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Abstract

Background: Screening of curable sexually transmitted infections is frequently oriented towards the diagnosis of
chlamydia, gonorrhea, syphilis and trichomoniasis, whereas other pathogens, sometimes associated with similar
urogenital syndromes, remain undiagnosed and/or untreated. Some of these pathogens are associated with
adverse pregnancy outcomes.

Methods: In a nested case-control study, vaginal swabs from 79 pregnant women, i.e., 28 T. vaginalis-positive (cases)
and 51 T. vaginalis-negative (controls), were screened by quantitative PCR for Adenovirus 1 and 2, Cytomegalovirus,
Herpes Simplex Virus 1 and 2, Chlamydia trachomatis, Escherichia coli, Haemophilus ducreyi, Mycoplasma genitalium, M.
hominis, candidatus M. girerdii, Neisseria gonorrhoeae, Streptococcus agalactiae, Treponema pallidum, Ureaplasma parvum,
U. urealyticum, and Candida albicans. Additionally, we determined whether women with pathogens highly associated
with T. vaginalis had distinct clinical signs and symptoms compared to women with T. vaginalis mono-infection.

Results: M. hominis was independently associated with T. vaginalis (adjusted odds ratio = 6.8, 95% CI: 2.3–19.8).
Moreover, M. genitalium and Ca M. girerdii were exclusively detected in women with T. vaginalis (P = 0.002 and P = 0.001),
respectively. Four of the six women co-infected with T. vaginalis and Ca M. girerdii complained of vaginal itching,
compared to only 4 out of the 22 women infected with T. vaginalis without Ca M. girerdii (P = 0.020).

Conclusion: We confirm M. hominis as a correlate of T. vaginalis in our population, and the exclusive association of both
M. genitalium and Ca. M. girerdii with T. vaginalis. Screening and treatment of these pathogens should be considered.
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Background
Sexually transmitted infections (STIs) constitute a huge
proportion of the most prevalent acute infections glo-
bally [1]. The most prevalent curable sexually transmit-
ted pathogens include Chlamydia trachomatis, Neisseria
gonorrhoeae, Treponema pallidum subspecies pallidum
(syphilis) and Trichomonas vaginalis. These four patho-
gens are associated with acute conditions like genital/

anorectal/oral ulceration, cervicitis-endometritis, vagi-
nal/urethral discharge, and urethritis. They can also
cause critical complications and long term sequelae,
which includes oophoritis, salpingitis, pelvic inflamma-
tory disease, ectopic pregnancy, infertility, neurological
disease, neonatal death, premature delivery and blind-
ness [2]. Another public health concern is the associ-
ation of STIs with the augmented possibility of HIV
acquisition and transmission [3].
Of the four most prevalent curable STIs, T. vaginalis

is globally the most prevalent pathogen [1], with a preva-
lence of up to 11.5% among women in sub-Sahara Africa
[1]. Although there is a wealth of data regarding the
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clinical presentation and global burden of T. vaginalis
[4], studies assessing associations of T. vaginalis with
other genital pathogens are scarce, although it has been
intimated that T. vaginalis has a unique symbiotic rela-
tionship with Mycoplasma hominis (M. hominis) [5]. T.
vaginalis is also associated with an increase in vaginal
pH [6] which may influence the composition of the asso-
ciated vaginal microbial community and is strongly asso-
ciated with bacterial vaginosis (BV) [6]. Less appreciated
pathogens like M. hominis, M. genitalium, Ureaplasma
parvum and U. urealyticum are increasingly being asso-
ciated with adverse pregnancy outcomes as well as re-
spiratory infections in neonates [7].
STI screening programs and STI research mostly focus

on the four most common curable STIs, whereas other
pathogens, associated with similar urogenital syndromes,
remain undiagnosed and/or untreated. Detection of uro-
genital pathogens that may be associated with T. vagina-
lis may be important as it might have an effect on the
clinical presentation and management and the long-term
outcome of those infections. Here, we assess the occur-
rence of specific urogenital species in T. vaginalis-posi-
tive (cases) and T. vaginalis-negative (controls) among
pregnant women in Kilifi, Kenya.

