
Effects of Adaptive Streaming Optimizations on the
Perception of 360◦ Virtual Reality Video

Joris Heyse, Maria Torres Vega, Tim Wauters, Femke De Backere, Filip De Turck
IDLab-imec

Ghent University
9052, Ghent, Belgium

Email: {joris.heyse, maria.torresvega, tim.wauters, femke.debackere, filip.deturck}@ugent.be

Abstract—As the demand of Virtual Reality (VR) video stream-
ing to mobile devices increases, novel optimization transport
techniques need to be designed to cope with these ultra-high-
bandwidth video services. One approach currently attracting
attention is the application of adaptive tile-based streaming
solutions to the VR video arena. The VR videos are encoded
at different quality levels, temporally divided into segments and
spatially split into tiles. During the streaming, each of these
tiles can be transmitted independently according to its location
within the frame (i.e., within or outside of the user’s field of
view). These methods open a new venue for bandwidth and
latency optimization for the streaming of VR videos. However,
the effect of the different adaptive streaming optimizations on
the end-user perception is still an open research topic. In this
demo, we present a VR video platform to experience the working
principles of adaptive tile-based VR video streaming services.
Through different tiling approaches, bandwidth conditions and
viewport algorithms, it allows the users to explore the effects
that each optimization has on the perception of the service. In
addition, the platform provides real-time bandwidth savings and
objective Quality of Experience (QoE) measurements to provide a
quantitative analysis of the optimizations effects. This demo aims
to provide a common playground for researchers to benchmark
and evaluate the performance of their optimization solutions.

Index Terms—Virtual Reality Video Streaming, Tiling, Quality
of Experience

I. INTRODUCTION

The demand of streaming of Virtual Reality (VR) video
to mobile devices is booming as Head Mounted Devices
(HMDs) increase their penetration rate, with more effective
and affordable solutions. Examples of such are the Google’s
Cardboard1 or the Samsung Gear VR2. In fact, the VR video
streaming traffic is expected to increase 20-fold by 2021 [1].

A VR video contains a full 360◦ panoramic view [2]. Thus,
its streaming demands significantly higher bandwidths than
traditional 2D video applications, even if only a fraction of
the spherical view, namely the viewport (or Field of View-
FoV), is visible at any given instant. These required ultra
high bandwidths are not always available in wireless networks,
and are not easy to process by lightweight mobile devices. In
this situation, there is a need for designing novel intelligent
techniques to cope with the network conditions and the users’
requirements.

1Google Cardboard https://goo.gl/DSquZf
2Gear VR https://goo.gl/7JdQm7

In an attempt to optimize the bandwidth usage, viewport-
aware schemes for VR video streaming based on the HAS
(HTTP Adaptive Streaming) paradigm are currently being
explored [3], [4]. HAS focuses on encoding the source
content at multiple quality representations (bitrates), while
each quality representation is time-segmented into small parts
(i.e., segments). To further optimize bandwidth usage, recent
research investigations have proposed HAS variants in which
quality representations are not only segmented in time but also
spatially split into smaller pieces (i.e., tiles) [5]. Approaches
such as [6], [7], [8] bring the adaptive segment-based tiled-
based streaming concept to the challenging VR arena. To this
end, the VR videos are encoded at different quality levels,
temporally divided in segments and spatially tiled [7]. Then,
during the streaming session, only the tiles within the viewport
are streamed at the highest quality, while others are maintained
at lower levels or not streamed at all [8]. To be effective, these
techniques rely on viewport prediction algorithms [6].

Adaptive streaming, viewport prediction, bandwidth aware-
ness and tiling techniques lead to bandwidth optimizations
but they have also the potential to severely impair the user’s
Quality of Experience (QoE). For example, considering that
only the predicted viewport’s tiles are downloaded in advance,
predictions errors may lead to application level degradation
(i.e., video stall, quality switch) and, consequently, QoE degra-
dation. However, the degree in which each of the optimizations
might influence the QoE is still an open topic of research and
discussion [2].

