Vande Veire and De Bie EURASIP Journal on Audio, Speech, and Music
Processing (2018)2018:13
https://doi.org/10.1186/513636-018-0134-8

EURASIP Journal on Audio,
Speech, and Music Processing

RESEARCH Open Access
@ CrossMark

From raw audio to a seamless mix:
creating an automated DJ system for Drum
and Bass

Len Vande Veire!” © and Tijl De Bie?

Abstract

We present the open-source implementation of the first fully automatic and comprehensive DJ system, able to
generate seamless music mixes using songs from a given library much like a human DJ does.

The proposed system is built on top of several enhanced music information retrieval (MIR) techniques, such as for
beat tracking, downbeat tracking, and structural segmentation, to obtain an understanding of the musical structure.
Leveraging the understanding of the music tracks offered by these state-of-the-art MIR techniques, the proposed
system surpasses existing automatic DJ systems both in accuracy and completeness. To the best of our knowledge, it
is the first fully integrated solution that takes all basic DJing best practices into account, from beat and downbeat
matching to identification of suitable cue points, determining a suitable cross-fade profile and compiling an
interesting playlist that trades off innovation with continuity.

To make this possible, we focused on one specific sub-genre of electronic dance music, namely Drum and Bass. This
allowed us to exploit genre-specific properties, resulting in a more robust performance and tailored mixing behavior.
Evaluation on a corpus of 160 Drum and Bass songs and an additional hold-out set of 220 songs shows that the used
MIR algorithms can annotate 91% of the songs with fully correct annotations (tempo, beats, downbeats, and structure
for cue points). On these songs, the proposed song selection process and the implemented DJing techniques enable
the system to generate mixes of high quality, as confirmed by a subjective user test in which 18 Drum and Bass fans

participated.

Keywords: DJ, Drum and Bass, MIR, Computational creativity, Machine learning

1 Introduction

When music tracks are played back to back, i.e., start-
ing one song after the other is finished, the listening
experience is interrupted between the end of a song and
the beginning of the next. Indeed, popular music tracks
commonly have a long intro and outro, such that the
excitement of listening might fade if songs are played in
full. Thus, especially for electronic dance music (EDM)
in dance clubs, it is common practice for so-called disk
jockeys (DJs) to blend songs together into a continuous
seamless mix.

*Correspondence: len.vandeveire@ugent.be

'imec, IDLab, Department of Electronics and Information Systems, Ghent
University, Technologiepark Zwijnaarde 15, iGent, Zwijnaarde, 9052 Ghent,
Belgium

Full list of author information is available at the end of the article

@ Springer Open

Unfortunately, DJing requires considerable expertise,
specialized equipment, and time—unavailable to most
music consumers. A computer program that automates
the DJing task would thus democratize access to high-
quality continuous music mixes outside the dance club
setting. Additionally, it would alleviate the need for night-
clubs and bars with a limited budget to hire expen-
sive human DJs. Finally, professional DJs could use
it as an exploration tool to discover interesting song
combinations.

As DJing is a complex analytical as well as creative task,
creating an automatic D] has proved to be highly non-
trivial (see Section 2). To clarify the challenges involved,
next, we will discuss what a DJ is and what steps are
performed to create a music mix.

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13636-018-0134-8&domain=pdf
http://orcid.org/0000-0002-2846-2237
mailto: len.vandeveire@ugent.be
http://creativecommons.org/licenses/by/4.0/

Vande Veire and De Bie EURASIP Journal on Audio, Speech, and Music Processing (2018) 2018:13

1.1 WhatisaDJ?

A DJ is a person who mixes existing music records
together in a seamless way to create a continuous stream
of music [1-3]. With a seamless mix, we understand a mix
that blends songs together such that the resulting music
is uninterrupted (no silences in between songs), and such
that the music is structurally coherent on beat, downbeat,
and phrase level (see Section 3). Additionally, successive
songs should be “compatible” to some extent with respect
to their harmonic, rhythmic, and/or timbrical properties.
In essence, a seamless mix flows from song to song such
that the transition between those songs appears to be a
part of the music itself, and where it consequently is often
hard to tell where one song ends and the other begins.
Even though there is no step-by-step “recipe” on how to
DJ, there is a general consensus [1, 2] on the basic steps
that the DJ executes to create a mix. As a brief introduc-
tion to the art of DJing, a simplified DJing workflow is
explained below and illustrated in Fig. 1.

1.1.1 Creating a mix

The DJ first selects songs to play and determines the order
to play them in. This is the track selection step. The DJ
selects songs that fit together thematically, rhythmically,
or instrumentally, while also considering the audience’s
engagement, music preference, and other factors [1-3].

Music
library

v

Song analysis
v

Track selection and track listing <

v

Cue point selection

Time stretching <
\ 4
Beat matching
\ 4
Crossfading

Fig. 1 lllustration of the simplified DJing workflow

Page 2 of 21

There usually is a deliberate progression throughout the
mix ([3], pp. 311, 328-329) for example, the DJ may start
with a more relaxed song, gradually building up the energy
by successively playing increasingly energetic songs. After
reaching the climax, the D] may play some calmer songs to
give the crowd a rest, before building up towards a second
climax, etc. The DJ also determines at what time instants
in the selected songs the transition from one song into the
next should start, which is called cue point selection. These
starting points, or cue points, are typically aligned with
structurally important boundaries in the music [1-3]: this
ensures that the mix forms a contiguous piece of
music that naturally “flows” from one song into another
(131, pp. 316-318).

With the songs and cue points in mind, the D] performs
the actual mixing. He or she plays the first song and waits
until it reaches the cue point to start the second song.
For some time, both songs will be heard simultaneously,
gradually fading out the first song and fading in the next.
When simultaneously playing two songs, it is imperative
that their beats align in time: even a very small misalign-
ment is easily noticed even by the amateur. To make this
possible, one or both songs may have to be slowed down
or sped up by time-stretching them such that their tempi
are equal. The beats are then aligned in a process called
beatmatching.

A smooth transition between the songs is established
by performing a crossfade. This is the process of gradually
increasing the volume of the new song, i.e., the fade-in,
while decreasing the volume of the other song, i.e., the
fade-out. The DJ also adjusts the equalization settings of
the songs by adjusting the relative gain of the bass (low fre-
quencies), mid, and treble (high frequencies): this ensures
a clean sound of the mix without saturation in any of the
frequency bands. Effectively, this means that the speed
and profile of the crossfade may be different for different
frequency bands.

The process of cueing, time-stretching, beatmatching,
and crossfading is applied for each song transition, effec-
tively creating a seamless music stream.

1.1.2 Remarks on the DJing process

It should be pointed out that the workflow described
above is a simplification and not an exact step-by-step
recipe of the DJing workflow. For conciseness, some
aspects of the DJing process have not been elaborated
on in detail. For example, depending on the audience or
type of event, DJs might employ a different mixing style
and consider some aspects of the process (e.g., correct
beatmatching) to be less or more important than other
DJs in other scenarios [2]. It should also be clear that
DJing is an iterative process, i.e., the steps shown in Fig. 1
are often repeated and interwoven as the mix progresses.
For example, improvisation plays an important role in

Vande Veire and De Bie EURASIP Journal on Audio, Speech, and Music Processing (2018) 2018:13

DJing ([3], p. 312) and DJs do not always know before-
hand which songs they will play: the track selection and
cue point selection process are hence repeated “on the fly”
while the DJ is mixing. For a more thorough introduc-
tion into the art of DJing, we refer to relevant works in
non-academic [1, 2] and academic literature [3].

1.1.3 Understanding musical structure

It will be clear that, in order to perform the above tasks,
the DJ first and foremost needs to know the tempo, beat
positions, structure, and other musical properties as dis-
cussed below in Section 3.

Algorithms have been developed for each of the tasks of
interest to us in this paper. However, the specific applica-
tion in this paper poses specific demands on accuracy and
robustness, while also offering opportunities for improve-
ment. For example, DJing is almost invariably done with
songs with a steady tempo ([3], pp. 9, 33—34) (expressed
in beats per minute), making the task of tempo estimation
easier than for other types of music. At the same time,
the required tempo estimation accuracy exceeds the accu-
racy of state-of-the-art tempo estimation algorithms (see
Section 5.2).

1.2 Contributions and overview

In this paper, we present a computer system that auto-
mates the tasks of a DJ. More specifically, we make the
following contributions:

e The system is, to the best of the author’s knowledge,
the first complete and fully integrated automatic D]
system that considers all basic DJing best practices,
i.e., beatmatching, cue point selection, music
style-based track selection, equalization, and different
transition types. It is released as open-source'and
could hence serve as a robust basis for further

research to build upon.
e The system is designed for a specific genre of

electronic dance music, namely Drum and Bass.
Apart from simplifying system design and dataset
collection, this allows it to obtain a high structural
annotation accuracy and an excellent subjective mix
quality, because prior knowledge of the genre allows
to exploit certain assumptions about the musical
structure (see Sec. 3). For this paper, Drum and Bass
was chosen given the first author’s knowledge of the

genre.
e To achieve this performance, dedicated algorithms

for tempo estimation, beat detection, downbeat
detection, and cue point selection were developed.

e A unique feature of our proposed system is a song
selection method that imitates the behavior of a
professional DJ. It uses a custom style descriptor
feature that projects all songs into a continuous “style
space” where similar songs lie close together. This
approach greatly improves the mix quality.

Page 3 of 21

The remainder of this paper is structured as follows.
Section 2 explores related work in scientific literature and
in commercial applications. Section 3 elaborates on how
the automatic D] discovers the musical structure in a
hierarchical manner. Section 4 discusses the system archi-
tecture, the song selection process, and how the song
transitions are created. The system’s performance is thor-
oughly evaluated on different aspects in Section 5. Finally,
Section 6 concludes this paper and gives some pointers for
further improvements.

2 Related work

Existing research on automatic D] systems is scarce. Two
types of systems reoccur in the scientific literature: auto-
matic DJ systems and mash-up systems (Table 1). The
former attempt to automate (parts of) the DJing task,
i.e., create a continuous mix by smoothly transitioning
between songs. Mash-up systems on the other hand cre-
ate a new song by combining short fragments of existing
songs. A mash-up is typically much shorter than a DJ mix,
and the input songs are more heavily modified by cutting
and pasting fragments from them. Nevertheless, similar
techniques, such as time-stretching, beat tracking, and
crossfading, are used in both applications.

Jehan [4] proposes a simple automatic D] system that
automatically matches downbeats and crossfades songs.
Cue points are determined by finding rhythmically simi-
lar sections in the mixed songs, but it does not consider
the high-level structure of the music. Bouckenhove and
Martens [5] describe a system that uses vocal activity
detection to avoid overlapping vocal sections of two songs.
With their Music Paste system, Lin et al. [6] automate
the track and cue point selection process by maximizing
a measure for musical similarity. The length of the tran-
sition is optimized such that the rate of tempo change
remains under an acceptable threshold, which is deter-
mined in a subjective experiment. Ishizaki et al. [7] also
focus on the optimization of a crossfade with a chang-
ing tempo. They propose to use an intermediary tempo
in between the tempi of the original songs, such that the
discomfort caused by the tempo change is spread evenly
between the two songs. Finally, the MusicMixer project by
Hirai [8] improves the track and cue point selection pro-
cess by means of two similarity measures related to the
beat structure and a high-level abstraction of the chro-
matic content of the audio, inspired by natural language
processing techniques.