Methods
Study setting
Kenya, an East African country, is divided administra-
tively into 47 counties. Kilifi County, which lies along
the Indian Ocean Coast, is one of the poorest and is typ-
ical of a rural equatorial Africa setting. Among pregnant
women in Kilifi the HIV prevalence is estimated to be
6.4%, for chlamydia 14.9%, for gonorrhea 1.0 and 7.4%
for trichomoniasis [8].
From July till September 2015, we carried out a curable

STI study at the prenatal care clinic of Kilifi County Hos-
pital, Kenya. The key objective of the curable STI study
was to illustrate the prevalence and predictors of curable
sexually transmitted infections (STIs) among 350 pregnant
women attending the prenatal care clinic [8]. The eligibil-
ity criteria for the curable STI study included: residing in
the Kilifi Health and Demographic Surveillance area, age
18–45 years, willingness to undergo free STI and bacterial
vaginosis (BV) screening procedures, gestation ≥14 weeks,
and willing to give written informed consent. This study
presents a secondary aim of the curable STI study, which
is to describe urogenital pathogen correlates of T. vagina-
lis among pregnant women in Kilifi, Kenya.
For the above-described curable STI study, a nurse at

the prenatal care clinic collected vaginal secretions from
the vaginal introitus using two sterile cotton swabs. The
first vaginal swab was used for T. vaginalis detection using
the InPouch system (BioMed Diagnostics, White City,
Oregon, USA), a highly specific and sensitive device

containing a fluid medium supporting the growth of T.
vaginalis and allowing microscopic observation of T. vagi-
nalis. The inoculated InPouch was transported to the la-
boratory within 15 min for direct microscopy, and
incubation at 37 °C ± 1 °C. Daily microscopic observation
(at both × 10 and × 40 magnification, for six fields) of the
InPouch system was performed by qualified technicians.
Motile trichomonads within 5 days of culture were indica-
tive of being positive for T. vaginalis.
Same day treatment was offered for women who were

determined to be positive for T. vaginalis by means of
direct microscopy. For women whose culture turned
positive but were negative for T. vaginalis on direct mi-
croscopy, they were contacted to return to the clinic for
treatment the moment the culture turned positive. Sec-
nidazole 2 g statim was administered as treatment, and
participants were also asked to refer their sexual part-
ner(s) to the clinic for treatment or were given the same
medication to take to their sexual partner(s).
The second swab had its shaft broken by bending the

shaft against the neck of a sterile, labeled 2 ml Eppen-
dorf tube, the tube containing the swab tip was closed
and transferred to the laboratory where it was immedi-
ately stored at − 80 °C. No transport or freezing medium
was added prior to storage.
Specimens for this case-control study are derived from

the stored swabs from the curable STI study, published
previously [7]. Because of financial and logistic con-
straints we could process only a subset of the 350 vagi-
nal swabs from the main study. Vaginal swabs from 79
pregnant women were divided in two groups for analysis,
i.e., those from women positive for T. vaginalis (cases)
and those from women negative for T. vaginalis (controls)
as determined by PCR. Controls were age-matched
(+/− 5 years) and all were bacterial vaginosis (BV)
negative by Nugent score, largely matching the cases be-
cause only 4 out of the 28 TV+ cases were BV+. Selection
of controls was guided by being TV negative. The swabs
of 51 women selected as controls were not significantly
different from the swabs of the other 271 women not se-
lected as controls (Additional file 1: Table S1).

DNA extraction
Before DNA extraction, which was performed in Kilifi,
the frozen swabs were thawed at room temperature (ap-
proximately 25 °C) for 30 min. Extraction was performed
using the QIAamp DNA Mini Kit (Qiagen, Hilden,
Germany) according to manufacturer’s instructions and
160 μl of eluted DNA was transferred to Eppendorf
tubes and frozen at − 80 °C until shipment to the La-
boratory of Bacteriology Research (LBR, Ghent Univer-
sity, Belgium). Shipment was performed using shipping
boxes filled with dry ice (− 78.5 °C). Once at the LBR the
Eppendorf tubes with DNA-extracts were transferred
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back to − 80 °C until molecular analysis was performed.
No thawing and freezing occurred after freezing the
DNA extract until the point of molecular testing in the
laboratory in Belgium.

