more general settings. Firstly, the
quantities and equations can be extended to bipartite
entanglement generation in arbitrary spaces, by taking
fidelities with a bipartite maximally entangled state in
the appropriate space. Secondly, they can be generalized
to the multipartite setting, by taking fidelities with the
desired multipartite entangled state (e.g. a GHZ state),
rather than with a bipartite entangled state.
Together, the results establish a quantitative concept

of entanglement flow in interacting systems. This is of
interest as an abstract concept in itself, but could also
be interesting both theoretically and practically: in the
analysis of quantum algorithms, for example, since these
often involve creating large amounts of entanglement dur-
ing their operation. Or in physical implementations of
quantum systems, in which it is important to carry out
any manipulation (including entanglement creation) as
fast as possible, to beat decoherence.

APPENDIX A: THREE-QUBIT CHAIN

To derive the three-qubit result, we use a matrix anal-
ysis approach to calculating the concurrence, developed
in [15]. Writing the Schmidt decomposition of the three-
qubit system with respect to the partition (b : ac) as
|ψ〉abc = λ1 |ϕ1〉ac |χ1〉b+ λ2 |ϕ2〉ac |χ2〉b, we can represent
the state of ab by a 4 × 2 matrix X = (λ1 |ϕ1〉 , λ2 |ϕ2〉).
The reduced density matrix is then given by ρac = XX†.
The concurrence Cac of ρac can be obtained from the

singular values of A = XTΣX , where Σ = σy⊗σy [15]. In
our case, A is a 2× 2 matrix (because ρac has rank two),
with just two singular values: ς1 ≥ ς2. Thus Cac = ς1−ς2.
Since trA†A = ς21 + ς22 and | detA| = ς1ς2, we can also
write this as

C2
ac = trA†A− 2| detA|. (A1)

To calculate the time-derivative of the concurrence, we
must calculate the derivatives of tr(A†A) and | detA|.
From its definition, Ȧ = ẊTΣX +XTΣ Ẋ. Meanwhile,
d(trA†A)/dt = tr(A†Ȧ + Ȧ†A), which, after a little al-
gebra, leads to

d(trA†A)

dt
= 4Re

(

tr
(
Σρ∗Σ ẊX†

))

. (A2)

Since A is a 2 × 2 matrix, detA = tr(AσyA
Tσy)/2.

Thus d(detA)/dt = tr(ȦσyA
Tσy + AσyȦ

Tσy)/2 which,
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after a little more algebra, gives

d(detA)

dt
= 4 tr

(

XσyX
TΣXσyẊ

TΣ
)

. (A3)

The three-qubit chain evolves according to the Hamil-
tonian H = Hab ⊗ 1c + 1a ⊗ Hbc. The two-qubit
Hamiltonian Hab has a product decomposition Hab =
∑

ij aijσi ⊗ σj , where the Pauli matrices σi are defined

in the {|χ1〉 , |χ2〉} basis, and coefficients aij are real.
Similarly for Hbc and coefficients cij . The Schrödinger
equation describing the evolution of the system state |ψ〉
translates into an equation for the evolution of X :

Ẋ = −i
∑

ij

(
aijσi ⊗ 1XσTj + cij1⊗ σiXσ

T
j

)
.

We can use this, along with expressions (A2) and (A3),
in the time-derivative of (A1) to obtain an expression for
the derivative of the concurrence:

dC2
ac

dt
= h(H, |ψ〉)λ1λ2.

The factor h(H, |ψ〉) = ∑

ij aijh
a
ij + cijh

c
ij depends on

both the interactions and the system state, and is a rather
complicated sum over terms involving aij and cij . We
define

skij = 〈ϕ̃i|σk ⊗ 1 |ϕj〉
tkij = 〈ϕ̃i|1⊗ σk |ϕj〉
oij = 〈ϕi|ϕ̃j〉
haix = −i(λ21si12o11 + λ22s

i
21o22)

haiy = λ22s
i
21o22 − λ21s

i
12o11

haiz = −iλ1λ2(si21o12 − si12o21),

and define hcij similarly to haij , but with the sij ’s replaced

by tij ’s. Note that skii = tkii = 0. (The tildes denote the
spin-flip operation [13]: |ϕ̃〉= σy ⊗ σy |ϕ∗〉.) Then

h(H, |ψ〉) = 4Re
(∑

ij

aijh
a
ij+cijh

c
ij

)

+4
∣
∣
∣

∑

ij

aijh
a
ij+cijh

c
ij

∣
∣
∣.

