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Abstract

We compare the performance of a selection of short-length and very short-length linear binary error-correcting codes
on the binary-input Gaussian noise channel, and on the fast and quasi-static flat Rayleigh fading channel. We use the
probabilistic Ordered Statistics Decoder, that is universal to any code construction. As such we compare codes and not
decoders. The word error rate versus the signal-to-noise ratio is found for LDPC, Reed-Muller, Polar, Turbo, Golay,
random, and BCH codes at length 20, 32 and 256 bits. BCH and random codes outperform other codes in absence of a
cyclic redundancy check concatenation. Under joint decoding, the concatenation of a cyclic redundancy check makes all
codes perform very close to optimal lower bounds. Optimizations of the Ordered Statistics Decoder are discussed and
revealed to bring near-ML performance with a notable complexity reduction, making the decoding complexity at very
short length affordable.

Keywords: 5G, Error-correcting codes, Soft-Decision decoding, Complexity

1. Introduction

Information Theory [1] predicts the existence of good error-
correcting codes that are capable of achieving channel ca-
pacity [2]. In the past half century coding theorists built
many families of error-correcting codes [3],[4], to achieve
the asymptotic fundamental limits predicted by Shannon.

Paradoxically, even in the finite block-length regime con-
sidered for practical communication systems, the channel
codes used to be evaluated with respect to the channel
capacity, until the work of Polyansky, Poor and Verdu [5]
characterized with tight bounds how the non asymptotic
lengths impose a severe penalty on the maximum achiev-
able rate. Moreover, Shannon capacity is a poor bench-
mark in the context of the coming fifth generation of mo-
bile networks (5G), where a plethora of services such as
internet of things and augmented reality are constrained
to support real-time transmissions for short packets within
few milliseconds. Accordingly, the design and analysis of
error-correcting codes in the short block-length regime ig-
nited a spark of interest in the coding theory community
in both academia and industry.

Our paper is dedicated to error-correcting codes of short
length (typically 256 bits) and very short length (less than
32 bits). We compare the performance of the codes un-
der equal-complexity identical decoding conditions based
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on a universal decoder. We consider the binary input ad-
ditive white Gaussian noise (BI-AWGN) channel, and fast
and quasi-static flat Rayleigh fading channels. Over the
years, many different decoding strategies have been de-
veloped [4],[6]. These strategies are often specific to one
family of error-correcting codes, or are sub-optimal, favor-
ing decoding speed over performance. For our comparison,
we use the Ordered Statistics Decoder (OSD) which is a
universal decoder that can decode any linear binary block
code and is also near-optimal. As a result we compare
codes and not decoders. The authors of [7] also compared
the performance of different short-length codes (128 bits)
on the BI-AWGN channel, but did not use the same de-
coding strategy for all codes. Some codes were decoded
using a near-optimal decoder, whereas for other codes a
sub-optimal decoder was used. As a result it is not always
clear if one error-correcting scheme performs better than
the other because of the choice of its error correcting code,
or because of its decoder.

Complexity is not the main issue of this paper, but is
treated for very short-length error-correcting codes for the
5G use-case where the OSD is revealed to be a viable op-
tion for practical applications.

The paper is structured as follows. System model and no-
tations are described in Section 2. Section 3 explains OSD
decoding. The discussion on the performance of short-
length error-correcting codes is provided in Section 4. Very
short-length codes are treated in Section 5. We conclude
in the final section.
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This paper is an extension of the work published in [8]
and [9]. In addition to the BI-AWGN channel, we extend
the study in the current paper to the fast and quasi-static
flat Rayleigh fading channels. Furthermore, the section
on very short-length codes is extended by new simulation
results and more extensive analysis of the results.

2. System Model and Notations

At the transmitter we consider a length-k binary informa-
tion message b = (b1, ..., bk), with P (bi=0)=P (bi=1)=1/2
independent and identically distributed (i.i.d.). The infor-
mation message is encoded into a binary coded message
c = (c1, ..., cn) of length n using a linear binary block
code C, completely specified by its k×n generator matrix
G [3]. In systematic form we have G = [Ik|P ], where Ik is
the k × k identity matrix and P is a parity matrix defin-
ing the code. The encoding operation can be written as
c = bG = [b|p] with p the parity bits corresponding to b.

