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Abstract 

We monitored the progress of 40 children when they first started to acquire a second language 

(L2) implicitly through immersion. Employing a longitudinal design, we tested them before 

they had any notions of an L2 (T0) and after one school year of L2 exposure (T1) to 

determine whether cognitive abilities can predict the success of L2 learning. Task 

administration included measures of intelligence, cognitive control, and language skills. 

Initial scores on measures of inhibitory control seemed predictive of L2 Dutch vocabulary 

acquisition. At the same time, progress on IQ, inhibitory control, attentional shifting, and 

working memory were also identified as contributing factors, suggesting a more intricate 

relationship between cognitive abilities and L2 learning than previously assumed. 

Furthermore, L1 development was mainly predicted by performance on inhibitory control and 

working memory. 

 

Keywords: second language acquisition; immersion; cognitive control; cognitive 

development; language development  
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1. Introduction 

Knowing more than one language is becoming increasingly important in today’s 

society. As a consequence, an exceptional form of foreign language instruction is 

progressively making its way into current educational programmes, namely second language 

(L2) immersion schooling. In this type of education, L2 is the medium of classroom 

instruction for part of the curriculum. Naturally, parents may wonder whether their child will 

be able to succeed in acquiring an L2 in this context of implicit learning. Hence, this study set 

out to investigate whether it is possible to predict how proficient children will become in their 

new language by looking at their initial cognitive control skills. 

Cognitive control is thought to be made up of three main executive functions; 

inhibition of prepotent responses, mental set shifting, and updating and monitoring of 

working memory representations (Miyake et al., 2000). Previous research into cognitive 

development has already demonstrated that these executive skills provide a critical foundation 

for school readiness (e.g. Blair, 2002; McClelland, et al., 2007). Specifically with regard to 

literacy, Blair and Razza (2007) established that inhibitory control was positively associated 

with letter knowledge in kindergarten. Furthermore, St Clair-Thompson and Gathercole 

(2006) exposed a correlation between literacy (measured through reading, writing, spelling, 

and handwriting) and both inhibitory and working memory skills, whereas Fitzpatrick and 

Pagani (2012) determined a positive link between working memory performance and 

receptive vocabulary. In addition, among elementary school children, attentional shifting 

seems to be predictive of spelling competencies (Lubin, Regrin, Boulc'h, Pacton, & Lanoë, 

2016). Intuitively, one would assume it to be logical that measures such as verbal inhibition 

and verbal working memory correlate with other aspects of language proficiency. It is 

therefore important to note that these studies employed non-verbal measures of these 

executive functions. 



 4 

Seemingly, language learning depends on non-verbal cognitive control; or at least, the 

above-mentioned research shows that executive skills could be predictive of success in first 

language (L1) acquisition. This may, however, not necessarily the case for L2 acquisition. In 

a study among children enrolled in L2 immersion kindergarten, Nicolay and Poncelet (2013) 

ascertained that verbal cognitive measures, such as phonological processing as well as 

auditory attention and flexibility, determined the success of vocabulary learning during the 

first stages of L2 acquisition. They were, however, unable to detect any relationship with non-

verbal inhibitory skills. In contrast, Kapa and Colombo (2014) did show that inhibition 

together with WM span were significant predictors of artificial language acquisition in adults, 

with higher skills leading to better acquisition. Yet, in a similar experiment with children, the 

authors found that not inhibitory control, but attention shifting abilities together with WM 

span were determining factors. 

Although research on the predictive relationship between cognitive control and L2 

acquisition is scarce, there is a wealth of studies associating bilingualism with enhanced 

executive skills (see Bialystok, 2017 for a review; and de Bruin, Treccani, & Della Sala, 2014 

and Lehtonen et al., 2018 for meta-analyses). The so-called bilingual cognitive advantage has 

been reported in various contexts and within different bilingual populations (e.g. Bialystok, 

Martin, & Viswanathan, 2005; Calvo & Bialystok, 2014; Crivello et al., 2016; Prior & 

Gollan; 2011; Woumans, Ceuleers, Van der Linden, Szmalec, & Duyck, 2015). Also in an 

immersion context, L2 acquisition has been shown to improve cognitive abilities (e.g. 

Bialystok & Barac, 2012; Nicolay & Poncelet, 2015; Woumans, Surmont, Struys, & Duyck, 

2016). It is proposed that the mental juggling of two languages makes the bilingual’s brain a 

more flexible and adaptable organ, and Green’s (1998) model of inhibitory control (IC) can 

be used to explain these beneficial effects. It states that because the two languages are always 

simultaneously activated (e.g. Marian, Spivey, & Hirsh, 2003; Van Assche, Duyck, 

Hartsuiker, & Diependaele, 2009), bilinguals experience a constant need to select one 
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language for production while inhibiting the other. Due to this inhibitory practice and the 

need to be able to switch from one language to another, advantages have been found in 

children for inhibition (Poarch & van Hell, 2012) and shifting (Bialystok, 1999; Bialystok & 

Martin, 2004), as well as for WM (Kaushanskaya, Gross, & Buac, 2014; Morales, Calvo, & 

Bialystok, 2013). 