Research on mash-up systems typically focuses on
devising a measure of musical compatibility of song
extracts. An example is the AutoMashUpper system by
Davies et al. [9, 10], which features a beat tracking, down-
beat tracking, and a structural segmentation step to align
the music. Music fragments are extracted based on their
harmonic and rhythmic similarity. Lee et al. [11] focus

Page 4 of 21

Vande Veire and De Bie EURASIP Journal on Audio, Speech, and Music Processing (2018) 2018:13

/L, Yum pyiew saiuedold sy Jo Aue sjusw|dull 91emios Y3 JaYIaYM Jeadun il ‘9dusH ‘sanljigeded asay) uonuaw Aa1dxa 10U 0p suoneddads 1Npoid 3y PUB ‘UMOUXUN S8 21BMIOS SIY3 JO S|1eIdp uoneluawa|dulq

adwis Jayiel surewal

Y2IYM ‘9pow [D11BWIOINE S,21BMIJOS DU Ul pasnun aq 03 Jeadde sain1eaj 959y JO 150wl ‘(Uoliezljenba ‘uonaalsp Aoy ‘Bupidel) 1eaqumop pue 1eaq “679) [uewny e Ag pasn aq Ued 1ey) $21n1ea) AUBW Sey 21emyos SIY) Ybnoyl Usng,
9|geoidde Jou p/u

» » A A, » » s » » A A, » ra wasAs (g N0
l 12 12 12 12 { N l { » N ra [07] 4oxfewaded
‘ i i i i l » { q¢ » » ra [61] 0144 01RISS
N, N A’ N N, A’ ot ra [SL]XXIN
» A » A A oF ra [71] 1 [enyIA
A, A A » A oF (a [€Llzoidiomelr]
N o/ o/ » N » N ra [¢1]rg oweiss
» A’ » A’ » W [81] zdnysen
b/ b/ b/ o/ N b/ N N N O [£114sy ujpaxiy
A A’ N s W [LL]e12 997
» » » » » » » W(o1]Jaddnyseoiny
N N ra [8] JaXINPISNIN
» A’ N ra [£] 1239 ez
» » I N N ra [9] 1584 DISNI
» 2 2 N Va N ra [slenoyuaxdnog
N N F N A N ra [¥] ueyer
(1ay1o0
SaA1s Bulxiw Bulydlewieaq ra
221nos Ajigiredwod uonoalep uonezienbs UOMISUBIY UOIDD|S YDk} Jluoulley /buiynians uoneuswbas Buppen Buppen ‘dnysew)
-uado DIWYIAYY ANIAIIDE [BDOA olpny alRYlg palidsul-rg /uondaIap Ay -ul] [eINIONAS 3PIqUMOQ 1eag snowouoiny adA|

NIOM palejal pue 21emyos rJd (d1neuoine) @C_um_xw JO MaINIRAQ L 9|qel

Vande Veire and De Bie EURASIP Journal on Audio, Speech, and Music Processing (2018) 2018:13

on extending mash-up systems to multiple overlapping
songs and also consider the compatibility of consecutive
music segments instead of only the compatibility of the
overlapped segments.

Most existing work on automatic DJ systems focuses
on optimizing individual crossfades by minimizing the
amount of discomfort. However, there are still some
important limitations to these systems. First of all, the
crossfading process often remains very simple, e.g., with-
out performing any equalization. Secondly, very few sys-
tems consider the high-level structural properties of the
mixed audio. Thirdly, the focus is usually on optimiz-
ing individual crossfades, but the global song progression
throughout the mix is not considered. In general, there
appears to be no complete integrated DJing system in
scientific literature that elegantly combines all necessary
components and considers DJing best practices to create
enjoyable music mixes.

There also exist many commercial DJing applications.
Examples of professional DJing software include Serato
DJ [12] and Traktor Pro 2 [13] or free alternatives such
as VirtualDJ [14] and Mixxx [15, 16]. These aid the DJ in
analyzing the music by annotating, e.g., the tempo, beat
and downbeat positions, and the musical key. Most of this
software is tailored to DJs who perform the mixing them-
selves using advanced DJing equipment such as turntables
and mixers, but some feature automatic DJing functional-
ity as well. Another application designed for DJs is Mixed
In Key [17], which aids DJs in performing harmonic mix-
ing. It is not DJing software itself, but rather an annotation
tool that extracts a song’s key, tempo, relevant cue points,
and a custom “energy-level” annotation. Mixed In Key
can be integrated with DJing software such as Serato DJ
or Traktor Pro 2. The company behind Mixed In Key
also released Mashup2, a mashup creation program that
features automatic beat matching and key compatibility
detection [18]. There also exist apps whose main pur-
pose is to automate the task of a DJ. Examples include the
mobile apps Serato Pyro [19] and Pacemaker [20]. How-
ever, the automatic DJ capabilities in commercial applica-
tions remain quite simple. Typically, the transitions follow
a basic “intro-outro” paradigm, where the next song is
played only when the current song ends [21, 22]. Informal
experimentation furthermore indicates an inferior perfor-
mance in terms of beat detection accuracy and no or only
very basic cue point selection capabilities. Finally, none
of the aforementioned commercial applications are open-
source or explain the inner workings of their algorithms.
Hence, to the best of our knowledge, no well-documented,
open-source automatic DJ solution exists that combines
existing MIR knowledge and DJing best practices as in the
proposed project.

A common trend in existing work is to deal with a
broad variety of genres. However, the presented system

Page 5 of 21

is designed to explicitly deal with only one genre, namely
Drum and Bass. In their One In The Jungle paper,
Hockman, Davies, and Fujinaga [23] already point out the
need for genre-specific approaches within MIR research,
more specifically for genres like Drum and Bass that have
for example very distinct drum patterns. The proposed
system gives further proof that a genre-specific approach
might indeed be beneficial for certain applications.

3 Discovering the musical structure

One characteristic of music as an audio signal is that
it exhibits a hierarchical structure [3, 24]. At the low-
est level, music consists of individual musical events or
notes, which repeat periodically to define the tempo of the
music. Certain events (typically percussive in nature) are
more prominent than others, creating the beats. In Drum
and Bass, like in most types of EDM, beats can be grouped
into groups of four ([3], pp. 246—248), which are called
measures or bars. The first beat of a measure is called the
downbeat of that measure. Measures are the basic build-
ing blocks of longer musical structures such as phrases,
which then make up the larger sections that determine the
compositional layout of the song. The typical composition
of a Drum and Bass song is illustrated in Fig. 2.

Knowing the rhythmical and structural properties of
the music is extremely important for a D]. The tempo
and beat positions are used to beatmatch the music. The
high-level musical structure is important when selecting
cue points: if the D] mixes songs where the downbeats
or segment boundaries are not appropriately aligned,
the mix will most likely sound structurally incoherent
(131, pp. 317-318).

The automatic D] system is designed for a specific music
genre, and it therefore makes several assumptions about
the music’s structural properties:

e The music’s tempo is between 160 and 190 beats per
minute and is assumed to be constant throughout the
song,

e The music has a strict 4/4 time signature, i.e., there
are four beats to a bar,

e Phrases are a multiple of 8 measures long, and
musical segments are an integer number of phrases
long. Boundaries between segments are accentuated
by large changes in musical texture.

Even though these assumptions might seem restrictive,
they are based on extensive experience with the target
music genre and should hold for a vast majority of Drum
and Bass songs. Some of these properties have also been
noted in other works for EDM in general ([3], pp. 246—
248). Furthermore, we believe that it is feasible to adapt
the mentioned techniques to different EDM genres (see
Section 6).

Vande Veire and De Bie EURASIP Journal on Audio, Speech, and Music Processing (2018) 2018:13

Page 6 of 21

Intro Buildup Main section

structure is not fixed and that many variations are of course possible

o ———i

Bridge Buildup Main section Outro

Fig. 2 Example of the compositional layout of a Drum and Bass song ([3], pp.287-292). A song typically starts with an intro, followed by a build-up
that gradually increases the musical tension. This tension is released in a moment called the drop, which is the beginning of the main section or
core ([3], p. 289) of the music, comparable to the chorus in pop music. After the main section, there is a musical bridge, also called a breakdown, that
connects the first main section and the second build-up, drop, and main section. An outro gradually brings the music to a close. Note that this

In what follows is described how the proposed DJ sys-
tem extracts the beat, downbeat, and segment boundary
locations from the audio in a hierarchical way given the
assumptions listed above.

3.1 Beat tracking

To discover the beat positions, an algorithm inspired by
the work of Davies and Plumbley [25] is used. It assumes
a constant tempo, which is the case for the vast majority
of Drum and Bass music. With this assumption, only two
parameters need to be determined to define the positions
of all the beats: the beat period 7 (expressed in seconds)
or equivalently the tempo v = % (expressed as “beats per
minute”), and the beat phase ¢ (expressed in seconds), i.e.,
the time difference between the first beat and the start of
the audio signal. Two observations are at the core of the
beat tracking algorithm. Firstly, most repetitions of musi-
cal onsets, e.g., played notes or percussion events, happen
after an integer number of beats. Secondly, the loudest or
most prominent onsets typically occur on beat locations.
To exploit these observations, the positions of musical
onsets are estimated by means of an onset detection func-
tion (ODF), which has a high value for time instants in the
music where an onset is detected, and a low value else-
where. An excellent review on the different types of onset
detection functions is given by Bello et al. [26].

Figure 3 illustrates the beat tracking algorithm. The
first step is to calculate the ODF I'(m) of the audio. The
melflux ODF is used [27] with a frame size Nr of 1024
samples and hop size Ny of 512 samples. The audio sam-
ple rate f; is 44100 Hz. With the notations explained in
Table 2, Xiela0(m, k) being the energy of frame m in the
k™ frequency bin, logarithmically spaced according to the
Mel scale [28], and HWR the half-wave rectify operation
HWR(x) = max(x, 0), the ODF is calculated as follows:

40
I'(m) = Z HWRXmelao (11, k) — Xmelao(m — 1, k)).
k=1

1)

This curve is post-processed by subtracting a running
mean with window size Q frames from it and half-wave
rectifying the result:

C(m) = mean {F(q)} , 2)
m—§ <q=m+$
Cawr(m) = HWR (F(WI) - f‘(m)) . (3)

Q is set to 16 ODF frames, as in [25]. Then, the beat
period is extracted by calculating the autocorrelation
function Ar (/) of the ODF:

1
Ar(h = ; Trwr (7) Crwr (4 m). (4)

The autocorrelation Ar (/) is large at lag values / that are
a multiple of the beat period t. Thus, we propose to esti-
mate the beat period 7 as the one for which the sum of
autocorrelation values at corresponding lags (integer mul-
tiples of t) is maximal. Concretely, we define the tempo
detection curve B(t) as:

1
B(r) = <) AlnLo), (5)

and obtain an estimate T for the beat period as:

7 = argmax(B(1)), (6)

with a corresponding lag value L; (in frames). Note that
L; does not need to be an integer. The beat phase is deter-
mined by summing the ODF values for every possible time
shift ¢ between 0 and 7, at fixed intervals of one beat
period. The phase is then estimated as the one leading
to the highest sum. Formally, defining the phase detection
curve as:

