
Integr. Equ. Oper. Theory (2018) 90:10

https://doi.org/10.1007/s00020-018-2437-7
Published online February 28, 2018
c© The Author(s) This article is an open access

publication 2018

Integral Equations
and Operator Theory

Sobolev Type Inequalities, Euler–Hilbert
–Sobolev and Sobolev–Lorentz–Zygmund
Spaces on Homogeneous Groups

Michael Ruzhansky, Durvudkhan Suragan and
Nurgissa Yessirkegenov

Abstract. We define Euler–Hilbert–Sobolev spaces and obtain embed-
ding results on homogeneous groups using Euler operators, which are
homogeneous differential operators of order zero. Sharp remainder terms
of Lp and weighted Sobolev type and Sobolev–Rellich inequalities on
homogeneous groups are given. Most inequalities are obtained with
best constants. As consequences, we obtain analogues of the generalised
classical Sobolev type and Sobolev–Rellich inequalities. We also dis-
cuss applications of logarithmic Hardy inequalities to Sobolev–Lorentz–
Zygmund spaces. The obtained results are new already in the anisotropic
R

n as well as in the isotropic R
n due to the freedom in the choice of any

homogeneous quasi-norm.

Mathematics Subject Classification. Primary 22E30; Secondary 46E35.

Keywords. Sobolev inequality, Hardy inequality, Weighted Sobolev in-
equality, Rellich inequality, Euler–Hilbert–Sobolev space, Sobolev–
Lorentz–Zygmund space, Homogeneous Lie group.

Contents

1. Introduction 2
2. Euler Operator on Homogeneous Groups 6
3. Sobolev Type Inequalities 10

3.1. Sobolev Type Inequalities 10
3.2. Higher Order Sobolev–Rellich Inequalities 18

4. Euler–Hilbert–Sobolev Space on Homogeneous Groups 20
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1. Introduction

In this paper we are interested in Hardy, Poincaré, Sobolev, Rellich and
higher order inequalities of Sobolev–Rellich type in the setting of general ho-
mogeneous groups. Furthermore, we are interested in questions of best con-
stants, their attainability, and sharp expressions for the remainders. As con-
sequences, we define Euler–Hilbert–Sobolev and Sobolev–Lorentz–Zygmund
spaces on homogeneous groups. For a short review in this direction and some
further discussions we refer to recent papers [16–21] as well as to references
therein. In the case of Rn expressions for the remainder terms in Hardy and
Rellich inequalities have been recently analysed in [7,8,11,13].

The obtained results yield new statements already in the Euclidean
setting of Rn but when we are working with anisotropic differential structures.
Moreover, even in the isotropic situation in R

n, the novelty of the obtained
results is also in the arbitrariness of the choice of any homogeneous quasi-
norm, since most of the inequalities are obtained with best constants. In this
situation, the very convenient framework for working with a given dilation
structure is that of homogeneous groups as was initiated in the book [6]
of Folland and Stein. One of the ideas there is a distillation of results of
harmonic analysis depending only on the group and dilation structures, and
we believe that this paper contributes to this direction. Our results hold on
general anisotropic R

n, including the Heisenberg group and other nilpotent
groups, where not all the Euclidean structures are available and one has
to find alternative ways. Moreover, as we mentioned, they show that some
inequalities are independent on the dilation structure and on the norm one
takes on R

n. To the best of our knowledge, all the known results rely on the
fact that the appearing norm is the Euclidean one. In the technical part, the
present paper relies on the extensive use of the Euler operator and this is one
of our main ideas, to use it in proving such inequalities beyond R

n.
For the convenience of the reader let us summarise the obtained results.

Let G be a homogeneous group of homogeneous dimension Q and let us fix
any homogeneous quasi-norm | · |. Then we prove the following results:

• Let f ∈ C∞
0 (G\{0}) be a real-valued function and let 1 < p < ∞. Then

we have the following identity:
∥
∥
∥
∥

p

Q
Ef

∥
∥
∥
∥

p

Lp(G)

− ‖f‖p
Lp(G) = p

∫

G

Ip

(

f,− p

Q
Ef

) ∣
∣
∣
∣
f +

p

Q
Ef

∣
∣
∣
∣

2

dx, (1.1)

where Ip is given by

Ip(h, g) = (p − 1)
∫ 1

0

|ξh + (1 − ξ)g|p−2ξdξ



IEOT Sobolev type inequalities Page 3 of 33 10

and the Euler type operator

E = |x| d

d|x|
is defined in (2.6). It can be described by the property that if f :
G\{0} → R is differentiable, then E(f) = νf if and only if a function f
is positively homogeneous of order ν.

• Using that Ip ≥ 0, identity (1.1) implies the generalised Lp-Sobolev
inequality

‖f‖Lp(G) ≤ p

Q
‖Ef‖Lp(G) , 1 < p < ∞, (1.2)

for all real-valued functions f ∈ C∞
0 (G\{0}). Inequality (1.2) is also

true for complex-valued functions. In the case p = 2 and Q ≥ 3, the
inequality (1.2) for any complex-valued f ∈ C∞

0 (G\{0}) is equivalent
to Hardy’s inequality for any complex-valued g ∈ C∞

0 (G\{0}):
∥
∥
∥
∥

g

|x|
∥
∥
∥
∥

L2(G)

≤ 2
Q − 2

‖Rg‖L2(G) =
2

Q − 2

∥
∥
∥
∥

1
|x|Eg

∥
∥
∥
∥

L2(G)

, (1.3)

where E := |x|R, and R is the radial derivative operator on G [see (2.5)
for the precise expression]. In the case 1 < p < Q, the inequality (1.2)
for any complex-valued f ∈ C∞

0 (G\{0}) implies Hardy’s inequality:
∥
∥
∥
∥

f

|x|
∥
∥
∥
∥

Lp(G)

≤ p

Q − p
‖Rf‖Lp(G) =

p

Q − p

∥
∥
∥
∥

1
|x|Ef

∥
∥
∥
∥

Lp(G)

. (1.4)

• For any complex-valued function f ∈ C∞
0 (G\{0}) and any α ∈ R we

have the following weighted identity:
∥
∥
∥
∥

1
|x|αEf

∥
∥
∥
∥

2

L2(G)

=
(

Q

2
− α

)2 ∥
∥
∥
∥

f

|x|α
∥
∥
∥
∥

2

L2(G)

+
∥
∥
∥
∥

1
|x|αEf +

Q − 2α

2|x|α f

∥
∥
∥
∥

2

L2(G)

. (1.5)

Identity (1.5) implies several different estimates. For example, for α = 1
we get the following generalised weighted Sobolev inequality:

∥
∥
∥
∥

f

|x|
∥
∥
∥
∥

L2(G)

≤ 2
Q − 2

∥
∥
∥
∥

1
|x|Ef

∥
∥
∥
∥

L2(G)

, Q ≥ 3, (1.6)

for all complex-valued functions f ∈ C∞
0 (G\{0}). For every α ∈ R for

which Q−2α �= 0, since the last term in (1.5) in non-negative, we obtain
∥
∥
∥
∥

f

|x|α
∥
∥
∥
∥

L2(G)

≤ 2
|Q − 2α|

∥
∥
∥
∥

1
|x|αEf

∥
∥
∥
∥

L2(G)

, (1.7)

with sharp constant, see Corollary 3.7.
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• Let 1 < p < ∞, k ∈ N and α ∈ R be such that Q �= αp. Then for
any complex-valued function f ∈ C∞

0 (G\{0}) we have weighted higher
order Lp-Sobolev type inequality:

∥
∥
∥
∥

f

|x|α
∥
∥
∥
∥

Lp(G)

≤
∣
∣
∣
∣

p

Q − αp

∣
∣
∣
∣

k ∥
∥
∥
∥

1
|x|αE

kf

∥
∥
∥
∥

Lp(G)

. (1.8)

In the case p = 2 an interesting feature is that we also obtain the exact
formula for the remainder which yields the sharpness of the constants as
well. For α ∈ R and Q−2α �= 0 we have the higher order Sobolev–Rellich
type inequalities:

∥
∥
∥
∥

f

|x|α
∥
∥
∥
∥

L2(G)

≤
(

2
|Q − 2α|

)k ∥
∥
∥
∥

1
|x|αE

kf

∥
∥
∥
∥

L2(G)

, (1.9)

for all complex-valued functions f ∈ C∞
0 (G\{0}). The constant in the

right-hand side of (1.9) is sharp, and is attained if and only if f = 0.
Moreover, for all k ∈ N and α ∈ R there is an explicit formula for the
remainder:
∥
∥
∥
∥

1
|x|αE

kf

∥
∥
∥
∥

2

L2(G)

=
(

Q − 2α

2

)2k ∥
∥
∥
∥

f

|x|α
∥
∥
∥
∥

2

L2(G)

+
k∑

m=1

(
Q−2α

2

)2k−2m ∥
∥
∥
∥

1
|x|αE

mf+
Q−2α

2|x|α E
m−1f

∥
∥
∥
∥

2

L2(G)

. (1.10)

• The semi-normed space (Lk,p(G), ‖ · ‖Lk,p(G)), k ∈ Z, equipped with a
semi-norm ‖f‖Lk,p(G) := ‖Ekf‖Lp(G) is a complete space. The norm of
the embedding operator ι : (Lk,p(G), ‖ · ‖Lk,p(G)) ↪→ (Lp(G), ‖ · ‖Lp(G))
for k ∈ N satisfies

‖ι‖Lk,p(G)→Lp(G) ≤
(

p

Q

)k

, 1 < p < ∞, (1.11)

where we understand the embedding ι as an embedding of semi-normed
subspace of Lp(G).

• Let |E| = (EE∗)
1
2 . Then the semi-normed space (Hβ(G), ‖ · ‖Hβ(G)), β ∈

C, equipped with a semi-norm ‖f‖Hβ(G) := ‖|E|βf‖L2(G) is a complete
space. The norm of the embedding operator ι : (Hβ(G), ‖ · ‖Hβ(G)) ↪→
(L2(G), ‖ · ‖L2(G)) satisfies

‖ι‖Hβ(G)→L2(G) ≤ C

(

k − β

2
, k

)(
2
Q

)Reβ

,

β ∈ C+, k >
Reβ
2

, k ∈ N, (1.12)

where we understand the embedding ι as an embedding of semi-normed
subspace of L2(G), and with

C(β, k) =
Γ(k + 1)

|Γ(β)Γ(k − β)|
2k−Reβ

Reβ(k − Reβ)
.
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• Let Ω be a bounded open subset of G. If 1 < p < ∞, f ∈ L̂1,p
0 (Ω)

and Rf ≡ 1
|x|Ef ∈ Lp(Ω), then we have the following Poincaré type

inequality on Ω ⊂ G:

‖f‖Lp(Ω) ≤ Rp

Q
‖Rf‖Lp(Ω) =

Rp

Q

∥
∥
∥
∥

1
|x|Ef

∥
∥
∥
∥

Lp(Ω)

, (1.13)

where R = sup
x∈Ω

|x|, and L̂1,p
0 (Ω) is the completion of C∞

0 (Ω\{0}) with

respect to the norm

‖f‖L̂1,p(Ω) := ‖f‖Lp(Ω) + ‖Ef‖Lp(Ω), 1 < p < ∞.

