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Abstract

A blocking set in an affine plane is a set of points B such that every line contains
at least one point of B. The best known lower bound for blocking sets in non-
desarguesian affine planes was derived in the 1980’s by Bruen and Silverman [6].
In this note, we improve on this result by showing that a blocking set of an affine
plane of order q, q > 25, contains at least q + b√qc+ 3 points..

Mathematics Subject Classifications: 51E21

1 Introduction and preliminaries

Definition 1. A blocking set in an affine plane A (or an affine blocking set) is a point
set B such that every line of A contains at least one point of B.

In general, little is known about the smallest affine blocking sets, especially when
compared to the knowledge about small blocking sets in projective planes (see amongst
others [1, 4, 9, 11]). For the classical (desarguesian) affine plane AG(2, q) we have the
following result, obtained independently by Jamison and by Brouwer and Schrijver.

Theorem 2 ([3] and [10]). A blocking set of AG(2, q) has size at least 2q − 1.

If an affine blocking set B in a non-desarguesian plane of order q contains a line, then
it is easy to see that B contains at least 2q− 1 points. However, without the assumption
that the blocking set contains a line, the bound from Theorem 2 cannot be generalised
to non-desarguesian affine planes. This was first noticed in [5] (see also [2]) where it was
shown that each of the non-desarguesian affine planes of order 9 admits a blocking set of
order 16. More generally, it is shown in [8] that for q square, q > 9, there exist an affine
plane of order q admitting a blocking set of size at most 4

3
q + 5

3

√
q.
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The following result by Bruen and Thas gives a lower bound on the size of an affine
blocking set.

Theorem 3 ([7, Cor. 2]). If S is a blocking set of an affine plane of order q, then

|S| > q + 1 +

√
4q3 − 4q + 1− 1

2q
.

If q is a square, this implies |S| > q +
√
q + 1.

This result was improved by Bruen and Silverman.

Theorem 4 ([6, Theorem 3.1]). If S is a blocking set of an affine plane of order q > 3,
then

|S| > q +
√
q + 1 .

If q > 4 is a square, this implies |S| > q +
√
q + 2.

We can embed an affine plane A in a projective plane P by adding the parallel classes
as points and a unique line `∞ containing precisely these points (the line ‘at infinity’).
This process is called completion. By adding one point on `∞ to a blocking set of A we
get a blocking set of P . Using this correspondence, we can see that the non-square case
of the Theorem 4 also follows from the main result of [1].

In this paper, we will prove the following:

Main Theorem. A blocking set of an affine plane of order q, q > 25, contains at least
q +

⌊√
q
⌋

+ 3 points.

Note that all known blocking sets of non-desarguesian affine planes of order q < 25
also have size at least q +

⌊√
q
⌋

+ 3. We mentioned the affine planes of order 9 above.
In [8] the construction of a blocking set in an affine plane derived from the Hall plane of
order 16 is described: it has size at least 24 and at most 28.

2 The proof of the main theorem

The following lemma will be used in the proof of our main theorem.

Lemma 5. Let b > 1 be an integer and let k,m ∈ N be such that k ≡ m (mod b − 1)
and m < b − 1. If a1, . . . , ab ∈ N satisfy

∑b
i=1(i − 1)ai = k, then

∑b
i=1(b − i)(i − 1)ai >

m(b− 1−m).

Proof. Let ` be an integer such that k = `(b−1)+m. We first argue that
∑b

i=1(i−1)2ai 6
`(b − 1)2 + m2 and that equality is reached if and only if ab = `, am+1 = 1 and all ai’s
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with i ∈ {2, . . . , b − 1} \ {m + 1} equal zero. If a1, . . . , ab ∈ N satisfy
∑b

i=1(i − 1)ai = k
and we can find an aj > 2 for some 2 6 j 6 b− 1, then set

a′i =


ai − 2 if i = j

ai + 1 if

{
i = 2j − 1 if 2j 6 b

i ∈ {2j − b, b} if 2j > b

ai else

.