We consider transmission over the BI-AWGN channel. The
coded message is first mapped to a BPSK symbol sequence
s ∈ {−1,+1}n using the rule si = 2ci − 1 and then trans-
mitted over the AWGN channel characterized by its single
sided noise spectral density N0. At the output of the chan-
nel, we receive r = s +w where w = (w1, ..., wn) is a set
of i.i.d. real Gaussian random variables with zero mean
and variance σ2 = N0/2. The symbols si are normalized
to unit energy such that the energy transmitted per infor-
mation bit equals Eb = n

k = 1
R .

At the receiver, soft-decision decoding is performed to con-
struct an estimate b̂ of the originally transmitted informa-
tion message b. For this estimate, the decoder makes use
of two vectors corresponding to the sign and magnitude of
the received signal r:
The hard-decision y = [bHD|pHD] where

yi =

{
0 for ri < 0

1 for ri ≥ 0
, (1)

and the confidence values

αi = |ri| , i = 1 . . . n. (2)

To understand that αi is indeed a measure for the con-
fidence of the received ri, it suffices to see that the log-

likelihood ratio is Λi = log P (ci=0|ri)
P (ci=1|ri) = 2ri

σ2 for the BI-

AWGN.

We also consider fast and quasi-static flat Rayleigh fading
channels. At the output of the fading channel we receive
ri = gisi + wi, where si and wi are defined as on the BI-
AWGN channel, and gi is the fading gain at time instant
i. We consider complete knowledge of channel state infor-
mation (CSI) at the receiver, such that gi is known at the
receiver.

Note that the the hard-decision rule does not change com-
pared to the BI-AWGN channel model, but that the con-
fidence values change to

αi = |giri| , i = 1 . . . n, (3)

because now Λi = log P (ci=0|ri,gi)
P (ci=1|ri,gi) = 2giri

σ2 .

For both the fast and quasi-static fading channels, the fad-
ing gains are i.i.d. Rayleigh distributed. On the fast fading
channel, gi changes for every symbol; on the quasi-static
fading channel there are nc independent fading gains per
codeword, each affecting n/nc symbols.

3. Soft-decision decoding using the OSD algorithm

Soft-decision decoding by the receiver is performed using
the OSD algorithm, an efficient most reliable basis decod-
ing algorithm proposed by Dorsch [10], further developed
by Fang and Battail [11], and later analyzed and revived
by Fossorier and Lin [12]. In the first step of the algorithm,
the received vector r is sorted in order of descending confi-
dence and the corresponding permutation π1 is applied to
the generator matrix G, yielding G′. Gaussian elimination
is now performed onG′ to construct the systematic G̃, note
that an additional permutation π2 may be necessary. We

write ỹ = π2 (π1 (y)) =
[
b̃HD|p̃HD

]
and α̃ = π2 (π1 (α)).

The vector b̃HD corresponds to the most-reliable indepen-
dent positions of the received vector r.

During the OSD algorithm, test-error patterns (TEPs) ei
of increasing weight are generated and added to the hard-
decision information bits b̃HD on the MRB. The corre-
sponding codeword c̃i is obtained by re-encoding via the
systematic generator matrix G̃. The trivial TEP e0 = 0
results in the order-0 OSD codeword c̃0 = (b̃HD + e0) ·
G̃ = b̃HD · G̃. The TEP ej results in codeword c̃j =

c̃0 + ej · G̃. Undoing the permutations yields the estimate
ĉj = π−1

1

(
π−1

2 (c̃j)
)

of the original codeword c.

After every re-encoding operation, the Euclidean distance
between the OSD codeword ĉj and the received vector r
is calculated. If this distance is lower than that of the cur-
rent best OSD codeword, we select ĉj as the new best code-
word estimate. For BPSK modulation, minimizing the Eu-
clidean distance is equivalent to minimizing the weighted
Hamming distance

WHDj =
∑

1≤i≤n
ĉj,i 6=yi

αi. (4)

The OSD algorithm is terminated after a predetermined
number of re-encodings. For example, in OSD order 2, the
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following patterns are generated:

weight 0 weight 1 weight 2

000...000 000...001 000...011

000...010 000...101
. . . . . .

100...000 110...000

It follows that in OSD order 1, 1 + k patterns are gen-
erated, in OSD order 2 we generate 1 + k + 1

2k(k − 1)
patterns, etc. Hence the complexity of the algorithm is
O(kOSD order). In [12] it was shown that order-l reprocess-
ing is asymptotically optimal (close to ML) for

l ≥ min {ddH/4− 1e , k} , (5)

such that the complexity is determined by both k and the
minimum Hamming weight of the code, dH . Choosing
the order lower than the optimal, allows a performance-
complexity trade-off. In the subsequent sections, we com-
pare codes at the best possible decoding performance, un-
less noted otherwise.

