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Converging evidence has led to a consensus in favor of computational models of behavior implementing
continuous information flow and parallel processing between cognitive processing stages. Yet, such
models still typically implement a discrete step between the last cognitive stage and motor implemen-
tation. This discrete step is implemented as a fixed decision bound that activation in the last cognitive
stage needs to cross before action can be initiated. Such an implementation is questionable as it cannot
account for two important features of behavior. First, it does not allow to select an action while
withholding it until the moment is appropriate for executing it. Second, it cannot account for recent
evidence that cognition is not confined prior to movement initiation, but consistently leaks into
movement. To address these two features, we propose a novel neurocomputational model of cognition-
action interactions, namely the unfolding action model (UAM). Crucially, the model implements
adaptive information flow between the last cognitive processing stage and motor implementation. We
show that the UAM addresses the two abovementioned features. Empirically, the UAM accounts for
traditional response time data, including positively skewed initiation time distribution, functionally fixed
decision bounds and speed–accuracy trade-offs in button-press experimental designs. Moreover, it
accounts for movement times, movement paths, and how they are influenced by cognitive-experimental
manipulations. This move should close the current gap between abstract decision-making models and
behavior observed in natural habitats.

Keywords: action selection, decision-making, adaptive information processing, neurocomputational
model, reaching task

Humans rely on their ability to select relevant actions in order to
survive. For instance, some indigenous tribes rely on precise
hunting techniques such as spear fishing to feed. When multiple
preys are afforded by the environment, spear fishing constitutes an
action selection problem. Understanding the underlying cognitive
processes and neural mechanisms involved in resolving this selec-
tion problem has been the attentional focus of cognitive (neuro)
science and psychology of decision-making for more than four
decades. To that endeavor, scientists have proposed a wide variety
of computational models in distinct research domains such as
language (Spivey, Grosjean, & Knoblich, 2005), numerical cog-

nition (Dotan & Dehaene, 2016), reinforcement learning (Daw,
Niv, & Dayan, 2005), working memory (Oberauer, Souza, Druey,
& Gade, 2013), semantic processing (Ralph, Jefferies, Patterson, &
Rogers, 2017), metacognition (Fleming & Daw, 2017), and cog-
nitive control (Botvinick, Braver, Barch, Carter, & Cohen, 2001),
to cite but a few. In the following, we briefly review the theoretical
and architectural evolution of such computational models. Subse-
quently, we point out a cognition-action gap that is problematic in
such models. Finally, we propose a novel computational model
overcoming this issue while still accounting for the most promi-
nent behavioral features accounted for by previous models.
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Strict Serial Processing

Perhaps the first explicit model architecture for cognitive pro-
cessing was proposed in the pioneer work of Donders (1868,
1969). The author assumed that there are distinct, sequentially
activated, information processing stages between perceiving a
stimulus and producing a response. In this model, the output of one
processing stage is taken as the input to the next, without any
temporal overlap between the two stages. This process continues
until a response is selected and implemented. Donders also devised
a method to test (properties of) this strict serial stage model. In
particular, his subtractive method allowed him to calculate the time
needed for specific processing stages. Consider two tasks differing
in only one processing stage. A first task involves pressing a button
with the right index whenever the letter “i” appears in a flow of
sequentially presented letters. A second task involves pressing a
button with the right and left index whenever the letter “i” and “e”
appear, respectively. Arguably, the second task contains an addi-
tional action selection processing stage compared to the first task.
Hence, by subtracting the time associated to the first task from that
of the second task, Donders suggested one could compute the time
associated to the additional processing stage (i.e., action selection).

The subtractive method came under criticism. It seemed incon-
ceivable to design experimental tasks that would uniquely add or
remove a specific processing stage without influencing the other
processing stages. Following the same serial architecture, Stern-
berg suggested an alternative approach, the additive method, to
investigate the components of the strict serial stage model (Stern-
berg, 1969). He proposed that when experimental factors only
target a specific processing stage (rather than influencing several
ones), their effects on reaction times (RTs) would be independent
and additive. Sternberg’s approach had the advantage that it did
not require adding or removing specific components (stages) in the
serial processing stream.

The strict serial stage information processing model and accom-
panying additive method were soon applied in several areas of
cognition including reading (McCusker, Gough, & Bias, 1981),
memory (Sternberg, 1966), problem solving (Simon & Newell,
1971), numerical cognition (Capaldi & Miller, 1988), and vision
(Marr, 1976). For instance, early work in reading (e.g., Gough,
1972) suggested that each letter would be separately and serially
encoded into phonemes. Once encoded, these phonemes would
then be tied together to form individual words. The idea of cutting
up general information in different pieces to be independently and
serially processed was translated to brain functioning as well. A
modular view of the brain was developed where each processing
stage/module within a serial processing stream would be subten-
ded by a distinct brain area (e.g., Fodor, 1983). Broadly speaking,
perceptive processes would be subtended in visual occipital areas,
cognitive processes in high-order associative cortices (i.e., fronto-
parietal networks), and the output of the final cognitive stage (e.g.,
action selection), would be sent to the motor areas, which execute
the action (Keele, 1968; Miller, Galanter, & Pribram, 1960).

In sum, strict serial processing is encapsulated by two main
features. First, seriality: processing stages are arranged in a chain.
Second, thresholding: a processing stage needs to be completed
before the subsequent stage starts. A cornerstone argument in favor
of a processing architecture implementing these two features em-
anates from the seminal serial search paradigm. In this paradigm,

participants have to report whether a target symbol is present in a
previously memorized sequence of symbols. Typically, mean RT
linearly increase as a function of the sequence length (e.g., Stern-
berg, 1966). It was concluded that only a model architecture
composed of serially arranged comparison processing stages (i.e.,
seriality), whereby each symbol in the memorized sequence is
compared to the target symbol one at a time (i.e., thresholding),
could explain such a linear RT function.

Computational Advances and Alternative Accounts

The strict serial stage model was soon criticized by two main
novel processing insights. First, instead of implementing thresh-
olding between the distinct processing stages, it was suggested that
information may directly leak from each stage to the subsequent
one in the serial chain. Such a continuous flow is at the heart of the
cascade model of McClelland (1979). In particular, that model
suggests that every processing unit belonging to a specific stage
continuously feeds information to the processing unit(s) it is con-
nected to in the subsequent stage. The connections from the
penultimate cognitive stage project to a final cognitive stage where
two (or more) responses, corresponding to each potential choice in
the task at hand, compete for being executed by the subsequent
motor stage. Importantly, McClelland (1979) demonstrated that
the additive logic of Sternberg (1969) could be applied under
specific circumstances to networks arranged in cascade. This type
of information processing was also suggested by Eriksen and
Schultz (1979) to take place in visual search tasks, and was
designated as a continuous flow conception.

Second, an even more compelling blow to serial stage process-
ing followed directly on the serial search paradigm. In particular,
rigorous mathematical theorems proved that limited capacity par-
allel processing models were not only perfectly able to mimic the
linear RT curves suggested to stem from serial processing, but also
systematically provided better fit to the data (Townsend, 1972,
1976, 1981). Further work (Townsend, 1990) also discussed the
importance of disentangling between serial and parallel process-
ing, and proposed different methods to do that.

The architecture debate was born and, based on these compu-
tational advancements, novel models saw the light. Broadly speak-
ing the resulting models can be situated on a two-dimensional
space where the first dimension, the information flow dimension,
defines whether the information flow between stages is continuous
or thresholded; and the second dimension, the architecture dimen-
sion, defines whether the processing stages are arranged in serial
chain or in parallel. For instance, in the seminal work of Quillian
(1967, 1969) semantic processing results from automatic spreading
activation between processing units, each coding for one concept,
that form an interconnected (i.e., not serially chained) network.
Here, the concept represented by a specific unit is not fully
processed when activation is passed to another unit (representing
another concept). Thereby, such a model would be defined by
continuous information flow and parallel processing stages (also
see Collins & Loftus, 1975).