1
®(¢) = -) Tuwr(1Lz +Lg), (7)

the phase is estimated as:

¢ = arg;nax(d>(¢>))- (8)

Vande Veire and De Bie EURASIP Journal on Audio, Speech, and Music Processing (2018) 2018:13

Page 7 of 21

Ll l AN

P P

100 120 140

(d)

160 T 180

0.0 $ 0.1 0.2 03
Tempo (BPM)

Fig. 3 lllustration of the beat tracking algorithm. a Audio waveform extract. b Half-wave rectified onset detection function Cywr(m). €
Autocorrelation function Ar (/) of the ODF. d Tempo detection curve B(t). @ Phase detection curve ®(¢). Our algorithm's estimate of the beat
period 7 and the beat phase ¢ are annotated. This figure was created by applying the algorithm to a piece of audio of 4 m 30 s long. For illustrative
purposes, only the first few seconds of the audio waveform, ODF and autocorrelation function are shown. Note that the described algorithm detects
the beats between 160 and 190 BPM, and a larger tempo range is shown in d for illustrative purposes

Time (s)

(e)

The estimated position of the m'th beat is (with [-]
rounding to the nearest integer):

(m)

by = mt +¢ (in seconds), 9)
L]()’ef‘:t = |mL; + L¢3'| (in frames), (10)

Ngm = [mN; + Ny (insamples). (11)
The tempo range is restricted between 160 BPM and
190 BPM (160 < v < 190), because the tempo of Drum

and Bass music falls between these values. We consider

Table 2 Overview of mathematical notations used in this paper

Notation Explanation

x(n) Audio signal, sample n.

xgg%'\g](m) Audio frame m using frame size Nr samples and
hop size Ny samples.

XWNENH (m, k) Spectrum or spectrum-like features of frame m, fre-

quency bin k, calculated on audio frames using
frame size Nr samples and hop size Niy samples.

XWNeNsI ([k,1,.]) Feature vector for frame m, calculated on audio
frames using frame size Nr samples and hop size
Ny samples. Additional indices k or [are used to

index subcomponents of the feature vector.

re) Onset detection function.
Ny = fst The number of samples within a time difference t.
L= A’Y—; The number of frames within a time difference t.

increments of 0.01 BPM for the tempo and 1 ms for the
phase.

3.2 Downbeat tracking

Given the beat positions, the proposed DJ system deter-
mines which beats are downbeats. Since measures of 4
beats long are assumed, there are only four options: the
first downbeat of the song is either the first, the sec-
ond, the third or the fourth beat, and every fourth beat
after that beat is also a downbeat. The downbeat track-
ing algorithm is summarized in Fig. 4. It consists of three
main steps. First, features are extracted from the beat
segments. Then, a logistic regression classifier, trained
on 117 manually annotated songs, determines the prob-
ability that a beat is either the first, second, third, or
fourth beat in measure it belongs to. Finally, these pre-
dictions are aggregated over the entire song for each of
the four options to determine the most likely downbeat
positions.

For features, the loudness [29] of each beat fragment
and the energy distribution of the audio along the fre-
quency axis, binned in 12 equally spaced bins on the Mel
frequency scale [28], are calculated. Additionally, three
onset detection functions are calculated of the entire song,
namely the flux, the high-frequency coefficient (HFC),
and the complex spectral difference (CSD) ODF. Differ-
ent ODFs capture different musical onset events [26], and
informal experimentation indicated that using multiple

Vande Veire and De Bie EURASIP Journal on Audio, Speech, and Music Processing (2018) 2018:13

Page 8 of 21

Fig. 4 Overview of the downbeat tracking algorithm. a The audio waveform, annotated with beats and downbeats. b Isolated features are extracted
from the beats. ¢ Isolated features are combined to create contextual features. d The machine learning model classifies each beat, estimating the
log-probability of a beat being either the 1st, 2nd, 3rd, or 4th beat in a measure. e The downbeats are determined by summing the log-probabilities
along each possible trajectory and choosing the most likely one. Here, the second trajectory is highlighted

ODFs greatly improves performance. With the notations
from Table 2, this gives:

HN N () = %[N (m) : Nz (m + 1)), (12)
Moud (m) = loudness (xﬁﬁ;fg](m)>, (13)
KXnel (M1, k) = Xmel12 (xfra:j;[](m)> k), (14)

Xodf,'(m’ k) = F(lWR(Ll(,th +k),0<k<lL;ic

{flux, csd, hfc}. (15)

The features are standardized by subtracting the mean
and dividing by the standard deviation of the corre-
sponding features in all beats of the song. These features
describe each beat in isolation and are therefore called iso-
lated features. However, a beat fragment does not contain
enough information on its own to determine its posi-
tion within its measure. Indeed, the notion of rhythmical
structure arises by the carefully orchestrated accentuation
of certain beats compared to other beats. Therefore, the
proposed machine learning classifier uses so-called con-
textual features X°™* that describe differences between
the isolated features of a given beat and those of the next 4
or 8 beats. For the different types of isolated features, they
are calculated as follows, with m the current beat index,
k the subfeature index if the isolated feature is a vector, /

the lag in number of beats with which the isolated feature
vector is compared, and i € {flux, csd, hfc}:

125_)1(5(7’”: D) = Xoud(m+1) — Xioua(m),0 < I < 8, (16)

XX (1, 1, k) = Xmel (1, k) — Xmel (11, k)1 € {—1,1,2,3},

mel
(17)
Li—1
ctxt ,(i) i) 7 (m+1) i)y (m)
odfcorr(Z F(l) (Lbeat + k)r(l) (Lbeat + k),
k=0
le{-1,1,2,3},
(18)
L;—1
Ctxt ,3i) o (m+1)
odfmt(l) - Z F(l) (Lheat + k)
k=0 (19)

-y @ +k, 0<I<16

Vande Veire and De Bie EURASIP Journal on Audio, Speech, and Music Processing (2018) 2018:13

Initial experimentation indicated that the downbeat
machine learning model is much less reliable in the less
“expressive” parts of the audio, e.g., the intro and the
outro. Therefore, beats in the intro and outro are trimmed
away using a heuristic iterative algorithm based on the
RMS energy of the beats. Figure 5 shows this algorithm
in pseudo-code. First, the RMS value of every beat’s audio
is calculated. This sequence of RMS values is smoothed
using a running mean operation, and then the first and last
beat in the audio are determined where the running mean
RMS value is larger than a threshold, i.e., a fraction of the
maximum running mean RMS value. If more than 40% of
all beats lie in between these boundaries, those beats are
kept to determine the downbeats. Else, the threshold is
decremented and the algorithm is repeated until at least
40% of the beats are “selected” The threshold fraction is
initialized at 0.9 and is decremented in steps of 0.1.

To determine the downbeats of a song, the algorithm
works as follows (see Fig. 4). First, the audio is trimmed
using the aforementioned algorithm. Then, the features
of the remaining beats are extracted and subsequently
classified using the machine learning model. This results
in a log-probability vector for each beat that estimates
whether it is either the first, second, third or fourth beat
in its measure. The algorithm then exploits the assump-
tion that the music has a strict 4/4 time signature: for each
of the four possible trajectories throughout the song, the
corresponding log-probabilities of the beats are summed,
and the trajectory with the highest sum is the most likely
and is predicted to be correct. Finally, this prediction is
extrapolated to the trimmed beats in the intro and outro,
after which all downbeat positions are known.

3.3 Structural segmentation

The high-level compositional structure of the song is
discovered using the novelty-based structural segmen-
tation method by Foote [30]. This approach assumes
that structural boundaries are accompanied by significant
musical changes in the audio. It uses a so-called structural

Page 9 of 21

similarity matrix (SSM) S(m, n) , which generally is con-
structed by splitting the input audio into short frames,
extracting features of those frames and comparing the
features of each frame with those of every other frame,
resulting in a matrix of pairwise comparisons. The auto-
matic DJ system uses not one, but two SSMs, both using
an analysis frame length of half a beat long (N;/2 sam-
ples) and a hop size of a quarter beat (N;/4 samples).
As features, one SSM uses 13 MFCCs per measure, and
the other uses the frames their RMS energy. The distance
between the MFCC feature vectors is calculated using the
cosine distance; for the RMS features, the absolute scalar
difference is used:

- -

deos(nus, ‘7) =1- —»ui.l:’ (20)
lull2llvil2
N;/2N; /4 Nz /2N [4
Xl[\/[FéC /](Wl, k) = Xmece <x£ran<e /](Wl)) k), (21)

[Nz /2:N; /4]

N;/2;:N; /4
Swirccm, 1) = deos (Xaste om0, XL N (),

(22)

N;/2N; /4 N; /2N; /4 2
XlgMS{ /](m) =\/mean{<x£ran<e /](m)) },

(23)

[Nz /2Nz /4

N;/2;N; /4
Srms(m,) = ’XRMS [N/ /

Jom) — NN).

(24)

Similar frames lead to a low value in the matrix, whereas
dissimilar frames result in high values (Fig. 6a). The for-
mation of blocks in the matrix indicates the occurrence
of musically coherent segments. The algorithm by Foote
determines the location of the boundaries between these

function get_trimmed_-audio_start_and_end (audio z, beat period 7):

X”“S (Tn) = ’m—{réeqagrinﬁ—l {ers(q)}

Xonaz = max{X.,s(m)}

for f in [0.9,0.8,...,0.1]:

if bend - bstari 2 0.4 «M:
return bstarh bcnd
return 0, M-1

Xems(m) = \/Nl 5, {(x£ﬁ2§+](m,i))2},Vm €{0,..,M—1}

bstart = get,first,index,wherei(é‘?rms(m) > f:k)?m%)
bena = get_last_index_where (Xims(m) > fxXnaz)

Fig. 5 Pseudo-code for the audio trimming algorithm of the downbeat tracker

Vande Veire and De Bie EURASIP Journal on Audio, Speech, and Music Processing (2018) 2018:13

Page 10 of 21

Time (s)

PemE e m e e e mE
Novelty

Fig. 6 lllustration of structural segmentation concepts. a Example of a structural similarity matrix. The audio waveform is shown next to both axes.
b Calculation of the novelty curve by convolving the SSM with a checkerboard kernel along the diagonal

Time

segments by convolving the matrix along its main diagonal
with a “checkerboard” kernel K:

Kk, D) = { 1 forkl>0, (25)

—1 for kil < 0.

This leads to a novelty curve [5SMD) (47), which has high
values for time instants at a structural boundary and low
values elsewhere (with i € {RMS,MFCC}, and K the
kernel width in frames):

Sl
Sl

PESMA (1) = X:KmUMm+km+b.

K K
k=—K1=-X

(26)

K is equal to 64 frames, i.e., 4 measures before and after
each time instant are used to determine the novelty at that
instant. This process is illustrated in Fig. 6b. Finally, both
novelty curves are combined by taking the element-wise
geometric mean of both curves:

(SsM) (m) = \/F(SSM,RMS) (m)D(SSMMECC) (1) (27)

The geometric mean will only show a peak when both
curves have a peak at the same time. Hence, the geomet-
ric mean gives the novelty curve for boundaries on which
both individual curves “agree” This operation is based
on the observation that boundaries between segments
often go along with changes in harmonic content and
musical texture as well as changes in musical energy ([3],
pp- 290-292, 297-298), which the MFCC SSM and RMS
SSM respectively attempt to capture.