3.1. Fast OSD Improvements

In the literature, several improvements to the original OSD
algorithm have been presented that aim to reduce the com-
plexity of the optimal decoder and offer a finer performance-
complexity trade-off [13]-[19].

In our implementation1 of the OSD algorithm we used
the probabilistic necessary condition from [17], the proba-
bilistic sufficient condition [15], the reference re-encoding
scheme [17], the preprocessing rules from [16], and the
multiple biases diversity scheme from [18].

To determine if the decoder performs (near-)optimally for
the chosen parameters of the algorithm, we make use of an
ML lower bound calculated during computer simulation.
Whenever the decoder outputs an erroneous estimate of
the originally transmitted information word, the Euclidean
distance between the original codeword c and the received
vector s is evaluated. If this distance is larger than the
distance between the decoder output ĉ and s, then the
ML decoder would also have made an erroneous decision.

Algorithm 1 gives an overview of the steps taken during the
decoding process. The OSD order here is limited to 1, an
extension to higher orders is trivial. Two optimizations
to the OSD are shown: the probabilistic necessary and
sufficient conditions. The vector 1j is defined as having
a one at index j and a zero at all other indices; λ is the
parameter of the probabilistic necessary condition and τ
is the parameter of the probabilistic sufficient condition.

1Our implementation can be found at http://www.

josephboutros.org/coding/shortcodes. If you use it, please
cite this paper.

Algorithm 1 OSD algorithm

Require: Parameters λ and τ , generator matrix G
1: Receive r = {r1, ..., rn}

2: Derive yi =

{
0 for ri < 0

1 for ri ≥ 0
and αi = |ri|

3: Sort in order descending confidence α: G,y
π1−→ G′,y′

4: Gaussian elimination on G′: G′
GE−−→ G̃,y′

π2−→ ỹ

5: Calculate ρ =
∑k

i=1 α̃i∑k
i=1 α̃i+λ

∑n
i=k+1 α̃i

Order 0 OSD
6: Re-encode: c̃ = ỹ[1,k] · G̃
7: Calculate ĉopt = π−1

1 (π−1
2 (c̃)),WHDopt =

∑
1≤i≤n
ĉopt,i 6=yi

αi

8: Calculate psc = [ỹ[1,k]|ỹ[k+1,n]] · H̃T = ỹ · H̃T

9: if psc < τ then return ĉopt

10: Calculate pnc = ρWHDopt

Order 1 OSD
11: for j=1:k do
12: if α̃j ≤ pnc then

13: Re-encode: c̃ = (ỹ[1,k] ⊕ 1j) · G̃
14: Calculate ĉ = π−1

1 (π−1
2 (c̃)),WHD =

∑
1≤i≤n
ĉi 6=yi

αi

15: if WHD < WHDopt then
16: ĉopt = ĉ,WHDopt = WHD

17: Calculate psc = [(ỹ[1,k] ⊕ 1j)|ỹ[k+1,n]] · H̃T

18: if psc < τ then return ĉopt

19: Calculate pnc = ρWHDopt

20: return ĉopt

The OSD algorithmic complexity is related to several terms:

• Dfixed denotes the computational complexity related
to sorting and Gaussian elimination per codeword
and to the calculation of ρ. The complexity of Gaus-
sian elimination is O(n × (n − k)2). Efficient sort-
ing algorithms have an average time complexity of
O(n log n).

• nskipped TEPs are skipped and not re-encoded, thanks
to the probabilistic necessary condition. Dskipped

denotes the complexity involving a comparison and
(l − 1) sums in the real domain, l is the Hamming
weight of the TEP.

• naccepted TEPs are left to be re-encoded. Daccepted

denotes the related complexity cost involving a re-
encoding by (n− k) binary XOR operations if inter-
mediate results are saved, or (k(n− k)) for a trivial
implementation. In addition, the weighted Hamming
distance is calculated by approximately (n− k) real
sums and compared to the probabilistic necessary
condition threshold.
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• nnewbest TEPs are better than the current best pat-
tern. When this happens, the probabilistic sufficient
condition is checked at a complexity cost denoted
Dnewbest involving binary multiplication of a length-
n vector with a n× (n− k) matrix and updating the
probabilistic necessary condition by a multiplication
in the real domain.