Still, if superior cognition is a result of becoming bilingual, it does not necessarily 

convey anything about the initial cognitive capacities children must possess to acquire an L2 

and succeed in immersion education. The current study’s aim was therefore to determine 

whether specific CC components (inhibition, shifting, and WM) affect L2 learning in the 

same way as they do L1. In addition, it was our aspiration to predict success in acquiring a 

language through L2 immersion. We therefore monitored children’s L2 receptive vocabulary 

in an immersion setting, when they first started learning their new form of speech. 

Importantly, our design was longitudinal, which entails that we had CC measures both at 

baseline (T0) before any L2 acquisition took place, and after one school year of L2 exposure 

(T1). This also gave us the opportunity to take into account children’s initial L1 proficiency 

and its development in an immersion environment. Based on previous research, we 

anticipated that baseline CC performance would be predictive of L2 acquisition in the sense 

that higher performance leads to more acquisition. Analogously, we assumed that superior CC 

abilities would predict L1 development (e.g. McClelland et al., 2007). Lastly, we expected 

CC to improve between T0 and T1 due to normal age-related cognitive development (e.g. 

Best & Miller, 2010). 

 

2. Method 

2.1 Participants 
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Our participants consisted of 47 children (28 female, M = 58.53 months, SD = 3.46) 

attending their second year of kindergarten in May/June 2015 at one of the five selected 

second language (L2) immersion schools, all located within a small region of Wallonia, the 

French-speaking part of Belgium. In September 2015, these children started an immersion 

programme in their third year of kindergarten. In the case of our schools, Dutch was used as 

the L2 medium for instruction approximately 50% of the time. Approval for the study was 

obtained from our faculty’s ethical committee. All subjects were healthy children and their 

participation was entirely voluntarily. Parental consent was obtained through an information 

letter and a document of informed consent, which were distributed via the schools. These 

documents were read and signed before task administration commenced. The description of 

the study’s goal was kept vague to minimise the effects of confounding factors (such as 

parents devoting more time to practicing their child’s L2 skills). 

The children were tested for the first time at the end of their second year of 

kindergarten (T0) at the age of 4 to 5 years old (range: 55 to 65 months), before the start of 

immersion. Prior to the first testing, parents were asked to complete a questionnaire including 

questions about both the child’s and parents’ linguistic background and SES. It was 

imperative that children had so far only been exposed to their native language. Parents were 

also asked to report possible learning disorders or problems with language development, 

comprehension, and sight. No problems were indicated for any of our participants. At the 

second time point (T1) in March - April 2016 our sample included 40 children (21 female, M 

= 68.7 months, SD = 3.5) out of the initial 47; one was not retested due to computer failure at 

T0, four were sick at home, one changed schools, and another was considered not to be a 

native French speaker. 

2.2 Materials 

All children were tested individually for CC (inhibition, shifting, and WM), 

intelligence, and French language proficiency (receptive vocabulary) at baseline (T0) and 
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after one year of immersion schooling (T1), At T1, the test battery also included a test of 

Dutch language proficiency (receptive vocabulary). The total duration for the test battery was 

between 30 and 45 minutes per child. All computer tasks were programmed in Tscope 

(Stevens, Lammertyn, Verbruggen, & Vandierendonck, 2006) and presented on a laptop with 

a 15-inch monitor running Windows 7 32 bit, and reaction times as well as accuracy scores 

were recorded. 

Échelle de Vocabulaire en Images Peabody (EVIP). This French translation of the 

Peabody Picture Vocabulary Task – Revised (Dunn, Theriault-Whalen, & Dunn, 1993) is a 

norm-referenced language assessment, which can be used to measure receptive vocabulary 

from the age of 2.5 to 18. The complete test is made up of 170 items, but only 25 to 50 items 

were needed to obtain accurate proficiency scoring for each of our subjects. Each item 

consisted of four black and white pictures presented on a card in multiple-choice format. 

Participants were asked to choose the picture that best depicted the word read aloud by the 

experiment leader. Test administration lasted approximately 15 minutes. Percentile scores 

calculated according to the EVIP manual were used for analyses. 

Peabody Picture Vocabulary Task III – Dutch (PPVT). This test (Dunn & Dunn, 2005) 

- similar to EVIP – measures receptive vocabulary and is norm-referenced for participants 

between 2.3 and 90 years old. It can also be used with L2 learners. Administration of the test 

lasted between 10 and 15 minutes. Since the participants just started learning Dutch, test 

administration started with item 1 instead of the age-based start item. Raw scores were used 

for analyses, as the test is not normed for L2 learners. 