Given the audio’s novelty curve, phrase-aligned struc-
tural segment boundaries are determined. Figure 7

summarizes this process in pseudo-code. Structural
boundaries are extracted by first selecting the 20 highest
peaks in the novelty curve. Several post-processing steps
based on musically inspired rules are applied to deter-
mine the downbeat-aligned boundary positions. First, the
peaks positions, which—given the SSM time resolution—
are detected at a half-beat granularity and hence could
initially be at non-downbeat positions, are rounded to the
nearest downbeat. Peaks that lie further than 0.4 times
the length of a measure from a downbeat are discarded
as false positives. From the downbeat-aligned segment
boundary candidates, a subset is determined in which all
candidates lie at a multiple of 8 measures from each other,
because phrases are assumed to be 8 measures long. In
what follows, candidate boundary positions are denoted
pi (in downbeats) and their amplitudes are denoted a;. For
each subset, all peak amplitudes are summed that do not
occur one or two measures before another peak with a
novelty value greater than 0.75 times the amplitude of the
peak considered for summation. This reduces the num-
ber of false positives caused by breaks, i.e., short musical
segments that break up the music and typically occur just
before a structural boundary. Each sum is multiplied by
the number of peaks contributing to it, increasing the
importance of a sum with many contributors. The struc-
tural boundary candidates that contributed to the highest
sum are considered to be the correct boundaries.

Each segment is then assigned a label based on its RMS
energy: segments with an average RMS energy higher
than the average song-wide RMS energy get a label “high,’
whereas quieter segments get a label “low” This labeling
method attempts to tag the “main” or “core” sections
of the song with a label “high” and the other sections

Vande Veire and De Bie EURASIP Journal on Audio, Speech, and Music Processing (2018) 2018:13

Page 11 of 21

function get_boundaries(novelty_curve [SM) - heat period 7):
p,a 4— find,peaks,and,amplitudes(F<SSM), 20)

ignored < initialize empty array
for ¢ in [0 .. 19]:
if |pi— |pi]| > 04 4LEFSSM):

SN < initialize two arrays of length 8, initial values 0

ignored. append (i)
else:
pi < |pil
for ¢ in [0 .. 19]:

idx = mod(p;,8)
Sidze = Side + a;
Nigz = Niga +1
Bsegment = argmax(Np * Sp)
B

if i¢ignored and Bj: (pi <p; <pi+2)A(a; > 2a:):

return [p; if mod(pi,8) == Bsegment]

Fig. 7 Pseudo-code for selecting phrase-aligned boundaries given the SSM novelty curve in the structural segmentation algorithm

(intro, buildup, breakdown, ...) as “low” This is used to
determine cue points, as described in Section 4.2.3.

4 Composing a DJ mix

Section 3 described how the proposed D] system analyzes
music to gain a detailed understanding of it much like a
human D] has. The current section elucidates how the
proposed DJ system also simulates parts of the creative
process of a human DJ, i.e., a creative track and cue point
selection and a variation of transition types, leveraging the
detailed musical understanding to generate high-quality
mixes.

4.1 Automatic DJ system architecture

The automatic DJ system architecture is shown in Fig. 8.
Songs are annotated offline using the beat tracker,
downbeat tracker and structural segmentation modules.
Additionally, the replay gain [31] is annotated, which
allows to play all songs at an equal volume, regard-
less of the volume they were recorded at. Also the key
(Section 4.2.1), style descriptor (Section 4.2.2) and the beat
tracking ODF are determined.

The mix generation and playback happen “live” by iter-
atively performing track and cue point selection, time-
stretching, beatmatching, and crossfading, as detailed
below.

During the mixing process, the track and cue point
selection algorithm determines the next song and cue
points, given the current song. Three transition types,
inspired by how professional DJs compose their mix and
perform crossfades, are possible. The type is chosen using
a Finite State Machine, which ensures variation in the mix
by preventing that certain transition types happen twice in
a row. The transition type defines which segments (“low”

or “high”) of the first song and the new song are over-
lapped, i.e., it defines possible cue points (Section 4.2.3).
The next song is selected such that the resulting mix is
musically coherent as a whole while ensuring that individ-
ual song transitions are enjoyable to listen to. Details of
this selection process are explained in Section 4.2.

Once the cue points are known, the crossfade is estab-
lished. This happens by time-stretching the audio, apply-
ing volume fading and equalization filters and then adding
the two songs together in a beatmatched way. The tempo
is fixed at 175 BPM for the entire mix. This process is
explained in more detail in Section 4.3.

4.2 Track and cue point selection

The track and cue point selection is done in five steps that
iteratively narrow down the options for potential succes-
sors of the current song. Firstly, only songs that are in key
with the current song are considered (Section 4.2.1). Of
these songs, the six most similar songs in terms of musical
style are selected as potential successors (Section 4.2.2). In
the third step, cue points are determined for the current
song and for the candidate successors (Section 4.2.3). The
two final steps heuristically estimate the musical quality
of each potential overlap. More specifically, vocal activ-
ity is detected such that overlapping vocals of both songs
is avoided (Section 4.2.4), and rhythmic similarity is esti-
mated by comparing the songs their ODFs (Section 4.2.5).
The song with the highest rhythmic similarity to the
current song and without vocal clashes is selected as the
next song.

4.2.1 Musical key compatibility

Mixing in key or harmonic mixing is a technique often
employed by professional DJs where successive songs have
the same or a related key [1, 2]. This ensures that they fit

Vande Veire and De Bie EURASIP Journal on Audio, Speech, and Music Processing (2018) 2018:13

Page 12 of 21

Music
library
Track selection <
Loudne_;ss Beat tracking v
balancing
Cue point selection
v
" Y
=7 Downbeat Time stretching
estimation tracking v
v Beat matching
Onset Structural \J
detection = segmentation Crossfading |
Fig. 8 Automatic DJ system architecture. On the left, in yellow, are the annotation submodules. On the right, in green, are the modules used “live”
during the mixing process

together harmonically and reduces dissonance when play-
ing two songs at the same time. Even though recent work
[32] questions the use of harmonic mixing based on the
musical key in specific cases, e.g., for music outside the
major/minor scale framework, to the best of our knowl-
edge, the technique is still common practice in Drum and
Bass. Hence, the automatic D] system features a simple
key extraction implementation.

The key of each song is discovered in a pre-processing
step using the algorithm by Faraldo et al. [33], which is
implemented in the Essentia music analysis library [34]
and has been tuned to electronic dance music in partic-
ular. The annotations are stored on disk, allowing fast
retrieval. The allowed key changes for the next song are
going a perfect fifth up or down (i.e., changing to the dom-
inant or subdominant key) or changing to the relative key
of the key of the current song. Only the songs that are in
one of these keys or in the same key as the current song are
considered in the following steps. This choice of allowed
keys is inspired by DJing best practices [1, 17] and they are
related to the music theory concept of the circle of fifths.
This is illustrated in Fig. 9 [24].

To give the automatic D] more song options to choose
from, also the songs in a key one semitone lower or higher
than one of the related keys are added to the pool. If one
of these would eventually be selected as the next song,
its key will be altered using a process called pitch shift-
ing. This involves subsequently time-stretching and then
down- or upsampling the audio, effectively changing the
music’s pitch without altering the playback speed. This
is necessary since a key one semitone below or above a
compatible key is usually not a compatible key itself.

4.2.2 Musical style descriptor
A DJ often mixes songs that are similar in style, genre,
or atmosphere. In what follows, the term style describes

the combination of timbre, mood and energy of a song.
For example, a song might be energetic or calm in nature,
uplifting or moody, happy or dark and so on. The auto-
matic D] describes the style by means of a custom style
descriptor feature.

Two much-cited approaches of content-based audio
similarity measures are those by Logan [35] and by
Aucouturier [36]. The former models the distribution
of frame-wise spectral features by means of a K-means
cluster model, whereas the latter constructs a Gaussian
mixture model of the feature vectors. Song similarity

DO
*Senrzes/e/

Fig. 9 lllustration of the circle of fifths and allowed key changes in the
DJ system. For example, if the key of the current song is C major (light
gray), the allowed key changes are one perfect fifth up (G major, the
dominant key), one perfect fifth down (F major, the subdominant key)
or changing to the relative key (A minor)

Vande Veire and De Bie EURASIP Journal on Audio, Speech, and Music Processing (2018) 2018:13

is calculated using respectively the Earth Mover Dis-
tance algorithm and a sampling approach. However, these
approaches are computationally expensive, both to con-
struct the song models as for evaluating the distance
metrics [37].

To limit the annotation and song comparison time, the
automatic DJ adopts a simpler approach. First, spectral
contrast features [38, 39] are extracted from short over-
lapping frames of audio, using a frame size and hop size
of respectively 2048 and 1024 samples. Only the audio
belonging to “high” segments from the structural seg-
mentation task are used, as these typically make up the
most recognizable and descriptive parts of the music ([3],
p- 290). The spectral contrast features calculate the ratio
between the magnitudes of peaks and valleys within dif-
ferent sub-bands of the spectrum and in this way describe
the relative amount of harmonic and noise components in
those bands. They reportedly outperform MFCC features
for music genre classification [39], as confirmed by infor-
mal experiments. Of these frame-wise features, the means
and variances of the individual vector components are cal-
culated across all frames, and also the mean and variances
of the first-order differences, resulting in a 48-dimensional
vector describing each audio file:

X [2048;1024]

[2048;1024]
contrast (m)),

(m, k) = spectral-contrast (xframe

28)

Xitylemean(k) = mean (XE05Pom,0), (29)
Xigestaen(k) = stdev (X0 om b)), (30)
ity mean (k) = mean (X0t om, k) N
A),

Kigle,sstden () = stdev (XG0 om, k) -

_ X[2048;1024] m—1 k))

contrast

Xstyle = [Xstyle,mean; Xstyle,stdev; Xstyle,A,mean; Xstyle,A,stdev] .
(33)

The vector AXgyle is then projected onto a lower-
dimensional feature space in which thematically similar
songs lie close together and dissimilar songs are further
apart. This projection is done by projecting them onto the
top three dimensions found by applying principal com-
ponent analysis (PCA) on a collection of 160 Drum and
Bass songs. The resulting three-dimensional representa-
tion will be called the style descriptor ® = PCA3(Xytyle).
The Euclidean distance between two style descriptors
measures song similarity.

Page 13 of 21

Before describing how the DJ system’s track selection
algorithm uses the style descriptor, an analysis of the
behavior of the style descriptor in professional DJ mixes
is presented to motivate our approach. In this analysis,
several professional mixes downloaded from the internet
were analyzed by extracting 90 s of music with a hop size
of 120 s. These parameters were chosen after informally
determining the average duration of an individual song in
a DJ mix. The evolution of the style descriptor through-
out three professional DJ mixes is visualized in Fig. 10a—c.
The style stays in a relatively small neighborhood com-
pared to the entire collection of songs in the music library.
Therefore, to imitate this behavior, the automatic DJ sys-
tem should also select songs that stay relatively close
to one another (Fig. 10d). Note that this observation
also strengthens the hypothesis that the style descrip-
tor groups thematically similar songs close together, since
professional DJs typically select quite similar songs for a
mix [3, 317-320].