We find that
∑b

i=1(i−1)a′i = k and that
∑b

i=1(i−1)2ai <
∑b

i=1(i−1)2a′i. If a1, . . . , ab ∈ N
satisfy

∑b
i=1(i− 1)ai = k and we can find aj, aj′ > 1 for 2 6 j 6= j′ 6 b− 1, then set

a′i =


ai − 1 if i ∈ {j, j′}

ai + 1 if

{
i = j + j′ − 1 if j + j′ 6 b

i ∈ {j + j′ − b, b} if j + j′ > b

ai else

.

We find that
∑b

i=1(i − 1)a′i = k and that
∑b

i=1(i − 1)2ai <
∑b

i=1(i − 1)2a′i. From these
arguments the claim follows. Now, we find immediately that

b∑
i=1

(b− i)(i− 1)ai = (b− 1)
b∑

i=1

(i− 1)ai −
b∑

i=1

(i− 1)2ai

> (b− 1)k −
(
`(b− 1)2 +m2

)
= m(b− 1−m) .

We will prove our main theorem in the dual setting. A line ` of a plane Π is said to
cover a point P if P lies on `. It is now easy to see that the following lemma holds.

Lemma 6. The dual of an affine blocking set (considered as a subset of the projective
plane Π obtained through completion), is a set of lines in the dual of Π, covering all the
points but one.

Definition 7. Let L be a set of lines of a projective plane P . A k-knot is a point of P
that lies on exactly k lines of L.

Lemma 8. Let P be a point of an axiomatic projective plane P of order q, and let L be
a set of lines in P such that all points but P are on a line of L, and P is not. Let k be
such that L has no k′-knot for k′ > k. Let xi denote the number of i-knots in P. Then,
for all k:

k∑
i=1

(i− 1)(k − i)xi = −|L|(|L| − 1) + k|L|(q + 1)− k(q2 + q) .

Proof. We denote the number of i-knots (points on exactly i lines of L) by xi, i = 1, . . . , k.
We do the standard countings: first we count the number of points, then the number of
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pairs {(P, `) | P is a point on the line ` ∈ L} and finally the number of triples {(P, `,m) |
`,m ∈ L, ` 6= m, P a point on ` and m}. We find

k∑
i=1

xi = q2 + q ,

k∑
i=1

ixi = |L|(q + 1) ,
k∑

i=1

i(i− 1)xi = |L|(|L| − 1) .

Now we can execute the following calculation:

k∑
i=1

(i− 1)(k − i)xi = −
k∑

i=1

i(i− 1)xi + k

k∑
i=1

ixi − k
k∑

i=1

xi

= −|L|(|L| − 1) + k|L|(q + 1)− k(q2 + q) .

Lemma 9. Let P be a point of an axiomatic projective plane P of order q, q > 9, and let
L be a set of less than 2q− 1 lines in P such that all points but P are on a line of L, and
P is not. Let k be such that L admits a k-knot but no k′-knot for k′ > k. Then k < q,
|L| > q + k and k >

⌊√
q
⌋
.

Proof. It is immediate that L does not admit a (q + 1)-knot as the q + 1 lines through
some fixed point cover all points. If L admits a q-knot R, then L has to contain at least
q− 1 lines not through R, in order to cover the points of PR different from P and R. So,
|L| > 2q − 1, a contradiction.

Let k be such that L admits a k-knot, but no k′-knot for k′ > k, and let K be a
k-knot. We may assume that k 6 q − 1, and so we can find a line ` through K not in
L and not through P . Since all points on ` different from K are contained in a line of L
and these lines are necessarily different, we have |L| > q + k.

If k 6
⌊√

q
⌋
, then it follows from Lemma 8 that

0 6
k∑

i=1

(i− 1)(k − i)xi = −|L|(|L| − 1) + k(q + 1) (|L| − q)

6 −|L|(|L| − 1) + b√qc (q + 1) (|L| − q)

where we used that |L| − q > k > 0. We set |L| = q +
⌊√

q
⌋

+m and we find that

0 6 −(q2 − q b√qc2)−m2 − 2q b√qc − 2mq −m b√qc+ q + b√qc+m+mq b√qc
6 (m− 2)(q b√qc − 2q − b√qc −m− 1)− 3q − b√qc − 2

= −(m− 2)2 + (m− 2)(q b√qc − 2q − b√qc − 3)− 3q − b√qc − 2

6 (m− 2)(q b√qc − 2q − b√qc − 3)− 3q − b√qc − 2 .