However, as we are primarily interested in the de-
pendence on entanglement (i.e. the dependence on the
Schmidt coefficients), we can bound the magnitudes of
the skij , t

k
ij and oij by 1, and assume all terms sum in

phase, giving the bound:

h(H, |ψ〉) ≤ 8
∑

ij

|aij |+ |cij | ,

which is independent of the system state, depending only
on the interaction strengths.

APPENDIX B: ENTANGLEMENT RATE

EQUATIONS

The proof of the entanglement rate equations revolves
around Uhlmann’s theorem [16, 31], which relates the

fidelity of two mixed states to the fidelity of their purifi-
cations:

Theorem 1 (Uhlmann) If ρ and σ are two states in
the same Hilbert space H, let |ψ〉 and |ϕ〉 be purifications
of ρ and σ into a (in general larger) Hilbert space H⊗H′.
Then

F (ρ, σ) = max
|ψ〉,|ϕ〉

|〈ϕ|ψ〉|2

where the maximization is over all purifications.

Since any purification can be transformed into another
by a unitary acting on H′, we can fix one of the purifica-
tions and only maximize over the other one. Also, global
phases can be chosen to ensure the overlap 〈ϕ|ψ〉 is real
and positive, so the absolute value can be dropped.
Recall that the entanglement rate equations (2a,2b)

involve two disjoint subsets, A and B, of the entire set
of particles S, which are interacting via two-particle in-
teractions Hij . We can apply Uhlmann’s theorem to the
generalized singlet fraction of ρAB at time t:

FAB(t) = max
UA,UB

〈φ| tr/ab(UA ⊗ UB ρAB(t) U
†
A ⊗ U †

B)
︸ ︷︷ ︸

σab

|φ〉

= max
UA,UB

|χ〉

〈χ|UA ⊗ UB |ψ〉2 by Uhlmann (B1)

= 〈χ̄| ŪA ⊗ ŪA |ψ〉2 ,

where |χ̄〉, ŪA and ŪB denote the particular state and
unitaries achieving the maximum. (We are retaining the
unitaries, rather than incorporating them into one of
the purifications, for later convenience. Strictly speak-
ing, they should be extended to H ⊗ H′ and written
UA ⊗ UB ⊗ 1rest. In the interests of economy, we will
drop all 1rest’s.)
The state UA ⊗ UB |ψ〉 can be chosen to be any fixed

purification of the two-qubit density operator σab. We
use that freedom to make |ψ〉 a purification of the overall
system state ρS , which guarantees that UA ⊗ UB |ψ〉 is
a purification of σab, as required by Uhlmann’s theorem.
As for |χ〉, since |φ〉 is already pure, it is simply an ex-
tension to H ⊗H′: |χ〉 = |φ〉ab |ϑ〉rest (the maximization
then being over |ϑ〉).
If the system evolves under the Hamiltonian H =

∑

ij Hij for an infinitesimal time δt, the state evolves

to ρAB(t + δt) = tr/AB(e
−iHδtρS(t) e

iHδt). By writing
the density matrix of the entire system, ρS , in a prod-
uct basis for the partition (AB : rest) and expanding the
exponentials to first order in δt, it is straightforward to
show that only interactions involving at least one parti-
cle in AB give a first-order contribution to the evolution.
Therefore, H need only include that smaller set of inter-
actions. Letting

Uδt = exp
(

−iδt
∑

i∈S
j∈AB

Hij

)
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be the resulting (infinitesimal) unitary evolution opera-
tor, the singlet fraction after the evolution becomes

FAB(t+ δt) = max
VA,VB

|ζ〉

〈ζ|VA ⊗ VB · Uδt |ξ〉2 , (B2)

where we have used Uhlmann’s theorem again. The state
|ζ〉 is again simply an extension of |φ〉 to H ⊗ H′, and
VA⊗VB Uδt |ξ〉 can be chosen to be any fixed purification
of the two-qubit density operator

τab = tr/ab

(

VA ⊗ VB UδtρS U
†
δt V

†
A ⊗ V †

B

)

,

Again making use of this freedom, and recalling that we
chose |ψ〉 to be a purification of ρS , we can choose |ξ〉 to
be the same state as before: |ξ〉= |ψ〉.
The state |χ̄〉 and unitaries ŪA and ŪB were defined to

be those maximizing expression (B1). Thus by definition,

〈χ̄| ŪA ⊗ ŪB |ψ〉 ≥ 〈χ|UA ⊗ UB |ψ〉

for all |χ〉, UA and UB. In particular, this is true for
infinitesimal changes, e.g. |χ̄〉+ δt |χ⊥〉 where |χ⊥〉 is or-
thogonal to |χ〉. Thus 〈χ⊥| ŪA ⊗ ŪB |ψ〉 ≤ 0. However,
if this were strictly negative for some |χ⊥〉, then − |χ⊥〉
would make it positive. Therefore 〈χ⊥| ŪA ⊗ ŪB |ψ〉= 0.
Similarly, considering infinitesimal changes to the uni-
taries, we can show that:

〈χ̄| ŪAHA ⊗ ŪB |ψ〉= 0 〈χ̄| ŪA ⊗ ŪBHB |ψ〉= 0

〈χ⊥| ŪA ⊗ ŪB |ψ〉 = 0.
(B3)

Expression (B2) for the generalized singlet fraction at
time t+δt must tend to expression (B1) (the correspond-
ing expression for time t) as δt→ 0, so |ζ〉 = |χ̄〉+δt |χ⊥〉
and VA(B) = ŪA(B)(1 + iδtHA(B)), where HA(B) is a
Hermitian operator on A(B). Using this, expanding
Uδt = 1 − iδtH + O(δt2) (where H is the sum of in-
teractions involving at least one particle in A or B), and
making use of relations (B3), we have

FAB(t+ δt) = 〈χ̄| ŪA ⊗ ŪB(1− iδtH) |ψ〉2 +O
(
δt2

)
.

I.e. the state and unitaries maximizing expression (B1)
also maximize (B2), to first order in δt.
Hamiltonian H currently includes all interactions in-

volving at least one particle in A or B. By expanding
H in the previous expression as a sum over these two-
particle interactions, we can use the same relations (B3)
to show that only interactions crossing the boundary of
A or B need to be included to give the generalized singlet
fraction to first order in δt:

FAB(t+δt) = 〈χ̄| ŪA⊗ŪB
(

1−iδt
∑

i/∈A(B)
j∈A(B)

Hij

)

|ψ〉2+O
(
δt2

)
.

Now, global phases were chosen to make it real and
positive, so 〈χ̄| ŪA ⊗ ŪB |ψ〉 =

√

FAB(t). Thus, expand-
ing the square in the previous expression and only retain-
ing first order terms in δt, we arrive at a first expression

for the time-derivative of the generalized singlet fraction:

ḞAB(t) =
√

FAB(t) ·
1

i

∑

i/∈A(B)
j∈A(B)

〈ϕ|Hij |ψ〉−〈ψ|Hij |ϕ〉 (B4)

where |ϕ〉= Ū †
A ⊗ Ū †

B |χ̄〉.
To proceed, we will need the following Proposition [32]

which we use to prove the subsequent Lemma:

Proposition 2 (Fan-Hoffman) For any operator X,

the ordered singular values σ↓
i of X are individually

greater than or equal to the ordered eigenvalues r↓i of

ReX = (X +X†)/2. I.e. σ↓
i ≥ r↓i ∀i.

Note that the eigenvalues of ReX can be negative, in
which case the absolute values of the eigenvalues need
not obey the Proposition.

Lemma 3 For any operator X, (tr |X |)2−(tr(ReX))2 ≥
tr((ImX)2), where |X | =

√
XX†, ReX = (X +X†)/2,

and ImX = (X −X†)/2i.

Proof Assume initially that tr(ReX) is non-negative.
Defining P (N) to be the set of positive (negative) eigen-
values of ReX ,

∑

i6=j

(σiσj − rirj)

=
∑

i6=j

σiσj −
∑

i,j∈P
i6=j

rirj +
∑

i∈P
j∈N

|ri| |rj |

+
∑

i∈N
j∈P

|ri| |rj | −
∑

i,j∈N
i6=j

|ri| |rj |

=
∑

i or j /∈P
i6=j

σiσj +
∑

i∈P
j∈N

|ri| |rj |+
∑

i,j∈P
i6=j

(

σ↓
i σ

↓
j − r↓i r

↓
j

)

+
∑

i∈N

|ri|
(
∑

j∈P

|rj | −
∑

j∈N
j 6=i

|rj |
)

.