• Let 1 < γ < ∞ and max{1, γ − 1} < q < ∞. Then we have the
continuous embedding

W 1
0 LQ,q, q−1

q , q−γ
q

(G) ↪→ L∞,q,− 1
q ,− γ

q
(G),

where W 1
0 LQ,q, q−1

q , q−γ
q

(G) and L∞,q,− 1
q ,− γ

q
(G) are defined in (6.2) and

(6.3), respectively. In particular, for any R > 0, the inequality
⎛

⎝

∫

G

χB(0,eR)(x)|f − fR|q + χBc(0,eR)(x)|f − fe2R|q
∣
∣
∣log

∣
∣
∣log eR

|x|
∣
∣
∣

∣
∣
∣

γ ∣
∣
∣log eR

|x|
∣
∣
∣

dx

|x|Q

⎞

⎠

1
q

≤ q

γ − 1

(
∫

G

|x|q−Q

∣
∣
∣
∣
log

eR

|x|
∣
∣
∣
∣

q−1 ∣
∣
∣
∣
log
∣
∣
∣
∣
log

eR

|x|
∣
∣
∣
∣

∣
∣
∣
∣

q−γ ∣
∣
∣
∣

1
|x|Ef

∣
∣
∣
∣

q

dx

) 1
q

(1.14)

holds for all f ∈ W 1
0 LQ,q, q−1

q , q−γ
q

(G), where the embedding constant
q

γ−1 is sharp and fR = f(R x
|x| ).

An interesting observation is that the constants in most of the obtained
inequalities are sharp for any quasi-norm | · |, that is, they do not depend
on the quasi-norm | · |. Therefore, these inequalities are new already in the
Euclidean setting of R

n. Moreover, one of the novelty of this paper is the
analysis of the fractional powers of the Euler operators in R

n, as well as on
the homogeneous groups. We refer to [23,24] for the applications of such in-
equalities to nonlinear Schrödinger type equations on homogeneous groups,
namely on graded groups. In particular, the authors expressed the best con-
stants of the Sobolev and Gagliardo–Nirenberg inequalities in the variational
form as well as in terms of the ground state solutions of the corresponding
nonlinear subelliptic equations.

In Sect. 2 we briefly recall the main concepts of homogeneous groups
and fix the notation. In Sect. 3 we derive versions of Sobolev type inequalities
on homogeneous groups and discuss their consequences including higher or-
der Sobolev–Rellich inequalities. Euler–Hilbert–Sobolev and Euler–Sobolev
spaces on homogeneous groups are defined in Sect. 4. In Sect. 5 we consider
an analogue of Poincaré inequality on homogeneous groups. Finally, in Sect. 6
we discuss an analogue of the critical Hardy inequality and Sobolev–Lorentz–
Zygmund spaces on homogeneous groups.
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2. Euler Operator on Homogeneous Groups

In this section we very briefly recall the necessary notions and fix the notation
for homogeneous groups. We also describe the Euler operator that will play
a crucial role in our analysis.

We work with a family of dilations of a Lie algebra g, which is a family
of linear mappings of the following form

Dλ = Exp(A lnλ) =
∞∑

k=0

1
k!

(ln(λ)A)k,

where A is a diagonalisable linear operator on the Lie algebra g with positive
eigenvalues, and each Dλ is a morphism of g, that is, a linear mapping from
g to itself satisfying:

∀X,Y ∈ g, λ > 0, [DλX, DλY ] = Dλ[X,Y ],

where [X,Y ] := XY − Y X is the Lie bracket. Then, a homogeneous group
is a connected simply connected Lie group whose Lie algebra is equipped
with dilations. It induces the dilation structure on the homogeneous group
G which we denote by Dλx or just by λx.

Let dx be the Haar measure on G and let |S| denote the volume of a
measurable set S ⊂ G. Then we have

|Dλ(S)| = λQ|S| and
∫

G

f(λx)dx = λ−Q

∫

G

f(x)dx, (2.1)

where Q is the homogeneous dimension of G:

Q := Tr A.

A homogeneous quasi-norm on G is a continuous non-negative function

G � x 
→ |x| ∈ [0,∞)

satisfying the following properties
• |x−1| = |x| for all x ∈ G,
• |λx| = λ|x| for all x ∈ G and λ > 0,
• |x| = 0 if and only if x = 0.

The quasi-ball centred at x ∈ G with radius R > 0 can be defined by

B(x,R) := {y ∈ G : |x−1y| < R}.

We also use the notation

Bc(x,R) := {y ∈ G : |x−1y| ≥ R}.

The polar decomposition on homogeneous groups will be very useful for our
analysis, and it can be formulated as follows: there is a (unique) positive
Borel measure σ on the unit sphere

℘ := {x ∈ G : |x| = 1}, (2.2)

such that for all f ∈ L1(G) we have
∫

G

f(x)dx =
∫ ∞

0

∫

℘

f(ry)rQ−1dσ(y)dr. (2.3)
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We refer to Folland and Stein [6] for its proof (see also [5, Section 3.1.7] for
a detailed discussion).

From now on, we fix a basis {X1, . . . , Xn} of g such that

AXk = νkXk

for every k, so that the matrix A can be taken to be A = diag(ν1, . . . , νn).
Then each Xk is homogeneous of degree νk and

Q = ν1 + · · · + νn.

The decomposition of exp−1
G

(x) in the Lie algebra g defines the vector

e(x) = (e1(x), . . . , en(x))

by the formula

exp−1
G

(x) = e(x) · ∇ ≡
n∑

j=1

ej(x)Xj ,

where ∇ = (X1, . . . , Xn). On the other hand, we have the equality

x = exp
G

(e1(x)X1 + · · · + en(x)Xn) .

Taking into account the homogeneity and denoting x = ry, y ∈ ℘, this im-
plies

e(x) = e(ry) = (rν1e1(y), . . . , rνnen(y)).

So one has
d

d|x|f(x) =
d

dr
f(ry) =

d

dr
f(exp

G
(rν1e1(y)X1 + · · · + rνnen(y)Xn)).

Denoting by

R :=
d

dr
, (2.4)

for all x ∈ G this gives the equality

d

d|x|f(x) = Rf(x), (2.5)

for each homogeneous quasi-norm |x| on a homogeneous group G.
Let us state a relation between R and Euler’s operator:

Lemma 2.1. Define the Euler operator by

E := |x|R. (2.6)

If f : G\{0} → R is differentiable, then

E(f) = νf if and only if f(rx) = rνf(x) (∀r > 0, ν ∈ R, x �= 0).

Proof of Lemma 2.1. If a function f is positively homogeneous of order ν,
that is, if f(rx) = rνf(x) holds for all r > 0 and x := ρy �= 0, y ∈ ℘, then
using (2.5) for such f , it follows that

Ef = νf(x).
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Conversely, let us fix x �= 0 and define g(r) := f(rx). Using (2.5), the equality
Ef(rx) = νf(rx) means that

g′(r) =
d

dr
f(rx) =

1
r
Ef(rx) =

ν

r
f(rx) =

ν

r
g(r).

Consequently, g(r) = g(1)rν , i.e. f(rx) = rνf(x) and thus f is positively
homogeneous of order ν. �

We now establish some properties of the Euler operator E.

Lemma 2.2. We have
E

∗ = −QI − E (2.7)
where I and E

∗ are the identity operator and the formal adjoint operator of
E, respectively.

Proof of Lemma 2.2. Let us calculate a formal adjoint operator of
E on C∞

0 (G\{0}). We have
∫

G

Ef(x)g(x)dx =
∫ ∞

0

∫

℘

d

dr
f(ry)g(ry)rQdσ(y)dr

= −
∫ ∞

0

∫

℘

f(ry)
(

QrQ−1g(ry) + rQ d

dr
g(ry)

)

dσ(y)dr

= −
∫

G

f(x)(Q + E)g(x)dx,

by integration by parts using formula (2.5). �

We now show that the operator A = EE
∗ is Komatsu-non-negative (see

e.g. [9] or [14]) in L2(G), that is, (−∞, 0) is included in the resolvent set ρ(A)
of A and

∃M > 0, ∀λ > 0, ‖(λ + A)−1‖L2(G)→L2(G) ≤ Mλ−1.

Lemma 2.3. The operator A = EE
∗ is Komatsu-non-negative in L2(G):

‖(λ + A)−1‖L2(G)→L2(G) ≤ λ−1,∀λ > 0. (2.8)

Proof of Lemma 2.3. We start with f ∈ C∞
0 (G\{0}). A direct calculation

shows

‖(λI + A)f‖2
L2(G) = ‖(λI − E(QI + E))f‖2

L2(G)

= λ2 ‖f‖2
L2(G) + ‖E(QI + E)f‖2

L2(G)

− 2λRe
∫

G

f(x)QEf + E2fdx. (2.9)

Since

Re

∫

G

f(x)E2fdx = Re

∫ ∞

0

∫

℘

f(ry)
d

dr
(Ef(ry))rQdσ(y)dr

= −Re

∫ ∞

0

∫

℘

(Ef(ry))

(

rQ d

dr
f(ry) + QrQ−1f(ry)

)

dσ(y)dr

= − ‖Ef‖2
L2(G) − QRe

∫

G

Ef(x)f(x)dx,
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we have

−2λRe
∫

G

f(x)QEf(x) + E2f(x)dx

= −2λQRe
∫

G

f(x)Ef(x)dx − 2λRe
∫

G

f(x)E2f(x)dx

= 2λ ‖Ef‖2
L2(G) . (2.10)

Combining (2.9) with (2.10), we obtain

‖(λI − E(QI + E))f‖2
L2(G) = λ2 ‖f‖2

L2(G) + 2λ ‖Ef‖2
L2(G)

+ ‖E(QI + E)f‖2
L2(G) .

By dropping positive terms, it follows that

‖(λI − E(QI + E))f‖2
L2(G) ≥ λ2 ‖f‖2

L2(G) ,

which implies (2.8). �

Lemma 2.4. For all complex-valued functions f ∈ C∞
0 (G\{0}) we have

‖Ef‖L2(G) = ‖E∗f‖L2(G) . (2.11)

Remark 2.5. The following identity is easy to check from the definition:

A = EE
∗ = E

∗
E.