Flanker. To measure inhibition, a flanker task was used. The task was based on the 

experiment developed by Eriksen and Eriksen (1974). Here, a central stimulus, < or >, is 

surrounded by four more ‘flankers’ (two on each side), which can be congruent or 

incongruent with the central stimulus. Conflict resolution (i.e. inhibition) is quantified as the 

congruency effect or ‘Flanker effect’ (i.e. the difference in performance between incongruent 
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and congruent trials). To make the task suitable for children, each arrowhead was replaced by 

an image of a fish. The subjects were told that the central fish was called ‘Jacques’ and that 

they had to indicate the direction in which Jacques was swimming by pressing the 

corresponding button. These buttons (Q and M on an AZERTY keyboard) were labelled with 

stickers depicting a fish swimming to the left (Q) and to the right (M). Half of all trials were 

congruent (i.e. the central fish swimming in the same direction as the four flanker fish), the 

other half incongruent (i.e. the central fish swimming into the other direction). Each trial 

started with a fixation cross remaining on the screen for 500 ms, followed by the stimuli and 

an interval of 750 ms. The stimuli disappeared when the participant responded or until 3,000 

ms had passed. Participants first completed a practice block of 10 trials. The experimental 

block consisted of 68 trials. After 34 trials, instructions reappeared and a break was 

suggested. 

Dimensional Change Card Sorting (DCCS). This task was adapted from Zelazo 

(2006) and is a measure of attentional shifting. In our computerised version, we employed 

four different stimuli (red rabbit, blue rabbit, red boat, and blue boat) randomised across 

participants. In the pre-switch condition, children were asked to sort blue rabbits and red boats  

according to one dimension (colour or shape) by pressing a left or right button on the 

keyboard, which corresponded to a red rabbit and a blue boat. In the post-switch condition, 

the same stimuli had to be sorted according to the other dimension. The target and test 

dimensions were counterbalanced across participants. Each condition consisted of 16 trials. 

The starting dimension (i.e. colour or shape) and response mapping were counterbalanced 

across participants. Furthermore, we included a third condition, in which sorting rules were 

randomised. This condition also consisted of 16 trials, with a rule switch occurring randomly 

eight times. A border around the image implied it had to be sorted by shape; no border meant 

the colour rule was in order. A fixation cross appeared on screen for 1400 ms, after which the 

image was shown and followed by an interval of 750 ms. No time limit was set for responses. 
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Instructions were given at the beginning of a trial and the relevant dimension was repeated for 

each stimulus. Administration of the task took approximately five minutes. 

Working Memory task. Based on Morales et al. (2013), this task was designed to 

manipulate working memory demands by comparing conditions based on two rules and four 

rules, which had to be kept in mind at all times. It consisted of six images in total, each 

requiring either a left or right response. As we realised that some children may not yet be able 

to distinguish between these two spatial responses, we assigned specific response colours to 

the targets during the instructions. The children learnt the association between the two key 

colours (yellow and purple; corresponding to the left and right Shift key on an AZERTY 

keyboard) and the six targets (red heart, turquoise flower, brown star, orange sun, green tree, 

blue cloud). Background colours were chosen to be different from the colours of the stimuli 

and response mapping was counterbalanced across participants. The circular yellow or purple 

background drawn around the targets were only present in the practice phase until children 

had learnt the association and were no longer visible in the testing phase. Each stimulus was 

presented either in the centre (neutral trials) or left and right of the screen (congruent and 

incongruent). When location and response mapping elicited the same response, a trial was 

considered congruent, if not, it was considered incongruent. The task was divided into four 

blocks of 40 trials each. Each block stood for one level of the 2 x 2 design: (2 stimuli vs. 4 

stimuli) x (central presentation vs. side presentation). The first and second block consisted of 

two different stimuli (low WM load), while the third and fourth block consisted of four 

different stimuli (high WM load). The first and third block consisted exclusively of neutral 

trials, whereas the second and fourth were made up of congruent and incongruent trials. Block 

1 and 3 started with four practice trials, Block 2 and 4 with eight practice trials. Each trial 

started with a fixation cross visible for 500 ms, followed by the stimulus that remained on the 

screen for a maximum of 3,000 ms and an interval of 500 ms. Instruction screens appeared 

before the start of a new block. 
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Raven’s Coloured Progressive Matrices. To measure fluid intelligence, Raven’s 

Coloured Progressive Matrices was administered (Raven, 2000). This test is a non-verbal 

measurement of fluid intelligence and can be used to evaluate general cognitive development, 

independently of linguistic development. The test consists of three different sets (A, AB, and 

B), each made up of twelve geometrical patterns with one piece missing. Participants were 

asked to complete the pattern. Standardised scores were calculated from the raw scores 

according to the manual (Raven, Court, & Raven, 1998) and used for further analysis. 

Table 1. Demographics and task scores (with 95% confidence intervals between brackets). RT stand for 
reactions times and ACC for accuracy rates. 