The first two terms are clearly positive, the third is pos-
itive by Proposition 2, and the last by the assumption
that tr(ReX) ≥ 0. Thus

∑

i6=j (σiσj − rirj) ≥ 0. Now,

(
tr |X |

)2 −
(
tr(ReX)

)2
=

(∑

i

σi

)2

−
(∑

i

ri

)2

=
∑

i

σ2
i −

∑

i

r2i + 2
∑

i6=j

(σiσj − rirj)

≥
∑

i

σ2
i −

∑

i

r2i

= tr
(
XX†

)
− tr((ReX)2) = tr((ImX)2)

where in the last line we have expanded X = ReX +
i ImX , and used the fact that ReX and ImX are both
Hermitian and that the trace of their commutator is 0.
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For completeness, we can remove the assumption
tr(ReX) ≥ 0 by noting that, if there existed an operator
X with tr(ReX) < 0 such that the Lemma did not hold,
then the operator −X would also violate the Lemma.
But then tr(Re(−X)) ≥ 0, so the Lemma must hold for
all operators. ✷
Recall that Hij really means Hij ⊗ 1rest. Thus

1

i

(
〈ϕ|Hij |ψ〉 − h.c.

)
= tr

(

Hij ·
1

i

(
tr/ij |ψ〉〈ϕ| − h.c.

))

= 2 tr (Hij ImXij) where Xij = tr/ij |ψ〉〈ϕ|

≤ 2
√

trH2
ij

√

tr((ImXij)2) by Cauchy-Schwartz

≤ 2 ‖Hij‖HS

√

(tr |Xij |)2 − (tr(ReXij))2 (B5)

using Lemma 3 in the last line. (|| • ||HS denotes the
Hilbert-Schmidt norm.)
Finally, we need to relate the quantities under the

square-root to generalized singlet fractions. Firstly,
(tr(ReXij))

2 = (Re(tr |ψ〉〈ϕ|))2 = 〈ϕ|ψ〉2 = FAB(t),
since global phases were chosen to make 〈ϕ|ψ〉 real and
positive.
Secondly, Hij acts on one particle j within A or B, and

a particle i outside. If j is in A, define the sets A′
i = A∪ i

and B′
i = B. If it is in B, define A′

i = A, B′
i = B ∪ i.

We apply Uhlmann’s theorem to the definition of the
generalized singlet fraction for ρA′

i
B′

i
, and again choose

the same state |ψ〉 for one of the purifications. So long
as A′

i and B
′
i are disjoint, we have

FA′

i
B′

i
(t) = max

VA′ ,VB′

|ζ〉

〈ζ|VA′ ⊗ VB′ |ψ〉2

≥ max
VA′ ,VB′

〈χ̄| ŪAVA′ ⊗ ŪBVB′ |ψ〉2

= max
VA′ ,VB′

〈ϕ|VA′ ⊗ VB′ |ψ〉2 ≥ max
Uij

〈ϕ|Uij |ψ〉2

= max
Uij

(tr(UijXij))
2 = tr(|Xij |)2,

where an inequality appears each time we restrict the
maximization. The last line follows from the fact that,
for any operator, tr |X | = maxU | tr(UX)|, which is easily
proved via the polar decomposition of X . If A′

i and B′
i

have a particle in common (it must be particle i if they
do), then the second of the two inequalities is not valid.
We can instead bound tr(|Xij |)2 ≤ 1.
Thus, using (tr(ReXij))

2 = FAB(t) and tr(|Xij |)2 ≤
FA′

iB
′

i
(t) (A′

i and B
′
i disjoint) or tr(|Xij |)2 ≤ 1 (A′

i and B
′
i

overlapping) in (B5), and substituting the result in (B4),
we arrive at a version of the entanglement rate equation:

ḞAB(t) ≤ 2
∑

i/∈A(B)
j∈A(B)

‖Hij‖HS

√

FAB(t)
√

FA′

i
B′

i
(t)− FAB(t),

where FA′

i
B′

i
is defined to be 1 if A′

i and B
′
i overlap.

To describe entanglement flow in a network of inter-
acting particles, one such rate equation must be written

down for all meaningful generalized singlet fractions that
can be defined on the network (‘meaningful’ implying
that the sets A and B include particles a and b respec-
tively, and are each be made up of ‘one piece’).
Recall that, since A′

i and B
′
i are subsets of A′ and B′

(see Fig. 1), FA′

i
B′

i
≤ FA′B′ . We can use this to arrive

at the simpler version of the entanglement rate equations
presented in the main text:

ḞAB(t) ≤ 2
∑

i/∈A(B)
j∈A(B)

‖Hij‖HS

√

FAB(t)
√

FA′B′(t)− FAB(t).