Proof of Lemma 2.4. Using the representation of E∗ in (2.7), we get

‖E∗f‖2
L2(G) = ‖(−QI − E)f‖2

L2(G)

= Q2 ‖f‖2
L2(G) + 2QRe

∫

G

f(x)Ef(x)dx

+ ‖Ef‖2
L2(G) . (2.12)

Then we have

2QRe
∫

G

f(x)Ef(x)dx = 2QRe
∫ ∞

0

∫

℘

f(ry)
d

dr
f(ry)rQdσ(y)dr

= Q

∫ ∞

0

rQ

∫

℘

d

dr
(|f(ry)|2)dσ(y)dr

= −Q2

∫ ∞

0

∫

℘

|f(ry)|2rQ−1dσ(y)dr

= −Q2 ‖f‖2
L2(G) . (2.13)

Combining this with (2.12) we obtain (2.11). �

In (2.11) replacing f by Ef , we get

Corollary 2.6. For all complex-valued functions f ∈ C∞
0 (G\{0}) we have

‖Af‖L2(G) =
∥
∥E

2f
∥
∥

L2(G)
. (2.14)
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3. Sobolev Type Inequalities

In this section and in the sequel we adopt all the notation introduced in Sect.
2 concerning homogeneous groups and the operator E.

3.1. Sobolev Type Inequalities

If 1 < p, p∗ < ∞ and
1
p

=
1
p∗ − 1

n
, (3.1)

then the (Euclidean) Sobolev inequality has the form

‖g‖Lp(Rn) ≤ C(p)‖∇g‖Lp∗ (Rn), (3.2)

where ∇ is the standard gradient in R
n.

In [15] the following Sobolev type inequality with respect to the operator
x · ∇ instead of ∇ has been considered:

‖g‖Lp(Rn) ≤ C ′(p)‖x · ∇g‖Lq(Rn). (3.3)

For any λ > 0, by substituting g(x) = h(λx) into (3.3), one readily observes
that p = q is a necessary condition to obtain (3.3).

Let us now show the Lp-Sobolev type inequality and its remainder for-
mula on the homogeneous group G.

Theorem 3.1. Let G be a homogeneous group of homogeneous dimension Q
and let | · | be any homogeneous quasi-norm on G.

(i) Then we have

‖f‖Lp(G) ≤ p

Q
‖Ef‖Lp(G) , 1 < p < ∞, (3.4)

for all complex-valued functions f ∈ C∞
0 (G\{0}), where the constant p

Q

is sharp and the equality is attained if and only if f = 0.
(ii) Denoting by

u := u(x) = − p

Q
Ef(x), v := v(x) = f(x),

we have the identity

‖u‖p
Lp(G) − ‖v‖p

Lp(G) = p

∫

G

Ip(v, u)|v − u|2dx, 1 < p < ∞, (3.5)

for every real-valued functions f ∈ C∞
0 (G\{0}), where

Ip(h, g) = (p − 1)
∫ 1

0

|ξh + (1 − ξ)g|p−2ξdξ.

(iii) In the case p = 2, the identity (3.5) holds for all complex-valued func-
tions f ∈ C∞

0 (G\{0}) and has the following form

‖Ef‖2
L2(G) =

(
Q

2

)2

‖f‖2
L2(G) +

∥
∥
∥
∥
Ef +

Q

2
f

∥
∥
∥
∥

2

L2(G)

. (3.6)
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(iv) In the case p = 2 and Q ≥ 3 the inequality (3.4) is equivalent to Hardy’s
inequality for any g ∈ C∞

0 (G\{0}):
∥
∥
∥
∥

g

|x|
∥
∥
∥
∥

L2(G)

≤ 2
Q − 2

‖Rg‖L2(G) =
2

Q − 2

∥
∥
∥
∥

1
|x|Eg

∥
∥
∥
∥

L2(G)

. (3.7)

(v) In the case 1 < p < Q the inequality (3.4) yields Hardy’s inequality for
any f ∈ C∞

0 (G\{0}):
∥
∥
∥
∥

f

|x|
∥
∥
∥
∥

Lp(G)

≤ p

Q − p
‖Rf‖Lp(G) . (3.8)

Remark 3.2. Let us consider the following Sobolev type inequality for all
1 < p, q < ∞:

‖g‖Lp(G) ≤ C(p)‖Eg‖Lq(G). (3.9)

For any λ > 0, substituting g(x) = h(λx) into (3.9) and using the fact the
Euler operator is a homogeneous operator of order zero, we obtain that p = q
is a necessary condition to obtain (3.9).

Remark 3.3. Let us show that Part (ii) implies Part (i). By dropping non-
negative term in the right-hand side of (3.5), we obtain

‖f‖Lp(G) ≤ p

Q
‖Ef‖Lp(G) , 1 < p < ∞, (3.10)

for all real-valued functions f ∈ C∞
0 (G\{0}). Consequently, this inequality

holds for all complex-valued functions by using the identity (cf. Davies [3, p.
176])

∀z ∈ C : |z|p =
(∫ π

−π

| cos θ|pdθ

)−1 ∫ π

−π

|Re(z) cos θ + Im(z) sin θ|p dθ,

(3.11)
which implies from the representation z = r(cos φ + i sin φ) by some manip-
ulations.

So, the inequality (3.4) is valid with the sharp constant p
Q . We now

claim that this constant is attained only for f = 0. By virtue of (3.11), it is
enough to check it only for real-valued functions f . If the right-hand side of
(3.5) is zero, then we must obtain

− p

Q
Ef(x) = f(x),

which implies that E(f) = −Q
p f . Taking into account the property of the

Euler operator in Lemma 2.1 it means that f is positively homogeneous of
order −Q

p , that is, there exists a function h : ℘ → C such that

f(x) = |x|− Q
p h

(
x

|x|
)

, (3.12)

where ℘ is defined by (2.2). In particular, (3.12) means that f can not be
compactly supported unless it is zero.
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So, Remark 3.3 shows that Part (ii), namely (3.5) implies Part (i) of
Theorem 3.1. Thus, for the part on Sobolev type inequality, we only need to
prove Part (ii). Nevertheless, we also give an independent proof of (3.4) for
complex-valued functions without using the formula (3.11), especially since
this calculation will be also useful in proving Part (ii) of Theorem 3.1.

Proof of Theorem 3.1. Introducing polar coordinates (r, y) = (|x|, x
|x| ) ∈

(0,∞) × ℘ on G, where the quasi-sphere ℘ is defined in (2.2), and apply-
ing (2.3) and integrating by parts, we get

∫

G

|f(x)|pdx =
∫ ∞

0

∫

℘

|f(ry)|prQ−1dσ(y)dr

= − p

Q

∫ ∞

0

rQ Re
∫

℘

|f(ry)|p−2f(ry)
df(ry)

dr
dσ(y)dr

= − p

Q
Re
∫

G

|f(x)|p−2f(x)Ef(x)dx. (3.13)

Here using the Hölder’s inequality for 1
p + 1

q = 1 one calculates
∫

G

|f(x)|pdx = − p

Q
Re
∫

G

|f(x)|p−2f(x)Ef(x)dx

≤ p

Q

(∫

G

∣
∣|f(x)|p−2f(x)

∣
∣
q
dx

) 1
q
(∫

G

|Ef(x)|p dx

) 1
p

=
p

Q

(∫

G

|f(x)|pdx

)1− 1
p

‖Ef(x)‖Lp(G) ,

which gives inequality (3.4) in Part (i).
We now prove Part (ii). Applying notations

u := u(x) = − p

Q
Ef, v := v(x) = f(x),

formula (3.13) can be rewritten as

‖v‖p
Lp(G) = Re

∫

G

|v|p−2vudx. (3.14)

For any real-valued functions f formula (3.13) becomes
∫

G

|f(x)|pdx = − p

Q

∫

G

|f(x)|p−2f(x)Ef(x)dx

and (3.14) takes the form

‖v‖p
Lp(G) =

∫

G

|v|p−2vudx. (3.15)

On the other hand, for all Lp-integrable real-valued functions u and v we
have
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‖u‖p
Lp(G) − ‖v‖p

Lp(G) + p

∫

G

(|v|p − |v|p−2vu)dx

=
∫

G

(|u|p + (p − 1)|v|p − p|v|p−2vu)dx

= p

∫

G

Ip(v, u)|v − u|2dx, 1 < p < ∞,

where

Ip(v, u) = (p − 1)
∫ 1

0

|ξv + (1 − ξ)u|p−2ξdξ.

Combining this with (3.15) one obtains

‖u‖p
Lp(G) − ‖v‖p

Lp(G) = p

∫

G

Ip(v, u)|v − u|2dx.

The equality (3.5) is proved.
Now we prove Part (iii). If p = 2, the identity (3.14) becomes

‖v‖2
L2(G) = Re

∫

G

vudx. (3.16)

Then we get

‖u‖2
L2(G) − ‖v‖2

L2(G) = ‖u‖2
L2(G) − ‖v‖2

L2(G) + 2
∫

G

(|v|2 − Re vu)dx

=
∫

G

(|u|2 + |v|2 − 2Re vu)dx

=
∫

G

|u − v|2dx,

which implies (3.6).
Now let us show Part (iv). First we show that the inequality (3.4) implies

(3.7). Let g = |x|f . Then we have

‖Ef(x)‖2
L2(G) =

∥
∥
∥
∥
E

g

|x|
∥
∥
∥
∥

2

L2(G)

=
∫ ∞

0

∫

℘

∣
∣
∣
∣

(

r
d

dr

)
g(ry)

r

∣
∣
∣
∣

2

rQ−1dσ(y)dr

=
∥
∥
∥
∥
− g

|x| +
d

d|x|g
∥
∥
∥
∥

2

L2(G)

=
∥
∥
∥
∥

g

|x|
∥
∥
∥
∥

2

L2(G)

− 2Re
∫

G

g

|x|
d

d|x|gdx +
∥
∥
∥
∥

d

d|x|g
∥
∥
∥
∥

2

L2(G)

.