 T0 T1 

N 40 40 

Age (in months) 59.1 [57.9; 60.2] 68.7 [67.6; 69.8] 

Male/Female ratio 19/21 19/21 

Mother’s educationa 2.9 [2.7; 3.0] 2.9 [2.7; 3.0] 

Father’s educationa 2.6 [2.4; 2.8] 2.6 [2.4; 2.8] 

L1 vocabulary (Peabody French)b 60.7 [52.7; 68.6] 70.8 [62.9; 78.7] 

L2 vocabulary (Peabody Dutch)c N/A 32.6 [27.7; 37.5] 

Raven’s Matricesb 52.0 [42.7; 61.2] 73.3 [65.4; 81.2] 

Flanker (RT in ms)   

 Congruent 1413 [1314; 1511] 1190 [1104; 1275] 

 Incongruent 1578 [1452; 1703] 1275 [1176; 1375] 

Flanker (ACC in %)   

 Congruent 77 [72; 82] 91 [87; 95] 

 Incongruent 62 [54; 70] 85 [80; 90] 

Working Memory (RT in ms)   

 Block 1 1190 [1107; 1264] 971 [920; 1022] 

 Block 2   

 Congruent 1240 [1168; 1311] 1043 [991; 1095] 

 Incongruent 1257 [1169; 1344] 1077 [1026; 1139] 

 Block 3 1286 [1202; 1370] 1080 [1021; 1141] 

 Block 4   

 Congruent 1252 [1140; 1365] 1104 [1051; 1156] 

 Incongruent 1311 [1183; 1438] 1145 [1097; 1194] 

Working Memory (ACC in %)   
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 Block 1 83 [78; 88] 91 [87; 94] 

 Block 2    

 Congruent 81 [77; 88] 90 [86; 93] 

 Incongruent 83 [79; 87] 88 [84; 91] 

 Block 3 80 [75; 85] 89 [85; 93] 

 Block 4   

 Congruent 82 [77; 86] 88 [84; 91] 

 Incongruent 76 [71; 81] 84 [79; 88] 

Dimensional Card Sorting (RT in ms) 3005 [2441; 3569] 1677 [1574; 1779] 

Dimensional Card Sorting (ACC in %) 84 [80; 88] 93 [90; 96] 
Note. a Parents could indicate three options: 1 = first half of secondary school 2 = second half of secondary school, 3 = 

university or university college; b Percentile scores are reported; c Raw scores are reported. 

 

3. Results 

Our final sample size included 40 children, a sample equivalent to that of Kapa and 

Colombo (2014) who adopted a similar design and employed multiple regression analyses. 

We conducted an a priori power analysis using the correlation coefficients from Kapa and 

Colombo’s models (Model 1: R2 = .424, Model 2: R2 = .360) to calculate the effect size, and 

included the number of predictors proposed by these authors (i.e. 7 and 4). Our analyses 

yielded sample sizes of 38 and 39 with an actual power of .95 and .96. 

Table 1 reports mean reaction times (RT) from accurate trials only as well as accuracy 

rates (ACC). Analyses were performed on these results. Outlier RTs were trimmed 

individually by calculating a mean RT across all trials and excluding any response 2.5 SD of 

this mean. This procedure eliminated 2.2% of all flanker data, 2.6% of all WM data, and 4.0% 

of all DCCS data. 

3.1 Progress on CC, IQ, and L1 French 

Flanker task. The flanker task was analysed with a 2 x 2 (Time Point: T0, T1 x 

Congruency: congruent, incongruent) ANOVA. With regard to RTs, significant main effects 

were found for Time Point (F(1,39) = 27.93, p < .001, ηp
2 = .417 ) and Congruency (F(1,39) = 
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30.07, p < .001, ηp
2 = .435). Children were overall faster at T1 than at T0, and on congruent 

trials compared to incongruent trials. The Time Point*Congruency interaction was only 

marginally significant (F(1,39) = 3.20, p =.081, ηp
2 = .076), with the congruency effect being 

smaller at T1. ACC analyses resulted in a main effect of Time Point (F(1,39) = 47,41, p < 

.001, ηp
2 = .549) and Congruency (F(1,39) = 14.50, p < .001, ηp

2 = .271). Participants were 

more accurate at T1 and on congruent trials. The Time Point*Congruency interaction was also 

significant (F(1,39) = 20.89, p < .001, ηp
2 = .349), indicating smaller congruency effects at 

T1. 

Dimensional Change Card Sorting. Two paired t-tests showed RTs on the pre-switch 

(t(39) = 6.26, p < .001) and the post-switch (t(39) = 4.51, p < .001) condition were faster at 

T1 compared to T0. Another two paired t-tests indicated higher accuracy scores at T1 for both 

the pre-switch (t(39) = -4.50, p < .001) and the post-switch condition (t(39) = -2.58, p = 

.014). 

Working Memory task. WM RTs were analysed using a 2 x 2 design (Time Point: T0, 

T1 x WM Load: Block 1 = low, Block 3 =high). This resulted in a main effect of Time Point 

(F(1,39) = 27.91, p < .001, ηp
2 = .417) and of WM Load (F(1,39) = 22,32, p < .001, ηp

2 = 

.364). Participants were faster at T1 and in the low WM load condition. The interaction 

between Time Point and WM Load was not significant (F(1,39) = 0.05, p = .818, ηp
2 = .001). 