Quantitative PCR
Most quantitative PCRs were performed using a highly
sensitive and specific TaqMan® Array Card (TAC), devel-
oped at AZ Sint-Jan Brugge-Oostende, Belgium. The array
card was used for detecting Chlamydia trachomatis (in-
cluding Lymphogranuloma venereum (LGV) serovars
L1-L2-L3), Neisseria gonorrhoeae, Haemophilus ducreyi,
Mycoplasma genitalium (including M. genitalium macro-
lide resistance-mediating mutations A2058G, A2059G,
A2058T, A2058C in region V of the 23S rRNA gene), M.
hominis, Ureaplasma parvum, U. urealyticum,Treponema
pallidum, Herpes Simplex virus-1/− 2 (HSV 1/2), adenovi-
ruses, Cytomegalovirus (CMV), and T. vaginalis. The
assay has multiple genetic targets per pathogen in order to
maximize both specificity and sensitivity [9]. Samples were
determined to be positive for a particular species on the
TaqMan® Array Card (TAC), only in case the assay was
positive for two independent PCR targets of that species.
Sample quality was assessed by amplification of human
DNA, to evaluate the quantity of epithelial cells recovered
by the swab.
Further individual qPCRs were performed at the LBR

for Candida albicans [10], Escherichia coli [11] and
Streptococcus agalactiae [11, 12]. The LightCycler 480
platform and the LightCycler 1480 Software Version 1.5
(Roche) were used for the amplification, detection and
quantification. Each qPCR was performed in a final vol-
ume of 10 μl of which 2 μl of DNA extract or 2 μl of a
negative control (HPLC water) or 2 μl of a positive con-
trol. All the specific primers and probes were synthe-
sized by Eurogentec, Liège, Belgium. Specific qPCR
details are provided in Additional file 1: Table S2.
The procedures as described by Cools et al. [10] were

adopted for the construction of qPCR standard curves.
Briefly, DNA was extracted from overnight cultures of C.
albicans ATCC 90028 grown on Sabouraud agar (Becton
Dickinson, Erembodegem, Belgium) and of E. coli ATCC
25922 or S. agalactiae LMG 14694T grown on TSA + 5%
sheep blood (Becton Dickinson). All colonies were col-
lected from the plate and re-suspended in 1 ml of saline.
The manufacturer’s instructions of the High Pure PCR
Template Preparation Kit (Roche Applied Science, Basel,
Switzerland) were followed to extract DNA from this sus-
pension. DNA-concentration was determined by means of
Nanodrop and the number of genomes was calculated. A
tenfold dilution series in HPLC-grade water was made to
establish for each dilution the number of Cqs needed to
pass the detection threshold. Using these data, a regres-
sion curve was constructed.

PCR for T. vaginalis and for Candidatus Mycoplasma
girerdii (Ca. M. girerdii)
PCRs for T. vaginalis targeting the actin gene, using
outer primers, previously used in a nested PCR [13] and
yielding a fragment of 1100 bp and for Ca. M. girerdii,
yielding a fragment of 594 bp [14], were carried out on
the ABI Veriti thermocycler platform (ThermoFisher
Scientific, Waltham, Massachusetts). The primers were
synthesized by Eurogentec, Liège, Belgium. Amplified
fragments were visualized under UV light after agarose
gel electrophoresis and EtBr staining.
Details of these species-specific PCRs are summarized

in Additional file 1: Table S2.

Sequencing
Sequencing of PCR amplicons was carried out by GATC
Biotech (Constance, Germany) to confirm specificity of
the PCR products. Sequencing was done using the for-
ward PCR primers (Additional file 1: Table S2). Sequences
were cleaned using Chromas Lite version 2.1 (Technely-
sium, Brisbane, Australia). BLAST was performed on the
sequences to confirm the identity.