(3.17)

Since

−2Re
∫

G

g

|x|
d

d|x|gdx = −2Re
∫ ∞

0

∫

℘

g(ry)
r

d

dr
g(ry)rQ−1dσ(y)dr

= −Re
∫ ∞

0

∫

℘

d

dr
(|g|2)rQ−2dσ(y)dr
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= (Q − 2)Re
∫ ∞

0

∫

℘

|g|2rQ−3dσ(y)dr

= (Q − 2)
∥
∥
∥
∥

g

|x|
∥
∥
∥
∥

2

L2(G)

,

it follows that

‖Ef(x)‖2
L2(G) = (Q − 1)

∥
∥
∥
∥

g

|x|
∥
∥
∥
∥

2

L2(G)

+
∥
∥
∥
∥

d

d|x|g
∥
∥
∥
∥

2

L2(G)

. (3.18)

We see from (3.4) and (3.18) that
∥
∥
∥
∥

g

|x|
∥
∥
∥
∥

2

L2(G)

≤ 4
Q2

(

(Q − 1)
∥
∥
∥
∥

g

|x|
∥
∥
∥
∥

2

L2(G)

+
∥
∥
∥
∥

d

d|x|g
∥
∥
∥
∥

2

L2(G)

)

,

which gives (3.7).
Conversely, we assume that (3.7) holds. For f = g/|x| we have

∥
∥
∥
∥

d

d|x| (|x|f)
∥
∥
∥
∥

2

L2(G)

= ‖f + Ef‖2
L2(G) = ‖f‖2

L2(G)

+ 2Re
∫

G

f(x)Ef(x)dx + ‖Ef‖2
L2(G).

Since by (2.13), it follows from (3.7) that

‖f‖2
L2(G) ≤ 4

(Q − 2)2
(

‖Ef‖2
L2(G) − (Q − 1) ‖f‖2

L2(G)

)

,

which implies

‖f‖L2(G) ≤ 2
Q

‖Ef‖L2(G).

Let us now prove Part (v). We will prove that the inequality (3.4) gives
(3.8). We have

‖R(|x|f)‖Lp(G) = ‖Ef + f‖Lp(G) ≥ ‖Ef‖Lp(G) − ‖f‖Lp(G).

Finally, by using the inequality (3.4) we have

‖R(|x|f)‖Lp(G) ≥ Q − p

p
‖f‖Lp(G),

which implies the Hardy inequality (3.8). �

Now we establish weighted Lp-Sobolev type inequalities on the homo-
geneous group G.

Theorem 3.4. Let G be a homogeneous group of homogeneous dimension Q
and let α ∈ R. Then for all complex-valued functions f ∈ C∞

0 (G\{0}), 1 <
p < ∞, and any homogeneous quasi-norm | · | on G for αp �= Q we have

∥
∥
∥
∥

f

|x|α
∥
∥
∥
∥

Lp(G)

≤
∣
∣
∣
∣

p

Q − αp

∣
∣
∣
∣

∥
∥
∥
∥

1
|x|αEf

∥
∥
∥
∥

Lp(G)

. (3.19)

If αp �= Q then the constant
∣
∣
∣

p
Q−αp

∣
∣
∣ is sharp.
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For αp = Q we have
∥
∥
∥
∥
∥

f

|x|Q
p

∥
∥
∥
∥
∥

Lp(G)

≤ p

∥
∥
∥
∥
∥

log |x|
|x|Q

p

Ef

∥
∥
∥
∥
∥

Lp(G)

, (3.20)

where the constant p is sharp.

Remark 3.5. In [22, Theorem 1.2 and Theorem 7.1], using these inequalities
(3.19) and (3.20) we obtained an extended version of classical Caffarelli-Kohn-
Nirenberg inequalities with respect to ranges of parameters, which are new
in the Euclidean setting of Rn, as well as on homogeneous groups. Moreover,
our methods give an improvement by replacing the full gradient by the radial
derivative. In [10, Theorem 3.1], applying Theorem 3.4 the authors proved
Hardy inequalities for the quadratic form of the Laplacian with the Landau
Hamiltonian magnetic field.

Proof of Theorem 3.4. Using integration by parts, for αp �= Q we obtain
∫

G

|f(x)|p
|x|αp

dx =
∫ ∞

0

∫

℘

|f(ry)|prQ−1−αpdσ(y)dr

= − p

Q − αp

∫ ∞

0

rQ−αpRe
∫

℘

|f(ry)|p−2f(ry)
df(ry)

dr
dσ(y)dr

≤
∣
∣
∣
∣

p

Q − αp

∣
∣
∣
∣

∫

G

|Ef(x)||f(x)|p−1

|x|αp
dx

=
∣
∣
∣
∣

p

Q − αp

∣
∣
∣
∣

∫

G

|Ef(x)||f(x)|p−1

|x|α+α(p−1)
dx.

By Hölder’s inequality, it follows that
∫

G

|f(x)|p
|x|αp

dx ≤
∣
∣
∣
∣

p

Q − αp

∣
∣
∣
∣

(∫

G

|Ef(x)|p
|x|αp

dx

) 1
p
(∫

G

|f(x)|p
|x|αp

dx

) p−1
p

,

which gives (3.19).
Now we show the sharpness of the constant. We need to check the equal-

ity condition in above Hölder’s inequality. Let us consider the function

g(x) =
1

|x|C ,

where C ∈ R, C �= 0 and αp �= Q. Then by a direct calculation we obtain
∣
∣
∣
∣

1
C

∣
∣
∣
∣

p( |Eg(x)|
|x|α

)p

=
( |g(x)|p−1

|x|α(p−1)

) p
p−1

, (3.21)

which satisfies the equality condition in Hölder’s inequality. This gives the
sharpness of the constant

∣
∣
∣

p
Q−αp

∣
∣
∣ in (3.19).

Now let us prove (3.20). Using integration by parts, we have
∫

G

|f(x)|p
|x|Q dx =

∫ ∞

0

∫

℘

|f(ry)|prQ−1−Qdσ(y)dr

= −p

∫ ∞

0

log rRe
∫

℘

|f(ry)|p−2f(ry)
df(ry)

dr
dσ(y)dr
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≤ p

∫

G

|Ef(x)||f(x)|p−1

|x|Q | log |x||dx

= p

∫

G

|Ef(x)| log |x|||
|x|Q

p

|f(x)|p−1

|x|Q(p−1)
p

dx.

By Hölder’s inequality, it follows that
∫

G

|f(x)|p
|x|Q dx ≤ p

(∫

G

|Ef(x)|p| log |x||p
|x|Q dx

) 1
p
(∫

G

|f(x)|p
|x|Q dx

) p−1
p

,

which gives (3.20).
Now we show the sharpness of the constant. We need to check the equal-

ity condition in above Hölder’s inequality. Let us consider the function

h(x) = (log |x|)C ,

where C ∈ R and C �= 0. Then by a direct calculation we obtain
∣
∣
∣
∣

1
C

∣
∣
∣
∣

p
(

|Eh(x)|| log |x||
|x|Q

p

)p

=

(

|h(x)|p−1

|x|Q(p−1)
p

) p
p−1

, (3.22)

which satisfies the equality condition in Hölder’s inequality. This gives the
sharpness of the constant p in (3.20). �

Let us consider separately the case p = 2.

Theorem 3.6. Let G be a homogeneous group of homogeneous dimension Q
and let | · | be any homogeneous quasi-norm on G. Then for every complex-
valued function f ∈ C∞

0 (G\{0}) we have
∥
∥
∥
∥

1
|x|αEf

∥
∥
∥
∥

2

L2(G)

=
(

Q

2
− α

)2 ∥
∥
∥
∥

f

|x|α
∥
∥
∥
∥

2

L2(G)

+
∥
∥
∥
∥

1
|x|αEf +

Q − 2α

2|x|α f

∥
∥
∥
∥

2

L2(G)

(3.23)

for any α ∈ R.

From (3.23) one can get different equalities and inequalities. For exam-
ple, for α = 1, we obtain the equality

∥
∥
∥
∥

1
|x|Ef

∥
∥
∥
∥

2

L2(G)

=
(

Q − 2
2

)2 ∥
∥
∥
∥

f

|x|
∥
∥
∥
∥

2

L2(G)

+
∥
∥
∥
∥

1
|x|Ef +

Q − 2
2|x| f

∥
∥
∥
∥

2

L2(G)

. (3.24)

By dropping the nonnegative last term in (3.23) we immediately get the
following statement:

Corollary 3.7. Let G be a homogeneous group of homogeneous dimension Q
and let | · | be any homogeneous quasi-norm on G. Let α ∈ R and Q−2α �= 0.
Then we have

∥
∥
∥
∥

f

|x|α
∥
∥
∥
∥

L2(G)

≤ 2
|Q − 2α|

∥
∥
∥
∥

1
|x|αEf

∥
∥
∥
∥

L2(G)

, (3.25)
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for all complex-valued functions f ∈ C∞
0 (G\{0}), where the constant in (3.25)

is sharp and the equality is attained if and only if f = 0.

This statement on the constant and the equality follows by the same
argument as that in Remark 3.3. We note a special case of α = 1, then (3.24)
gives the inequality

∥
∥
∥
∥

f

|x|
∥
∥
∥
∥

L2(G)

≤ 2
Q − 2

∥
∥
∥
∥

1
|x|Ef

∥
∥
∥
∥

L2(G)

, Q ≥ 3, (3.26)

with sharp constant.
In the case α = 0, the identity (3.23) recovers Part (iii) of Theorem 3.1.

However, in the proof of Theorem 3.6 we will use Part (iii) of Theorem 3.1.

Proof of Theorem 3.6. For any α ∈ R we note the following equality

1
|x|αEf = E

f

|x|α + α
f

|x|α . (3.27)

Indeed, the equality (3.27) follows from

E
f

|x|α =
1

|x|αEf + fE
1

|x|α
and utilising (2.5) and (2.6),

E
1

|x|α = r
d

dr

1
rα

= −α
1
rα

= −α
1

|x|α , r = |x|.

Then we obtain
∥
∥
∥
∥

1
|x|αEf

∥
∥
∥
∥

2

L2(G)

=
∥
∥
∥
∥
E

f

|x|α +
αf

|x|α
∥
∥
∥
∥

2

L2(G)

=
∥
∥
∥
∥
E

f

|x|α
∥
∥
∥
∥

2

L2(G)

+ 2αRe
∫

G

E

(
f

|x|α
)

f

|x|α dx +
∥
∥
∥
∥

αf

|x|α
∥
∥
∥
∥

2

L2(G)

.

(3.28)

In (3.6) replacing f by f
|x|α and using (3.27) we have that

∥
∥
∥
∥
E

f

|x|α
∥
∥
∥
∥

2

L2(G)

=
(

Q

2

)2 ∥
∥
∥
∥

f

|x|α
∥
∥
∥
∥

2

L2(G)

+
∥
∥
∥
∥

1
|x|αEf +

Q − 2α

2|x|α f

∥
∥
∥
∥

2

L2(G)

.