A 2 x 2 x 2 (Time Point: T0, T1 x WM Load: low, high x Congruency: congruent, 

incongruent) ANOVA showed a significant main effect of Time Point (F(1,39) = 19.77, p < 

.001, ηp
2 = .336) and Congruency (F(1,39) = 13.12, p = .001, ηp

2 = .252), but only a marginal 

effect of WM Load (F(1,39) = 3.72, p = .061, ηp
2 = .087). Participants were faster at T1 and 

for congruent trials. No significant interaction effects were found. For ACC, the 2 x 2 (Time 

Point x WM Load) ANOVA resulted in a significant main effect of Time Point (F(1,39) = 

10.82, p = .002, ηp
2 = .217), but not of WM Load (F(1,39) = 2.98, p = .092, ηp

2 = .071). 

Participants were more accurate at T1. No significant interaction effect was found (F(1,39) = 
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0.40, p = .529). The 2 x 2 x 2 design (Time Point x WM Load x Congruency) ANOVA 

showed a significant main effect of Time Point (F(1,39) = 11.66, p = .002, ηp
2 = .230), of 

WM Load (F(1,39) = 6.05, p = .018, ηp
2 = .134), and of Congruency (F(1,39) = 6.02, p = 

.019, ηp
2 = .139). Participants were more accurate at T1, on congruent trials, and for low WM 

load. The WM Load*Congruency interaction was also significant (F(1,39) = 6.30, p = .016, 

ηp
2 = .139). Participants made more errors on incongruent trials when WM load was high. 

Raven Progressive Matrices. IQ was analysed using a paired samples t-test. IQ 

percentiles differed significantly for the two time points (t(39) = -4.81, p < .001), with higher 

scores at T1. 

Échelle de Vocabulaire en Images Peabody. A paired t-test showed that participants 

scored higher on L1 vocabulary at T1 compared to T0 (t(39) = -2.38, p = .022). 

3.2 Influence of CC and IQ on L2 acquisition and L1 progress 

Since mothers’ education levels were uniformly high, we opted to use only father’s 

education level as an indication of SES. The flanker congruency effect was computed 

comparing performance on congruent and incongruent trials for RT and ACC. Furthermore, 

RT and ACC progression scores for L1 French, IQ, and CC were computed by comparing 

performance on T0 and T1. 

Due to the many variables, we employed a Principal Component Analysis (PCA) for 

both baseline and progress results. For the WM task, a correlation scatter plot indicated that 

WM ACC scores were concentrated at the high end of the range, so we applied a logit 

transformation. Using the Kaiser-Meyer-Olkin measure, anti-image correlations and Bartlett’s 

test of sphericity, the number of variables included in the PCA on T0 measures was reduced 

from 15 to six WM predictors. These six variables loaded on two components. Component 1, 

which explained 39.9% of the variance, was associated with the RT measures of block 1, 3, 

and 4. Component 2, explaining 31.8% of the total variance, was associated with the ACC 
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scores of Block 2, 3, and 4. The internal consistency of each component was assessed with 

Cronbach’s α, which was .838 for Component 1 and .713 for Component 2. New WM RT and 

ACC regression variables were computed based on these two components. A second PCA 

was conducted on progression scores. The same method was used as with the previous PCA 

and resulted in one WM component, which explained 49.7% of the total variance. The 

component consisted of ACC progression in Block 2 and 4 of the WM task, and RT 

progressions in Block 1, 3, and 4. Cronbach’s α = .730. A new regression variable for WM 

was computed based on this component. 

Linear regression modelling was used to assess the influence of baseline IQ, CC, and 

SES on participants’ L1 French progress (difference between T0 and T1 on French Peabody 

scores). Since the French Peabody score at T0 is already present in the outcome measure, it 

was not included in the analysis. Using the backward stepping method, 10 models were 

computed, where one variable at a time was removed. Durbin-Watson measure was 2.06. All 

models were significant, with Model 10 offering the best fit (F = 9.28, p < .001). Models 1 

and 10 are reported in Table 2. Greater progress on L1 French vocabulary was associated with 

faster flanker RT, lower flanker ACC, and faster WM RT. It must be noted that the 

correlation between flanker RT and ACC was negative (r2 = -.527, p < .001), indicating that 

these results were not an artefact due to a speed-accuracy trade-off. 

The same linear regression modelling method was used to assess the influence of 

baseline IQ, CC, SES, and L1 French on L2 Dutch acquisition (i.e. Dutch Peabody scores). 

The backward stepping method provided 11 models. All variables that were included are 

reported in Model 1, presented in Table 2. The Durbin-Watson measure was 2.03 and Models 

10 and 11 were significant. Model 11 offered the best fit for predicting the outcome measure 

L2 Dutch (F = 3.26, p = .034). This model together with the first is reported in Table 2. 

Higher performance on L2 Dutch vocabulary was associated with faster flanker RT, smaller 

flanker RT congruency effects, and slower DCCS Pre-switch RT. The lack of any correlation 
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between DCCS RT and ACC measures ruled out effects of any potential time/accuracy trade-

offs. 