APPENDIX C: GENERAL TRIPARTITE CHAINS

The first half of the derivation of the entanglement
rate equations given in Appendix B can be re-used in
the proof of the tripartite chain result. Recall that the
three systems A, B and C making up the chain are in
an overall pure state |ψ〉ABC , and interact by nearest-
neighbour interactions: H = HAB + HBC . As noted in
subsection III A, the entangled fraction FAC of ρAC can
be expressed as a maximization over unitaries UA and
UC rather than states. Applying Uhlmann’s relation, it
can be rewritten

FAC = max
UA,UC

|χ〉

〈χ|UA ⊗ UC |ψ〉= 〈ϕ|ψ〉 .

We can choose |ψ〉 to be the overall system state |ψ〉ABC ,
since this is a purification of ρAC . |χ〉 is then an ex-
tension of a maximally entangled state |φ〉AC on HAC

to the space HABC : |χ〉 = |φ〉AC |ζ〉B. We define |ϕ〉 =
Ū †
A⊗Ū

†
C |χ̄〉 = |φ̄〉AC |ζ̄〉, where bars denote the particular

unitaries and states achieving the maximum.
Although the rate equations involve the generalized

singlet fraction, up to expression (B4) the derivation in
Appendix B applies equally well to the entangled frac-
tion. Expression (B4) then becomes

ḞAC(t) =
√

FAC(t) ·
1

i
(〈ϕ|H |ψ〉− 〈ψ|H |ϕ〉) , (C1)

Now, writing the state in its Schmidt decomposition
for the partition (B : AC), |ψ〉ABC =

∑

i λi |ψi〉AC |i〉B,
where we sort the Schmidt coefficients in descending or-
der: λ1 ≥ λ2 ≥ · · · ≥ λn. Extending {|i〉B} to form a
complete basis for HB, |ϕ〉 can be written in the product
decomposition |ϕ〉= |φ̄〉AC

∑

i αi |i〉B (the αi are complex
in general).
We know that |ϕ〉 maximizes 〈ϕ|ψ〉 = ∑

i α
∗
i λi

〈
φ̄|ψi

〉
.

Clearly, the phases of αi must be chosen to cancel the
phases of 〈φ̄|ψi〉. The relationship between the mag-
nitudes of the αi’s and 〈φ̄|ψi〉’s can be found using
Lagrange multipliers, with the normalization constraint
∑

i |αi|2 = 1, yielding

αi =
λi

〈
ψi|φ̄

〉

√
∑

k λ
2
k

∣
∣
〈
φ̄|ψk

〉∣
∣
2

(C2)
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We also know that, for any Hamiltonian acting only on
A or C, 〈ϕ|HA |ψ〉 = 〈ϕ|HC |ψ〉 = 0 (applying the same
reasoning as used to prove relations (B3) in Appendix B).
Thus

α∗
1λ1

〈
φ̄
∣
∣HA(C) |ψi〉= −

∑

i6=1

α∗
i λi

〈
φ̄
∣
∣HA(C) |ψi〉 . (C3)

Now, the system Hamiltonian H = HAB + HAC .
〈ϕ|HAB |ψ〉 =

∑

ij α
∗
iλj 〈φ̄|B〈i|HAB |j〉B |ψj〉. For the

i = j = 1 terms in the sum, B〈1|HAB |1〉B is just
some Hamiltonian acting only on A. Similarly for

B〈1|HBC |1〉B. Thus using (C2) and (C3),

〈ϕ|H |ψ〉=
∑

i6=1

α∗
i λi

(〈
φ̄, i

∣
∣H |ψi, i〉−

〈
φ̄, 1

∣
∣H |ψi, 1〉

)

+
∑

i6=j

α∗
i λi

〈
φ̄, i

∣
∣H |ψj , j〉

=
∑

i6=1

λ2ihii +
∑

i6=j

λiλjhij ,

where

hii =

〈
ψi|φ̄

〉 (〈
φ̄, i

∣
∣H |ψi, i〉 −

〈
φ̄, 1

∣
∣H |ψi, 1〉

)

√
∑

k λ
2
k

∣
∣
〈
φ̄|ψk

〉∣
∣
2

hij =

〈
ψi|φ̄

〉〈
φ̄, i

∣
∣H |ψi, j〉

√
∑

k λ
2
k

∣
∣
〈
φ̄|ψk

〉∣
∣
2

for i 6= j.

Using this in (C1), and bounding (hij−h∗ij)/i ≤ 2|H | =
2(|HAB|∞ + |HBC |∞) (where |M |∞ = maxij |Mij | de-
notes the l∞ norm), we arrive at the final result:

ḞAC(t) ≤ 2 |H |
√

FAC(t)
(∑

ij

λiλj − λ21

)

.
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and Ḟk+1(t0 + ǫ) > ḟk+1(t0 + ǫ). The proof can then be
applied at this new point.