Hence, the total computational complexity becomes:

Dtot =Dfixed + nskippedDskipped

+ nacceptedDaccepted + nnewbestDnewbest

≈Dfixed + nacceptedDaccepted (6)

The approximation is motivated heuristically by observing
that (nnewbest � naccepted) and (Dskipped � Daccepted).

4. Performance Comparison of Short-Length Error-
Correcting Codes

In this section the following codes are compared:

• Polar codes: The code length is n = 2`. Take Arıkan’s
kernel G2 [22] and build its Kronecker product `
times, i.e. build G⊗`2 . Then select the k rows from
G⊗`2 corresponding to highest mutual information
channels after ` splittings [22]. The generator matrix
of the code is found by exact splitting and adapted
to each value of the channel parameter. We used
density evolution [6] to split the channel and con-
struct the code [23]. Polar codes are not considered
on the fading channels because for these channels
the SNR, which is a parameter used in the design of
polar codes, is not fixed.

• Reed-Muller codes: A (256,128) Reed-Muller sub-
code is constructed from the (256,163) Reed-Muller
code using the greedy algorithm described in [20].

• BCH codes: Standard binary primitive (n, k, t) BCH
codes are built from their generator polynomial [3],
[4]. Extension by one parity bit is made to get an
even length.

• LDPC codes: Regular (3,6) LDPC codes are built
from a random bipartite Tanner graph [6]. Length-
2 cycles are avoided, the number of length-4 cycles
is reduced, no other constraint was applied to the
graph construction.

• Parrallel Turbo codes: we consider 16-state RSC
(23, 35)8 as constituent codes [21]. Both trellises
are terminated and puncturing is applied to get a
rate close to 1/2. We used a size-128 S-random in-
terleaver [24] with parameter S = 8.

• Random codes: The generator matrix of the random
code is filled by a white Bernoulli(1/2) process.

The use of a cyclic redundancy check (CRC) code to im-
prove list decoding of polar codes was introduced by I. Tal
and A. Vardy [25]. Here, given the universal nature of
OSD decoding on the BI-AWGN channel, the CRC code
was jointly decoded with all of the codes listed above to
investigate its influence on the performance. The joint
generator matrix is simply the product of the CRC matrix
with the generator matrix of the original code C. Let G
be the k × n generator matrix of C. Let GCRC be the
(k −m) × k generator matrix of the CRC code, where m
is the degree of the CRC polynomial. Then, joint OSD
decoding is based on the following generator matrix:

GCRC ×G. (7)

The serial concatenation has the CRC as outer code and
the original error-correcting code C as inner code. This
corresponds to selecting a subcode from the original error-
correcting code. We consider m = 16 redundancy bits and
the LTE CRC code

g(x) = x16 + x12 + x5 + 1. (8)

We ran computer simulations to obtain the performance
of the binary codes listed in this section. Randomly gen-
erated data was transmitted using the system described in
section 3. We considered the BI-AWGN channel, the fast
Rayleigh fading channel, and the quasi-static flat Rayleigh
fading channel with nc = 4. At every considered value of
Eb/N0, codewords were generated, transmitted, and de-
coded until 100 word errors occurred on the BI-AWGN
and 200 word errors occurred on the fading channels. Dur-
ing the computer simulation, the ML lower bound was also
recorded but we omit it from the figures to keep the graphs
as clear as possible. The OSD parameters were chosen such
that the performance is near-ML and the ML lower bound
(almost) coincides with the actual simulated performance
of the code. The normal approximation of the Polyanskiy-
Poor-Verdú (PPV) bound [5] is shown for the BI-AWGN
channel. The evaluation of this bound is described in [26]2.

Figure 1 shows the word error rate (WER) versus the SNR
for the considered codes, all under OSD decoding on the
BI-AWGN channel. The performance of the LDPC code
under iterative belief-propagation (BP) decoding is also
included. No CRC is used for this performance compar-
ison. Note that the PPV bound is plotted twice, once
for the codes of rate ≈ 1/2 and once for the Turbo code.
The binary (256,131) BCH code and the (256,128) ran-
dom code outperform all other codes. This observation is
in line with [7], where the (128,64) BCH code was observed
to perform very close to the normal approximation of the
PPV bound.