Consensus and Remaining Issues

Influential models have been associated to distinct locations in
this two-dimensional space. Nonetheless, a consensus has gradu-
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ally been reached in favor of models implementing both continu-
ous information flow and a parallel architecture. These models
have found support in studies using neurophysiological as well as
imaging techniques. Supporting parallel architecture, single-cell
recording studies in nonhuman primates have consistently shown
that processing channels representing each potential action in the
task at hand are activated in parallel (Cisek, 2006; Cisek &
Kalaska, 2005; Klaes, Westendorff, Chakrabarti, & Gail, 2011).
Supporting continuous information flow, using magnetoencepha-
lography (MEG), it has been shown that the competition between
potential action plans in a perceptual decision task is biased from
the very beginning all the way up to the primary motor cortex (e.g.,
Donner, Siegel, Fries, & Engel, 2009). Furthermore, several stud-
ies have shown that representations of potential action plans in
(pre)motor cortices (Bastian, Schöner, & Riehle, 2003; Michelet,
Duncan, & Cisek, 2010; Thura & Cisek, 2014), are biased by
decision variables such as reward from the very beginning of the
decision process (Lauwereyns, Watanabe, Coe, & Hikosaka,
2002).

However, despite their advantages, current models have two
questionable properties in common. First, information flow from
one stage to another is typically nonadaptive. Note that this is the
case both for continuous (e.g., cascade model) and thresholded
information flow (e.g., serial stage model) systems. Continuous
information flow corresponds to a zero threshold, and threshol-
ded information flow corresponds to a nonzero, but constant
threshold value. This property will from now on be called unadap-
tive information flow. Hence, these models do not allow for an
adaptive information flow between processing stages. Yet, this is
essential for optimal functioning. Consider again the spear fishing
action selection problem. It is key for a successful spear shooter to
withhold the action until the moment is optimal to hit the prey.
This implies a system that can select an action but withhold it if the
moment is not optimal, that is, separating what action to select
from when to execute it. Hence, we propose to add a third level to
the information flow dimension, namely adaptive information
flow. This level allows implementing a break on a continuous flow
of information, thereby loading cognitive information and releas-
ing it upon the optimal moment (i.e., separating what to do from
when to do it).

Second, current models typically assume that information flow
between the final cognitive and the motor stage is thresholded, that
is, action is only initiated when cognition is fully finished. This
property, from now on called cognition-action thresholding, is
present in all models discussed up to now. Cognition-action thresh-
olding is implemented also in the cascade model (cfr. Figure 1 in
McClelland, 1979), and has been repeatedly implemented in more
recent continuous information flow models in distinct domains
such as, numerical cognition (Gevers, Verguts, Reynvoet, Caes-
sens, & Fias, 2006), cognitive control (Botvinick et al., 2001), task
switching (Gilbert & Shallice, 2002), and task set learning and
generalization (Collins & Frank, 2013). Moreover, cognition-
action thresholding is also a key feature in accumulation-to-bound
models (Cisek, Puskas, & El-Murr, 2009; Ratcliff, 1978; Ratcliff
& Rouder, 1998), where action is initiated only when evidence in
favor of a specific response reaches a (fixed or collapsing) decision
threshold.

One reason why cognition-action thresholding has been imple-
mented even in continuous information flow models is that such

thresholding has received support from neurophysiological stud-
ies. In monkeys, the firing rate of motor neurons encoding for
potential actions reaches a fixed rate at the moment of the decision,
irrespective of task difficulty, which is suggestive of cognition-
action thresholding (Gold & Shadlen, 2007; see also Churchland,
Kiani, & Shadlen, 2008; Roitman & Shadlen, 2002; Schall &
Bichot, 1998; Thura & Cisek, 2014). In humans, Twomey, Mur-
phy, Kelly, and O’Connell (2015) reported that the P300 (an
event-related EEG potential peaking around 300 ms–600 ms after
task-relevant stimulus onset) reaches a fixed amplitude just prior to
response execution, again irrespective of task difficulty (see also
Murphy, Robertson, Harty, & O’Connell, 2015; O’Connell, Dock-
ree, & Kelly, 2012). However, cognition-action thresholding
seems incompatible with recent theoretical accounts, based on
extensive behavioral and neurophysiological evidence (see below),
suggesting that behavior stems from a continuous information flow
involving perceptual, cognitive and motor processes (e.g., Mag-
nuson, 2005). Indeed, by definition, cognition-action thresholding
impeaches cognitive processes and motor processes to overlap in
time. Computational models should be able to account for those
effects of cognition on ongoing actions. Interestingly, as described
later on, adaptive information flow between the final cognitive and
the motor stage has the potential to account both for the emergence
of thresholded information flow between cognition and action, as
well as the continuous overlap between cognitive and motor pro-
cesses.

Neural and Behavioral Evidence Supporting Adaptive
Information Flow and Temporal Overlap Between

Cognition and Action

Adaptive information flow would implement a brake on the
information processing flow in order to separate what action to
perform from when to perform it, or more generally, for allowing
information to flow from one stage to another at the right time.
Interestingly, recent studies suggest that adaptive information flow
may be supported by the subthalamic nucleus (STN; Frank, 2006;
Weintraub & Zaghloul, 2013). For instance, rats with STN lesions
have difficulties estimating when to perform a relevant action and
thereby display compulsive lever-pressing for reward (Winter et
al., 2008). Moreover, lesions to the STN induce premature re-
sponding (Baunez et al., 2001; Baunez & Robbins, 1997). Deep
brain stimulation (DBS) in STN increases speed and decreases
accuracy in tasks inducing choice conflict (e.g., Stroop Task;
Jahanshahi et al., 2000). Also with DBS, Cavanagh et al. (2011)
showed that when stimulating the STN (disrupting its functional
role), patients with Parkinson’s disease displayed impulsive
choices in highly conflictual situations. In the same vein, using
fMRI and a stop-signal task, Aron and Poldrack (2006) observed
that successful stops significantly activated the STN. Altogether,
these studies suggest that the STN may implement a break on
information flow in order for the system to resolve response
conflict prior to allowing information to flow in the subsequent
motor stage. Importantly, the STN receives anatomical inputs from
several motor areas (directly from primary motor cortex, Alexan-
der & Crutcher, 1990; indirectly from preSMA; Aron et al., 2007).
Furthermore, it projects back to motor areas (via pallidum and
thalamus). Therefore, STN might pick up (pre-)motor cortex sig-
nals in order to gate motor cortex in a negative feedback loop, thus
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separating what to do from when to do it (i.e., implementing
adaptive information flow). This is known as the STN hypothesis
(Forstmann et al., 2010).

We further suggest that cognitive and motor processes overlap
in time. Such a proposal is supported by several reaching task
studies providing novel insights into the information processing
nature of the final processing stages. For instance, action selection
(cognitive) processes are not confined prior to movement initiation
(action) but rather continuously influence motor processes, thereby
suggesting parallel activation between cognitive and motor pro-
cesses (Boulenger et al., 2006; Calderon, Dewulf, Gevers, &
Verguts, 2017; Calderon, Verguts, & Gevers, 2015; Chapman et
al., 2010; Cressman, Franks, Enns, & Chua, 2007; Resulaj, Kiani,
Wolpert, & Shadlen, 2009; Santens, Goossens, & Verguts, 2011;
Sullivan, Hutcherson, Harris, & Rangel, 2015). For instance,
Chapman and colleagues (2010) observed that reach trajectories
are more attracted toward the side of a display when it contains
more potential targets compared with the opposite side. This reach
trajectory attraction bias is suggested to stem from an unbalance
(in favor of the side containing more potential targets) of simul-
taneously activate reach plans.

Implementing Adaptive Information Flow

Both questionable properties raised above (i.e., unadaptive in-
formation flow and cognition-action thresholding) can be dealt
with by implementing adaptive information flow between the last
cognitive and motor stage. With this in mind, we developed a
neurocomputational model of cognition-action interactions. In the
initial phases of cognitive processing, the model inhibits actions
depending on contextual constraints. Actions do not start when
activity crosses a fixed threshold: Rather, actions start to be im-
plemented once a dynamically modifiable inhibition level is suf-
ficiently surpassed. Thus, the issue associated with unadaptive
information flow (i.e., separating what to do from when to do it) is
addressed. When this dynamic threshold is crossed, no “motor
stage” is initiated; cognitive processing simply continues, but it
now has motor consequences. Thus, the issue of cognition-action
thresholding (i.e., cognition leaks into action) is addressed.