The song selection process works as follows. Before
the mix is started, the automatic DJ randomly selects the
first song and selects the quarter of all the songs in the
music library that are closest to this first song in the style
descriptor space. The centroid of the style descriptors of
these songs will be called the style centroid © ceptroiq. Dur-
ing generation, the DJ calculates the ideal style of the
next song (:),,m as a weighted sum of the current song’s
descriptor, the previous song’s descriptor, and the style
centroid. With o and g the weight of the style centroid and
of the previous song respectively, this gives:

énext = & Ocentroid + (1 —a) (ﬂ Oprev + (1 — B) ®cur) .
(34)

« and B have been arbitrarily assigned the values 0.4 and
— 0.1 respectively. The centroid weight « ensures that all
songs stay relatively close to the style centroid, leading to a
thematically uniform mix. A value of & close to 1 will keep
the mix centered around the style centroid, while a value
close to 0 allows the mix to “wander” freely through the
style space, leading to a more varied but potentially less
uniform mix (Fig. 10f). A negative weight for g is chosen
such that there is a deliberate progression or “flow” of the
style: the next song will be dissimilar to the current song
in a similar way as the current song is dissimilar to the pre-
vious song. A more negative S leads to larger the jumps in
style between successive songs (Fig. 10e), again presenting
a trade-off between variation and coherence. Figure 10d
illustrates the default behavior of the automatic D] system,
while Fig. 10e, f shows the effect of alternative settings for
« and B.

The pool of song candidates is reduced by only keep-
ing the songs that are closest to (:)nm. In the current
prototype of the automatic DJ, six songs are kept.

Vande Veire and De Bie EURASIP Journal on Audio, Speech, and Music Processing (2018) 2018:13 Page 14 of 21

(d)

(e)

(f)

Fig. 10 lllustration of the style descriptor progression throughout six DJ mixes. The gray dots represent the style descriptors of 513 Drum and Bass
songs, selected from different sub-genres of Drum and Bass. The black dots mark the songs in the mix. Successive songs are connected by a line. a,
b, ¢ Professional DJ mixes, resp. [54-56]. d, e, f Generated DJ mixes. The style centroid is marked by a red dot. d Default settings for

(o, B) = (04,—0.1). e Large B: («, B) = (04, — 0.9). f No style centroid, large B: (¢, 8) = (0, — 0.5)

4.2.3 Cue point selection

To determine cue points, the automatic D] first chooses
one out of three transition types. These types differ in
what types of structural segments are overlapped (“high”
or “low” energy) and hence determine the allowed cue
point positions. For the different transition types, this
selection happens as follows (as illustrated in Fig. 11):

e Double drop: in both the current and the next song,
the cue points are chosen 16 measures before a drop,
i.e., a transition from a low to a high segment. In the
current song, the first drop after the current playback
instant is used; in the next song, if there are multiple

drops, then one is picked at random. The fade-in and
fade-out are 16 and 32 measures long respectively.
The drops of both songs are aligned in time, hence
the name double drop.

Rolling transition: the cue point in the current song is
32 measures before the next transition from a high to
a low segment. The cue point in the next song is the
downbeat 16 measures before a drop. The fade-in and
fade-out are both 16 measures long. In this transition,
the second song its drop continues the energetic
nature of the high section of the preceding song.
Relaxed transition: the cue point in the current song
is 16 measures before the next transition from a high

Vande Veire and De Bie EURASIP Journal on Audio, Speech, and Music Processing (2018) 2018:13

Page 15 of 21

Fig. 11 lllustration of the cue point selection for the three transition types. The fade-in and fade-out lengths, expressed in number of measures, are
annotated. Also the final crossfades are conceptually illustrated. a Double drop. b Rolling transition. € Relaxed transition

to a low segment. The next song is started at the
beginning, i.e., its first structural boundary. The
fade-in and fade-out are both 16 measures long. In
this way, the energetic nature of the mix is
interrupted, giving the listener some time to relax.

The transition type is chosen pseudo-randomly by
means of a finite state machine that specifies the proba-
bility of selecting each type, given the previous transition’s
type (Table 3). The current implementation balances a
rather high-energy “flow” (high probabilities for rolling
transitions) with moments to rest (relaxed transitions) and
exciting climaxes (double drops). To avoid layering too
many songs at once, double drops are not allowed after a
rolling transition or another double drop.

After determining the transition type, cue points are
determined for each of the six remaining song candidates.
Given that particular choice of cue points, the automatic
DJ system estimates the quality of the crossfades in the
two final steps to make a final selection for the next song.

4.2.4 Vocal clash detection

When two songs are mixed together, it is important
to avoid vocal clashes as this might disrupt the listen-
ing experience, especially when the vocals have a pre-
dominant presence in both songs ([3], p. 318). Even
though Drum and Bass is a predominantly instrumen-
tal genre, vocals regularly occur. For this reason, a vocal

Table 3 Transition matrix controlling the transition type selection

Relaxed Rolling Double drop
Relaxed 0 0.7 03
Rolling 0.2 0.8 0
Double drop 0.2 0.8 0

The element in the ith row and jth column denotes the probability of selecting type
j if the previous transition’s type is i

activity detection mechanism is built into the automatic
DJ system.

Existing work on singing voice detection [40-42] typi-
cally adopts a machine learning approach, where features
extracted from short frames of audio are classified as
either vocal or instrumental. The output is then smoothed
using for example an HMM or ARMA filtering [42, 43].
Unfortunately, at the time of implementing the DJ system,
no software implementation of a vocal activity detection
solution was available that could be easily integrated into
the automatic DJ system. A simple baseline solution is
developed instead. A support vector machine classifier
with an RBF kernel is trained to classify segments of one
measure long. The segments are first analyzed in frames
of 2048 samples long with a halve frame overlap between
consecutive frames. Of these short frames, 13 MFCCs, 6
spectral contrast, and the corresponding 6 spectral val-
ley features [39] are calculated. The means, variances, and
skews of these features are calculated, as well as the means
and variances of the first-order differences of features in
consecutive frames, giving 250 features for each down-
beat segment. These are the input to the SVM classifier.
The training set consists out of 55 manually annotated
songs. The classifier parameters were tuned using cross-
validation, giving a regularization parameter C of 1.0 and
kernel coefficient y of 0.01. During the annotation pro-
cess, the SVM classification of each measure is stored on
disk to be used in the song selection process.

The classification output is post-processed before using
it for song selection. A measure is labeled “vocal” if either
the measure itself or both its neighboring measures are
classified as “vocal” by the SVM: else the measure gets the
label “instrumental” A vocal clash is detected if at least
two “vocal” measures overlap; a one-measure overlap is
tolerated. Only the songs and cue points are considered
that do not lead to a vocal clash. If however all candidates
lead to a clash, the clash is tolerated for that transition.

Vande Veire and De Bie EURASIP Journal on Audio, Speech, and Music Processing (2018) 2018:13

4.2.5 Onset detection function matching

Rhythmic similarity is estimated by comparing the songs
their onset detection functions. The ODFs from the beat
tracking process are stored on disk and are used for
this comparison. The ODF portions corresponding to the
overlapped music segments are compared by means of the
dynamic time warping (DTW) algorithm, since the ODFs
are calculated for the audio at their original (unstretched)
tempo. The DTW algorithm stretches the ODFs during
comparison and hence eliminates the need to recalcu-
late the ODFs after time-stretching the original audio. A
second motivation for the DTW algorithm is that small
rounding errors occur when selecting an extract from
the ODFs, as beat positions often do not align with an
ODF frame boundary. Because of this, two ODF extracts
that are very alike might be shifted one or two frames
with respect to each other: therefore, some flexibility is
allowed. However, a beam search strategy is applied to
prevent excessive warping of the compared ODFs. The
song and cue point combination which leads to the lowest
DTW score is selected as optimal.

4.3 Creating the crossfade

Given the next song and the cue point positions, the
crossfade is established. Time-stretching is performed
by applying harmonic-percussive separation [44] and
independently stretching the harmonic and percussive
residuals, respectively using the frequency-domain phase
vocoder [45] and the time-domain OLA time scale modifi-
cation algorithm [46], as proposed by Driedger and Miiller
[47]. This approach significantly reduces audio artifacts
compared to traditional time-stretching algorithms at the
expense of a higher computational cost [48]. Afterwards,
volume fading and equalization filters are applied to both
songs. The exact crossfade patterns for each transition
type were manually defined to ensure a smooth transition
between songs. During the fade-in, the volume of the next
song gradually rises to full level, while its bass and tre-
ble remain almost entirely filtered out. At the end of the
fade-in, a switch occurs between the songs: the bass and
treble of the next song are quickly increased to full level,
and at the same time the bass and treble of the previous
song are filtered out. The volume of the previous song is
then gradually faded out until the end of the crossfade.
This particular equalization pattern ensures that the bass
and treble of only one song will be heard at any point dur-
ing the crossfade, leading to a clean, unsaturated sound of
the resulting mix. Finally, the audio of the songs is added
together in a beatmatched fashion, effectively mixing the
two songs together.

5 Results and discussion
The automatic D] system has been tested on different
aspects. First, the system’s execution time is measured and

Page 16 of 21

the envisaged setup is described. Then, the accuracy of
the different annotation methods from Section 3 is eval-
uated. Additionally, the vocal activity detection algorithm
is evaluated on its ability to discriminate between clashing
and non-clashing crossfades. Finally, a subjective user test
assesses the efficacy of the style descriptor and the ODF
matching and tests the system as a whole. These evalua-
tions have been performed using three sets of songs: a first
set of 117 songs (Additional file 1 Table S1), a second set
of 43 songs (Additional file 1 Table S2), and a third set of
220 songs (Additional file 1 Table S3). When referring to
the set of 160 songs, the combination of the first and sec-
ond set is meant. A full tracklisting of all three sets has
been provided in an additional file.

5.1 System performance and envisaged setup

The presented D] system mixes “live’, i.e., it generates
future transitions in the background while the music is
playing. On a consumer-grade laptop (4-thread Intel Core
i7-6500U CPU at 2.50 GHz, 8 GB RAM), it takes 17.0 s on
average to generate the next transition (averaged over 100
generated transitions; standard deviation 6.6 s, maximum
32.2 s). This is less than 16 measures of music at 175 BPM
(=~ 22 s). In the current implementation, two consecutive
transitions start at least 16 measures (and typically more)
apart from each other, ensuring that the system does not
hang because it is waiting for the next transition to be
generated. Furthermore, a buffer mechanism queues mul-
tiple transitions as an additional safeguard that prevents
the system from running out of music.

The annotation of the input music library happens
offline, i.e., before the actual mixing process can start.
Annotating one song takes 12.0 s on average, i.e., 2.3 s per
minute of audio on average (standard deviation 0.1 s; eval-
uated on 160 songs). As a coarse guideline, we recommend
at least 50 to 100 Drum and Bass songs in the input music
library in order to create a 30-min mix (=~ 20 transitions)
of good quality. Of course, the more songs in the library,
the more flexibility the automatic DJ has, and the better
the mix will be.