Figure 2 shows the performance of the same codes concate-
nated with the 16-bit LTE CRC code. Over the considered

2Routines for the numerical evaluation of this bound can be found
at https://github.com/yp-mit/spectre.
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 0.5  1  1.5  2  2.5  3  3.5
Eb/N0 (dB)

Regular LDPC (256,128) - BP
Polar code (256,128) - OSD

RM code (256,128) - OSD
Turbo code (264,128) - OSD

Regular LDPC (256,128) - OSD

10-4

10-3

10-2

10-1

100

 0.5  1  1.5  2  2.5  3  3.5
Eb/N0 (dB)

BCH code (256,131) - OSD
Random code (256,128) - OSD
PPV bound R = 128/256
PPV bound R = 128/264

Figure 1: Word error rate versus signal-to-noise ratio (SNR). Per-
formance comparison of codes with length 256 and rate 1/2 on the
BI-AWGN. No CRC.

SNR range, all codes exhibit a performance within a small
range of error rates approaching the PPV bound because
the CRC selects a subcode from the original generator ma-
trix that has a performance close to that of a random code.

For cyclic codes, e.g. BCH codes, the CRC concatenation
corresponds to a multiplication of two generator polyno-
mials. A suitable CRC generator polynomial can always
be chosen such that the concatenation is BCH. Indeed, a
judicious choice of gCRC(x) and

gBCH2
(x) = gBCH1

(x)× gCRC(x)

increases the error-correcting capability t of gBCH1
(x) to

that of gBCH2
(x). A bad choice for the CRC polyno-

mial may lead to a concatenation with weak performance.
A CRC polynomial that has roots already contained in
gBCH1(x) does not improve the original BCH code.

For non-cyclic codes the above explanation cannot be used,
but it’s clear that different CRC choices will lead to dif-
ferences in the performance of the concatenation. Indeed,
the CRC will determine which codewords from the original
code will be represented in the subcode and hence implies
the Hamming weight distribution of this subcode.

The union bound on the binary erasure channel (BEC),
based on the weight distribution, is a simplified method
to determine the code performance and compare it with

10-4

10-3

10-2

10-1

 0.5  1  1.5  2  2.5
Eb/N0 (dB)

Polar code + CRC (256,112) - OSD
RM code + CRC (256,112) - OSD

Turbo code + CRC (264,128) - OSD
Regular LDPC + CRC (256,112) - OSD

BCH code + CRC (256,115) - OSD
PPV bound R = 112/256
PPV bound R = 112/264

Figure 2: Word error rate versus SNR. Performance comparison of
codes with length 256 and rate 1/2 on the BI-AWGN. A 16-bit CRC
is concatenated with all codes.

other codes:

Pr[word error] = Pr[word error|0 transmitted]

= Pr[nonzero codeword covered]

= Pr[
⋃

c∈C\0

c covered]

≤
∑
c∈C\0

Pr[c covered]

=
∑

w≥dmin

Awε
w, (9)

where Aw is the number of codewords of weight w, dmin

is the minimum distance of the code, and ε is the BEC
erasure probability. Thus, the union bound corresponds to
evaluating the weight enumerator polynomial at the BEC
erasure probability. For length-64 non-cyclic codes, we
used (9) to exhaustively check that the 16-bit LTE CRC
is among the best of all 16-bit CRC codes.

Figure 3 shows the WER versus the SNR on the fast fading
channel with CSI at the receiver. Note that the introduc-
tion of fast fading has resulted in a loss of approximately 2
dB compared to the BI-AWGN channel. However the or-
dering of the considered codes’ performances is the same.

The concatenation of the 16-bit LTE CRC code in Figure 4
has a similar result as on the BI-AWGN channel. All codes
exhibit a performance within a small range of error rates
and are close to the performance of the random code.
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10-3

10-2

10-1

100

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5
Eb/N0 (dB)

Regular LDPC (256,128) - BP
RM code (256,128) - OSD
Regular LDPC (256,128) - OSD
BCH code (256,131) - OSD
Random code (256,128) - OSD

Figure 3: Word error rate versus SNR. Performance comparison of
codes with length 256 and rate 1/2 for fast fading with CSI at the
receiver. No CRC.

10-4

10-3

10-2

10-1

100

 5  6  7  8  9  10  11  12  13  14  15  16
Eb/N0 (dB)

Regular LDPC (256,128) - BP
RM code (256,128) - OSD
Regular LDPC (256,128) - OSD
BCH code (256,131) - OSD
Random code (256,128) - OSD

Figure 5: Word error rate versus SNR. Performance comparison of
codes with length 256 and rate 1/2 for quasi-static flat fading with
nc = 4 and CSI at the receiver. No CRC.