The model is illustrated in three simulations. In Simulation 1,
we consider model performance in the most widely used task to
study decision making models, namely the two-alternative forced
choice (2AFC) task. The model can account for the typical behav-
ioral results such as RT distributions and speed–accuracy trade-
offs (Bogacz, Wagenmakers, Forstmann, & Nieuwenhuis, 2010).
We further show that our model (implementing adaptive informa-
tion flow between the last cognitive and the motor stage) accounts
for data that was interpreted as favoring thresholded information
flow (i.e., fixed decision bound) between cognition and action. To
strengthen this point we extract parameters from the drift diffusion
model (DDM; Vandekerckhove & Tuerlinckx, 2008) on the sim-
ulated data in order to interpret the model’s functioning. In Sim-
ulation 2, we demonstrate that our model can account for the
effects of cognition on unfolding actions. Specifically, we show
that our model can account for the initiation times (ITs), movement
times (MTs), and movement paths in reaching tasks (e.g., Calderon
et al., 2015). In Simulation 3, we generalize the effect of a
cognitive manipulation to a completely different domain, namely
numerical cognition (Santens et al., 2011).

The Unfolding Action Model (UAM)

The UAM architecture is illustrated in Figure 1A. An input layer
projects to dorsal premotor cortex (PMd). The latter currently consists
of two response options (left [L] and right [R] target direction), in line
with the experiments we will model. In turn, the PMd layer has
ipsilateral excitatory connections with the primary motor (M1) layer.
Competition between reach target directions is implemented within
both the PMd and M1 layer through lateral inhibition (e.g., Duque et
al., 2007). Hence, our model displays a parallel architecture instanti-
ated by two parallel processing channels representing two concurrent
potential action plans. Each processing channel is composed of dis-
tinct processing stages. The M1 layer projects to a movement vector
layer (presumably located in brainstem or spine; see General Discus-
sion section); and movement trajectory is implemented as a continu-
ously updated M1-activity-weighted vector addition (Figure 1A).
Finally, M1 also projects to the STN (Alexander & Crutcher, 1990),
implementing a negative feedback loop for M1. In particular, STN
functions as an adaptive gate for movement execution that is modified
online depending on M1 dynamics. Specifically, as the activation
difference between M1 processing units increases, so does the width
of the movement execution gate (see Figure 1B, C). Hence, informa-
tion flow is continuous up until M1. However, information flow
between M1 (i.e., the last cognitive stage) and motor stage is adaptive;
and this adaptive information flow is gated by the STN. Full mathe-
matical implementation of the UAM (and biological motivation) can
be found in Appendix A.

Simulation 1: Decision Making

The movement vectors can be chosen such as to implement any
desired task-specific movement parameters (see Method section
below). A straightforward example would be a button press task:
In the current framework, a button press task is just a task requiring
short movement vectors. We thus start our simulation series by
investigating whether the UAM accounts for extant data in the
staple of experimental psychology, the two-alternative forced-
choice (2AFC) task of decision making. Specifically, two model
aspects were investigated in this simulation. The first is positive
skew. RTs virtually always have a positively skewed distribution
(Luce, 1986). This is therefore a first feature that any plausible
model of RTs (or ITs) must adhere to. Second, faster RT often
comes with an accuracy cost. This effect is known as the speed–
accuracy trade-off (SAT; Bogacz et al., 2010). Depending on the
environmental constraints, agents can optimally set this tradeoff to
either emphasize speed or accuracy (Heitz, 2014). We thus also
investigated whether the UAM accounts for SAT. For this purpose,
two data sets were simulated, one with a high (emphasizing accu-
racy) and one with a low (emphasizing speed) STN initial value
(Figure 2C). As extensively described below, our adaptive infor-
mation flow implementation also explains the emergence of
thresholded information flow (i.e., fixed decision bound). Specif-
ically, modifying the STN initial value has a direct influence on
adaptive information flow, and thereby on the emergence of
thresholded information flow. A high STN initial value will induce
a conservative information flow threshold (high decision bound),
that will in turn induce slow but accurate RTs. Conversely, a low
STN initial value will induce a low information flow threshold
(low decision bound), that will in turn induce fast but error prone
RTs.
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Method

Design. We simulate a generic 2AFC task where Stimulus 1
and 2 require a left and a right button press, respectively (see
Figure 2A). Examples of stimuli would be arrows pointing left or
right (Boy, Husain, & Sumner, 2010), random dots moving left or
right (Shadlen & Newsome, 2001), or words and nonwords (Meyer
& Schvaneveldt, 1971). Stimulus 1 and 2 activate input unit 1 and
2, respectively, which then activate PMd. Errors in simulated ITs
occur when the activity of the irrelevant M1 unit displays a higher
activity than the relevant M1 unit once a response is given.
Depending on the stimulus (i.e., left or right arrow), one specific
input unit was active at a time (xi � 1).

Data analysis. Two data sets of 4,000 trials were simulated
(2,000 for each stimulus) for each condition (i.e., emphasizing
speed or accuracy). Parameter values are displayed in the Appen-
dix B. To test for positive skew, we plotted the IT distributions and
calculated Pearson’s moment coefficient of skewness (�) for each
simulated data set. A value of 0 indicates a perfectly symmetrical
distribution, a negative value indicates a negative skew distribu-
tion, and a positive value indicates positive skew. To test for the
SAT, the accuracy in each simulated data set was calculated and
their IT distributions were plotted.

To further investigate the role of STN functionality in our
model, we fitted the diffusion model (DDM; Ratcliff, 1978) to the
simulation data. The DDM explains performance in 2AFC tasks
through a sequential evidence accumulation process over time. Of
specific interest are two parameters of the DDM, namely the
decision bound a and the drift rate v. The decision bound defines
how much evidence is needed to make a choice, and the drift rate
defines the speed of evidence accumulation. We reasoned that
because the STN gates action execution (i.e., choice implementa-
tion), ITs simulated with two distinct STN initial levels should best
be accounted for by a DDM allowing the decision bound to vary
freely across conditions. We therefore tested four models (all
combinations of a and v free or fixed) using the Diffusion Model
Analysis Toolbox (DMAT; Vandekerckhove & Tuerlinckx, 2008).

Response implementation. Movement is implemented through
a M1-activity-weighted vector addition. Specifically, the vector asso-

ciated to a left response (i.e., v1

¡

� ��1
�1 �) is weighted by the activation

value of the left M1 unit (z1), and the vector associated to a right

response (i.e., v2

¡

� ��1
�1 �) is weighted by the activation value of the

right M1 unit (z2). In turn, once the action gate opens, movement is
defined by the following differential equation:

Figure 1. Model Outline. (A) Neural architecture. The model consists of input, dorsal premotor, primary motor
layers and STN. The input layer projects onto the PMd layer. In turn the PMd layer projects to the M1 layer.
The M1 layer projects to the STN that picks up a signal of the difference in activation value between the M1
processing units (i.e., M1 dynamics). Depending on the M1 dynamics, the STN either opens or closes the gate
for movement. Movement is represented as a weighted (by M1 activation) vector addition that is continuously
updated. (B) Inhibition and STN function. The activation difference of M1 units is small. Here, movement is
inhibited. (C) Movement and STN function. When activation increases in a unit relative to the other (i.e., when
the biased competition favors a particular action plan, here the left movement plan), the STN value decreases and
it inhibits less, to the point that movement is gradually released. LT � left target; RT � right target.
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Figure 2. Simulation 1, 2AFC Task. (A) Mapping used in the 2AFC task. Each stimulus is connected to the
PMd layer unit with a certain weight. In this case, arrow stimuli fully determine the required response. Therefore,
a left arrow stimulus is connected with a weight w � 0 (i.e., dashed line) to the right PMd unit and a weight w �
1 (i.e., plain line) to the left PMd unit (same logic applies to a right arrow). (B) Two simulated RT distributions.
The red and blue distribution corresponds to the output of a model emphasizing accuracy and speed, respectively.
A high initial STN value (red distribution) induces slower ITs and high accuracy. In contrast, a low initial STN
value (blue distribution) produces faster ITs and low accuracy. (C) Illustration of positive skew, speed–accuracy
trade-off and thresholded information flow (fixed decision bound). The level lo on the ordinate represents the
STN initial value when speed is favored over accuracy (blue lines). The level hi on the ordinate illustrates the
STN initial value when accuracy is emphasized (red lines). See text for detailed explanation of the model
predictions regarding behavioral results of 2AFC tasks. Horizontal red and blue lines represent the activation
value of the relevant motor unit at action initiation onset. Vertical red and blue lines represent the different ITs.
The IT subindices represent whether they belong to the speed (lo) or accuracy (hi) condition. See the online
article for the color version of this figure.
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d
dtV(t) � (z1 � v1

¡

� z2 � v2

¡

) (1)

where z represents the activity of M1 units (see Appendix A).
Thus, from an UAM perspective, a button press can be considered
as a movement with small absolute size. The ITs were computed
as the time interval between the input onset of the go signal and the
moment that the vertical-dimension value of the movement (V)
vector was �1.