(3.29)
Using formula (2.3) for polar coordinates, one obtains

2αRe
∫

G

E

(
f

|x|α
)

f

|x|α dx = 2αRe
∫ ∞

0

rQ−1

∫

℘

r
d

dr

(
f(ry)
rα

)
f(ry)
rα

dσ(y)dr

= α

∫ ∞

0

rQ

∫

℘

d

dr

( |f(ry)|2
r2α

)

dσ(y)dr

= −αQ

∥
∥
∥
∥

f

|x|α
∥
∥
∥
∥

2

L2(G)

. (3.30)
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Summing up all above we arrive at
∥
∥
∥
∥

1
|x|αEf

∥
∥
∥
∥

2

L2(G)

=
(

Q

2
− α

)2 ∥
∥
∥
∥

f

|x|α
∥
∥
∥
∥

2

L2(G)

+
∥
∥
∥
∥

1
|x|αEf +

Q − 2α

2|x|α f

∥
∥
∥
∥

2

L2(G)

,

which implies (3.23). �

3.2. Higher Order Sobolev–Rellich Inequalities

By iterating the established weighted Sobolev inequality (3.19) one obtains
inequalities of higher order. Let us state the following:

Corollary 3.8. Let G be a homogeneous group of homogeneous dimension Q
and let | · | be any homogeneous quasi-norm on G. Let 1 < p < ∞, k ∈ N

and α ∈ R be such that Q �= αp. Then for any complex-valued function
f ∈ C∞

0 (G\{0}) we have
∥
∥
∥
∥

f

|x|α
∥
∥
∥
∥

Lp(G)

≤
∣
∣
∣
∣

p

Q − αp

∣
∣
∣
∣

k ∥
∥
∥
∥

E
kf

|x|α
∥
∥
∥
∥

Lp(G)

. (3.31)

Remark 3.9. In the abelian case of the Euclidean space G = R
n, we have

Q = n and taking | · | to be the Euclidean norm, in the special case α = 0
and k = 1, the unweighted Sobolev type inequality (3.31) was obtained in
[15, Theorem 1.1]. In the case k = 2 the inequality (3.31) can be thought of
as a (weighted) Sobolev–Rellich type inequality.

In the case p = 2 an interesting feature is that we also have the exact
formula for the remainder which provides the sharpness of the constants as
well.

Theorem 3.10. Let G be a homogeneous group of homogeneous dimension Q
and let | · | be any homogeneous quasi-norm on G. Let α ∈ R and k ∈ N be
such that Q �= 2α. Then for all complex-valued functions f ∈ C∞

0 (G\{0}) the
following inequality holds:

∥
∥
∥
∥

f

|x|α
∥
∥
∥
∥

L2(G)

≤
(

2
|Q − 2α|

)k ∥
∥
∥
∥

1
|x|αE

kf

∥
∥
∥
∥

L2(G)

. (3.32)

The constant in (3.32) is sharp and the equality is attained if and only if
f = 0.

Furthermore, for all k ∈ N and α ∈ R, we have
∥
∥
∥
∥

1
|x|αE

kf

∥
∥
∥
∥

2

L2(G)

=
(

Q − 2α

2

)2k ∥
∥
∥
∥

f

|x|α
∥
∥
∥
∥

2

L2(G)

+
k∑

m=1

(
Q − 2α

2

)2k−2m ∥
∥
∥
∥

1
|x|αE

mf +
Q − 2α

2|x|α E
m−1f

∥
∥
∥
∥

2

L2(G)

.

(3.33)

Although we often do not get sharp constants by iterative methods,
since we have the formula (3.33), we can apply it to prove that the iterative
constant is sharp. This may be a general feature of iterating Sobolev–Rellich
type inequalities as the same phenomena was also investigated in R

n by
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Davies and Hinz [4], but they have used very different methods for their
analysis (see also [1,2]).

Proof of Theorem 3.10. Let us iterate (3.23). For any α ∈ R we start with
∥
∥
∥
∥

1
|x|αEf

∥
∥
∥
∥

2

L2(G)

=
(

Q

2
− α

)2 ∥
∥
∥
∥

f

|x|α
∥
∥
∥
∥

2

L2(G)

+
∥
∥
∥
∥

1
|x|αEf +

Q − 2α

2|x|α f

∥
∥
∥
∥

2

L2(G)

.

(3.34)
Putting Ef instead of f in (3.34) we obtain

∥
∥
∥
∥

1
|x|αE

2f

∥
∥
∥
∥

2

L2(G)

=
(

Q

2
− α

)2 ∥
∥
∥
∥

Ef

|x|α
∥
∥
∥
∥

2

L2(G)

+
∥
∥
∥
∥

1
|x|αE

2f +
Q − 2α

2|x|α Ef

∥
∥
∥
∥

2

L2(G)

. (3.35)

Combining (3.35) with (3.34) we get
∥
∥
∥
∥

1
|x|αE

2f

∥
∥
∥
∥

2

L2(G)

=
(

Q

2
− α

)4 ∥
∥
∥
∥

f

|x|α
∥
∥
∥
∥

2

L2(G)

+
(

Q

2
− α

)2 ∥
∥
∥
∥

1
|x|αEf +

Q − 2α

2|x|α f

∥
∥
∥
∥

2

L2(G)

+
∥
∥
∥
∥

1
|x|αE

2f +
Q − 2α

2|x|α Ef

∥
∥
∥
∥

2

L2(G)

.

This iteration process implies
∥
∥
∥
∥

1

|x|α E
kf

∥
∥
∥
∥

2

L2(G)

=

(
Q − 2α

2

)2k ∥
∥
∥
∥

f

|x|α
∥
∥
∥
∥

2

L2(G)

+
k∑

m=1

(
Q − 2α

2

)2k−2m ∥
∥
∥
∥

1

|x|α E
mf +

Q − 2α

2|x|α E
m−1f

∥
∥
∥
∥

2

L2(G)

, k = 1, 2, . . . .

By dropping nonnegative terms, we obtain
∥
∥
∥
∥

1
|x|αE

kf

∥
∥
∥
∥

2

L2(G)

≥
(

Q − 2α

2

)2k ∥
∥
∥
∥

f

|x|α
∥
∥
∥
∥

2

L2(G)

. (3.36)

If Q �= 2α, this means
∥
∥
∥
∥

f

|x|α
∥
∥
∥
∥

2

L2(G)

≤
(

2
Q − 2α

)2k ∥
∥
∥
∥

1
|x|αE

kf

∥
∥
∥
∥

2

L2(G)

, (3.37)

which implies (3.32). Now let us show the sharpness of the constant in (3.32).
The equality

1
|x|αE

mf +
Q − 2α

2|x|α E
m−1f = 0

can be restated as

E(Em−1f) +
Q − 2α

2
E

m−1f = 0,
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and by Lemma 2.1 it follows that Em−1f is positively homogeneous of degree
−Q

2 + α. Thus, if f is positively homogeneous of degree m − 1 − Q
2 + α, then

all the remainder terms vanish. Since this can be approximated by functions

in C∞
0 (G\{0}), the constant

(
2

Q−2α

)2k

is sharp. Even if it were attained,
then it would be on functions f which are positively homogeneous of degree
m − 1 − Q

2 + α. In this case f
|x|α+m−1 would be positively homogeneous of

degree −Q
2 , and these are in L2 if and only if they are zero. �

4. Euler–Hilbert–Sobolev Space on Homogeneous Groups

In this section we introduce an Euler–Hilbert–Sobolev space on homogeneous
groups. First let us define the Euler–Sobolev function space by

Lk,p(G) ≡ C∞
0 (G\{0})

‖·‖
Lk,p(G) , k ∈ Z, (4.1)

where

‖f‖Lk,p(G) := ‖Ekf‖Lp(G).

By (4.1), it is easy to see that the higher order Sobolev–Rellich inequality
(3.31) with α = 0 holds for all functions f ∈ Lk,p(G):

‖f‖Lp(G) ≤
(

p

Q

)k

‖Ekf‖Lp(G), 1 < p < ∞, k ∈ N. (4.2)

By taking into account the definition of the Euler–Sobolev function space
(4.1) and higher order Sobolev–Rellich inequality (4.2), we obtain the follow-
ing Proposition 4.1:

Proposition 4.1. Let G be a homogeneous group of homogeneous dimension Q
and let 1 < p < ∞. Then the semi-normed space (Lk,p(G), ‖ · ‖Lk,p(G)), k ∈ Z

is a complete space. The norm of the embedding operator ι : (Lk,p(G), ‖ ·
‖Lk,p(G)) ↪→ (Lp(G), ‖ · ‖Lp(G)) satisfies

‖ι‖Lk,p(G)→Lp(G) ≤
(

p

Q

)k

, k ∈ N, (4.3)

where we understand the embedding ι as an embedding of semi-normed sub-
space of Lp(G).

By using Lemma 2.3 we can define fractional powers of the operator
A = EE

∗ as in [14, Chapter 5] and we denote

|E|β := A
β
2 , β ∈ C.

For a brief account of the relevant theory of fractional powers we refer to [5,
App.A].

Theorem 4.2. Let G be a homogeneous group of homogeneous dimension Q,
β ∈ C+ and let k > Reβ

2 be a positive integer. Then for all complex-valued
functions f ∈ C∞

0 (G\{0}) we have

‖f‖L2(G) ≤ C

(

k − β

2
, k

)(
2
Q

)Reβ ∥
∥
∥|E|βf

∥
∥
∥

L2(G)
, (4.4)
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where

C(β, k) =
Γ(k + 1)

|Γ(β)Γ(k − β)|
2k−Reβ

Reβ(k − Reβ)
. (4.5)

Proof of Theorem 4.2. By using [14, Proposition 7.2.1, p.176] we obtain

∥
∥
∥|E|−β

f
∥
∥
∥

L2(G)
≤ C

(

k − β

2
, k

)

‖f‖1−Reβ
2k

L2(G)

∥
∥A

−kf
∥
∥

Reβ
2k

L2(G)
. (4.6)

By Corollary 2.6 and (3.32) with α = 0 it follows that

C

(

k − β

2
, k

)

‖f‖1−Reβ
2k

L2(G)

∥
∥A

−kf
∥
∥

Reβ
2k

L2(G)

≤ C

(

k − β

2
, k

)

‖f‖1−Reβ
2k

L2(G)

(
4

Q2

)Reβ
2

‖f‖
Reβ
2k

L2(G)

= C

(

k − β

2
, k

)(
4

Q2

)Reβ
2

‖f‖L2(G) ,

which combined with (4.6) implies (4.4). �

Now we define the Euler–Hilbert–Sobolev function space by

H
β(G) ≡ C∞

0 (G\{0})
‖·‖

Hβ(G) , (4.7)

where

‖f‖Hβ(G) := ‖|E|βf‖L2(G).