Data analysis
Epidemiological data were analyzed using StataCorp.
2013. Stata Statistical Software: Release 13 (College Sta-
tion, TX: StataCorp LP). Prevalence of urogenital patho-
gens were computed with 95% confidence intervals
(CIs). Associations between T. vaginalis positivity and
socio-demographic, hygienic and behavioral characteris-
tics were calculated using the χ2 test. To build a multi-
variate model of urogenital species associated with T.
vaginalis, we first carried out univariate regression ana-
lysis. For computation of odds ratios (ORs), we replaced
all zero values in cells by the value ‘0.5’, as suggested by
Deeks & Higgins [13].
Species that were significantly associated with T. vagi-

nalis in univariate regression analysis P-value ≤0.1 were
selected for multivariate logistic regression analysis. As-
sociations in the final multivariate model were expressed
as adjusted odds ratios (AORs) with p-values ≤0.05 con-
sidered significant. We further assessed whether patho-
gens, significantly associated with T. vaginalis infection,
had an implication on the clinical presentation.

Results
A total of 23 out of 350 samples (6.5%) were positive by
InPouch culture for Trichomonas vaginalis, of which
eight (34.8%) were initially positive on direct micros-
copy. The T. vaginalis-specific PCR [13] detected one
additional case of T. vaginalis from a sample that was
negative by InPouch culture but positive by the TAC
assay, which found four more positive samples. In sum-
mary, sensitivity of direct microscopy, of T. vaginalis
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InPouch culture and of T. vaginalis-specific PCR were
respectively 28.6, 82.1 and 85.7%, when compared to the
TAC assay.
Distribution of age, religion, education level, marital sta-

tus, parity, gestational age and number of lifetime sex
partners were similar among cases and controls (Table 1).
HIV and BV status was different between the two groups
by our case-control study design (Table 2), but the result-
ing overall difference was minimal, i.e. 0 HIV and 0 BV
cases in the control group compared to 3 HIV-positives
(10.7%) and 4 BV-positives (14.3%) in the Trichomonas
positive group. Moreover, we could show that these differ-
ences had no influence on the species associated with T.
vaginalis (Additional file 1: Tables S3 and S4). Addition-
ally, occupation was also significantly different (Table 1).

Prevalence of urogenital species
The prevalence of the co-infecting urogenital species is
indicated in Table 2. Adenovirus, Haemophilus ducreyi,
Neisseria gonorrhoeae and Treponema pallidum were

not detected and are not reported in Table 1. Urea-
plasma parvum was the most prevalent at 74.7% (95%
Confidence interval (CI): 63.6–83.8), followed by U.
urealyticum at 48.1% (CI: 36.7–59.6).

Univariate and multivariate association analysis
Although, M. genitalium and Ca. M. girerdii, had generally
a low prevalences of respectively 6.3 and 7.6%, the two
were exclusively detected in women with T. vaginalis
(Chi-square test: χ2 = 9.7, df = 1, P < 0.002 and χ2 = 11.8,
df = 1, P < 0.001, respectively). Both M. genitalium and
Ca. M. girerdii were significantly associated with T. vagi-
nalis on univariate analysis but not on multivariable
analysis (Table 2). None of the samples for which M.
genitalium could be detected showed macrolide
resistance-associated mutations. In a univariate regression
analysis, M. hominis and U. urealyticum were significantly
associated with T. vaginalis (crude odds ratio (COR) = 7.3;
95% CI: 2.6–20.5 and COR = 2.2; 95% CI: 0.9–5.7, respect-
ively). We detected M. hominis from the vaginal DNA ex-
tracts of approximately 70% of women with T. vaginalis.
M. hominis was also independently associated with T.
vaginalis in a multivariate regression analysis (adjusted
odds ratio (AOR) = 6.8; 95% CI: 2.3–19.8).
Tables 3, 4 and 5 compare clinical signs and symptoms

among T. vaginalis-infected women co-infected or not
with M. hominis (Table 3), or with Ca M. girerdii (Table 4)
or with M. genitalium (Table 5).
Women co-infected with T. vaginalis and Ca. M. girer-