Another linear regression was employed to evaluate progress on IQ, CC, SES, and L1 

French on L2 Dutch acquisition, which resulted in 7 models, all significant. The Durbin-

Watson measure was 2.27 and Model 7 offered the best fit (F = 7.09, p < .001). This model 

together with the first is reported in Table 2. Higher performance on L2 Dutch vocabulary 

was associated with higher progress on IQ (increased percentiles), flanker ACC (increased 

ACC), flanker ACC congruency effects (smaller effects), DCCS Pre-switch RT (decreased 

RT), and WM RT (decreased RT). 

 

Table 2. Regression models for dependent variables ‘Progress L1 French’ and ‘L2 Dutch’. 

 R2 ΔR2 β t 
Initial CC and progress L1 French     
Model 1 .597 .597   
 Father's education level   .021 .134 
 T0 IQ   .246 1.280 
 T0 Flanker Overall RT   -.600 -3.104** 
 T0 Flanker Overall ACC   -.488 -2.724* 
 T0 Flanker Effect RT   -.135 -.790 
 T0 Flanker Effect ACC   -.190 -1.174 
 T0 DCCS Pre-switch RT   .035 .160 
 T0 DCCS Post-switch RT   -.358 -1.497 
 T0 DCCS Pre-switch ACC   -.020 -.090 
 T0 DCCS Post-switch ACC   -.166 -.800 
 PCA Working Memory RT   .515 3.104** 
 PCA Working Memory ACC   -.258 -1.416 
Model 10 .465 -.023   
 T0 Flanker Overall RT   -.705 -4.572*** 
 T0 Flanker Overall ACC   -.550 -3.617** 
 PCA Working Memory RT   .452 3.378** 
     
Initial CC and L2 Dutch     
Model 1 .403 .403   
 Father's education level   .139 .674 
 T0 L1 French   .135 .491 
 T0 IQ   -.333 -1.432 
 T0 Flanker Overall RT   -.308 -1.026 
 T0 Flanker Overall ACC   .031 .124 
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 T0 Flanker Effect RT   .292 1.365 
 T0 Flanker Effect ACC   .117 .536 
 T0 DCCS Pre-switch RT   .279 .935 
 T0 DCCS Post-switch RT   .171 .571 
 T0 DCCS Pre-switch ACC   -.268 -.955 
 T0 DCCS Post-switch ACC   .384 1.480 
 PCA Working Memory RT   -.305 -1.300 
 PCA Working Memory ACC   .025 .104 
Model 11 .234 -.035   
 T0 Flanker Overall RT   -.350 -2.128* 
 T0 Flanker Effect RT   .296 1.700 
 T0 DCCS Pre-switch RT   .356 2.135* 
      
Progress CC and L2 Dutch     
Model 1 .620 .620   
 Progress L1 French   .135 .763 
 Progress IQ   .489 3.396** 
 Progress Flanker Overall RT   .019 .104 
 Progress Flanker Overall ACC   .331 2.341* 
 Progress Flanker Effect RT   .143 .896 
 Progress Flanker Effect ACC   .336 2.417* 
 Progress DCCS Pre-switch RT   .393 2.101* 
 Progress DCCS Post-switch RT   .113 .673 
 Progress DCCS Pre-switch ACC   -.164 -1.164 
 Progress DCCS Post-switch ACC   -.075 -.488 
 Progress PCA Working Memory   -.358 -2.384* 
Model 7 .550 -.034   
 Progress IQ   .502 3.785** 
 Progress Flanker Overall ACC   .294 2.259* 
 Progress Flanker Effect ACC   .345 2.717* 
 Progress DCCS Pre-switch RT   .412 3.123** 
 PCA Progress Working Memory   -.307 -2.321* 

Note. *** p < .001, ** p < .01, * p < .05 

 

4. Discussion 

At present, second language (L2) immersion programmes are quickly gaining 

popularity. The principal purpose of this method of schooling is to foster bilingualism in an 

implicit and natural manner. Nevertheless, parents may wonder whether their children will in 

fact be able to acquire this new language and whether native language development will 

suffer in the process, raising the question of whether success in this type of education can be 

anticipated. Indeed, studies into school readiness and first language (L1) acquisition 
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determined that specific cognitive control (CC) functions, such as inhibition, attentional 

shifting, and working memory, are predictive of language learning success. This is however 

less clear for L2 learning. A study by Kapa and Colombo (2014) suggests that cognitive 

capacities (most notably shifting and working memory) may predict artificial language 

acquisition. Still, this may not necessarily be the case for natural L2 learning. 

Hence, the present study set up a longitudinal protocol, charting the cognitive and 

linguistic development of 40 children enrolled in L2 immersion. At baseline, none of the 

children had any notions of an L2. They were tested at the end of second kindergarten (T0), 

before the start of the immersion programme in third kindergarten. Task administration 

included measures of fluid intelligence, attentional shifting, inhibitory control, working 

memory, and L1 receptive vocabulary. The second moment of testing (T1) took place at the 

end of third kindergarten, i.e. after one school year of L2 immersion, using the same test 

battery and adding a measure of L2 receptive vocabulary. 