By (4.7) we obtain the inequality (4.4) for all f ∈ H
β(G):

‖f‖L2(G) ≤ C(k − β

2
, k)
(

2
Q

)Reβ ∥
∥
∥|E|βf

∥
∥
∥

L2(G)
, (4.8)

where β ∈ C+, k > Reβ
2 , k ∈ N and C(k − β

2 , k) is given by (4.5).
By taking into account the definition of the Euler–Hilbert–Sobolev func-

tion space (4.7) and inequality (4.4), we obtain the following Proposition 4.3:

Proposition 4.3. The semi-normed space (Hβ , ‖ · ‖Hβ ), β ∈ C is a complete
space. Moreover, the norm of the embedding operator ι : (Hβ , ‖ · ‖Hβ ) ↪→
(L2, ‖ · ‖L2) satisfies

‖ι‖Hβ(G)→L2(G) ≤ C

(

k − β

2
, k

)(
2
Q

)Reβ

, β ∈ C+, k >
Reβ
2

, k ∈ N,

(4.9)
where we understand the embedding ι as an embedding of semi-normed sub-
space of L2(G).
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5. Poincaré Type Inequality on G

In this section we establish Poincaré type inequality on the homogeneous
group G. Before stating our results, we introduce some notation. Let Ω ⊂ G

be an open set and let L̂1,p
0 (Ω) be the completion of C∞

0 (Ω\{0}) with respect
to

‖f‖L̂1,p(Ω) = ‖f‖Lp(Ω) + ‖Ef‖Lp(Ω), 1 < p < ∞.

Theorem 5.1. Let Ω be a bounded open subset of G. If 1 < p < ∞, f ∈
L̂1,p

0 (Ω) and Rf ≡ 1
|x|Ef ∈ Lp(Ω), then we have the following Poincaré type

inequality on Ω ⊂ G:

‖f‖Lp(Ω) ≤ Rp

Q
‖Rf‖Lp(Ω) =

Rp

Q

∥
∥
∥
∥

1
|x|Ef

∥
∥
∥
∥

Lp(Ω)

, (5.1)

where R = sup
x∈Ω

|x|.

In order to prove Theorem 5.1, we first show the following proposition.

Proposition 5.2. Let Ω ⊂ G be an open set. If 1 < p < ∞, f ∈ L̂1,p
0 (Ω) and

Ef ∈ Lp(Ω), then we have

‖f‖Lp(Ω) ≤ p

Q
‖Ef‖Lp(Ω). (5.2)

Proof of Proposition 5.2. Let ζ : R → R be an even, smooth function satis-
fying

• 0 ≤ ζ ≤ 1,
• ζ(r) = 1 if |r| ≤ 1,
• ζ(r) = 0 if |r| ≥ 2.

For λ > 0, we set ζλ(x) := ζ(λ|x|). We have the inequality (5.2) for f ∈
C∞

0 (G\{0}) by (3.4). There exists some {f	}∞
	=1 ∈ C∞

0 (Ω\{0}) such that
f	 → f in L̂1,p

0 (Ω) as � → ∞. Let λ > 0. From (3.4) we obtain

‖ζλf	‖Lp(Ω) ≤ p

Q

(‖(Eζλ)f	‖Lp(Ω) + ‖ζλ(Ef	)‖Lp(Ω)

)

for all � ≥ 1. It is easy to see that

lim
	→∞

ζλf	 = ζλf,

lim
	→∞

(Eζλ)f	 = (Eζλ)f,

lim
	→∞

ζλ(Ef	) = ζλ(Ef)

in Lp(Ω). These properties imply that

‖ζλf‖Lp(Ω) ≤ p

Q

{‖(Eζλ)f‖Lp(Ω) + ‖ζλ(Ef)‖Lp(Ω)

}

.

Since

|(Eζλ)(x)| ≤
{

sup |Eζ|, if λ−1 < |x| < 2λ−1;
0, otherwise,

we obtain (5.2) in the limit as λ → 0. �
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Proof of Theorem 5.1. Since R = sup
x∈Ω

|x| using Proposition 5.2 we obtain

‖f‖Lp(Ω) ≤ p

Q
‖Ef‖Lp(Ω)

≤ Rp

Q
‖Rf‖Lp(Ω) =

Rp

Q

∥
∥
∥
∥

1
|x|Ef

∥
∥
∥
∥

Lp(Ω)

,

which gives (5.1). �

6. Sobolev–Lorentz–Zygmund Spaces

In this section, we consider applications of critical Hardy type inequalities to
function spaces. The function spaces below extend some known results in the
abelian case R

n, see e.g. [12].
We define the Lorentz type spaces by

L|·|,Q,p,q(G) :=
{

f ∈ L1
loc(G) : ‖f‖L|·|,Q,p,q(G) < ∞

}

, 0 ≤ p, q ≤ ∞,

where

‖f‖L|·|,Q,p,q(G) :=
(∫

G

(

|x|Q
p |f(x)|

)q 1
|x|Q dx

) 1
q

.

We assume that the homogeneous dimension Q and the homogeneous quasi-
norm | · | are fixed. Therefore, we can use the short notation

Lp,q(G) := L|·|,Q,p,q(G).

The Lorentz–Zygmund spaces on G can be defined by

Lp,q,λ(G) := {f ∈ L1
loc(G) : ‖f‖Lp,q,λ(G) < ∞}, 0 ≤ p, q ≤ ∞, λ ∈ R,

where

‖f‖Lp,q,λ(G) := sup
R>0

(
∫

G

(

|x|Q
p

∣
∣
∣
∣
log

R

|x|
∣
∣
∣
∣

λ

|f(x)|
)q

1
|x|Q dx

) 1
q

.

Then we define the Sobolev–Lorentz–Zygmund spaces by

W 1Lp,q,λ(G) :=
{

f ∈ Lp,q,λ(G) :
1
|x|Ef ∈ Lp,q,λ(G)

}

,

endowed with the norm

‖ · ‖W 1Lp,q,λ(G) := ‖ · ‖Lp,q,λ(G) +
∥
∥
∥
∥

1
|x|E·

∥
∥
∥
∥

Lp,q,λ(G)

,

and W 1
0 Lp,q,λ(G) := C∞

0 (G)
‖·‖W1Lp,q,λ(G) . The Lorentz–Zygmund spaces in-

volving the double logarithmic weights are introduced by

Lp,q,λ1,λ2(G) :=
{

f ∈ L1
loc(G) : ‖f‖Lp,q,λ1,λ2 (G) < ∞

}

,
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where λ1, λ2 ∈ R and

‖f‖Lp,q,λ1,λ2 (G)

:= sup
R>0

(
∫

G

(

|x|Q
p

∣
∣
∣
∣
log

R

|x|
∣
∣
∣
∣

λ1
∣
∣
∣
∣
log
∣
∣
∣
∣
log

R

|x|
∣
∣
∣
∣

∣
∣
∣
∣

λ2

|f(x)|
)q

dx

|x|Q
) 1

q

.

Remark 6.1. The space Lp,q,λ1,λ2(G) extends the spaces Lp,q,λ(G) and Lp,q(G)
in the sence that Lp,q,λ,0(G) = Lp,q,λ(G) and Lp,q,0,0(G) = Lp,q(G).

Similarly, the Sobolev–Lorentz–Zygmund spaces W 1Lp,q,λ1,λ2(G) are
defined by

W 1Lp,q,λ1,λ2(G) :=
{

f ∈ Lp,q,λ1,λ2(G) :
1
|x|Ef ∈ Lp,q,λ1,λ2(G)

}

, (6.1)

endowed with the norm

‖ · ‖W 1Lp,q,λ1,λ2 (G) := ‖ · ‖Lp,q,λ1,λ2 (G) +
∥
∥
∥
∥

1
|x|E·

∥
∥
∥
∥

Lp,q,λ1,λ2 (G)

,

and

W 1
0 Lp,q,λ1,λ2(G) := C∞

0 (G)
‖·‖W1Lp,q,λ1,λ2

(G) . (6.2)

Now we introduce the Lorentz–Zygmund type spaces Lp,q,λ(G) taking
into account the special behavior of functions,

Lp,q,λ(G) := {f ∈ L1
loc(G) : ‖f‖Lp,q,λ(G) < ∞}, λ ∈ R,

where

‖f‖Lp,q,λ(G) := sup
R>0

(
∫

G

(

|x|Q
p

∣
∣
∣
∣
log

R

|x|
∣
∣
∣
∣

λ

|f − fR|
)q

dx

|x|Q
) 1

q

.

For p = ∞ we define

‖f‖L∞,q,λ(G) := sup
R>0

(
∫

G

(∣
∣
∣
∣
log

R

|x|
∣
∣
∣
∣

λ

|f − fR|
)q

dx

|x|Q
) 1

q

,

where fR(x) := f(R x
|x| ).

Moreover, we define the Lorentz–Zygmund type spaces Lp,q,λ1,λ2(G) by

Lp,q,λ1,λ2(G) := {f ∈ L1
loc(G) : ‖f‖Lp,q,λ1,λ2 (G) < ∞}, (6.3)

where

‖f‖Lp,q,λ1,λ2 (G) := sup
R>0

(
∫

G

(

|x| Q
p

∣
∣
∣
∣
log

eR

|x|
∣
∣
∣
∣

λ1
∣
∣
∣
∣
log

∣
∣
∣
∣
log

eR

|x|
∣
∣
∣
∣

∣
∣
∣
∣

λ2

× (χB(0,eR)(x)|f − fR| + χBc(0,eR)(x)|f − fe2R|))q dx

|x|Q
) 1

q

,

χB(0,eR)(x) =

{

1, x ∈ B(0, eR);

0, x /∈ B(0, eR).
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For p = ∞ we define

‖f‖L∞,q,λ1,λ2 (G) := sup
R>0

(
∫

G

(∣
∣
∣
∣
log

eR

|x|
∣
∣
∣
∣

λ1
∣
∣
∣
∣
log

∣
∣
∣
∣
log

eR

|x|
∣
∣
∣
∣

∣
∣
∣
∣

λ2

× (χB(0,eR)(x)|f − fR| + χBc(0,eR)(x)|f − fe2R|))q dx

|x|Q
) 1

q

.