dii were more likely to report vaginal itching compared
to T. vaginalis-positive women not co-infected with Ca.
M. girerdii (66.8% vs. 18.2% (p = 0.020)). There was no
difference in clinical presentation of T. vaginalis-infected
pregnant women co-infected with M. hominis or with
M. genitalium, compared to those not co-infected with
these species.
Of the five participants that had M. genitalium and

the six that had Ca M. girerdii, only one participant had
a co-infection with M. genitalium and Ca M. girerdii.
However, M. hominis was always present in vaginal sam-
ples from which M. genitalium and Ca M. girerdii were
detected. Due to the detection of CMV, HSV 1/ 2, M.
genitalium and Ca. M. girerdii exclusively in cases or
controls, the species were excluded from the regression
model.

Discussion
Our results indicate that women with Trichomonas vagi-
nalis (n = 28) have a high rate (71.4%) of co-infection
with Mycoplasma hominis compared to only 25.5% of 51
women not infected with T. vaginalis. Comparable rates
of co-infection have been reported by Becker et al. [15],
i.e., 56.7% in Brazil and by Xiao et al. [16], i.e., 50.0% in
China. Rappelli et al. [17] reported much higher rates

Table 1 Characteristics of Trichomonas vaginalis qPCR positive
women (cases) and T. vaginalis qPCR negative women (controls)

Characteristic Cases (%)
N = 28

Controls (%)
N = 51

χ2 x
P-value

Age group (Years)

18–24 42.9 31.4 0.307

≥ 25 57.1 68.6

Religion

Christian 64.3 68.6 0.383

Muslim 10.7 17.7

Other/None 25.0 13.7

Education

None 21.4 23.5 0.946

Primary 60.7 56.9

Secondary/Tertiary 17.9 19.6

Employment status

Employed/self-employed 50.0 72.6 0.045

Unemployed 50.0 27.5

Parity

0 25.0 35.3 0.234

1–2 46.4 25.4

3+ 28.6 37.3

Gestational age (weeks)

14–27 57.1 58.8 0.885

≥ 28 42.9 41.2

Number of lifetime sex partners

1 82.1 90.2 0.303

3+ 21.7 9.8

In bold: significantly associated, i.e., P ≤ 0.05
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(94.3%) of co-infection among Italian, Mozambican, and
Angolan women. M. hominis has been shown to have a
symbiotic relationship with T. vaginalis. Owing to its small
genome, this bacterial species is strongly dependent on
host cell metabolism. M. hominis has the ability to enter
trichomonad cells by endocytosis and to multiply in co-
ordination with the protozoan [5]. We could not establish
differences in clinical presentation of women co-infected
with both T. vaginalis and M. hominis as compared to
those infected with only T. vaginalis, in agreement with
previous data [18]. As such, at present, co-infection of T.
vaginalis with M. hominis seems to be of limited clinical
relevance, also because antibiotic treatment of the former

will probably consecutively diminish the presence of the
latter.
The pathogenic potential of M. genitalium among preg-

nant women in Kenya has not been extensively investigated
probably because its prevalence is overshadowed by a
higher prevalence of other STIs, as was the case in this
study. Our results indicate that in our population M. geni-
talium was strongly associated with T. vaginalis (p = 0.002).
Given the presence of M. genitalium exclusively in women
with T. vaginalis infection, screening and treatment of
women for T. vaginalis might also at once reduce the
prevalence of M. genitalium. Although macrolide resistance
associated mutations among M. genitalium strains are on

Table 2 Prevalence and co-occurrence of urogenital species among 28 Trichomonas vaginalis-positive and 51 T. vaginalis-negative
women

Species Overall prevalence
(N = 79)
(95% CI)

%TV
+/%TV-

Univariate analysis Multivariate analysis

COR
(95% CI)

P-value AOR
(95% CI)