We know that
⌊√

q
⌋
>
√
q−1 and hence q

⌊√
q
⌋
−2q−

⌊√
q
⌋
−3 > q

√
q−3q−√q−2. We

can see that q
√
q−3q−√q−2 > 0 for q > 12 and hence that q

⌊√
q
⌋
−2q−

⌊√
q
⌋
−3 > 0

for q > 9. Since q
⌊√

q
⌋
− 2q −

⌊√
q
⌋
− 3 > 0 for q > 9 and −3q −

⌊√
q
⌋
− 2 < 0, the

previous inequality gives a contradiction for m 6 2.

the electronic journal of combinatorics 25 (2018), #P00 4



Lemma 10. Let P be a point of an axiomatic projective plane P of order q, q > 25, and
let L be a set of at most q +

⌊√
q
⌋

+ 3 lines in P such that all points but P are on a line
of L, and P is not. Let k be such that L admits a k-knot but no k′-knot for k′ > k. Then
k >

⌊√
q
⌋

+ 1.

Proof. Note that 2q − 1 > q +
√
q + 3 > q +

⌊√
q
⌋

+ 3 since q > 7. From Lemma 9,
we know that k >

⌊√
q
⌋
. If k =

⌊√
q
⌋

+ 1, then we have |L| > q +
⌊√

q
⌋

+ 1. Setting
|L| = q +

⌊√
q
⌋

+ 1 +m it follows from Lemma 8 that

b√qc+1∑
i=1

(i− 1)(b√qc+ 1− i)xi

= −q
(
q − b√qc2

)
+ b√qc+ 1 +m ((q − 1) b√qc − q −m) . (1)

We need to show that for m = 0 and m = 1, we find a contradiction.

Case 1: m = 0.
If m = 0 the total contribution of the i-knots, i > 0, in the left hand side of (1) equals⌊√
q
⌋

+ 1− q
(
q −

⌊√
q
⌋2)

. We know that 1-knots and (
⌊√

q
⌋

+ 1)-knots contribute zero

to this sum, 2-knots and
⌊√

q
⌋
-knots contribute

√
q − 1 to this sum, and all other knots

contribute at least 2
⌊√

q
⌋
− 4 to this sum. Since

⌊√
q
⌋
> 5 we have 0 <

⌊√
q
⌋
− 1 <

2
⌊√

q
⌋
− 4 < 2

(⌊√
q
⌋
− 1
)
. We look at the different cases.

• If
⌊√

q
⌋

+ 1− q
(
q −

⌊√
q
⌋2)

= 0, then either
⌊√

q
⌋

+ 1 = 0 or
⌊√

q
⌋

+ 1 > q, which

both lead to a contradiction.

• If
⌊√

q
⌋

+ 1− q
(
q −

⌊√
q
⌋2)

=
⌊√

q
⌋
− 1, then q

(
q −

⌊√
q
⌋2)

= 2, which also leads

to contradiction since q > 3.

• If
⌊√

q
⌋

+ 1− q
(
q −

⌊√
q
⌋2)

> 2
⌊√

q
⌋
− 4, then q

(
q −

⌊√
q
⌋2)

+
(⌊√

q
⌋
− 5
)
6 0.

Since both terms are non-negative, it follows that q = 25 and there is equality in
the assumption. So, in this case we find that there is exactly one 3-knot or exactly
one 4-knot, and all other points (different from P ) are 1-knots or 6-knots. Say there
is a 3-knot P ′ (the argument for a 4-knot is analogous). We count the tuples (Q, `)
with ` ∈ L and Q the intersection point of ` and PP ′. Reducing modulo 5 we find
1 ≡ |L| ≡ (25− 1) · 1 + 3 ≡ 2 (mod 5), a contradiction.