5.2 Evaluation of the beat tracker

The beat tracking accuracy is evaluated on a collection of
160 Drum and Bass songs. The annotations made by the
beat tracker are not compared with a manually annotated
ground truth, because this manual labeling is extremely
time consuming and because the inherent ambiguity of
the beat annotation task [49] makes this even more dif-
ficult. Instead, the annotation correctness is evaluated
by overlaying the audio with beep sounds at the beat
positions detected by the algorithm and listening if they
coincide with the true beat positions in the music. To
avoid listening to the entire song, two 15-s fragments are
evaluated per song: one a quarter into the song, and one

Vande Veire and De Bie EURASIP Journal on Audio, Speech, and Music Processing (2018) 2018:13

three quarters into the song. If a fragment is beatless (e.g.,
because at that moment in the song there happens to be
a breakdown), a new fragment with beats is chosen near
that position and is evaluated instead. Large beat tracking
errors, such as a large tempo error (e.g., 1 BPM or more)
or a wrong phase, are clearly audible when listening to
only one of the fragments. The second fragment is used to
detect small tempo errors: even if in the first fragment the
beat positions appear to be correct, they are unlikely to be
correct in the second fragment because the tempo devia-
tion would cause the beat annotations to “drift away” from
the correct beat positions. Among different candidates,
the melflux ODF, as implemented in the Essentia library
[34], performs best with 159 out of 160 songs annotated
correctly, i.e., an accuracy of 99.4%. A second evaluation
on a second test set of 220 songs leads to an accuracy of
98.2%, i.e., four songs their beats are incorrectly detected.
In these cases, the tempo is still detected correctly, but the
phase is wrong by half a beat period, such that the detected
beat positions lie exactly in between the correct beats.

To motivate the need for a custom beat tracker, this
paragraph discusses the behavior of existing beat tracker
implementations. Experiments with several open-source
implementations [34, 50] show that these annotate beat
positions that are often not exactly equidistant, either
because the algorithms are tailored towards songs with a
variable tempo or because the specific implementation is
not entirely accurate. We illustrate this in more detail for
the BeatDetectionProcessor beat tracker from the
madmom music processing library [50] on the first and
second set of songs (resp. 160 and 220 songs). Even though
the madmom documentation claims it detects beats at a
constant tempo, slight inter-beat interval (IBI) variations
occur: on average, the IBI standard deviation within a song
is 2.2% of the correct IBI length. This happens because it
detects the IBI as an integer number of ODF frames, even
though the IBI usually is a non-integer number of frames
long, and then fixes rounding errors by detecting beats
using a tolerance interval. Using these non-equidistant
beat positions would complicate for example the beat
matching implementation, and a constant IBI throughout
the entire song is much more desirable. However, averag-
ing the IBIs leads to significant tempo estimation errors
W= W): for 115 out of 380 tested songs (30.3%),
the estimation differs more than 0.25 BPM from the real
tempo, and for 59 songs (15.5%), the error is even higher
than 0.5 BPM. This is considered too inaccurate for an
automatic D] system, explaining the need for a custom
beat tracker that uses an exact, constant IBI between all
beats.

5.3 Evaluation of the downbeat tracker
The downbeat tracking machine learning model has been
trained on a training set of 117 annotated songs, and

Page 17 of 21

its performance is evaluated on a hold-out test set of 43
songs. The ground-truth downbeat position is annotated
as a single label per song (I, 2, 3, or 4), which denotes
whether the first beat of the song, and every fourth beat
after that, is either the 1%, 2", 3¢ or 4 beat in the mea-
sure it belongs to. This of course assumes that the beat
positions are annotated: these annotations are created
using the algorithm described in Section 3.1 and manually
determining the tempo and phase of the songs where the
beat tracker made a mistake. On individual beat segments,
i.e., by taking the argmax for each per-beat log-probability
prediction (step (d) in Fig. 4) and before summing the log-
probabilities (so before step (e) in Fig. 4), the downbeat
classifier achieves an accuracy of 75.4% (excluding beats
in the intro and outro). On a song level, i.e., after sum-
ming the log-probability vectors of the individual beats
and predicting a single song-wide downbeat index, the
downbeat tracker achieves an accuracy of 95.3% on the 43
test songs. On the second test set of 220 songs, four of
the 214 songs with correct beat annotations had incorrect
downbeat annotations, leading to an accuracy of 98.1%.

The need for a custom downbeat tracker is motivated
mainly because existing downbeat trackers implemented
in open-source libraries were found to be less accurate
on this corpus of music and additionally require more
computation time. We evaluated this in more detail by
running the RNNBarProcessor downbeat tracker from
the madmom library [50] on 160 songs, given the ground-
truth beat annotations as input. The algorithm takes
35.4 s per song on average (standard deviation 6.7 s)
to calculate the downbeat positions, compared to 4.47 s
(standard deviation 1.4 s) for the DJ system’s implementa-
tion. Furthermore, 20 songs their downbeat position were
wrong, which gives an accuracy that is considerably worse
than the presented downbeat tracker (87.5% compared to
98.1%).

5.4 Evaluation of the structural segmentation task

The accuracy of the structural segmentation task is
more difficult to assess because of its subjective nature
[51]. Here, annotations are considered structurally cor-
rect if they belong to the correct subset of downbeats
at a multiple of eight measures from each other (see
Section 3.3). Additionally, the simple labeling of the seg-
ments as a “low” or a “high” segment is evaluated. To do
so, every transition from a “low” to a “high” segment in
each of the 160 songs is listened to and is considered cor-
rect if that transition coincides with a drop in the music
(see Fig. 2). For 3 out of 160 songs, the 8-measure offset
was incorrect. For 4 out of 160 songs, the assumption that
all segmentation boundaries lie at a multiple of 8 mea-
sures from each other is incorrect. This means that 95.3%
of the songs received structurally correct annotations. For
82.4% of these songs, also the drop detection as a “low”

Vande Veire and De Bie EURASIP Journal on Audio, Speech, and Music Processing (2018) 2018:13

to a “high” transition is correct. In the second test set,
94.3% of the songs with correct downbeat annotations also
received structurally correct segmentation annotations.

5.5 Evaluation of the song filtering

The SVM classifier for vocal activity detection has been
trained on a manually annotated selection of 55 songs,
containing 12,260 downbeat segments in total of which
2321 contain vocal activity. Data augmentation is per-
formed by pitch shifting the audio for training one semi-
tone up and down, artificially tripling the amount of
training data. The unequal class sizes are countered by
choosing class weights inversely proportional to the class
size [52]. The classifier achieves an accuracy, precision,
recall and F1-score of respectively 97.8%, 90.2, 99.2, and
94.5% on the train set and 87.0, 62.3, 61.1, and 61.7% on
a hold-out test set of 38 manually annotated songs con-
taining 8524 downbeats (7097 non-vocal and 1427 vocal
downbeats), where the vocal label is considered to be the
positive class.

The ability to detect vocal clashes in transitions is eval-
uated by calculating all overlaps between all pairs of
manually annotated songs that would be possible in the
automatic DJ system. Each overlap is assigned a label
clashing if vocals overlap in at least two measures in the
resulting mix (as in the D] system, an overlap of one mea-
sure is tolerated). The same label is estimated using the
singing voice detection model. The confusion matrix for
this experiment is shown in Table 4. This shows that about
69.3% of the vocal clashes can be prevented, at the expense
of falsely discarding 16.5% of the non-clashing crossfades.

5.6 User study: evaluation of the musical style descriptor
and system evaluation
Figure 10 informally validates the ability of the style
descriptor feature to group similar songs close together
and separate dissimilar songs. To provide a more robust
evaluation, a subjective user test has been carried out.
Two mixes are generated using an input library of 380
songs. One mix has all automatic DJ functionality enabled,
in the other the songs are selected without considering
the style descriptor. The mixes are both 15 min long and
contain 10 and 11 transitions respectively. Both only use
songs with structurally correct annotations, to ensure that
any loss in mix quality is the result of the track selection
process and not of an annotation error. Additionally, both

Table 4 Confusion matrix for the vocal clash detection
experiment (No clash: 10167 crossfades; Clash: 1524 crossfades)

Clash (estimated)
0.165
0.693

No clash (estimated)
0.835
0.307

No clash (ground truth)
Clash (ground truth)

Page 18 of 21

mixes start with the same song. Eighteen Drum and Bass
fans were asked to listen to both mixes and select which
mix had the best track selection in their opinion. These
fans were reached through online Drum and Bass fora;
they were not paid to take part in the experiment. The
users are told that both the mixes are generated by the D]
system. They also rated each mix with a score from 1 to 5,
where 5 is the best possible score. Histograms of these rat-
ings are shown in Fig. 12. In the same user test, two other
mixes are presented to the users using a similar procedure
to evaluate the ODF matching procedure. In the first mix,
all automatic DJ functionality is enabled, and in the sec-
ond, the ODF matching is reversed such that the worst
matching song is selected instead of the best match. The
ratings for both mixes are compared in Fig. 12. The user
test results are shown in Table 5.

This test indicates that the style descriptor selection
process drastically improves the mix consistency and its
perceived quality, with 17 out of 18 evaluators preferring
that mix (p value 7.25 x 10~°). Figure 12a also shows that
the mix with the style descriptor received higher ratings
on average (an average rating of 3.89 versus 2.39 respec-
tively). The ODF matching mix was also preferred more
often than the reversed matching scenario, but the distinc-
tion is less clear (10 out of 15 evaluators?, p value 0.151,
and an average rating of 3.76 versus 3.41 respectively). The
user tests also resulted in valuable qualitative feedback?.
The first mix with all D] features was received very well.
Compared to the second mix (style-agnostic track selec-
tion), it was said to be “more consistent,” “tunes that match
in style and feel] that it had “more continuity” and less
dissonance. The mix with style-agnostic track selection
was critiqued as being “too rushed,” changing too much
between sub-genres and that it “sounded like a DJ that
was occasionally just throwing tunes into the mix with-
out much thought” Only one user preferred the second
mix over the first, because “it incorporates more vocals,
this makes me think that it is more likely to be made by a
human.” The transition quality for the second set of mixes
was more or less the same according to many partici-
pants, which indicates that selecting songs based on ODF
similarity might not significantly influence the mix qual-
ity. Nevertheless, as there is a slight preference towards
the ODF-based selection, this feature is kept in the DJ
system. Other informal feedback indicates that the key
detection algorithm and the vocal activity detection might
need improvement, as some users noticed bad harmonic
mixing or vocal clashes in some transitions.