Herein, we present a VR video streaming platform to
explore and perceive the effects of the working principles
of adaptive tile-based VR video streaming services. Through
different tiling approaches, bandwidth conditions and viewport
algorithms, our platform allows the users to explore the effects
that each optimization has on the perception of the service. To
enable full control and comparison of all the conditions and
reduce the computation on the client, we move the full adaptive
streaming functionality to the server, leaving the client device
merely responsible for VR playout and viewport position mon-
itoring. In addition, the platform provides with a dashboard
with real-time bandwidth monitoring and objective Quality of
Experience (QoE) measurements. Both the subjective (users)
and the objective (network and metrics) evaluations will allow
us the creation of a mapping of the effects of VR streaming

Tiling

VR video
Content
Server

Network

Bandwidth available (UDP)

ADAPTIVE VR
VIDEO CLIENT

ADAPTIVE TILE-BASED
STREAMING INFRASTRUCTURE

VR Server

Tiling

…
…

…

…
…

…

Encoding

Segmenting

VR video processing

Set of selected
tiles for next

segment
[T1stq1,…,Tnstqm]

VR segment generation

Viewport
prediction

Current viewport (UDP)

Tiling

VR tile quality selection

predicted
viewport

Viewport
monitoring

Set of tiles from all
segments at

different qualities
[T1s1q1,…,Tnstqm]

Bandwidth
monitoring

VR video player

Next VR video
Segment (HTTP)

VR Client

Next VR segment
request (HTTP)

Fig. 1. Block diagram of the proposed adaptive tile-based VR end-to-end
approach.

services onto QoE. The remainder of this paper discusses the
working principles of the approach, and describes the demo.

II. ADAPTIVE TILE-BASED VR VIDEO STREAMING
MANAGED BY THE SERVER

Most of the state-of-the-art adaptive video streaming appli-
cations (for 2D, 3D or VR videos) concentrate the computation
(i.e., the decisions regarding the selection of next tiles and
segments) in the client application. Such is the case of the
standards for 2D adaptive streaming (MPEGDASH [4]) or
the approaches for VR of Petrangeli et al. [6] or Quiang et
al. [8]. These methods enable higher scalability. However,
when dealing with segments, tiles and VR video, deploy-
ing the core computation on the client (usually lightweight
smartphones) can lead to unwanted delays and freezes (the
client needs to receive and merge the tiles, and display the
resulting segment, while processing, predicting the location
of the user and requesting the tiles for the next segment).
In addition, these client-based methods fail to provide flex-
ible solutions to assess and compare the performance and
effects of the different viewport prediction algorithms and
tiling/segmenting schemes during the same session and using
the same conditions, which is the ultimate goal of our approach
and demonstrator. Thus, we decided to move the major part
of the functionality and computation to the server, leaving to
the client the sole responsibility of displaying the incoming
segments and of monitoring the HMD position within the 360◦

video and sensing the network.
Figure 1 presents our end-to-end streaming method. The VR

video server stores the original VR video content (typically a
set of 360◦ videos at the highest quality available). Prior to
the streaming, each of the videos is pre-processed according
to the adaptive tile-based streaming concept. First, they are
encoded at different quality levels (bitrates and resolutions).
Second, the compressed streams are temporally divided into
segments (of duration ranging from 500 ms to 10s). Finally,
each of these segments belonging to different video sources
and compression is spatially split into spatial areas (tiles). As
a result, a set of tiles related to multiple segments, qualities
and video sources is generated.

To start the streaming, the client registers in the server,
receiving a ready response when the server is prepared. To
speed up the process, this registration is done using the
User Datagram Protocol (UDP) which does not require ac-
knowledgments. After the registration, the streaming starts,
using the standard HAS protocol. This means that the client
first requests the media presentation descriptor (MPD), and
subsequently asks the segments described by it. As explained
before, our client application is not required to take any
decision regarding qualities of tiles or segments. Therefore,
the mpd file consists of a list of as many segments as the video
is composed of. During the streaming, the client monitors
both the location of the HMD (by means of the available
sensors in the smartphone) and the available bandwidth. Both
measurements are sent back to the server using again the UDP
protocol. On reception, the server generates the next segment.

Generating the segment consists of three phases: (1) view-
port prediction, (2) quality assignments and, (3) tile merging.
First, the current viewport information (received from the
client) is used to provide the prediction of the future location of
the user. Several viewport prediction algorithms have appeared
in the last years, ranging from simple adaptive, non predictive
approaches (in which the algorithm considers that the user
will not move in the next segment), to more complex ones,
such as the probabilistic approach of Xie et al. [9]. However,
the results reported have been usually shown on small test
sets (one video), making the validation far from generic. This
is due to the fact that not only users, but also different
video content types will heavily influence the accuracy of
the algorithm. The only path to evaluate the performance
of the different algorithms is to do so in a comparative
manner using the same broad range of conditions, users and
video content. The server-based adaptive streaming end-to-end
system presented herein enables exactly that as we show in
Section III. Second, it decides the qualities to assign to the
different tiles depending on the bandwidth available and the
just predicted viewport. As for viewport prediction, there is no
generic solution on how to select the qualities of the different
tiles. In our approach, we select the quality-zones approach
presented in [2]. The tiles are distributed in zones according to
their distance to the viewport, in such a way that only the tiles
within the viewport are selected at the highest quality, while
the edges are at the second highest quality, and so on. Finally,
it merges the selected tiles (already stored in the server) and
prepares the next segment that the client will request, when
the current one is nearly finishing playback.