Case 2: m = 1.
If m = 1 the total contribution of the i-knots, i > 0, in the left hand side of (1) equals

q
(⌊√

q
⌋
− 1
)
− q

(
q −

⌊√
q
⌋2)

. We know that L admits a (
⌊√

q
⌋

+ 1)-knot, say K. Let `

be a line through K and denote the number of i-knots on ` by ai.

If ` /∈ L, then we have
∑b√qc+1

i=1 iai = q+
⌊√

q
⌋

+ 2 by counting the tuples (Q, n) with

Q on n and n ∈ L. We also have
∑b√qc+1

i=1 ai = q + 1− δ where δ = 0 if P /∈ ` and δ = 1
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if P ∈ `. We find
∑b√qc+1

i=1 (i− 1)ai =
⌊√

q
⌋

+ 1 + δ. Using Lemma 5 with b =
⌊√

q
⌋

+ 1,
k =

⌊√
q
⌋

+ δ+ 1, m = δ+ 1, we find that the points on ` contribute at least
⌊√

q
⌋
− 1 to

the sum in (1) if P /∈ ` (so if δ = 0) and that the points on the line KP (so, for δ = 1)
contribute at least 2(

⌊√
q
⌋
− 2).

If ` ∈ L we have
∑b√qc+1

i=1 (i− 1)ai = q +
⌊√

q
⌋

+ 1 by counting the tuples (Q, n) with
Q on n and n ∈ L \ {`}. We now distinguish between two cases.

(i) If q +
⌊√

q
⌋

+ 1 6≡ 0 (mod
⌊√

q
⌋
), then we find that not all points on ` ∈ L can be

1-knots and
(⌊√

q
⌋

+ 1
)
-knots, hence the points on ` contribute at least

⌊√
q
⌋
− 1

to the sum in (1). It follows that

q (b√qc − 1)− q
(
q − b√qc2

)
=

√
q+1∑
i=1

(i− 1)(b√qc+ 1− i)xi

> q(b√qc − 1) + 2(b√qc − 2) ,

hence
q
(
q − b√qc2

)
+ 2 (b√qc − 2) 6 0 ,

a contradiction since q > 4. Note that the contribution of K is necessarily 0 so it
does not matter that we counted this point q + 1 times.

(ii) If q+
⌊√

q
⌋

+ 1 ≡ 0 (mod
⌊√

q
⌋
), then q =

⌊√
q
⌋ (⌊√

q
⌋

+ ε
)
−1 for some ε ∈ {1, 2}

since
⌊√

q
⌋ (⌊√

q
⌋

+ 0
)
− 1 6

√
q
√
q − 1 < q and

⌊√
q
⌋ (⌊√

q
⌋

+ 3
)
− 1 > (

√
q −

1)(
√
q + 2) − 1 > q for q > 9. Using the previous argument, only looking at lines

through K not in L, we then find

q (b√qc − 1)− q
(
q − b√qc2

)
=

√
q+1∑
i=1

(i− 1)(b√qc+ 1− i)xi

> (q − b√qc − 1)(b√qc − 1) + 2(b√qc − 2) ,

hence

q
(
q − b√qc2

)
−
(
b√qc2 − 2 b√qc+ 3

)
6 0 ,

⇔ ε b√qc3 + (ε2 − 2) b√qc2 − 2(ε− 1) b√qc − 2 6 0

a contradiction for ε ∈ {1, 2} since q > 4.

Lemma 11. Let P be a point of an axiomatic projective plane P of order q, q > 25, and
let L be a set of lines in P such that all points but P are on a line of L, and P is not. Let
k be such that L admits a k-knot but no k′-knot for k′ > k. Suppose that k = b√qc + 2
and that L has size q + b√qc+ 2, then the number of (b√qc+ 2)-knots is at most 5.
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Proof. We will first prove that there can be at most three
(⌊√

q
⌋

+ 2
)
-knots on a line.