Results

Figure 2B shows the IT distributions of the two simulated data
sets, one emphasizing speed (blue) and the other accuracy (red);
here and elsewhere, (initiation) time is measured in arbitrary units
(a.u.). Both distributions have a positive skew, and skewness is
enhanced in the speed-emphasis condition (� � 1.29) relative to
the accuracy-emphasis condition (� � 0.77).

Second, the model with higher initial STN was indeed more
accurate than with lower initial STN (93% and 75%, respectively),
but slower (mean RT .77 and .41, respectively). Thus, the model
implements speed–accuracy trade-off (SAT). This is further illus-
trated in Table 1, which shows the results (parameter estimates of
a and v, and Bayesian Information Criterion (BIC) of the DDM
fitting procedure for the four models considered above. Note that
BIC automatically incorporates the effects of both fit and model
complexity. The worst model is the one where no parameters are
allowed to change across conditions. Second is the model where
only drift rates can change. As predicted, the two best models are
the ones where boundaries can change. Unexpectedly, the model
with both free decision bound and free drift rate is the best of all.
However, the free drift rate in the latter model is misleading
because the drift rate estimates are in the opposite direction as
predicted. One would expect the drift rate to increase when speed
is emphasized; in contrast, the drift rate decreased when speed was
emphasized. The decision bounds are in the expected direction:
Decision bound is lower when speed is emphasized. Altogether,
these results demonstrate that STN in our model approximates the
DDM decision bound. This implies that the adaptive information
flow instantiated in our model between M1 processing stages and
motor implementation is a mechanism that can account for a large
corpus of neurophysiological studies (e.g., Gold & Shadlen, 2007;
Twomey et al., 2015) that have until now been taken as evidence
for thresholded information flow in the last processing stage.

Discussion

The UAM exhibits two classical RT effects, namely positive
skew and SAT. To understand why the model exhibits these

effects, consider a cartoon of the model dynamics in Figure 2C, the
blue lines in particular. Descending lines correspond to STN and
ascending lines to the response-relevant motor processing unit.
Each pair of touching lines (touching at the blue horizontal line)
corresponds to a specific trial. The slopes of the ascending lines
represent evidence strength for the relevant response. Steepness is
subject to trial-by-trial variance, and when the slopes are steep,
evidence in favor of the relevant response is strong. First, the
geometric intuition explains why skew must be positive; there is
simply more “room” for lines to cross on the right than on the left.
Second, it’s also clear from Figure 2C how the model can account
for the SAT: By increasing the initial value of STN (red lines in
Figure 2C), response and STN trajectories cross later, and this
slows RT, increases accuracy, and decreases positive skew.

Adaptive information flow implementation also explains the
emergence of thresholded information flow (i.e., fixed decision
bound; see Gold & Shadlen, 2007). Let us focus on a given
accuracy context (e.g., red lines in Figure 2C). In the UAM, the
value of the STN linearly decreases (red descending lines) as a
function of M1 unit activation (red ascending lines). In particular,
a steep evidence accumulation increase (e.g., easy task with strong
motion coherence) induces a steep STN value decrease. It follows
that, for any given trial difficulty, the ascending and descending
lines will cross around the same location on the ordinate, and
therefore action initiation will begin once motor evidence accu-
mulation reaches a specific value (red horizontal line; i.e., the
action initiation threshold). This is true for any given STN initial
value (see blue horizontal line in Figure 2C).

Simulation 2: Cognitive Control

To address both the leakage of cognitive processes into move-
ment and the emergence of a fixed decision bound, we next
consider a task where movement paths (MPs) can be studied. For
this purpose, we used the reaching task of Calderon et al. (2015).
In this task, participants had to reach toward the correct response
target side (see Figure 3). Task difficulty was defined by a cue-
target congruency; the cue could point in the same direction as
the target (congruent, easy trial) or in the opposite direction (in-
congruent, difficult trial). It was found that the difficulty manip-
ulation was observed both in ITs, as well as in the MTs and MPs.
Hence, these results are in line with the view that cognitive
processes influence motor processes after movement initiation
(i.e., cognition leaking into movement). First, we test whether the
UAM can also account for the difficulty manipulation not only at
the level of ITs, but also MTs and MPs. Furthermore, the difficulty
manipulation allows us to consider again, from an adaptive infor-
mation flow perspective, the emergence of a fixed decision bound.

Table 1
DDM Fitting Results

Models a – STN low v – STN low a – STN high v – STN high BIC

No effect .179 .188 .179 .188 31760.51
Drift rate .184 .323 .184 .176 31332.88
Decision bound .139 .187 .216 .187 29268.26
Drift rate and decision bound .149 .193 .364 .462 28846.09

Note. a � decision bound level; v � drift rate; STN low � initial level of the subthalamic nucleus of .5; STN
high � initial level of the subthalamic nucleus of 1.2; DDM � drift diffusion model; BIC � Bayesian
Information Criterion.
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As previously mentioned, EEG markers of sensorimotor activity
(i.e., the amplitude of the P300 ERP) reached a fixed threshold
regardless of trial difficulty (O’Connell et al., 2012). Second, we
thus test whether this property also holds in the UAM.

Method

Design. Each trial started with a predictive cue regarding
upcoming reach possibilities, before the target stimulus. Cues
could either be congruent or incongruent with the upcoming target
direction. Also, this cue-target congruency could either be of high
probability (80%) or low probability (60%). ITs were computed as
the time between the onset of the go signal (indicating which target
to reach for) and the first data point falling outside a small start
square location (that needed to be touched to start the trial). MTs

were defined as the time interval between leaving the start location
and reaching the target location. Therefore, our experimental data
conformed to a 2 (cue-target congruency; Congruent or Incongru-
ent) � 2 (Probability; high or low) design; and for each cell we had
an IT and MT. This provided us eight response time measures.
Moreover, MPs corresponded to the horizontal and vertical loca-
tions of the movement during the MT. We predicted that task
difficulty (implemented via the predictive task-relevant cues)
would be revealed in ITs, MTs, and MPs (for details see Calderon
et al., 2015).

We simulated 4,000 trials with an identical trial distribution as
in Calderon et al. (2015). To match the sample size of Calderon et
al. (2015) we simulated the MPs for 20 simulated participants.
Input unit weights wi are shown in Appendix C. As in the previous

Figure 3. Simulation 2 Outline. (A) Experimental task design of Calderon et al. (2015). Participants first
pressed the start square. Subsequently, they were shown a letter conveying the probabilities associated with each
upcoming reach possibility. R and r represent, respectively, 80%/60% and 20%/40% for right/left reach
probabilities (similar logic applies to L and l). Participants then saw a fixation cross followed by the go signal
indicating them where to reach for. Depicted on the figure are two congruent and incongruent trials. For
congruent trials, the side with the highest probability to be reached was the same side indicated by the arrow go
signal. This pattern was reversed for incongruent trials. Moreover, trials could either have a high (uppercase
letter) or low (lowercase letter) probability of being congruent or incongruent. Hence, cue-target congruency
could either be of high or low probability. The dashed trajectories on the figure represent the hypothesized
trajectories under each condition. (B) Mapping used in Simulation 2. Each stimulus is connected to the PMd
layer unit with a certain weight (see Appendix C for input-PMd weight values).
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simulation, one specific input (i.e., probability cue or go signal)
unit was active at a time.

Data analysis. Because we now also fit MTs, we fitted the
UAM rather than the diffusion model. The fitting procedure as
well as best fit parameters are displayed in the Appendix B. After
data fitting, response times are expressed in ms rather than in
arbitrary units; for these and all subsequent analyses, all simulated
ITs under 100 ms are discarded from the analyses.

In a next step, to test model robustness, we calculated the coeffi-
cient of determination (R2; see fitting procedure) between our simu-
lated (400 trials) and empirical data for distinct combinations of
parameter values (as in Verguts, Vassena, & Silvetti, 2015). For the
initial value of STN we took values ranging from 1.05 to 2 (steps of
0.1). For the decay parameter �, values ranged from 0.45 to 1.45
(steps of 0.05). Finally, for the encoding time � we took values
ranging from 47 to 57 (steps of 1). We then created R2 heatmaps by
fixing each combination of two parameters and averaging across all
values of the third parameter (see model fit and robustness below).