III. EXPERIMENTAL DEMONSTRATOR

As proof of concept demonstrator, we envision a local
network in which the server and the client are connected by
means of a wireless access point (Figure 2). The client consists
of a Samsung GearVR3 and a Samsung S8 cellphone 4,
while the server is implemented in a standard computer

3http://www.samsung.com/global/galaxy/gear-vr/
4http://www.samsung.com/global/galaxy/galaxy-s8/

NETWORK

Adaptive VR Server
Adaptive Client HMD

(Samsung S8 + GearVR)
CONTROL

DASHBOARD

Original Videos

Raw videos
(Ffmpeg)

HEVC & tiles
(Kvazaar)

MP4 & HAS
(MP4Box)

Ti
le

s
Head Movement Monitoring

(GearVR Fw.-Java
for Android)

Control Dashboard
(python-plotly & python-dash)

UDP
(Java for Android)

Viewport
pred. (python)

UDP
(python)

Quality sel.
(python)

Segment gen.
(cat &MP4Box)

HTTP
server

(python)

Video display and HAS
Client (ExoPlayer-Java

for Android)

Bandwidth Current
position

Current position,
bandwidth

HAS streaming

Start
Start

Start
streaming

Viewport alg. Video, tiling, band.

Prediction

Bandwidth

Qualities

Fig. 2. Experimental demonstrator block diagram. Below the client and the
server, the different software blocks are shown. The blocks in gray in the
server show the preprocessing functionality.

ADAPTIVE 360° VIRTUAL REALITY VIDEO STREAMING
VR Video Network Conditions

Segment Duration Tiling Scheme

Viewport Prediction Algorithm
Start Session

Bandwidth Usage

Time

Ba
nd

w
id

th

Max. Band
Cur. Band

Objective QoE Assessment

Time

Q
ua

lit
y

Video Streamed to the user

Predicted
Actual

Fig. 3. Dashboard structure

(Dell Latitude 55805). Also in Figure 2, the main software
blocks are presented. As described in the previous Section,
we define our approach as an adaptive tiling server-based
method. Thus, most of the functionality is concentrated in
the server. The client takes charge of monitoring bandwidth
and head movement and of the HAS video display. Two type
of communications are used. Bandwidth and head movement
are transmitted using UDP, in order to minimize the network
overhead. The video stream is transmitted using the HAS
protocol, controlled by the player in the client (the Java based
Exoplayer).

On the server, the videos were first pre-processed mak-
ing use of the well-known video processing tools ffmpeg6,
Kvazaar7 and MP4Box8 (gray blocks in Figure 2). Ffmpeg
extracts the raw video of the original content. The Kvazaar
encoder is in charge of tiling the content and encoding to
H.265/HEVC [10]. HEVC was selected due to fact that it in-
cludes tiling among its features [11]. This action is performed
for each of the quality levels wanted. Finally, the MP4Box is
employed to pack the HEVC streams into mp4 containers and

5http://www.dell.com/dm/business/p/latitude-15-5580-laptop/pd
6https://www.ffmpeg.org/
7http://ultravideo.cs.tut.fi/#encoder
8https://gpac.wp.imt.fr/mp4box/

to prepare the videos to be streamed using HAS [2]. During
the streaming, the server predicts the viewport position for
the next segment (based on the received position from the
client, using a UDP channel) and assigns the qualities to the
tiles. Once decided, it merges the different tiles, and uses the
MP4Box to pack the resulting stream on an MP4 container
for its transmission. Except for the video processing software
packages, the server is programmed in python, due to its
flexibility.

The client functionality was implemented in Java using
Android Studio9. In order to monitor the head movement,
the GearVR Framework was used10. It provides a position
of the head within the sphere that can be mapped into the
2D projection of the video and takes care of all the VR
video related characteristics such as rendering, distortions on
the image to compensate for the lenses, etc. The GearVR
framework was also used in order to project the 2D video
back onto a sphere, which can be assigned to a mediaplayer
for displaying. As media player we employed the Exoplayer11.
The reason to choose the Exoplayer instead of the inbuilt
Android’s mediaplayer is two-folded. First, it allows seamless
streaming of HAS-based videos, because in addition to playing
the segments, it manages the HTTP requests and buffering.
Second, it provides an estimation of the bandwidth required
for the streaming, based on the transmission of the current
segment over HTTP (retransmissions and file size).