Assume that K1, K2, K3, K4 are four
(⌊√

q
⌋

+ 2
)
-knots on a line; necessarily this line is in

L. The point P is not on `. On the line PK1 there is precisely on 2-knot T ; the remaining
q − 1 points are 1-knots. Consider the lines TKi, i = 2, 3, 4. They do not contain the
point P , and hence, if TKi is not a line of L, all q − 1 points, different from T and Ki

have to be covered by one of the remaining q+
⌊√

q
⌋

+ 2− (
⌊√

q
⌋

+ 2)− 2 = q− 2 lines of
L not through T and Ki which is impossible. We conclude that the lines TKi, i = 2, 3, 4
are lines of L. But this is a contradiction as T is on exactly two lines of L.

We now prove that d 6 5. Let K1, . . . , K6 be six
(⌊√

q
⌋

+ 2
)
-knots. For any Ki,

i = 1, . . . , 6, we know that there is exactly one 2-knot Ti on the line PKi. If i 6= j, then
TiKj is a line not containing P , hence, using the same argument as above, TiKj is a line of
L. As there are only two lines of L through Ti, i = 1, . . . , 6, one of them contains at least
three

(⌊√
q
⌋

+ 2
)
-knots. So, we know that three of the points K1, . . . , K6 are collinear,

say K1, K2 and K3, and we denote the line they are on by `. As there are only two lines
of L through a 2-knot we have immediately that Ti ∈ ` for i = 4, 5, 6. Moreover, the other
line of L through Ti contains Kj and Kj′ for {i, j, j′} = {4, 5, 6}. Now, the two lines of L
through T1 must be T1K2 and T1K3. Each of the

(⌊√
q
⌋

+ 2
)
-knots K4, K5 and K6 must

be on one of these two lines, so one of these two lines contains at least two of them. Say,
without loss of generality that K4 and K5 are on T1K2. However, then T6 is also on this
line, which implies T6 = K2 since both points are also on `, a contradiction.

Theorem 12. Let P be a point of an axiomatic projective plane P of order q, and let
L be a set of lines in P such that all points but P are on a line of L, and P is not. If
q > 25, then |L| > q +

⌊√
q
⌋

+ 3.

Proof. By Lemma 9, we have that |L| > q +
⌊√

q
⌋

+ 3 if k >
⌊√

q
⌋

+ 3. By Lemma 10,
k >

⌊√
q
⌋

+ 1. So it follows that we only need to rule out the case k =
⌊√

q
⌋

+ 2 in order
to obtain that |L| > q +

⌊√
q
⌋

+ 3.
If k =

⌊√
q
⌋

+ 2, then we know |L| > q +
⌊√

q
⌋

+ 2 and we may assume that |L| =
q +

⌊√
q
⌋

+ 2. We set d = xb√qc+2 for ease of notation. It then follows from Lemma 8

that

b√qc+1∑
j=1

(j − 1)(b√qc+ 1− j)xj = q (b√qc − 1)− q
(
q − b√qc2

)
+ d(b√qc+ 1) . (2)

Now, let K be an i-knot with 4 6 i 6
⌊√

q
⌋
, let ` /∈ L be a line through K and denote

the number of j-knots on ` different from K and P by aj. Then we have
∑b√qc+2

j=1 jaj =

q +
⌊√

q
⌋

+ 2 − i by counting the tuples (Q, n) with {Q} = ` ∩ n, Q 6= K and n ∈ L.