6 Conclusions

The automatic D] system presented in this paper gener-
ates a seamless music mix from a library of Drum and Bass
songs. It uses beat tracking, downbeat tracking and struc-
tural segmentation algorithms to analyze the structural

Vande Veire and De Bie EURASIP Journal on Audio, Speech, and Music Processing (2018) 2018:13

Page 19 of 21

O Standard autoDJ

(a) Mix ratings 7 Without style descriptor

12
2 10
g
g 8
g 6
5,
3
E 2 7
=z
0 2
1 2 3 4 5

Score

vs. song selection of worst matching songs in terms of ODF overlap

O Standard autoDJ
7 Without ODF matching

.allln

Score

(b) Mix ratings

OFRPNWHHAUUOOON®O©

Number of participants

Fig. 12 User test results: comparison of the ratings by the users. a Style descriptor track selection vs. style-agnostic track selection. b Automatic DJ

properties of the music. Evaluated on a hold-out test
set of 220 songs, a beat tracking accuracy of 98.2%, a
downbeat tracking accuracy of 98.1% and a segmenta-
tion accuracy of 94.3% is achieved, meaning that in total
90.9% of the songs get structurally correct annotations.
This efficacy is made possible in part by adopting a genre-
specific approach. The extracted structural knowledge is
used in a rule-based framework, inspired by DJing best
practices, to create transitions between songs. To the best
of the authors’ knowledge, this system is the first that
combines all basic DJing best practices in one integrated
solution. Musical consistency between songs is ensured
by employing a harmonic mixing technique and a cus-
tom style descriptor feature. The track selection algorithm
also optimizes the rhythmic onset pattern similarity in the
overlapped music segments and avoids vocal clashes by
means of a support vector machine classifier. A subjective
evaluation in which 18 Drum and Bass fans participated
indicates that the style descriptor feature for song selec-
tion drastically improves the mix quality. The influence
of the ODF similarity matching is less clear. Overall, the
automatic DJ system is able to seamlessly join together
Drum and Bass songs and create an enjoyable mix.
However, some aspects of the system could still be eval-
uated in more detail, while others could be improved
or extended. An obvious direction of further evalua-
tion is to adapt the proposed system to different EDM
genres. For some genres, this can be as straightforward
as adapting the tempo range, and potentially retraining
the downbeat tracker on some annotated songs in the

Table 5 User test results

Mean score Stdev score Favorited
(1) Standard autoDJ 3.89 0.90 94.4% (17)
(1) Style-agnostic autoDJ 2.39 0.92 5.6% (1)
(2) Standard autoD)J 3.76 0.90 66.7% (10)
(2) Inverse ODF matching 341 1.12 33.3% (5)

target genre. However, as different genres might require
different styles of mixing [2], for some genres, more modi-
fications might be required (e.g., implementing additional
transition types). Additionally, comparing the different
transition types or even the D] system as a whole with
for example transitions performed by a human expert or a
commercial automatic DJ system would also be very infor-
mative, and offers a great direction of further research.
Several extensions and augmentations are also possible.
Firstly, the annotation modules would benefit from a built-
in reliability measure to discard songs with uncertain
annotations. Furthermore, the used vocal activity detec-
tion and key estimation algorithms are simple baseline
versions and subject to improvement. To improve the
cue point selection, a finer distinction between section
types could be implemented, instead of only consider-
ing “low” and “high” sections. This could lead to more
precise cue point positions or a more diverse set of tran-
sition types. It would furthermore be very interesting to
make the volume and equalization progressions through-
out the transitions adapt to the songs being mixed, instead
of following a fixed pattern as in the current implemen-
tation. Finally, even though the track selection method
yields pleasing results, it might be an oversimplification
of how professional DJs compose their sets and create a
deliberate progression of energy and mood throughout
the mix. A model that better understands the long-term
structures and composition of a good Drum and Bass mix,
e.g., learned using the abundance of professional Drum
and Bass mixes that can be found online, might therefore
lead to a better result.

To conclude, we highlight the potential of an automatic
DJing system, e.g., integration in audio streaming ser-
vices to create an infinite DJ mix from a huge collection
of music, as an assisting tool for human DJs to quickly
explore their music libraries, or even as a substitute for
a human D]J. Allowing the human DJ or the audience
to interact with the automatic D] system is also a very

Vande Veire and De Bie EURASIP Journal on Audio, Speech, and Music Processing (2018) 2018:13

intriguing direction of future work, as this could lead to
many new creative applications that were previously not
possible. This automated approach is furthermore not
constrained by the limitations of a human: it can mix
together an arbitrary number of songs with fine-grained
control over the equalizer settings, explore a myriad of
song combinations before choosing the optimal one, and
modify or even generate music on the fly. It remains
an open question whether a computer could eventually
become equally good or even better than professional DJs.
After all, what characterizes good DJs is a certain perfor-
mance element, their strong connection with the crowd,
their deep insight in the music and their ability to consis-
tently surprise in so many creative ways—aspects that are
challenging to automate. Nevertheless, automated D] sys-
tems have a great creative potential, and open up many
interesting options for both listeners and DJs.

Endnotes

https://bitbucket.org/ghentdatascience/dj

2One evaluator only filled out half the user test, and two
could not decide which mix sounds better, giving three
evaluations less for the ODF matching.

3 The user test results are published online, see [53].

Additional file

Additional file 1: Table S1: Tracklist of the training set (117 songs).
Table S2: Tracklist of the test set (43 songs). Table S3: Tracklist of the
additional test set (220 songs). (PDF 35 kb)

Abbreviations

BPM: Beats per minute; DJ: Disk jockey; DTW: Dynamic time warping; EDM:
Electronic dance music; IBI: Inter-beat interval; MFCC: Mel-frequency cepstrum
coefficient; MIR: Music information retrieval; ODF: Onset detection function;
PCA: Principal component analysis; RMS: Root mean square; SSM: Structural
similarity matrix; SVM: Support vector machine

Acknowledgements

We are grateful to Paolo Simeone for insightful discussions over the course of
the research reported on in this paper. The research leading to these results
has received funding from the European Research Council under the
European Union's Seventh Framework Programme (FP7/2007-2013)/ERC Grant
Agreement No. 615517, and from the FWO (project no. G091017N, GOF9816N).

Availability of data and materials
All code is made available as open-source and can be downloaded from
https://bitbucket.org/ghentdatascience/dj under an AGPLV3 license.

Authors’ contributions

LWV developed the methods and software, conducted all experiments and the
user study, and wrote most of the paper. TDB conceived the project, provided
advise throughout the project, advised on the structure of the paper, and
edited the text. Both authors read and approved the final manuscript.

Authors’ information

Len Vande Veire is currently a PhD Fellow of the Research Foundation of
Flanders (FWO) at Ghent University - imec, IDLab, Department of Electronics
and Information Systems. Most of the research described in this paper was
conducted during his Master’s thesis and a summer internship at the research

Page 20 of 21

group of prof. De Bie. Tijl De Bie is full professor at Ghent University, IDLab,
Department of Electronics and Information Systems.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

Timec, IDLab, Department of Electronics and Information Systems, Ghent
University, Technologiepark Zwijnaarde 15, iGent, Zwijnaarde, 9052 Ghent,
Belgium. 2IDLab, Department of Electronics and Information Systems, Ghent
University, Technologiepark Zwijnaarde 19, AA-tower, Zwijnaarde, 9052 Ghent,
Belgium.

Received: 18 January 2018 Accepted: 14 August 2018
Published online: 24 September 2018

References

1. J.Steventon, DJing for dummies. (Wiley, New Jersey, 2014)

2. F.Broughton, B. Brewster, How to DJ (properly) - the art and science of
playing records. (Bantam Press, London, 2006)

3. M.J.Butler, Unlocking the groove: rhythm, meter, and musical design in
electronic dance music. (Indiana University Press, Bloomington, 2006)

4. T.Jehan, Creating music by listening. PhD thesis, Massachusetts Institute
of Technology (2005)

5. D.Bouckenhove, J. Martens, Automatisch Mixen Van Muzieknummers Op
Basis Van Tempo, Zang, Energie En Akkoordinformatie, Ghent University
(2007). https://lib.ugent.be/catalog/rug01:001312437

6. H-Y.Lin, Y-T.Lin, M-C. Tien, J.-L. Wu, in Proceedings of the 10th
International Society for Music Information Retrieval Conference. Music
paste: concatenating music clips based on chroma and rhythm features
(ISMIR, Kobe, 2009), pp. 213-218

7. H.lshizaki, K. Hoashi, Y. Takishima, in Proceedings of the 10th International
Society for Music Information Retrieval Conference. Full-automatic DJ
mixing system with optimal tempo adjustment based on measurement
function of user discomfort (ISMIR, Kobe, 2009), pp. 135-140

8. T.Hirai, in Proceedings of the 12th International Conference on Advances in
Computer Entertainment Technology. MusicMixer : computer-aided DJ
system based on an automatic song mixing (ACE, Iskandar, 2015)

9. M.E.P.Davies, P.Hamel, K. Yoshii, M. Goto, in Proceedings of the 14th
International Society for Music Information Retrieval Conference.
AutoMashUpper: an automatic multi-song mashup system (ISMIR,
Curitiba, 2013), pp. 575-580

10. M. E.P. Davies, P. Hamel, K. Yoshii, M. Goto, AutoMashUpper: automatic
creation of multi-song music mashups. IEEE/ACM Trans. Speech Lang.
Process. (TASLP). 22(12), 1726-1737 (2014). https://doi.org/10.1109/
TASLP.2014.2347135

11. C.l.Lee, Y.T.Lin,Z. R.Yao, F. Y. Lee, in Proceedings of the 16th International
Society for Music Information Retrieval Conference. automatic mashup
creation by considering both vertical and horizontal mashabilities (ISMIR,
Malaga, 2015), pp. 399-405

12. Serato, Serato DJ software (2017). https://serato.com/dj. Accessed 15 May
2017

13. Native Instruments GmbH, Traktor Pro 2 (2017). https://www.native-
instruments.com/en/products/traktor/dj-software/. Accessed 15 May
2017

14. Atomix Productions, Virtual DJ (2017). https://www.virtualdj.com/.
Accessed 15 May 2017

15, Mixxx, Mixxx (2017). https://www.mixxx.org/. Accessed 15 May 2017

16. T.H. Andersen, in CHI'05 Extended Abstracts on Human Factors in
Computing Systems. In the Mixxx: novel digital DJ interfaces (ACM, New
York, 2005), pp. 1136-1137. https://doi.org/10.1145/1056808.1056850

17. M.L.K LLC, Mixed In Key software (2018). https://mixedinkey.com/.
Accessed 06 July 2018

18. MUK LLC, Mashup2 software (2018). https://mixedinkey.com/. Accessed
06 July 2018

19. Serato, Serato Pyro (2017). https://seratopyro.com/. Accessed 15 May 2017

https://bitbucket.org/ghentdatascience/dj
https://doi.org/10.1186/s13636-018-0134-8
https://bitbucket.org/ghentdatascience/dj
https://lib.ugent.be/catalog/rug01:001312437
https://doi.org/10.1109/TASLP.2014.2347135
https://doi.org/10.1109/TASLP.2014.2347135
https://serato.com/dj
https://www.native-instruments.com/en/products/traktor/dj-software/
https://www.native-instruments.com/en/products/traktor/dj-software/
https://www.virtualdj.com/
https://www.mixxx.org/
https://doi.org/10.1145/1056808.1056850
https://mixedinkey.com/
https://mixedinkey.com/
https://seratopyro.com/

Vande Veire and De Bie EURASIP Journal on Audio, Speech, and Music Processing (2018) 2018:13

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

32.

33.

34,

35.

36.

37.

38.

39.

40.

41.

42.

43.