A dashboard (Figure 3) to change the characteristics (view-
port algorithm and tiling scheme), conditions (network) and
content (videos) during the streaming was implemented using
the dash package of plotly-python12. In addition, the dashboard
shows the real-time performance by means of three representa-
tions. First, it provides a quantitative measure of the bandwidth
optimization by plotting the employed bandwidth compared to
the necessary one if the whole 360◦ video were streamed at the
highest quality. Second, it provides a frame-to-frame objective
QoE assessment applying SSIM [12] between the area of the
video covered by the actual viewport and the same area of the
video at the highest quality. This gives a quantitative measure
of the effects of the inaccuracies of the viewport prediction
algorithms and the quality selection scheme. Finally, the
dashboard offers a visualization of the segment being streamed
to the HMD with overlapped prediction and actual viewports
(sensed at the beginning of each segment)., which provides a
qualitative assessment of the effects of the viewport algorithm.
In addition, it shows the strengths of the approach not only to
the current user but also to other visitors.

IV. DEMONSTRATOR SCENARIO

The set of characteristics shown in Table I are used for
the demonstration. They provide comprehensive and broad
evaluation of the capabilities of our approach. Two videos,
already analysed by the head movement dataset presented

9https://developer.android.com/studio/
10http://www.gearvrf.org/
11https://github.com/google/ExoPlayer
12https://plot.ly/products/dash/

TABLE I
VR CONTENT, CHARACTERISTICS AND CONDITIONS TO BE SHOWN IN THE

DEMO.

Videos Segment Tiles Qual. Viewport
1. Freestyle 5s None 8Mbps None

Skiing 1 s 12x4 2Mbps Speed
2. Google 500 ms 1-4-1 500Kbps Probability

Spotlight-HELP

by [13], namely ”Freestyle Skiing” and ”Google Spotlight-
HELP”, are to be employed. These videos present different
characteristics in terms of spatial and temporal complexity,
making their analysis complementary. To show the effect of
the segment’s length, we have chosen three different values
(5s, 1s and 500ms). The purpose of the tiling is to compare not
only different types of schemes but also the no-tiling approach
(i.e., standard adaptive streaming). This is shown by means
of three tiling options: no tiling, 12x4 and 1-4-1. The last
option distributes the tiles according to the structure of the
sphere. This means that the regions close to the poles are
not split, while around the equator, the space is uniformly
divided into four tiles. Regarding the qualities, three quality
levels are shown (8Mbps, 2Mbps and 500kbps). Finally, our
server-based approach allows the implementation and usage of
different viewport algorithms. For this demonstrator we aim to
compare three algorithms. First, we show the effects of a non-
predictive approach. This algorithm assumes that the user will
look exactly at the same position for the next interval. Thus,
it selects the tile qualities following the previously used field
of view. Counter-intuitively, this type of adaptive algorithm
provides accurate results for users that travel through the
sphere at very low speed or for very dynamic video content
(if the content changes very fast, the user tends to focus
on following the content from the same position instead of
exploring the space). Our second algorithm predicts the next
location based on the current position and the estimated speed
at which the user will move. In order to predict the speed,
the algorithm assumes that the user will have the same speed
trend as in the previous two segments and based on those it
extrapolates the current value. For the final viewport prediction
algorithm, we take a probabilistic approach. It generates a
heat-map of likely locations within the video scene where the
user is most likely to be watching at next, based on previous
users’ locations records. This is an approach with inspirations
on the Gravitational algorithm currently used by Facebook.
In our case, we generated such heat-map thanks to the head
movement dataset presented by Wu et al. [13].

V. CONCLUSION

In this demonstrator we present an adaptive tile-based VR
platform which allows for the users to explore, experience
and compare the working principles of adaptive tile-based
VR video streaming. Through different tiling approaches,
bandwidth conditions and viewport algorithms, the user will
experience first-hand the effects that each optimization has on
the perception of the adaptive tile-based VR video streaming

service. In addition to the experience of the users, the plat-
form provides real-time qualitative evaluations by means of
bandwidth usage and objective Quality of Experience (QoE)
measurements. These evaluations enable the creation of a
mapping of the effects of VR streaming service optimiza-
tions onto video QoE. In addition, this platform allows for
researchers to benchmark their optimization solutions in a
common evaluation playground.