We also have
∑b√qc+2

j=1 aj = q − δ where δ = 0 if P /∈ ` and δ = 1 if P ∈ `. We find∑b√qc+2

j=1 (j− 1)aj =
⌊√

q
⌋

+ 2− i+ δ. Moreover, as
⌊√

q
⌋

+ 2− i+ δ 6
⌊√

q
⌋
− 1, we have∑b√qc+1

j=1 (j−1)aj =
⌊√

q
⌋

+2− i+δ. So we find that the points on ` 6= KP different from
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K contribute at least
(⌊√

q
⌋

+ 2− i
)

(i− 2) to the sum in (2) by Lemma 5; the points on
KP different from K contribute at least

(⌊√
q
⌋

+ 3− i
)

(i−3) to the sum in (2). None of
these contributions includes the point K, but K itself contributes

(⌊√
q
⌋

+ 1− i
)

(i− 1)
to the sum in (2). We find that

q (b√qc − 1)− q
(
q − b√qc2

)
+ d(b√qc+ 1) =

b√qc+1∑
j=1

(j − 1) (b√qc+ 1− j)xj

> (q − i) (b√qc+ 2− i) (i− 2)

+ (b√qc+ 3− i) (i− 3)

+ (b√qc+ 1− i) (i− 1) . (3)

Hence,

0 > i3 − (q + b√qc+ 6)i2 + (q b√qc+ 4q + 4 b√qc+ 12)i− d(b√qc+ 1)

+ q2 − q b√qc2 − 3q b√qc − 3q − 4 b√qc − 10 . (4)

For i = 4 we find, using that d 6 5 from Lemma 11,

0 > q2 − q b√qc2 + q b√qc − 3q − 4 b√qc+ 6− d (b√qc+ 1) > q b√qc − 3q − 9 b√qc+ 1 ,

which is a contradiction for q > 25. For i =
⌊√

q
⌋

we find, again using that d 6 5 from
Lemma 11,

0 > q2 − q b√qc2 + q b√qc − 3q − 2 b√qc2 + 8 b√qc − 10− d (b√qc+ 1)

> q b√qc − 3q − 2 b√qc2 + 3 b√qc − 15 ,

which is a contradiction for q > 25. Since the right hand side of (4) is function of degree
3 in i it can easily be checked that it is first increasing and then decreasing on the interval
[4,
⌊√

q
⌋
] for q > 25: looking at its derivative we see that the function is decreasing on]

q+bqc−
√

q2−qbqc+bqc2

3
+ 2,

q+bqc+
√

q2−qbqc+bqc2

3
+ 2

[
and

4 6
q + bqc −

√
q2 − q bqc+ bqc2

3
+ 2 6 bqc 6

q + bqc+
√
q2 − q bqc+ bqc2

3
+ 2 .

So, the minimum of this function on this interval is to be found at one of its endpoints.
So, as we have a contradiction for i = 4 and i =

⌊√
q
⌋
, we have a contradiction for all i

with 4 6 i 6
⌊√

q
⌋
.

For q = 25 we did not yet exclude i = 5. We find a contradiction in (4) if 0 6 d 6 4,
and we have equality in (4) if d = 5. In the latter case we also have equality in (3) and
hence the points on the lines of L through the 5-knot K should all contribute zero to the
sum in (2). If ` ∈ L through K we have

7∑
j=1

(j − 1)aj = q + b√qc+ 2− i = 27
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by counting the tuples (Q, n) with {Q} = ` ∩ n, Q 6= K and n ∈ L \ {`}. Hence, not
all points on ` different from K can be 1-knots or 6-knots; more precisely, there should
be at least two 7-knots on `. It follows that the total number of 7-knots is at least 10, a
contradiction.

So far we have concluded that xi = 0 for all i with 4 6 i 6
⌊√

q
⌋
. Now, let K ′ be

a 3-knot, let ` /∈ L be a line through K ′ different from K ′P and denote the number of
j-knots on ` different from K ′ by aj. Counting the tuples (Q, n) with {Q} = `∩n, Q 6= K ′

and n ∈ L and using
∑b√qc+2

j=1 aj = q we find
∑b√qc+2

j=1 (j−1)aj =
⌊√

q
⌋
−1, but as aj = 0

for all j = 4, . . . ,
⌊√

q
⌋
, we find that

a2 + 2a3 + b√qc ab√qc+1 + (b√qc+ 1) ab√qc+2 = b√qc − 1

and hence that ab√qc+1 = ab√qc+2 = 0. So, the points on ` different from K contribute

a2 (b√qc − 1) + a3 (2 (b√qc − 2)) = a2 (b√qc − 1) +

⌊√
q
⌋
− 1− a2
2

(2 (b√qc − 2))