4.1 Progress on CC, IQ, and L1 French 

 Children’s performance between T0 and T1 on CC improved over time. They were 

faster and more accurate in the flanker, the DCCS, and the WM picture task, indicating 

advanced processing skills. They also demonstrated a smaller congruency effect for accuracy 

in the flanker task, and equally, a marginally smaller effect for reaction times, which signifies 

better conflict resolution. Overall, the progress on these tasks was expected, because cognitive 

functions, upon which these measures rely, mainly develop between the ages of three and six 

(Best & Miller, 2010; Cragg, 2016; Garon, Bryson, & Smith, 2008). 

Intelligence scores also differed significantly between both time points; percentiles 

incremented from the 52 to the 73. Since, Raven’s Progressive Matrices is an age-normed 

test, the increase in IQ is unlikely to be an artefact, but rather a result of rising bilingualism. 

In fact, the same outcome was found by Woumans et al. (2016), where the increase in IQ 
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scores took place only in a similar sample of immersion children and not in their monolingual 

peers. This may be evidence for a cognitive advantage yielded by L2 acquisition and is in line 

with studies documenting this type of bilingual benefits (e.g. Bialystok et al., 2005; Costa, 

Hernández, & Sebastián-Gallés, 2008). 

With regard to L1 French vocabulary, results were analogous. The average percentile 

at T0 was 61, which increased to 71 at T1. Again, test scores were age-normed and should 

therefore be expected to remain steady. The EVIP has been tested extensively on validity and 

reliability, and it is therefore likely that this outcome reflects an increase in L1 vocabulary 

that cannot be attributed to age. Speculatively, the difference may be a result of immersion 

schooling, which was shown to improve metalinguistic awareness (Bialystok & Barac, 2012; 

Bialystok, Peets, & Moreno, 2014) and could also benefit L1 proficiency. However, as this 

study lacks a non-immersion control group, interpretation of these results should be treated 

with caution. In any case, we can safely deduce that French vocabulary acquisition was 

positive and immersion was therefore not detrimental to L1 development. 

4.2 Influence of CC and IQ on L1 progress and L2 acquisition 

Looking at progress for L1 French, we determined that better performance working 

memory task reaction times and on flanker reaction times was related to more extensive L1 

vocabulary development. An association with the flanker congruency effect was absent, 

indicating that not necessarily inhibitory control but rather general processing speed may 

influence language development. Still, we also determined a relation between L1 vocabulary 

and lower accuracy scores on the flanker. This was quite unexpected, but a correlation 

analysis revealed that this observation was not the result of a speed accuracy trade-off. We 

therefore treat this particular result with caution. All in all, our findings are partly in line with 

the vast amount of research supporting an association between literacy and both inhibition 

and working memory (e.g. Blair & Razza, 2007; Fitzpatrick & Pagani, 2012; Peng et al., 

2018; St Clair-Thompson & Gathercole, 2006). For instance, regarding the involvement of 
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working memory, it has been demonstrated that novel word learning in L1 consists of 

learning both a sequence of sounds or letters and the correct order of the sounds, similar to 

learning sequences in a span task, which is considered to be a measure of working memory 

(Page & Norris, 1998). Still, many studies have also reported the involvement of these CC 

components in other types of academic achievement, such as mathematics (see Allan, Hume, 

Allan, Farrington, & Lonigan, 2014 and Yeniad, Malda, Mesman, van IJzendoorn, & Pieper, 

2013 for meta-analyses). This may raise the question of whether these functions are task 

specific and directly required for performing academic tasks such as language learning, or 

rather domain-general (Yeniad et al., 2013). It may be that cognitive control facilitates 

behavioural regulation, increasing a child’s ability to pay attention and inhibit inappropriate 

behaviour, and hereby generating optimal learning conditions. 

Regarding the question of whether these different components of CC are predictive of 

L2 acquisition, our findings indicate that to a certain degree this is indeed the case. Analyses 

revealed that higher performance on baseline inhibitory control (flanker processing speed in 

general as well as flanker conflict resolution) was related to more extensive Dutch vocabulary 

knowledge. It thus seems that L2 acquisition – like L1 – benefits from the indirect impact of 

cognitive processing, which facilitates learning in general. However, the additional 

relationship between Dutch vocabulary and the flanker congruency effect implies a 

relationship between inhibitory control and L2 acquisition, which may be cultivated by the L2 

learner’s necessity to inhibit interference from L1. This view is supported by Green’s 

Inhibitory Control model (1998), which states that inhibition is necessary when controlling 

two languages. We also found an association with slower reaction times on the DCCS. This 

was in strong contrast to the study of Kapa and Colombo (2014) that actually reported 

positive association between attentional shifting and artificial language learning, using the 

same task. However, this study only recorded accuracy scores, whereas in our computerised 

task, we were able to take into account precise reaction time measures. And although not 
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significant, the relation between L2 Dutch and DCCS accuracy was positive in our sample as 

well. Although no trade-off was found between DCCS reaction times and accuracy, it is 

possible that children – especially at this age – generally focus more on being correct than 

being fast to respond. To support this assumption, we note that studies employing this task 

commonly measure only accuracy and not reaction speed (see, for instance, Zelazo, 2006). 