Response implementation. In Calderon et al. (2015), the IT
was the time interval between the go signal onset and the moment
when the vertical-dimension value of the online registered reach
location crossed a certain level on the touchscreen, that is, the
upper boundary of a start location square. MT was the time interval
between crossing the upper boundary of the start location square
and reaching the target location. Therefore, the ITs of the model
were computed as the time interval between the input onset of the
go signal and the moment that the vertical value of the movement
(V; see Equation 1 above) vector was �1. To compute MTs, we
calculated the time interval when the absolute values of the vector
dimensions were respectively between 1 and 20 for the horizontal
dimension, and between 1 and 50 for the vertical dimension. These
values were chosen with respect to the target display in our
previous study (i.e., the vertical reach distance reach was longer
than the horizontal reach distance). To ensure that our simulated
MPs end up at the same location, the reported MPs are normalized
relative to their end point both for the lateral deviation (horizontal
dimension) and reach distance (vertical dimension). Specifically,
for all reaches, each data point on the two dimensions was divided
by the maximal value on their respective dimension and multiplied
by a constant (20 and 50 for the horizontal and vertical dimensions,
respectively). Note that this manipulation does not distort the
qualitative pattern of MPs.

Results

Initiation times. The result of our experimental manipulation
on ITs is illustrated in Figure 4A. As can be seen, we first observed
a congruency effect. Probability cues indicating the same side as
the go signal (e.g., “R” followed by “�”) yield faster ITs. Second,
this congruency effect interacted with the level of probability (i.e.,
high or low). For congruent cue-target combinations, high proba-
bility cues induced faster ITs than low probability cues. This
pattern reversed for incongruent cue-target combinations. Simu-
lated ITs can be observed in Figure 5B. The UAM exhibits the
same qualitative pattern as the empirical data (see below for model
fit). We next assessed whether IT distributions would be similar to
those of typical two-choice speeded button press tasks. Figure 5C
shows the IT distribution of a representative participant from our
empirical data set, displaying a typical, positively skewed distri-

bution. As can be seen in Figure 4D, the IT distribution for a
representative simulated participant is also positively skewed.

Movement times and movement paths. The empirical MTs
and MPs appear in Figures 5A and 5C. Empirical MTs displayed
the same pattern as empirical ITs (see Figure 5A). For congruent
cue-target combinations, high probability cues induced faster MTs
than low probability cues. This pattern reversed for incongruent
cue-target combinations. Consistently, incongruent cue-target
combinations elicited more curved MPs toward the competing
target compared with congruent cue-target combinations. Further-
more, high probability incongruent cue-target combination MPs
displayed the strongest curvature. Our model captures the qualita-
tive pattern displayed by both the MTs and MPs (see Figure 5B
and 5D, respectively).

Model fit and robustness. The simulated ITs and MTs pro-
duced a very good fit (R2 � 0.997). To investigate model robust-
ness to parameter setting, Figure 6 shows average R2 heatmaps for
different parameter settings (average is across the third parameter).
Note that R2 is consistently high across the entire grid. Hence, our
model is robust to parameter setting, showing that the good fit is
not due to parameter fitting, but rather to the model architecture.

Fixed decision bound emergence and task difficulty. The
dynamical interaction between the STN activity and the absolute
difference between M1 units is shown in Figure 7. To avoid
overload in the figure, we only plot activation of the task-required
M1 units, but these approximate well the absolute difference
between M1 units. Figure 7 shows the dynamical interaction for
two congruent cue-target trials with different probabilities (opera-
tionalizing task difficulty: high probability � easy, low probabil-
ity � difficult). High probability in favor of an action plan induces
a steep increase in motor units (dark blue full line); hence the
difference between motor units also increases fast. This induces a
steep decrease in STN activation (dark blue dashed line). In
contrast, a low probability in favor of an action plan induces a mild
increase in motor units (light blue full line), hence a slower
increase in difference between M1 units, and a slower decrease in
STN activation (light blue dashed line). This explains the obser-
vation that distinct ITs are reached at a similar M1 activity level,
also when varying difficulty level (Churchland et al., 2008; Schall
& Bichot, 1998). In other words, adaptive information flow ex-
hibits a fixed decision bound as an emergent property, consistent
with neurophysiological findings (e.g., Twomey et al., 2015).

Simulation 3: Numerical Cognition

In the UAM, domain-specific cognitive processes (implemented
as stimulus-response mappings) interact with domain-general de-
cision making and motor processes. As a consequence, we can
plug in the latter in any (domain-)specific task. With this in mind,
we set out to apply our model to a very different domain, namely
numerical cognition. In a number comparison task, Santens et al.
(2011) instructed subjects to reach for a left (right) target when a
number was smaller (larger) than five, or vice versa. The study
investigated the numerical distance effect (e.g., Moyer & Lan-
dauer, 1967; Van Opstal & Verguts, 2011), meaning that ITs
increase as distance between the compared number and the refer-
ent number increases. For instance, comparing one and five is
typically faster than comparing four and five. Santens et al. (2011)
found the empirical signature of the distance effect in ITs and
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MTs. From the UAM point of view, however, comparison tasks
are just another way to manipulate task difficulty. We thus tested
whether our model could account for these data as well.

Method

Design. As in Santens et al. (2011), numbers one to nine
(except five) were presented to the model, to be compared with
five. Also as in Santens et al. (2011), the model reached as quickly
as possible to a left-hand target if the number was smaller than five
or to a right-hand target if it was larger than five (see Figure 8). ITs
and MTs were computed as in Simulation 2; 4,000 trials were
simulated with a similar trial distribution as in Santens et al.
(2011).

Data analysis. Exactly the same �, �, and STN values as in
Simulation 2 were used. Input to PMd is shown in Appendix C
(values similar to Van Opstal, Gevers, De Moor, & Verguts, 2008).
As in Simulation 2, to evaluate model fit, the eight empirical ITs
and MTs from Santens et al. (2011) were linearly regressed on the
eight simulated ITs and MTs obtained from the model output.

Response implementation. Response implementation was
identical to that of Simulation 2.

Results

The empirical results are illustrated in Figures 9A and 9C. The
numerical distance effect is observed in the ITs (Figure 9A) and in
the MTs (Figure 9C). Simulated ITs and MTs (again in arbitrary
time units) appear in Figure 9B and 9D. As can be seen, our model
exhibits the same qualitative pattern as the empirical data (also
quantitatively the fit was excellent, R2 � 0.851). Importantly, the
parameters were not optimized for this specific task; instead, we
took the exact same values as in Simulation 2. Still, again our
model captures the distance effect in ITs and in MTs, demonstrat-
ing its robustness. Hence, it shows in a completely different
domain the UAM’s capacity to account for the influence of cog-
nitive processes on movement execution.

General Discussion

We presented the unfolding action model (UAM) of continuous
cognition-action interactions. The UAM core concept is to propose a
third level to information processing flow. The model implements
continuous information flow from the first to the last cognitive stage,
but adaptive information flow between the last cognitive and motor

Figure 4. Simulation 2, Initiation Times. (A) Empirical data from Calderon et al. (2015). Graphical represen-
tation of the interaction between cue-target congruency and probability for ITs (i.e., the time interval between
the go signal onset and leaving the start location square) in the experimental task. As can be observed, congruent
trials are on average faster than incongruent trials. Moreover, for the congruent condition, high probable trials
are faster than low probable trials, and this pattern reverses for the incongruent condition. (B) Similar for
simulated ITs. (C) Initiation time probability density function (pdf) of a representative subject from Calderon et
al. (2015). As can be observed, the IT pdf of this subject is again positively skewed (� � 0.79). (D) IT for one
representative simulated subject also exhibits a positively skewed distribution (� � 0.51).
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stage. In the UAM, adaptive information flow is gated by the subtha-
lamic nucleus (STN). In Simulation 1, we demonstrate that our model
can account for empirical patterns of the classical 2AFC decision
making task, namely positively skewed RT distributions and speed–
accuracy trade-offs. In Simulation 2, we addressed MTs and MPs in
a cognitive control task. We demonstrated that thresholded informa-
tion flow emerges between cognition and action (i.e., fixed decision
bound). In line with empirical data, we showed that both the initiation
time and online movement were sensitive to cognitive factors such as
task difficulty (implemented as prime-target congruity). Furthermore,
we showed that motor activity reached the same threshold level prior
to response initiation regardless of task difficulty. In Simulation 3, a
completely different task was considered (number comparison task in
numerical cognition). Without any parameter change, we demon-
strated that the simulations again corresponded closely to empirical
ITs and MTs.