= a2 + (b√qc − 1) (b√qc − 2)

hence at least
(⌊√

q
⌋
− 1
) (⌊√

q
⌋
− 2
)

to the sum in (2). The point K itself also con-
tributes 2

(⌊√
q
⌋
− 2
)

to this sum. We find

q (b√qc − 1)− q
(
q − b√qc2

)
+ d (b√qc+ 1) =

b√qc+1∑
j=1

(j − 1) (b√qc+ 1− j)xj

> (q − 3) (b√qc − 1) (b√qc − 2)

+ 2 (b√qc − 2)

= q b√qc2 − 3q b√qc+ 2q − 3 b√qc2

+ 11 b√qc − 10 .

So, we have, using Lemma 11, that

0 > q2−4q b√qc+3q−3 b√qc2+11 b√qc−10−d (b√qc+ 1) > q2−4q b√qc+6 b√qc−15 ,

which is a contradiction for q > 16.
So far, we know that xi = 0 for all i /∈ {1, 2,

⌊√
q
⌋

+ 1,
⌊√

q
⌋

+ 2}. We call the(⌊√
q
⌋

+ 1
)
-knots and the

(⌊√
q
⌋

+ 2
)
-knots big knots. It follows from the standard count-

the electronic journal of combinatorics 25 (2018), #P00 9



ings that 

x1 + x2 + xb√qc+1 = q2 + q − d

x1 + 2x2 + (b√qc+ 1)xb√qc+1 = (q + 1) (q + b√qc+ 2)− (b√qc+ 2) d

2x2 + (b√qc+ 1) b√qcxb√qc+1 = (q + b√qc+ 2) (q + b√qc+ 1)

− (b√qc+ 2) (b√qc+ 1) d

⇔



x1 = q2 − q b√qc − q − d− 1 +
q2 − q − 2⌊√

q
⌋

x2 = q b√qc+ 2q + d− q2 − q − 2d⌊√
q
⌋
− 1

xb√qc+1 = 1− d+
q2 − q − 2(d− 1)

⌊√
q
⌋
− 2⌊√

q
⌋ (⌊√

q
⌋
− 1
)

Since x1 is an integer, there must be an integer a such that q2− q− 2 = a
⌊√

q
⌋
. Since x2

is an integer too, q2 − q − 2d = a
⌊√

q
⌋
− 2(d− 1) ≡ 0 (mod

⌊√
q
⌋
− 1). So, there must

be an integer b such that a = 2(d− 1) + b(
⌊√

q
⌋
− 1). We find that

x1 = q2 − q b√qc − q + b b√qc+ d− 3− b
x2 = q b√qc+ 2q − d− b b√qc+ 2

xb√qc+1 = 1− d+ b

By counting the tuples (Q, n) with {Q} = `∩n, Q 6= P and n ∈ L and using
∑b√qc+2

j=1 aj =

q we find that for a line ` 3 P (necessarily not in L) we have that
∑b√qc+2

j=1 (j − 1)aj =⌊√
q
⌋

+ 2 with aj the number of j-knots on `. We see that there can be at most 1 big
knot on a line through P . Hence, d+ xb√qc+1, the number of big knots, is at most q + 1.

It follows that b 6 q. Consequently,

q2 − q − 2 = b√qc (2(d− 1) + b(b√qc − 1)) 6 q b√qc2 − q b√qc+ 2(d− 1) b√qc .

However, then, using that d 6 5 from Lemma 11,

0 > q2 − q b√qc2 + q b√qc − q − 2(d− 1) b√qc − 2

>
(
q2 − q b√qc2

)
+ q (b√qc − 1)− 8 b√qc − 2

> q (b√qc − 1)− 8 b√qc − 2 ,

which is a contradiction for q > 10.

Corollary 13. A blocking set of an affine plane of order q contains at least q+
⌊√

q
⌋

+ 3
points if q > 25.
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