 Furthermore, the lack of SES as a significant predictor of L2 acquisition is also 

noteworthy. In essence, this implies that L2 learning does not necessarily depend on social 

status (e.g. Hoff, 2006), which in turn suggests that immersion schooling does not only 

benefit the ‘elite’. Nevertheless, it should be taken into account that our measure of SES was 

only quantified by parental educational level. As a result, we cannot rule out a possible role of 

other socioeconomic aspects. 

At the same time, L2 acquisition and progress on IQ, inhibitory control, attentional 

shifting, and working memory were associated. This suggests that the relation between 

cognitive capacities and L2 proficiency is not as straightforward as previously assumed. Rate 

of cognitive development, quantified as progress on intelligence and CC, seemed to determine 

the pace of L2 learning. Conversely, it is also possible that acquisition of an L2 actually 

fostered cognitive development, with more L2 learning leading to better progress for these 

different cognitive skills. This hypothesis is supported by the bilingual advantage theory, 

which states that controlling two languages leads to enhanced cognitive functioning. These 

advantages have been found for inhibitory control (e.g. Poarch & van Hell, 2012), shifting 

(e.g. Bialystok, 1999), and working memory (e.g. Morales et al., 2013) as well as intelligence 

(Woumans et al., 2016). In fact, these results shed light on the causal relationship between 

bilingualism and cognitive control, suggesting that it is indeed the acquisition of an L2 that 

leads to enhanced cognitive functioning, and not the other way around. It should, however, be 

noted that evidence supporting such an advantage is not clear-cut (see de Bruin, Treccani, & 
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Della Sala, 2014; Lehtonen et al., 2018), so these implications should be interpreted with 

caution. 

 

5. Limitations and future directions 

While the current study demonstrates a relationship between cognitive development and 

language acquisition (both L1 and L2), we acknowledge that L1 and L2 language proficiency 

only consisted of receptive vocabulary. Future research should consider including different 

measures, such as productive vocabulary and syntax. Regarding typology, the languages 

employed in this study were French and Dutch, which are similar in some ways but differ in 

others. Although they are derived from different language families (Romance versus 

Germanic), they still contain a fair amount of cognates as well as homonyms, and also share 

the same script. A study by Coderre and van Heuven (2014) showed that executive 

functioning is enhanced in similar-script bilinguals compared to different-script bilinguals, 

presumably because high orthographic overlap creates more cross-linguistic activation and 

hence demands more cognitive control, and most notably, inhibition (cf. Green, 1998). It is 

therefore possible that more similar or more dissimilar language pairs require different levels 

of baseline cognitive control and also affect cognitive progress in a different manner. 

Additional research is necessary to confirm this theory. 

Furthermore, performance on cognitive tasks was quantified by accuracy as well as 

response times, but our conclusions are mainly based on results from the latter. We therefore 

feel it necessary to point out the variability of reaction time measures in children. Equally 

important is the manner in which individual differences other than cognitive capacities and 

additional variables may influence language development. To illustrate, recent research has 

demonstrated that different strategies for learning an L2 may match or mismatch with what 
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works best for a child, and that genetic background as well as the age of acquisition may 

affect linguistic outcome (e.g. Vaugh & Hernandez, 2018). 

 

6. Conclusion 

All in all, this study provides evidence that performance on measures of inhibitory 

control and working memory are predictive of L1 proficiency, whereas only inhibitory control 

is associated with L2 acquisition. Equally important, is that all our participants were able to 

gain proficiency in L2, which indicates that enrolment in L2 immersion can benefit any child, 

and not only those with enhanced inhibitory skills. Crucially, L1 vocabulary also progressed 

(even more than would be expected looking at norm scores), demonstrating that acquiring an 

L2 via immersion does not impede L1 development. In addition, we found that the 

importance of IQ and socioeconomic status was limited, once more suggesting that immersion 

schooling is not only suited for the privileged few. In contrast, it may actually help to foster 

cognitive development. 
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Context 

The idea for this study was a logical step following a previous study, in which we compared a 

similar group of second language immersion children to their peers in traditional monolingual 

education and found higher IQ scores for the former after a year of second language 

acquisition (Woumans, Surmont, Struys, & Duyck, 2016). Having demonstrated that learning 

a language may affect general cognition, we were wondering whether the opposite was also a 

possibility, i.e. whether cognitive capabilities can predict language learning skills. Relying on 

the methodology employed by Kapa and Colombo (2014) and using it in a context of natural 

second language acquisition is how we set up the current study. 
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