Anatomical Simplifications

The input and motor layers did not receive an anatomical label,
simply because it is not entirely clear which region exactly would

implement these functions. The input area may correspond to V1
and subsequent visual areas. The movement vector may be local-
ized in either the spinal cord or the brainstem. Indeed, both are
known to contain relatively high-order motor controllers (Swan-
son, 2012). Of course, the spine additionally contains motor neu-
rons (directly controlling flexor and extensor muscles), but this
level of detail is beyond the scope of the current model. Conse-
quently, we lumped every neuron outside cortex or basal ganglia as
belonging to “motor stage.” Movement in the UAM derives from
a spatial averaging of the relevant movement vectors. There is
direct evidence for such spatial averaging in motor cortex (Geor-
gopoulos, Schwartz, & Kettner, 1986; Suminski, Mardoum, Lilli-
crap, & Hatsopoulos, 2015). To our knowledge however, at the
brainstem/spine level such averaging stands out for future re-
search. Another simplification was the pathway from STN to
motor cortex. Anatomically, STN excites globus pallidus pars
interna and substantia nigra pars reticulata (SNr); these areas
inhibit thalamus. In turn, thalamus excites motor cortex, closing
the motor-basal ganglia loop (Redgrave et al., 2010). We also
disregarded here the motor cortex basal ganglia direct and indirect

Figure 5. Simulation 2, Movement Times and Paths. (A) Average empirical movement times (Cue–Target
Congruency � Probability Interaction). (B) Simulated movement times. (C) Same as A for empirical movement
paths. Left reach trajectories were collapsed with right reach trajectories to simplify the figure. Congruent high
and low-probability (plain and dashed gray) trajectories partly overlap in the figure. (D) Simulated movement
paths. Shaded error bars in both movement path graphs represent the standard error of the mean.
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pathways via striatum. Recent tractography and fMRI work sug-
gest that the anatomical pathway from pre-SMA to striatum may
partly control the response inhibition threshold and thus the what/
when separation (Forstmann et al., 2008, 2010). Such anatomical
simplifications allowed us to focus on the model functional prop-
erties, but future research should tighten the link with the anatomy.

In the remainder of this article, we again revisit our core proposal,
and while doing so discuss related models. Finally, we point to
several avenues for future research.

Adaptive Information Flow

Our core proposal was to implement adaptive information flow
between the last cognitive and motor stage. We here discuss some
useful computational (what/when dissociation) and empirical
(emergence of a fixed decision bound and temporal overlap be-
tween cognition and action) consequences of this concept. We also
broaden it to other stages and discuss related proposals in the
literature.

What/When Dissociation

Computational models of cognition typically do not separate
what action to select from when to implement it. They implement
behavioral execution as starting when motor activation crosses a
fixed bound (e.g., Gold & Shadlen, 2007). Of course, it is possible
to prolong a model’s response time (and thus increase the “when
to respond”) by simply adding a fixed encoding or motor constant
(e.g., as in the DDM; Ratcliff, 1978). Alternatively, one could
increase the response threshold in order to delay the “when” to
respond (Herz, Zavala, Bogacz, & Brown, 2016; Mansfield,
Karayanidis, Jamadar, Heathcote, & Forstmann, 2011). However,

Figure 6. Simulation 2, Model Robustness. The three heat maps depict the mean R2 value when varying two
parameters and averaging across all the levels of the third parameter. In figure A, B and C we respectively vary
STN/Alpha, STN/Tau, Tau/Alpha and average across Tau, Alpha and STN. The black dot represents the
parameters value used to generate the simulated data. The color bar indicates the correlation coefficient for the
three graphs. Note that the lowest value equals 0.65. See the online article for the color version of this figure.

Figure 7. Simulation 2, Fixed Decision Bound Property Across Trials.
We illustrate two congruent left reach trials. Line color saturation repre-
sents respectively a high (dark blue) and low (light blue) probability trial.
Line styles depict the unit activation of M1 L (full line) and STN (dashed
line). See the online article for the color version of this figure.
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such a parametric modulation does not elucidate how or why the
cognitive system can optimally choose the timing of response
execution.

In the UAM, a what/when dissociation was achieved by creating
a negative feedback loop between M1 and STN. In particular,
when the system is uncertain about what action to perform, it
withholds responding. Related what/when dissociations have been
proposed in the literature, such as the basal ganglia model devel-
oped by Frank (2006; also see Frank, Samanta, Moustafa, &
Sherman, 2007). As in the UAM, the basal ganglia model disso-
ciates what action to perform from when to execute it based on a
negative feedback loop between (pre)motor cortex and STN. How-
ever, contrary to the UAM, the basal ganglia model does not
implement adaptive information flow between the last cognitive
stage and motor stage. Instead, it implements cognition-action thresh-
olding. Therefore, the basal ganglia model cannot account for the
influence of cognitive factors on overt movement execution.

We opted for response conflict as a convenient criterion for
choosing when to withhold responding (as in Frank, 2006). In
general, we envision that the STN may learn when to withhold
responding depending on task and contextual constraints. In par-
ticular, by using reinforcement learning principles, the STN may

learn when to gate responses into the motor stage, and thus to
optimally “decide” when to allow action execution (O’Reilly &
Frank, 2006). For example, consider again the cueing task of
Simulation 2. When the proportion of incongruent trials is large,
subjects tend to become more cautious. In the model, this could be
implemented by strong excitatory weights from motor cortex to the
STN, thus effectively letting subjects shift on the speed/accuracy
continuum. By adaptively modifying the weights from M1 to STN,
the UAM could learn what M1 activity pattern should modulate
STN activity for optimal responding. Further note that any task,
irrespective of its stimuli or even input modality, makes use of the
same weights between M1 and STN. Therefore, the UAM predicts
that response conservativeness obtained through learned M1-to-
STN weights during a specific task, should generalize to tasks
involving completely distinct stimuli. This remains to be tested.

Other models have suggested different mechanisms to address
the what/when dissociation. For instance, a probabilistically mo-
tivated proposal appears in Bogacz and Gurney (2007). These
authors propose that the STN computes the normalization constant
required to calculate the probability that a specific response is
valid. When several options are equally likely (active), each option
becomes less likely to pass the threshold, and the normalization

Figure 8. Simulation 3 Outline. (A) Experimental task design of Santens et al., (2011). Participants first
pressed a start square at the bottom of the screen, triggering the presentation of a fixation cross in the upper
central square. After a jittered amount of time, a number replaced the fixation cross and participants had to reach
the left upper square when the number was smaller than five and the right upper square number when it was
larger than five. (B) Mapping used in Simulation 3. Each stimulus is connected to the PMd layer unit with a
certain weight (see Appendix C for input-PMd weight connection values).
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constant is large. This normalization constant can thus be thought
of as representing response conflict (Botvinick et al., 2001), where
a large (small) normalization constant is associated to high (low)
response conflict. Thus, the normalization constant puts a dynam-
ical brake on action initiation. Another model appeared in Niv,
Daw, Joel, and Dayan (2007). These authors propose that there is
a cost to fast action implementation; very fast action onsets would
entail a larger execution cost. In a reinforcement learning frame-
work, they suggest that both what behavior to choose and when to
do it, are decided by optimizing a joint reward/cost function.
Lastly, a recent alternative account proposes that what/when dis-
sociations are achieved through a process of time-varying optimal
decision bounds (Malhotra, Leslie, Ludwig, & Bogacz, 2017).
Here, reaching or not reaching a decision bound is respectively
reconceptualized as deciding to commit to a specific action or
deciding instead to accumulate more evidence (i.e., wait before
committing to an action). Malhotra, Leslie, Ludwig, and Bogacz
(2017) suggest that committing or not to a specific action depends
on the uncertainty regarding (the distribution of) trial difficulty.

Emergence of a Fixed Decision Threshold

As previously described, computational models typically imple-
ment cognition-action thresholding, that is, discrete step in the
information flow between the last cognitive and motor stage. This
implementation is also known as a fixed decision bound in
accumulation-to-bound models (e.g., Forstmann, Ratcliff, &
Wagenmakers, 2015; Ratcliff, 1978). However, these models do
not explain how this bound emerges from the interplay between
the dynamical activity of distinct brain regions. In the UAM,
decision bounds are not fixed but emerge from the dependency

between motor cortices and STN activity, inducing an approxi-
mately linear decrease of the STN activity. This dependency
approximates a fixed-bound model (see Figure 2C and 7).