Theorem 6.2. Let G be a homogeneous group of homogeneous dimension Q
and let | · | be any homogeneous quasi-norm on G. Let 1 < γ < ∞ and
max{1, γ − 1} < q < ∞. Then the continuous embedding

W 1
0 LQ,q, q−1

q , q−γ
q

(G) ↪→ L∞,q,− 1
q ,− γ

q
(G)

holds. In particular, for all f ∈ W 1
0 LQ,q, q−1

q , q−γ
q

(G) and for any R > 0 the
following inequality holds
⎛

⎝

∫

G

χB(0,eR)(x)|f − fR|q + χBc(0,eR)(x)|f − fe2R|q
∣
∣
∣log

∣
∣
∣log eR

|x|
∣
∣
∣

∣
∣
∣

γ ∣
∣
∣log eR

|x|
∣
∣
∣

dx

|x|Q

⎞

⎠

1
q

≤ q

γ − 1

(
∫

G

|x|q−Q

∣
∣
∣
∣
log

eR

|x|
∣
∣
∣
∣

q−1 ∣
∣
∣
∣
log
∣
∣
∣
∣
log

eR

|x|
∣
∣
∣
∣

∣
∣
∣
∣

q−γ ∣
∣
∣
∣

1
|x|Ef

∣
∣
∣
∣

q

dx

) 1
q

,

(6.4)

where the embedding constant q
γ−1 is sharp and fR(x) := f(R x

|x| ).

Remark 6.3. Despite the integrand on the right-hand side of (6.4) has singu-
larities for |x| = R, |x| = eR, and |x| = e2R we do not need to subtract the
boundary value of functions on |x| = eR on the left-hand side.

Remark 6.4. In the abelian case of the Euclidean space G = R
n, we have

Q = n and taking | · | to be the Euclidean norm, Theorem 6.2 implies [12,
Theorem 1.2].

In order to prove Theorem 6.2, let us first present the following propo-
sition.

Proposition 6.5. Let G be a homogeneous group of homogeneous dimension
Q and let | · | be any homogeneous quasi-norm on G. Let 1 < γ < ∞ and
max{1, γ−1} < q < ∞. Then for all f ∈ C∞

0 (G) and any R > 0 the following
inequality holds
⎛

⎝

∫

B(0,eR)

|f − fR|q
∣
∣
∣log

∣
∣
∣log eR

|x|
∣
∣
∣

∣
∣
∣

γ ∣
∣
∣log eR

|x|
∣
∣
∣

dx

|x|Q

⎞

⎠

1
q

≤ q

γ − 1

(
∫

B(0,eR)

|x|q−Q

∣
∣
∣
∣
log

eR

|x|
∣
∣
∣
∣

q−1 ∣
∣
∣
∣
log
∣
∣
∣
∣
log

eR

|x|
∣
∣
∣
∣

∣
∣
∣
∣

q−γ ∣
∣
∣
∣

1
|x|Ef

∣
∣
∣
∣

q

dx

) 1
q

.

(6.5)
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Proof of Proposition 6.5. First of all we consider the integrals in (6.5) re-
stricted to B(0, R). Using polar coordinates and integration by parts, we
obtain
∫

B(0,R)

|f − fR|q
∣
∣
∣log

∣
∣
∣log eR

|x|
∣
∣
∣

∣
∣
∣

γ ∣
∣
∣log eR

|x|
∣
∣
∣

dx

|x|Q

=
∫ R

0

1
r(log eR

r )(log(log eR
r ))γ

∫

℘

|f(ry) − f(Ry)|qdσ(y)dr

=
1

γ − 1

[(

log
(

log
eR

r

))−γ+1 ∫

℘

|f(ry) − f(Ry)|qdσ(y)

]r=R

r=0

− 1
γ − 1

∫ R

0

(

log
(

log
eR

r

))−γ+1
d

dr

∫

℘

|f(ry) − f(Ry)|qdσ(y)dr

= − q

γ − 1

∫ R

0

(

log
(

log
eR

r

))−γ+1

Re
∫

℘

|f(ry) − f(Ry)|q−2

×(f(ry) − f(Ry))
df(ry)

dr
dσ(y)dr,

where σ is the Borel measure on ℘, q − γ + 1 > 0, so that the boundary term
at r = R vanishes due to inequalities

log
(

log
eR

r

)

=
∫ log eR

r

1

dt

t
≥ log eR

r − 1
log eR

r

=
log R

r

log eR
r

=
1

log eR
r

∫ R
r

1

dt

t
≥ 1

log eR
r

R
r − 1

R
r

=
R − r

R log eR
r

and

|f(ry) − f(Ry)| ≤ C(R − r)

for 0 < r ≤ R. It follows that
∫ R

0

1
r(log eR

r )(log(log eR
r ))γ

∫

℘

|f(ry) − f(Ry)|qdσ(y)dr

≤ q

γ − 1

∫ R

0

1
(log(log eR

r ))γ−1

∫

℘

|f(ry) − f(Ry)|q−1

∣
∣
∣
∣

df(ry)
dr

∣
∣
∣
∣
dσ(y)dr

=
q

γ − 1

∫ R

0

1

r
q−1

q (log eR
r )

q−1
q r− q−1

q (log eR
r )− q−1

q

× 1

(log(log eR
r ))

(q−1)γ
q (log(log eR

r ))
γ−q

q

×
∫

℘

|f(ry) − f(Ry)|q−1

∣
∣
∣
∣

df(ry)
dr

∣
∣
∣
∣
dσ(y)dr.

By the Hölder inequality, we obtain
∫ R

0

1

r(log eR
r

)(log(log eR
r

))γ

∫

℘

|f(ry) − f(Ry)|qdσ(y)dr
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≤ q

γ − 1

(
∫ R

0

∫

℘

|f(ry) − f(Ry)|q
r(log eR

r
)(log(log eR

r
))γ

dσ(y)dr

) q−1
q

×
(
∫ R

0

∫

℘

rq−1

(

log
eR

r

)q−1 (

log

(

log
eR

r

))q−γ ∣
∣
∣
∣

df(ry)

dr

∣
∣
∣
∣

q

dσ(y)dr

) 1
q

.

This implies that

⎛

⎝

∫

B(0,R)

|f − fR|q
∣
∣
∣log

∣
∣
∣log eR

|x|
∣
∣
∣

∣
∣
∣

γ ∣
∣
∣log eR

|x|
∣
∣
∣

dx

|x|Q

⎞

⎠

1
q

≤ q

γ − 1

(
∫

B(0,R)

|x|q−Q

∣
∣
∣
∣
log

eR

|x|
∣
∣
∣
∣

q−1 ∣
∣
∣
∣
log
∣
∣
∣
∣
log

eR

|x|
∣
∣
∣
∣

∣
∣
∣
∣

q−γ ∣
∣
∣
∣

1
|x|Ef

∣
∣
∣
∣

q

dx

) 1
q

.

(6.6)

Now we consider the integrals in (6.5) restricted on B(0, eR)\B(0, R).
∫

B(0,eR)\B(0,R)

|f − fR|q
∣
∣
∣log

∣
∣
∣log eR

|x|

∣
∣
∣

∣
∣
∣

γ ∣
∣
∣log eR

|x|

∣
∣
∣

dx

|x|Q

=

∫ eR

R

1

r(log eR
r

)(log((log eR
r

)−1))γ

∫

℘

|f(ry) − f(Ry)|qdσ(y)dr

= − 1

γ − 1

[(

log

((

log
eR

r

)−1
))−γ+1 ∫

℘

|f(ry) − f(Ry)|qdσ(y)

]r=eR

r=R

+
1

γ − 1

∫ eR

R

(

log

((

log
eR

r

)−1
))−γ+1

d

dr

∫

℘

|f(ry) − f(Ry)|qdσ(y)dr

=
q

γ − 1

∫ eR

R

(

log

((

log
eR

r

)−1
))−γ+1

Re

∫

℘

|f(ry) − f(Ry)|q−2

×(f(ry) − f(Ry))
df(ry)

dr
dσ(y)dr.

Here σ is the Borel measure on ℘, q − γ + 1 > 0, so that the boundary term
at r = R vanishes due to inequalities

log

((

log
eR

r

)−1
)

=
∫ (log eR

r )−1

1

dt

t

≥
(

log
eR

r

)((

log
eR

r

)−1

− 1

)

= 1 − log
eR

r
≥ r − R

R

and

|f(ry) − f(Ry)| ≤ C(R − r)
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for R ≤ r ≤ eR. It follows that
∫ eR

R

1
r(log eR

r )(log((log eR
r )−1))γ

∫

℘

|f(ry) − f(Ry)|qdσ(y)dr

≤ q

γ − 1

∫ eR

R

(

log

((

log
eR

r

)−1
))−γ+1

×
∫

℘

|f(ry) − f(Ry)|q−1

∣
∣
∣
∣

df(ry)
dr

∣
∣
∣
∣
dσ(y)dr

=
q

γ − 1

∫ eR

R

1

r
q−1

q (log eR
r )

q−1
q r− q−1

q (log eR
r )− q−1

q

× 1

(log((log eR
r )−1))

(q−1)γ
q (log((log eR

r )−1))
γ−q

q

×
∫

℘

|f(ry) − f(Ry)|q−1

∣
∣
∣
∣

df(ry)
dr

∣
∣
∣
∣
dσ(y)dr.

By the Hölder inequality, we obtain
∫ eR

R

1
r(log eR

r )(log((log eR
r )−1))γ

∫

℘

|f(ry) − f(Ry)|qdσ(y)dr

≤ q

γ − 1

(
∫ eR

R

∫

℘

|f(ry) − f(Ry)|q
r(log eR

r )(log((log eR
r )−1))γ

dσ(y)dr

) q−1
q

×
⎛

⎝

∫ eR

R

∫

℘

rq−1

(

log
eR

r

)q−1
(

log

((

log
eR

r

)−1
))q−γ

×
∣
∣
∣
∣

df(ry)
dr

∣
∣
∣
∣

q

dσ(y)dr

) 1
q

.

This implies that
⎛

⎝

∫

B(0,eR)\B(0,R)

|f − fR|q
∣
∣
∣log

∣
∣
∣log eR

|x|
∣
∣
∣

∣
∣
∣

γ ∣
∣
∣log eR

|x|
∣
∣
∣

dx

|x|Q

⎞

⎠

1
q

≤ q

γ − 1

×
(
∫

B(0,eR)\B(0,R)

|x|q−Q

∣
∣
∣
∣
log

eR

|x|
∣
∣
∣
∣

q−1 ∣
∣
∣
∣
log
∣
∣
∣
∣
log

eR

|x|
∣
∣
∣
∣

∣
∣
∣
∣

q−γ ∣
∣
∣
∣

1
|x|Ef

∣
∣
∣
∣

q

dx

) 1
q

.

(6.7)

The inequalities (6.6) and (6.7) imply (6.5). �

Similarly, one can prove a dual inequality of (6.5) stated as follows.