P-value

Candida albicans 24.1 (15.1–35.0) 32.1/19.6 1.9 (0.7–5.6) 0.216 – –

Chlamydia trachomatis 13.9 (7.2–23.5) 21.4/9.8 2.5 (0.7–9.1) 0.163 – –

Escherichia coli 27.8 (18.3–39.1) 35.7/23.5 1.8 (0.7–4.9) 0.251 – –

Mycoplasma genitalium 6.3(2.1–14.2) 17.9/0.0 5.0 (0.3–94.3)* 0.002

Ca. Mycoplasma girerdii 7.6 (2.8–15.8) 21.4/0.0 4.3 (0.2–78.4)* 0.001

Mycoplasma hominis 41.8 (30.8–53.4) 71.4/25.5 7.3 (2.6–20.5) < 0.001 6.8 (2.3–19.8) < 0.001

Streptococcus agalactiae 11.4 (5.3–20.5) 7.1/13.7 0.5 (0.1–2.5) 0.386 – –

Ureaplasma parvum 74.7 (63.6–83.8) 78.9/72.6 1.4 (0.5–4.1) 0.557 – –

Ureaplasma urealyticum 48.1 (36.7–59.6) 60.7/41.2 2.2 (0.9–5.7) 0.099 1.3 (0.4–3.8) 0.624

Cytomegalovirus 1.3 (0–6.9) 0.0/2.0 1.7 (6.6–4210.4)* 0.456

HIV 3.8 (0.7–10.7) 10.7/0.0 7.9 (0.4–158.5)* 0.017

HSV 1, HSV 2 2.5 (0.3–8.8) 7.1/0.0 11.1 (0.5–238.6)* 0.053

Bacterial vaginosis 5.1 (1.4–12.5) 14.3/0.0 6.2 (0.3–118.4)* 0.006

TV Trichomonas vaginalis, HIV human immunodeficiency virus, HSV1 herpes simplex virus type 1; herpes simplex virus type 2, COR crude odds ratio, AOR adjusted
odds ratio
in bold: significantly associated, i.e., P ≤ 0.05* Separate computation not included in multivariable model

Table 3 Clinical signs/symptoms among women co-infected
with Trichomonas vaginalis and Mycoplasma hominis versus T.
vaginalis only

Clinical sign or symptom TV with MH
N = 20 (%)

TV without MH
N = 8 (%)

χ2
P-value

Dyspareunia 40.0 37.5 0.903

Dysuria 30.0 37.5 0.701

Foul smelling vaginal odor 30.0 12.5 0.334

Genital ulcers 15.0 12.5 0.864

Genital warts 10.0 0.0 0.353

Lower abdominal pain 40.0 25.0 0.454

Vaginal discharge 75.0 62.5 0.508

Vaginal itching 30.0 25.0 0.791

MH Mycoplasma hominis, TV Trichomonas vaginalis

Table 4 Clinical signs/symptoms among women co-infected
with Trichomonas vaginalis and Ca Mycoplasma girerdii versus T.
vaginalis only

Clinical sign or symptom TV with Ca MG
N = 6 (%)

TV without Ca MG
N = 22 (%)

χ2
P-value

Dyspareunia 50.0 36.4 0.544

Dysuria 50.0 27.3 0.291

Foul smelling vaginal odor 33.3 22.7 0.595

Genital ulcers 16.7 13.6 0.851

Genital warts 0.0 9.1 0.443

Lower abdominal pain 50.0 32.8 0.410

Vaginal discharge 100.0 63.6 0.081

Vaginal itching 66.7 18.2 0.020

Ca MG Candidatus Mycoplasma girerdii, TV Trichomonas vaginalis; in bold:
significantly associated
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the rise, as was recently shown among female sex workers
in Belgium [19], macrolide resistance-associated mutations
could not be detected in any of the five samples positive for
M. genitalium and therefore our results, although based on
a very small sample, suggest that macrolides can still be
used for treatment of M. genitalium in this population in
Kilifi, Kenya.
To our knowledge, this is the first report of Ca. M. gir-