Not all models assume a fixed decision bound. Another impor-
tant class of models propose that the evidence integration rate may
be modified as a function of the urgency context (Cisek et al.,
2009; Standage, You, Wang, & Dorris, 2011; Thura, Beauregard-
Racine, Fradet, & Cisek, 2012). These models suggest that time
pressure for the execution of a motor plan is integrated as a factor
in the decision-making process. As the urgency to respond in-
creases, so would the buildup rate of motor activity. For instance,
the urgency-gating model (Cisek et al., 2009; Thura et al., 2012)
accounts for action selection situations where temporal constraints
play a significant role. In the urgency gating model, the rate of
activity buildup is defined by the urgency parameter (typically
proportional to elapsed time; Cisek et al., 2009). Such an imple-
mentation can be reconceptualized as collapsing bounds to the
decision process (for review see Hawkins, Forstmann, Wagenmak-
ers, Ratcliff, & Brown, 2015). In principle, the UAM can also
approximate a collapsing bound model by letting STN activity de-
crease nonlinearly. Such a nonlinear decrease would be very naturally
implemented by having STN receive other signals that can be inte-
grated alongside signals from motor cortex (e.g., urgency signals; van
Maanen, Fontanesi, Hawkins, & Forstmann, 2016).

Temporal Overlap Between Cognitive and
Motor Processes

By implementing adaptive information flow between the last
cognitive and motor stage, an emergent property of the UAM
appears, namely that cognitive effects leak into action. Any model

Figure 9. Simulation 3, Empirical Data From Santens et al. (2011) and Simulated Data. (A) The numerical
distance effect for initiation times. (B) Simulated initiation times. (C) Same as A for the MTs (i.e., the time
interval between leaving the start location square and entering the target location square). (D) Simulated MTs.
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implementing cognition-action thresholding is unable to account
for any influence of cognitive factors on movement execution.
This is not problematic when accounting for discrete behavioral
measures such a button presses. Indeed, button presses tend to hide
the continuous effects of cognition on action. However, the advent
of reaching task studies (Song & Nakayama, 2009) force scientists
to develop models that can account for the typical behavioral
patterns in button press studies, and simultaneously explain how
cognitive factors influence overt execution. In the UAM, we show
that adaptive information flow can bridge the gap between tradi-
tional button press models (Ratcliff, 1978) and novel data showing
a continuous interaction between cognitive and motor processes
(Calderon et al., 2017). Finally, one might wonder what is adaptive
about letting cognition “leak” into action, outside of providing
cognitive scientists another dependent variable to model. We pro-
pose that this leak is a consequence of the what/when dissociation
that the brain must implement for adaptive decision making.

Neurally and behaviorally, due both to individual differences
and noise at different processing stages, task performance some-
times may seem to either stem from overlapping or nonoverlap-
ping cognitive and motor processes. Adaptive information flow
can mimic both cases. Indeed, the system can potentially learn, by
setting appropriate weights of the M1-STN projections, to behave
within a continuum of fully overlapping (i.e., continuous informa-
tion flow) or fully discrete (i.e., thresholded information flow)
cognitive and motor processes. Take the case of an individual who
shows little or no effect of cognitive factors on their overt move-
ment execution. In the UAM, this would be accounted for by small
M1-STN weights. Indeed, with small weights, the difference be-
tween competing M1 units will need to be large (i.e., conflict will
be fully [or close to] resolved) for movement initiation to start. In
turn, the effects of cognitive factors will influence the time it takes
to initiate a movement rather than the movement itself (i.e., cog-
nition will not leak into action). In contrast, envisage an individual
showing a strong effect of cognitive factors on their actions. In this
case, the UAM would account for such behavior by having large
M1-STN weights. With large weights, the difference between
competing M1 units will be small (i.e., conflict will not be re-
solved) when movement initiation starts. Hence, the effects of
cognitive factors will not only have an influence on the time
needed to initiate a movement but also on the movement itself (i.e.,
cognition will leak into action).

Output Gating

Theoretically, adaptive information flow can be implemented at
distinct stages of information processing. Indeed, negative feed-
back loops can be implemented between distinct regions of the
brain (i.e., processing stages) and basal ganglia nuclei (such as the
STN). This proposal is called output gating (Chatham, Frank, &
Badre, 2014; Hochreiter & Schmidhuber, 1997; Kriete, Noelle,
Cohen, & O’Reilly, 2013). Output gating refers to holding infor-
mation in working memory until the appropriate time for letting it
go to subsequent stages has arrived. This is the same what/when
dissociation as we discussed for the cognitive to motor gap, but
applied to cognitive actions like “keeping information in working
memory.” Output gating models propose that learning when to
gate information out of working memory is a separate subtask to
be learned, obeying the same reinforcement learning principles as

the overt task of learning what button to press. In such a system we
can set, for each contiguous pair of stages, and even on a trial-by-
trial basis, information flow on a continuum between continuous
and thresholded. Thereby, one can imagine a system that has, for
example, continuous information flow between Stages 1 and 2, but
thresholded information flow between Stages 2 and 3. As already
mentioned, future UAM work is planned to make the output gate
dependent on reinforcement-based feedback.

Relation to Dynamic Field Theory

We considered just two points in the movement space for each
task, each corresponding to a specific movement direction (move-
ment vector). This was done because it allowed us to merge
cognitive movement data (Simulations 1–3) more easily with the
biology of movement and inhibition. Future work should extend
our framework toward more continuous movements (Christopou-
los, Bonaiuto, & Andersen, 2015). This extension can be imple-
mented by using dynamic neural fields (Cisek, 2006; Klaes, Sch-
neegans, Schöner, & Gail, 2012). Here, movement is considered as
a point in a multidimensional space, where each dimension repre-
sents a movement characteristic such as direction, speed, or vigor.
Movement is constrained by activation from motor, memory, and
cognitive layers (Erlhagen & Schöner, 2002; Schöner & Thelen,
2006). These neural fields describe the activation distributions
over the movement vector feature space (e.g., Erlhagen, Bastian,
Jancke, Riehle, & Schöner, 1999). Such a move would allow us to
extend our model and account for more naturalistic reaches in a
three-dimensional space (e.g., Chapman et al., 2010; Gallivan &
Chapman, 2014).

Broadening the UAM Task Scope

The current model allows consideration of many more tasks and
contexts than just those reported here. A first example would be
the go/no-go task (Gomez, Ratcliff, & Perea, 2007). As just
mentioned, in the applications considered up to now, movement
resulted from two fixed vectors (pointing left and right, respec-
tively). However, in the context of the go/no-go task, it is straight-
forward to envisage that the STN itself competes against move-
ment toward a specific button. Indeed, a strongly supported
possibility is that the right inferior frontal cortex feeds a response
inhibition signal to the STN, thereby biasing the competition in
favor of the STN (for review see Aron, Robbins, & Poldrack,
2014). Hence, this response inhibition would make sure that the
adaptive information flow gate remains closed and action is with-
held.

A second task, namely the stop-signal task (Logan, Cowan, &
Davis, 1984), could be modeled in a very similar fashion. This task
has been modeled extensively as an independent race between one
or more responses and the stop response (e.g., Boucher, Palmeri,
Logan, & Schall, 2007; Logan, Van Zandt, Verbruggen, & Wagen-
makers, 2014). In the current framework, a stop task would be
implemented by adding another excitatory input to the STN (for
instance from striatal no-go neurons, see Collins & Frank, 2013).
This input would activate STN and thus exhibit an opposite effect
as M1 units. In turn STN activation would maintain the adaptive
information flow gate closed. In line with this view, recent work
suggests that successful motor inhibition results from stop-cue
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related information being transmitted from the striatum, through
the globus pallidus, to the STN (Schmidt, Leventhal, Mallet, Chen,
& Berke, 2013).

Third, a natural application for our model is the “reach/point to
X” task, where movement paths can be measured (e.g., Sullivan et
al., 2015). An instance of this paradigm is the “point to number”
task (Dotan & Dehaene, 2016; Siegler & Opfer, 2003), where a
subject is required to point on a physical line to where the corre-
sponding number would be situated on a number line. By modeling
movement time and paths, in addition to response time to choices,
our model can address “reach/point to X” tasks that investigate the
temporal dynamics of action selection processes (Boulenger et al.,
2006; Cressman et al., 2007; McKinstry, Dale, & Spivey, 2008;
Resulaj et al., 2009; Spivey et al., 2005).