Proposition 6.6. Let G be a homogeneous group of homogeneous dimension
Q and let | · | be any homogeneous quasi-norm on G. Let 1 < γ < ∞ and
max{1, γ − 1} < q < ∞. Then for all f ∈ C∞

0 (G) and for any R > 0, the
following inequality holds
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⎛

⎝

∫

Bc(0,R)

|f − feR|q
∣
∣
∣log

∣
∣
∣log R

|x|
∣
∣
∣

∣
∣
∣

γ ∣
∣
∣log R

|x|
∣
∣
∣

dx

|x|Q

⎞

⎠

1
q

≤ q

γ − 1

(
∫

Bc(0,R)

|x|q−Q

∣
∣
∣
∣
log

R

|x|
∣
∣
∣
∣

q−1 ∣
∣
∣
∣
log
∣
∣
∣
∣
log

R

|x|
∣
∣
∣
∣

∣
∣
∣
∣

q−γ ∣
∣
∣
∣

1
|x|Ef

∣
∣
∣
∣

q

dx

) 1
q

.

(6.8)

Now let us prove (6.4) in Theorem 6.2.

Proof of Theorem 6.2. Using (6.8) with R replaced by eR, we have
⎛

⎝

∫

Bc(0,eR)

|f − fe2R|q
∣
∣
∣log

∣
∣
∣log eR

|x|
∣
∣
∣

∣
∣
∣

γ ∣
∣
∣log eR

|x|
∣
∣
∣

dx

|x|Q

⎞

⎠

1
q

≤ q

γ − 1

(
∫

Bc(0,eR)

|x|q−Q

∣
∣
∣
∣
log

eR

|x|
∣
∣
∣
∣

q−1 ∣
∣
∣
∣
log
∣
∣
∣
∣
log

eR

|x|
∣
∣
∣
∣

∣
∣
∣
∣

q−γ ∣
∣
∣
∣

1
|x|Ef

∣
∣
∣
∣

q

dx

) 1
q

.

(6.9)

Then from (6.5) and (6.9), we obtain (6.4) for f ∈ C∞
0 (G).

Now we prove (6.4) for f ∈ W 1
0 LQ,q, q−1

q , q−γ
q

(G). We show first that (6.5)

holds for f ∈ W 1
0 LQ,q, q−1

q , q−γ
q

(G). Let {fm} ⊂ C∞
0 (G) be a sequence such

that fm → f in W 1
0 LQ,q, q−1

q , q−γ
q

(G) as m → ∞ and almost everywhere by
the definition (6.2). If we define

fR,m(x) :=
fm(x) − fm(R x

|x| )
∣
∣
∣log

∣
∣
∣log eR

|x|
∣
∣
∣

∣
∣
∣

γ
q
∣
∣
∣log eR

|x|
∣
∣
∣

1
q

,

then {fR,m}m∈N is a Cauchy sequence in Lq(G; dx/|x|Q), which is a weighted
Lebesgue space, since the inequality (6.5) holds for fm − fk ∈ C∞

0 (G).
Consequently, there exists gR ∈ Lq(G; dx/|x|Q) such that fR,m → gR in
Lq(G; dx/|x|Q) as m → ∞. From

{

x ∈ G\{0} : fm

(

R
x

|x|
)

�→ f

(

R
x

|x|
)}

⊂
⋃

r>0

{

x ∈ G\{0} : fm

(

r
x

|x|
)

�→ f

(

r
x

|x|
)}

= {x ∈ G\{0} : fm(x) �→ f(x)},

it follows that fm

(

R x
|x|
)

→ f
(

R x
|x|
)

, that is, almost everywhere we obtain

f(x) − f
(

R x
|x|
)

∣
∣
∣log

∣
∣
∣log eR

|x|
∣
∣
∣

∣
∣
∣

γ
q
∣
∣
∣log eR

|x|
∣
∣
∣

1
q

= gR(x).
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That is the inequality (6.5) holds for all f ∈ W 1
0 LQ,q, q−1

q , q−γ
q

(G). In a similar

way we obtain inequality (6.9) for all f ∈ W 1
0 LQ,q, q−1

q , q−γ
q

(G). Since the

inequalities (6.5) and (6.9) hold for all f ∈ W 1
0 LQ,q, q−1

q , q−γ
q

(G), we obtain

the inequality (6.4) for f ∈ W 1
0 LQ,q, q−1

q , q−γ
q

(G).

Now let us prove the sharpness of the constant q
γ−1 in (6.4). From (6.4)

for all f ∈ W 1
0 LQ,q, q−1

q , q−γ
q

(B(0, R)), one obtains

⎛

⎝

∫

B(0,R)

|f(x)|q
∣
∣
∣log

∣
∣
∣log eR

|x|
∣
∣
∣

∣
∣
∣

γ ∣
∣
∣log eR

|x|
∣
∣
∣

dx

|x|Q

⎞

⎠

1
q

≤ q

γ − 1

(
∫

B(0,R)

|x|q−Q

∣
∣
∣
∣
log

eR

|x|
∣
∣
∣
∣

q−1 ∣
∣
∣
∣
log
∣
∣
∣
∣
log

eR

|x|
∣
∣
∣
∣

∣
∣
∣
∣

q−γ ∣
∣
∣
∣

1
|x|Ef

∣
∣
∣
∣

q

dx

) 1
q

.

(6.10)

Therefore, it is enough to show the sharpness of the constant q
γ−1 in (6.10).

As in the abelian case (see [12, Section 3]), we consider a sequence of functions
{f	} for large � ∈ N defined by

f	(x) :=

⎧

⎪⎪⎨

⎪⎪⎩

(log(log(�eR)))
γ−1

q , when |x| ≤ 1
	 ,

(

log
(

log eR
|x|
)) γ−1

q

, when 1
	 ≤ |x| ≤ R

2 ,

(log(log(2e)))
γ−1

q 2
R (R − |x|), when R

2 ≤ |x| ≤ R.

It is easy to see that f	 ∈ W 1
0 LQ,q, q−1

q , q−γ
q

(B(0, R)). Letting f̃	(r) := f	(x)
with r = |x| ≥ 0, we obtain

d

dr
f̃	(r) =

⎧

⎪⎪⎨

⎪⎪⎩

0, when r < 1
	 ,

−γ−1
q r−1

(

log
(

log eR
r

)) γ−1
q −1

(log eR
r )−1, when 1

	 < r < R
2 ,

− 2
R (log(log(2e)))

γ−1
q , when R

2 < r < R.

Denoting by |℘| the Q − 1 dimensional surface measure of the unit sphere,
by a direct calculation we have
∫

B(0,R)

|x|q−Q

∣
∣
∣
∣
log

eR

|x|
∣
∣
∣
∣

q−1 ∣
∣
∣
∣
log

∣
∣
∣
∣
log

eR

|x|
∣
∣
∣
∣

∣
∣
∣
∣

q−γ ∣
∣
∣
∣

1

|x|Ef�(x)

∣
∣
∣
∣

q

dx

= |℘|
∫ R

0

rq−1

∣
∣
∣
∣
log

eR

r

∣
∣
∣
∣

q−1 ∣
∣
∣
∣
log

∣
∣
∣
∣
log

eR

r

∣
∣
∣
∣

∣
∣
∣
∣

q−γ ∣
∣
∣
∣

d

dr
f̃�(r)

∣
∣
∣
∣

q

dr

= |℘|
(

γ − 1

q

)q ∫ R
2

1
�

r−1

(

log
eR

r

)−1 (

log

(

log
eR

r

))−1

dr

+ (log(log(2e)))γ−1

(
2

R

)q

|℘|
∫ R

R
2

rq−1

(

log
eR

r

)q−1 (

log

(

log
eR

r

))q−γ

dr

= −|℘|
(

γ − 1

q

)q ∫ R
2

1
�

d

dr

(

log

(

log

(

log
eR

r

)))
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+ (log(log(2e)))γ−1

(
2

R

)q

|℘|
∫ R

R
2

rq−1

(

log
eR

r

)q−1 (

log

(

log
eR

r

))q−γ

dr

=: |℘|
(

γ − 1

q

)q

(log(log(log �eR)) − log(log(log 2e))) + |℘|Cγ,q, (6.11)

where

Cγ,q := (2e)q(log(log(2e)))γ−1

∫ (log(log(2e)))

0

sq−γeq(s−es)ds.

By the assumption q − γ + 1 > 0, we get Cγ,q < +∞. On the other hand, we
see
∫

B(0,R)

|f	(x)|q
∣
∣
∣log

∣
∣
∣log eR

|x|
∣
∣
∣

∣
∣
∣

γ ∣
∣
∣log eR

|x|
∣
∣
∣

dx

|x|Q = |℘|
∫ R

0

|f̃	(r)|q
∣
∣log

∣
∣log eR

r

∣
∣
∣
∣
γ ∣
∣log eR

r

∣
∣

dr

r

= |℘|(log(log(�eR)))γ−1

∫ 1
�

0

r−1

(

log
eR

r

)−1(

log
(

log
eR

r

))−γ

dr

+ |℘|
∫ R

2

1
�

r−1

(

log
eR

r

)−1(

log
(

log
eR

r

))−1

dr

+ |℘|(log(log(2e)))γ−1

(
2
R

)q ∫ R

R
2

r−1(R − r)q

(

log
eR

r

)−1

×
(

log
(

log
eR

r

))−γ

dr

=:
|℘|

γ − 1
+ |℘|(log(log(log(�eR)) − log(log(log(2e))) + |℘|CR,γ,q, (6.12)

where

CR,γ,q := (log(log(2e)))γ−1

(
2
R

)q

×
∫ R

R
2

r−1(R − r)q

(

log
eR

r

)−1(

log
(

log
eR

r

))−γ

dr.

The inequality log(log eR
r ) ≥ R−r

R for all r ≤ R and the assumption q − γ >
−1, imply CR,γ,q < +∞. Then, by (6.11) and (6.12), we have

∫

B(0,R)

|x|q−Q

∣
∣
∣
∣
log

eR

|x|
∣
∣
∣
∣

q−1 ∣
∣
∣
∣
log
∣
∣
∣
∣
log

eR

|x|
∣
∣
∣
∣

∣
∣
∣
∣

q−γ ∣
∣
∣
∣

1
|x|Ef	

∣
∣
∣
∣

q

dx

×
⎛

⎝

∫

B(0,R)

|f	(x)|q
∣
∣
∣log

∣
∣
∣log eR

|x|
∣
∣
∣

∣
∣
∣

γ ∣
∣
∣log eR

|x|
∣
∣
∣

dx

|x|Q

⎞

⎠

−1

→
(

γ − 1
q

)q

as � → ∞, which implies that the constant q
γ−1 in (6.10) is sharp. �
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