erdii in Africa. In agreement with the two initial reports
on the prevalence of Ca. M. girerdii [20, 21], we found it
to be strongly associated with T. vaginalis (p = 0.001).
Fettweis et al. [20], using a pyrosequencing approach,
were the first to detect Ca. M. girerdii DNA in the vagi-
nal swabs of a few women not infected with T. vaginalis,
as assessed with qPCR, although in our study, Ca. M.
girerdii was found only in T. vaginalis positive women.
A recent report by Costello et al. [22] is in support of
the close association of Ca. M. girerdii and T. vaginalis
as they recovered Ca. M. girerdii and T. vaginalis ge-
nomes from the saliva of a premature infant.
Our data suggest that T. vaginalis-positive women,

co-infected with Ca. M. girerdii, were more likely to report
vaginal itching compared to T. vaginalis mono-infected
women. Future studies should elucidate the nature of the
interaction of these two pathogens and the effect that
co-infection may have on clinical presentation.
U. parvum and U. urealyticum are commonly isolated

from the vaginal microbiome of asymptomatic pregnant
women [23], as was the case in our study. Although detec-
tion of U. parvum has been associated with preterm birth
[24], opinions differ with regard to the need to screen and
treat Ureaplasma spp. infection during pregnancy, since its
presence often represents colonization rather than infec-
tion [25]. Our data did not show any association between
T. vaginalis and either U. parvum or U. urealyticum.
C. trachomatis was highly prevalent (13.9%) in our

study. All isolates were non-LGV strains, but were not
associated with T. vaginalis infection. Our results on

urogenital carriage of Candida, E. coli, and GBS indicate
that the three were not associated with T. vaginalis in-
fection, either. While the prevalence of Candida in our
study was higher than that reported in a cross-sectional
study by Cools et al. [11] among women in Kenya,
Rwanda and South-Africa, our prevalence for E. coli and
GBS is comparable to what they reported.
Our study had some limitations. First, it only included

a relatively small sample size of pregnant women limit-
ing the precision of our prevalence estimates. Further-
more, only BV negative samples were included in the
control arm, which may represent a bias on the inter-
pretation of the results. Among the 28 T. vaginalis-posi-
tive women, only four were positive for BV and
excluding them in the analysis does not affect the results
(Additional file 1: Table S3). It should be noted that our
T. vaginalis/BV co-infection rate of 14% was comparable
to that observed in a recent study, i.e. 17.5% among HIV
+ women [26]. Finally, no internal control was added
during the DNA extraction process, so inefficient gen-
ome extraction or (partial) PCR inhibition could not be
documented. However, sample adequacy was evaluated
by detecting a minimal level of human DNA present in
the sample, which was the case for all samples, moreover
none of the samples that were culture-positive for T.
vaginalis were missed by PCR.

Conclusion
We observed notable prevalence of urogenital
micro-organisms, pathogens and colonizing germs among
pregnant women which emphasizes the need for labora-
tory testing and treatment to avoid unfavorable pregnancy
outcomes. We confirm M. hominis as a correlate of T.
vaginalis in our population, but the most salient finding
was the exclusive association of both M. genitalium and
Ca. M. girerdii with T. vaginalis. The latter finding ought
to be further addressed using a larger sample size.
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BV: Bacterial vaginosis; Ca. M. girerdii: Candidatus Mycoplasma girerdii; M.
genitalium: Mycoplasma genitalium; M. hominis: Mycoplasma hominis;

Table 5 Clinical signs/symptoms among women co-infected
with Trichomonas vaginalis and Mycoplasma genitalium versus T.
vaginalis only

Clinical sign or symptom TV with MG
N = 5 (%)

TV without MG
N = 23 (%)

(χ2).P-value

Dyspareunia 20.0 43.5 0.330

Dysuria 20.0 34.8 0.521

Foul smelling vaginal odor 40.0 21.7 0.393

Genital ulcers 0.0 17.4 0.314

Genital warts 0.0 8.7 0.494

Lower abdominal pain 40.0 34.8 0.825

Vaginal discharge 80.0 69.6 0.640

Vaginal itching 0.0 34.8 0.119

MG Mycoplasma genitalium, TV Trichomonas vaginalis
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PCR: Polymerase chain reaction; STIs: Sexually transmitted infections; T.
vaginalis: Trichomonas vaginalis; TAC: TaqMan® Array Card; U.
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