Pacemaker Music AB, Pacemaker (2017). https://pacemaker.net/.
Accessed 15 May 2017

D. White, Casual DJ Mixing Apps in Pacemaker + Spotify: should DJs be
worried? (2015). https://djtechtools.com/2015/12/17/casual-dj-mixing-
app-spotify-and-pacemaker/. Accessed 05 Sept 2017

D. White, Serato Pyro: Can A Casual App Take Over House Party DJing?
(2016). http://djtechtools.com/2016/02/11/serato-pyro-can-a-casual-
app-take-over-house-party-djing/. Accessed 05 Sept 2017

J.Hockman, M. Davies, I. Fujinaga, in Proceedings of the 13th International
Society for Music Information Retrieval Conference. One in the jungle:
downbeat detection in hardcore, jungle, and Drum and Bass (ISMIR,
Porto, 2012), pp. 169-174

M. Pilhofer, H. Day, Music theory for dummies. (Wiley, New Jersey, 2015)

M. E. P. Davies, M. D. Plumbley, Context-dependent beat tracking of
musical audio. IEEE Trans. Audio, Speech Lang. Process. 15(3), 1009-1020
(2007). https://doi.org/10.1109/TASL.2006.885257

J.P.Bello, L. Daudet, S. Abdallah, C. Duxbury, M. Davies, M. B. Sandler, A
Tutorial on onset detection in music signals. IEEE Trans. Audio, Speech
Lang. Process. 13(5), 1035-1047 (2005)

D. P. W. Ellis, Beat Tracking by dynamic programming. J. N. Music. Res.
36(1), 51-60 (2007). https://doi.org/10.1080/09298210701653344

S.S. Stevens, J. Volkmann, E. B. Newman, A scale for the measurement of
the psychological magnitude pitch. J. Acoust. Soc. Am. 8(3), 185-190
(1937)

S.S. Stevens, The measurement of loudness level. J. Acoust. Soc. Am.
27(5), 815-829 (1955). https://doi.org/10.1121/1.1912650

J. Foote, Automatic audio segmentation using a measure of audio
novelty. Int. Conf. Multimed. Expo. 1(C), 452-455 (2000). https://doi.org/
10.1109/ICME.2000.869637

D. Robinson, ReplayGain specification (2014). http://wikihydrogenaud.io/
index.php?title=ReplayGain_specification. Accessed 15 May 2017

R. B. Gebhardt, J. Margraf, in 13th International Symposium on Computer
Music Multidisciplinary Research (CMMR). Applying psychoacoustics to key
detection and root note extraction in edm, (2017)

A. Faraldo, E. Gémez, S. Jorda, P. Herrera, in Advances in Information
Retrieval - 38th European Conference on IR Research, ECIR 2016, Padua, Italy.
Key estimation in electronic dance music (Springer, Cham, 2016),

pp. 335-347

D.Bogdanov, N. Wack, E. Gdmez, S. Gulati, P. Herrera, O. Mayor, G. Roma,
J. Salamon, J. R. Zapata, X. Serra, in Proceedings of the 14th International
Society for Music Information Retrieval Conference. Essentia: an audio
analysis library for music information retrieval (ISMIR, Curitiba, 2013),

pp. 493-498

B. Logan, A. Salomon, A music similarity function based on signal analysis,
in [EEE International Conference on Multimedia and Expo, ICME, (2001),

pp. 22-25

J-J. Aucouturier, F. Pachet, et al,, in 3rd International Conference on Music
Information Retrieval (ISMIR), Paris, France. Music similarity measures:
What's the use? (2002), pp. 13-17

E. Pampalk, S. Dixon, G. Widmer, in Proceedings of the sixth international
conference on digital audio effects (DAFx-03), London. On the evaluation of
perceptual similarity measures for music, (2003), pp. 7-12

D-N. Jiang, L. Lu, H-J. Zhang, J.-H. Tao, L.-H. Cai, in Proceedings. IEEE
International Conference on Multimedia and Expo. Music type classification
by spectral contrast feature, vol. 1, (2002), pp. 113-116. https://doi.org/10.
1109/ICME.2002.1035731

V. Akkermans, J. Serra, P. Herrera, in Proceedings of the Sound and Music
Computing Conference (SMC), Porto, Portugal. Shape-based spectral
contrast descriptor, (2009), pp. 143-148

A. L. Berenzweig, D. P. Ellis, in Proceedings of the 2001 IEEE Workshop on the
Applications of Signal Processing to Audio and Acoustics. Locating singing
voice segments within music signals (IEEE, New Platz, 2001), pp. 119-122
S. Leglaive, R. Hennequin, R. Badeau, in 2015 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). Singing voice detection
with deep recurrent neural networks (IEEE, Brisbane, 2015), pp. 121-125
H. Lukashevich, M. Gruhne, C. Dittmar, Effective singing voice detection in
popular music using arma filtering. (Workshop on Digital Audio Effects
(DAFX'07), Bordeaux, 2007), pp. 165-168

M. Ramona, G. Richard, B. David, in 2008 IEEE International Conference on
Acoustics, Speech and Signal Processing. Vocal detection in music with
support vector machines (IEEE, Las Vegas, 2008), pp. 1885-1888

44,

45.

46.

47.

48.

49.

50.

51

52.

53.

54.

55.

56.

Page 21 of 21

D. Fitzgerald, Harmonic/percussive separation using median filtering. (13th
International Conference on Digital Audio Effects (DAFX10), Graz, 2010)
J.L.Flanagan, R. Golden, Phase vocoder. Bell Lab. Tech. J. 45(9),
1493-1509 (1966)

W. Verhelst, M. Roelands, An overlap-add technique based on waveform
similarity (WSOLA) for high quality time-scale modification of speech. IEEE
Int. Conf. Acoust,, Speech, Signal Process. 2(1), 2-5 (1993). https://doi.org/
10.1109/ICASSP.1993.319366

J. Driedger, M. Muller, S. Ewert, Improving time-scale modification of
music signals using harmonic-percussive separation. IEEE Signal Process.
Lett. 21(1), 105-109 (2014)

J. Driedger, M. Muller, A review of time-scale modification of music
signals. Appl. Sci. 6(2), 57 (2016)

M. Muller, Fundamentals of music processing: audio, analysis, algorithms,
applications. (Springer. https://doi.org/10.1007/978-3-319-21945-5

S. Bock, F. Korzeniowski, J. Schltter, F. Krebs, G. Widmer, in Proceedings of
the 24th ACM International Conference on Multimedia. madmom: a new
python audio and music signal processing library, Amsterdam, The
Netherlands, 2016), pp. 1174-1178. https://doi.org/10.1145/2964284.
2973795

J. Paulus, M. Mller, A. Klapuri, in Proceedings of the 11th International
Society for Music Information Retrieval Conference. Audio-based music
structure analysis (ISMIR, Utrecht, 2010), pp. 625-636

C-C.Chang, C-J. Lin, Libsvm: a library for support vector machines. ACM
Trans. Intell. Syst. Tech. (TIST). 2(3), 27 (2011)

L. Vande Veire, Supplementary material: results of user test (2017).
https://docs.google.com/spreadsheets/d/e/2PACX-1vRpvbHgnviwpG9q
BlaHBth3_FNmu7HeD0Ycp6ePFQ7sN_COhBOQIpfMt4euslwgHp1aQAPS
Mrl7IPUD/pubhtml. Accessed 05 Sept 2017

Optical, FABRICLIVE Promo Mix (2014). https://soundcloud.com/fabric/
optical-fabriclivepromomix. Accessed 15 May 2017

S.P.Y, FABRICLIVE x Back To Basics Mix (2014). https://soundcloud.com/
fabric/spy-fabriclive-x-back-to-basics-mix. Accessed 31 July 2018

Bass Brothers, FABRICLIVE x Playaz Mix (2014). https://soundcloud.com/
fabric/bassbrothers-fabriclive-x-playaz-mix. Accessed 31 July 2018

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

https://pacemaker.net/
https://djtechtools.com/2015/12/17/casual-dj-mixing-app-spotify-and-pacemaker/
https://djtechtools.com/2015/12/17/casual-dj-mixing-app-spotify-and-pacemaker/
http://djtechtools.com/2016/02/11/serato-pyro-can-a-casual-app-take-over-house-party-djing/
http://djtechtools.com/2016/02/11/serato-pyro-can-a-casual-app-take-over-house-party-djing/
https://doi.org/10.1109/TASL.2006.885257
https://doi.org/10.1080/09298210701653344
https://doi.org/10.1121/1.1912650
https://doi.org/10.1109/ICME.2000.869637
https://doi.org/10.1109/ICME.2000.869637
http://wiki.hydrogenaud.io/index.php?title=ReplayGain_specification
http://wiki.hydrogenaud.io/index.php?title=ReplayGain_specification
https://doi.org/10.1109/ICME.2002.1035731
https://doi.org/10.1109/ICME.2002.1035731
https://doi.org/10.1109/ICASSP.1993.319366
https://doi.org/10.1109/ICASSP.1993.319366
https://doi.org/10.1007/978-3-319-21945-5
https://doi.org/10.1145/2964284.2973795
https://doi.org/10.1145/2964284.2973795
https://docs.google.com/spreadsheets/d/e/2PACX-1vRpvbHqnvlwpG9qBlaHBth3_FNmu7HeD0Ycp6ePFQ7sN_COhBOQ9pfMt4eu5lwgHp1aQAPSMrI7lPUD/pubhtml
https://docs.google.com/spreadsheets/d/e/2PACX-1vRpvbHqnvlwpG9qBlaHBth3_FNmu7HeD0Ycp6ePFQ7sN_COhBOQ9pfMt4eu5lwgHp1aQAPSMrI7lPUD/pubhtml
https://docs.google.com/spreadsheets/d/e/2PACX-1vRpvbHqnvlwpG9qBlaHBth3_FNmu7HeD0Ycp6ePFQ7sN_COhBOQ9pfMt4eu5lwgHp1aQAPSMrI7lPUD/pubhtml
https://soundcloud.com/fabric/optical-fabriclivepromomix
https://soundcloud.com/fabric/optical-fabriclivepromomix
https://soundcloud.com/fabric/spy-fabriclive-x-back-to-basics-mix
https://soundcloud.com/fabric/spy-fabriclive-x-back-to-basics-mix
https://soundcloud.com/fabric/bassbrothers-fabriclive-x-playaz-mix
https://soundcloud.com/fabric/bassbrothers-fabriclive-x-playaz-mix

	Abstract
	Keywords

	Introduction
	What is a DJ?
	Creating a mix
	Remarks on the DJing process
	Understanding musical structure

	Contributions and overview

	Related work
	Discovering the musical structure
	Beat tracking
	Downbeat tracking
	Structural segmentation

	Composing a DJ mix
	Automatic DJ system architecture
	Track and cue point selection
	Musical key compatibility
	Musical style descriptor
	Cue point selection
	Vocal clash detection
	Onset detection function matching

	Creating the crossfade

	Results and discussion
	System performance and envisaged setup
	Evaluation of the beat tracker
	Evaluation of the downbeat tracker
	Evaluation of the structural segmentation task
	Evaluation of the song filtering
	User study: evaluation of the musical style descriptor and system evaluation

	Conclusions
	Additional file
	Additional file 1

	Abbreviations
	Acknowledgements
	Availability of data and materials
	Authors' contributions
	Authors' information
	Competing interests
	Publisher's Note
	Author details
	References