Conclusion

We proposed a neurocomputational model based on the theo-
retical framework of integrative information processing suggesting
a parallel implementation of perceptual, cognitive, and motor
processes (Cisek, 2007; Friston, 2010; Gibson, 1979). Modeling
behavior as a continuous cognition-action interaction refereed by
the dynamic interplay between the basal ganglia (McHaffie, Stan-
ford, Stein, Coizet, & Redgrave, 2005), in particular the STN
(Frank, 2006), and sensorimotor cortices (Cisek & Kalaska, 2010),
accounts for many empirical effects of cognition on action initia-
tion and execution (Calderon et al., 2015). It also explains ubiq-
uitous behavioral and neurophysiological patterns (i.e., positive
skew, speed–accuracy trade-off, emergence of a fixed decision
threshold). Perhaps more importantly, the model opens doors for
future research on interactions between neurophysiology, cogni-
tion, and action dynamics.
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Appendix A

Model Implementation and Optimization Procedure

Model Implementation

Premotor Cortex

Input units project to the PMd layer. In the current simulations,
these input units may represent any task-relevant stimuli. For
instance, a cue indicating that there is a high probability that the
upcoming reach will be toward the left target would be strongly
connected to the PMd left unit. In the following equations, acti-
vation of units in input, PMd, M1 layers are represented by the
letters x, y, z, respectively. The activity of units in PMd is governed
by the differential Equation (2):

� d
dtyj(t) � ��yj(t) � �i wixi � ykwinh � Noise(t) (2)

where y represents PMd unit activation. The index on y indicates
the laterality of the PMd unit (i.e., ipsilateral or contralateral),
hence if j � 1, then k � 2 and vice versa. Index i ranges over input
units, xi is the activation of input unit i, and wi � 0 is the
connection weight between the unit i and the PMd unit. The
symbol � is the encoding time constant, � is a decay constant, and
Noise is a Gaussian random variable with mean 0 and standard
deviation 2.5. PMd units inhibit each other with strength winh;
consistently, callosal inhibitory connections have been reported
between PMd cortices (Marconi, Genovesio, Giannetti, Molinari,
& Caminiti, 2003). By suppressing the irrelevant (least active)
PMd unit (through lateral inhibition), the system also suppresses
the contingent M1 activity. Such a mechanism is supported by
human transcranial magnetic stimulation (TMS) studies, showing
that stimulating the dorsal premotor cortex suppresses contralateral
motor activation (Mochizuki, Huang, & Rothwell, 2004; Mochi-
zuki, Terao et al., 2004). Moreover, Thura and Cisek (2014)
observed that when PMd firing rate activity reaches its peak,
contralateral M1 firing rate activity is suppressed.

Motor Cortex

The input for M1 units are given by Equation (3):

� d
dtzj(t) � ��zj(t) � yj � zkwinh � Noise(t) (3)

where z represents M1 unit activation. The j, k indexing system on
z is the same as that used in Equation (2). All remaining parameters
also have the same meaning as in Equation (2). Here, the activation
value of ipsilateral PMd units is sent to their corresponding M1

unit through direct excitatory projections, as evidenced in several
studies (for reviews see Dum & Strick, 2002; Luppino & Rizzo-
latti, 2000; Rizzolatti & Luppino, 2001). Interhemispheric inhibi-
tion between primary motor cortices has been observed in several
studies (e.g., Di Lazzaro et al., 1999; Ferbert et al., 1992).

Subthalamic Nucleus

To dissociate what action to select from when to execute it, we
implemented a brake on the motor system. The model STN im-
plements a gate on movement that is modified online depending on
the M1 dynamics. For this purpose, it computes the absolute value
of the difference in activation between both primary motor cortices
units:

�(t) � |z1(t) � z2(t) | (4)

where z represents the activation of M1 units. In turn, the STN
decreases its activity via Equation (5):

� d
dtSTN(t) � �wM1 � �(t) � Noise(t) (5)

where wM1 represents the connection between M1 and STN. The
gate function of the STN is subtended by the sigmoid function b:

b � 1
1 � e�k(��STN) (6)

The movement vector is continuously updated as follows (see
Figure 1A):

d
dtV(t) � (z1 � v1

¡

� z2 � v2

¡

) � b (7)

where two vectors are each weighted by the activation value of the
selectively tuned M1 units. Specifically, the vector associated to a

left response (i.e., v1

¡

� ��1
�1 �) is weighted by the activation value

of the M1 L unit (i.e., z1). In the same vein, the vector associated

to a right response (i.e., v2

¡

� ��1
�1 �) is weighted by the activation

value of the M1 R unit (i.e., z2).
If k ��1 in Equation (6), we can approximate Equation (7) as

follows:

�V(t) � constant if STN 	 �

V(t) � (zl � v1

¡

� zr � v2

¡

) otherwise
(8)

Computer codes implementing our model in the three simulations
can be downloaded at https://osf.io/j6vuy/.

(Appendices continue)
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Model Optimization Procedure

Three parameters were optimized to best fit the empirical data,
namely the initial value of STN, the encoding time � and decay
factor �. Best fit parameters were obtained through a “zoom lens”
stepwise grid search over the parameter space. We first performed
a grid search with a rather large step between parameters values.
Once this procedure found a parameter set yielding the highest
coefficient of determination between simulated and empirical data,
we reproduced the grid search with smaller steps (same number as
the prior search) around the previously found parameter values,

and so on until best fit parameters were obtained. The coefficient
of determination value stemmed from linearly regressing the eight
empirical ITs and MTs from Calderon et al. (2015) on the eight
simulated ITs and MTs obtained with every combination of the
three parameters (see above). Parameters were optimized in Sim-
ulation 2, and then reused in Simulation 3.

Simulation 1 assessed the effect of modifying the STN initial
value. The data in Simulation 1 were therefore produced with a
low and high initial STN value. Appendix B shows the parameter
values for Simulation 1, 2, and 3. Furthermore, Appendix C
displays the input-to-PMd connection weights in each simulation.

Appendix B

Parameters Value for Each Simulation

Parameters Simulation 1 Simulation 2 Simulation 3

� .5 .95 .95
� 50 52 52
STN .5 (low)-1.5 (high) 1.55 1.55
winh .5 .5 .5
wM1 1.5 1.5 1.5
k 107 107 107

Appendix C

Weight Matrix of Inputs to PMd R and L for Each Simulation

Visual stimulus Connection weight to PMd R Connection weight to PMd L

Simulation 1
� 1 0
� 0 1

Simulation 2
R .8 .2
r .6 .4
L .2 .8
l .4 .6
� 1 0
� 0 1

Simulation 3
1 .1 .9
2 .2 .8
3 .3 .7
4 .4 .6
5 .5 .5
6 .6 .4
7 .7 .3
8 .8 .2
9 .9 .1

Received February 20, 2017
Revision received March 1, 2018

Accepted March 1, 2018 �

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

805NEUROCOMPUTATIONAL MODEL OF UNFOLDING ACTIONS


	The Unfolding Action Model of Initiation Times, Movement Times, and Movement Paths
	Strict Serial Processing
	Computational Advances and Alternative Accounts
	Consensus and Remaining Issues
	Neural and Behavioral Evidence Supporting Adaptive Information Flow and Temporal Overlap Between ...
	Implementing Adaptive Information Flow
	The Unfolding Action Model (UAM)
	Simulation 1: Decision Making
	Method
	Design
	Data analysis
	Response implementation

	Results
	Discussion

	Simulation 2: Cognitive Control
	Method
	Design
	Data analysis
	Response implementation

	Results
	Initiation times
	Movement times and movement paths
	Model fit and robustness
	Fixed decision bound emergence and task difficulty


	Simulation 3: Numerical Cognition
	Method
	Design
	Data analysis
	Response implementation

	Results

	General Discussion
	Anatomical Simplifications
	Adaptive Information Flow
	What/When Dissociation
	Emergence of a Fixed Decision Threshold
	Temporal Overlap Between Cognitive and Motor Processes
	Output Gating
	Relation to Dynamic Field Theory
	Broadening the UAM Task Scope

	Conclusion
	References
	Appendix AModel Implementation and Optimization Procedure
	Model Implementation
	Model Optimization Procedure

	Appendix BParameters Value for Each Simulation
	Appendix CWeight Matrix of Inputs to PMd R and L for Each Simulation