ACKNOWLEDGMENT

This research was performed partially within the project
G025615N ”Optimized source coding for multiple terminals
in self-organizing networks” from the fund for Scientific
Research-Flanders (FWO-V).

REFERENCES

[1] Cisco, “Cisco visual networking index: Global mobile data traffic
forecast update, 20162021,” Cisco Systems, Tech. Rep., 2017.

[2] R. Irajá Tavares da Costa Filho, M. Torres Vega, M. Caggiani Luizelli,
J. van der Hooft, S. Petrangeli, T. Wauters, F. De Turck, and
L. Paschoal Gaspary, “Predicting the Performance of Virtual Reality
Video Streaming in Mobile Networks,” in Proceedings of the 2018 ACM
Multimedia Systems, 2018.

[3] G. Dimopoulos, I. Leontiadis, P. Barlet-Ros, and K. Papagiannaki,
“Measuring video qoe from encrypted traffic,” in Proceedings of
the 2016 Internet Measurement Conference, ser. IMC ’16. New
York, NY, USA: ACM, 2016, pp. 513–526. [Online]. Available:
http://doi.acm.org/10.1145/2987443.2987459

[4] I. Sodagar, “The mpeg-dash standard for multimedia streaming over the
internet,” IEEE Multimedia, vol. 18, no. 4, pp. 62–67, 2011.

[5] C. Concolato, J. L. Feuvre, F. Denoual, E. Nassor, N. Ouedraogo,
and J. Taquet, “Adaptive streaming of hevc tiled videos using mpeg-
dash,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. PP, no. 99, pp. 1–1, 2017.

[6] S. Petrangeli, V. Swaminathan, M. Hosseini, and F. De Turck, “An
http/2-based adaptive streaming framework for 360 virtual reality
videos,” in Proceedings of the 2017 ACM on Multimedia Conference,
ser. MM ’17. New York, NY, USA: ACM, 2017, pp. 306–314.
[Online]. Available: http://doi.acm.org/10.1145/3123266.3123453

[7] O. A. Niamut, E. Thomas, L. D’Acunto, C. Concolato, F. Denoual,
and S. Y. Lim, “Mpeg dash srd: Spatial relationship description,” in
Proceedings of the 7th International Conference on Multimedia Systems,
ser. MMSys ’16. New York, NY, USA: ACM, 2016, pp. 5:1–5:8.
[Online]. Available: http://doi.acm.org/10.1145/2910017.2910606

[8] F. Qian, L. Ji, B. Han, and V. Gopalakrishnan, “Optimizing 360 video
delivery over cellular networks,” in Proceedings of the 5th Workshop
on All Things Cellular: Operations, Applications and Challenges, ser.
ATC ’16. New York, NY, USA: ACM, 2016, pp. 1–6. [Online].
Available: http://doi.acm.org/10.1145/2980055.2980056

[9] L. Xie, Z. Xu, Y. Ban, X. Zhang, and Z. Guo, “360probdash: Improving
qoe of 360 video streaming using tile-based http adaptive streaming,”
in Proceedings of the 2017 ACM on Multimedia Conference, ser.
MM ’17. New York, NY, USA: ACM, 2017, pp. 315–323. [Online].
Available: http://doi.acm.org/10.1145/3123266.3123291

[10] M. Viitanen, A. Koivula, A. Lemmetti, J. Vanne, and T. D. Hmlinen,
“Kvazaar hevc encoder for efficient intra coding,” in 2015 IEEE Inter-
national Symposium on Circuits and Systems (ISCAS), May 2015, pp.
1662–1665.

[11] K. Misra, A. Segall, M. Horowitz, S. Xu, A. Fuldseth, and M. Zhou, “An
overview of tiles in hevc,” IEEE Journal of Selected Topics in Signal
Processing, vol. 7, no. 6, pp. 969–977, Dec 2013.

[12] P. Orosz, T. Skopk, Z. Nagy, P. Varga, and L. Gyimthi, “A case study
on correlating video qos and qoe,” in 2014 IEEE Network Operations
and Management Symposium (NOMS), May 2014, pp. 1–5.

[13] C. Wu, Z. Tan, Z. Wang, and S. Yang, “A dataset for exploring
user behaviors in vr spherical video streaming,” in Proceedings of
the 8th ACM on Multimedia Systems Conference, ser. MMSys’17.
New York, NY, USA: ACM, 2017, pp. 193–198. [Online]. Available:
http://doi.acm.org/10.1145/3083187.3083210