Figure 5 shows the WER versus the SNR on the quasi-
static flat fading channel with nc = 4 and CSI at the
receiver. Note that the slope of the word error rate curves
has changed when compared with the results on the BI-
AWGN and the fast fading channel. To understand this,
we need to consider the diversity order attained by the

10-4

10-3

10-2

10-1

100

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5
Eb/N0 (dB)

RM code + CRC (256,112) - OSD
Regular LDPC + CRC (256,112) - OSD

BCH code + CRC (256,115) - OSD
Random code (256,112) - OSD

Figure 4: Word error rate versus SNR. Performance comparison of
codes with length 256 and rate 1/2 for fast fading with CSI at the
receiver. A 16-bit CRC is concatenated with the codes.

10-4

10-3

10-2

10-1

 5  6  7  8  9  10  11  12  13  14  15  16
Eb/N0 (dB)

RM code + CRC (256,112) - OSD
Regular LDPC + CRC (256,112) - OSD
BCH code + CRC (256,115) - OSD
Random code (256,112) - OSD

Figure 6: Word error rate versus SNR. Performance comparison of
codes with length 256 and rate 1/2 for quasi-static flat fading with
nc = 4 and CSI at the receiver. A 16-bit CRC is concatenated with
the codes.

codes, and defined as [27]:

diversity = − lim
γ→+∞

logPew
log γ

, (10)

where Pew is the WER after decoding and γ is the average
SNR per symbol: γ = Es/N0 = REb/N0. I.e, diversity is
the WER slope at high SNR, and it is decoder dependent.

The diversity order attained by a code of rate R on a chan-
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nel with nc independent fading gains per codeword can be
upper bounded by the following Singleton-like bound [28]:

diversity ≤ 1 + bnc(1−R)c . (11)

For nc = 4, we obtain that diversity ≤ 3 for codes with
R = 1/2 . As shown in [29], the diversity order under ML
decoding can be evaluated by calculating the rank of the
parity check sub-matrices corresponding to the different
fading states. By applying this rule, we found that the
exact diversity order is 2 for all considered codes. Root-
LDPC should be employed to guarantee maximal diversity.
Luckily, at finite SNR, the BCH code, the random code,
and the LDPC code under OSD decoding all exhibit an
effective diversity order of 3 as plotted in Fig. 5.

Figure 6 shows one more time that the CRC concatenation
brings the codes to the same error performance together
with the random code. In this specific case, both simu-
lation results and analytical calculations of the diversity
order show that all codes attain a triple diversity order.

5. Performance Comparison of Very Short-Length
Error-Correcting Codes: A 5G-NR Case Study

In this section we provide a comparison of very short-
length error-correcting codes that competed for encoding
the 5G-NR control channel below 22 information bits. In
the LTE standard, the signalling encoding included Reed-
Muller codes, convolutional codes and repetition codes [30].
In the current described context the proposed encoders
and decoders are:

• LTE Reed-Muller codes: denoted RM and described
in [31]. In practice binary Reed-Muller codes are
decoded with a Fast Hadamard Transform (FHT)
decoder [31].

• Reed-Muller-based codes: denoted RM-based and
described in [32], are decoded with the FHT decoder.

• Golay-based codes: described in [33], and can be
decoded by ML-decoding or OSD.

• Parity-check Polar codes: denoted PC-Polar, described
in [34][35] as parity check and polar code concatena-
tion; decoded with successive cancellation list decod-
ing [25].

We consider information length k ∈ [3, 11], and the code
length n equals 20 or 32 bits. Independently of the de-
coders proposed above, we consider the OSD of order 2,
using probabilistic necessary and sufficient conditions, as
a common decoder. At the considered very short lengths,
the complexity of the OSD algorithm is no longer pro-
hibitive and the algorithm is shown to become a viable
option for practical applications.

10-4

10-3

10-2

 3  4  5  6  7
Eb/N0 (dB)

LTE RM
RM-based
PC-Polar
Golay-based
(20,4)
(20,8)
(20,11)

Figure 7: Word error rate versus SNR. Comparison of very short
linear block codes of length 20 on the BI-AWGN.

Figure 7 shows a performance comparison in terms of WER
for n = 20 with carefully selected parameters for the OSD
enabling near ML performance. The results show that the
Golay-based code outperforms other code families within
the considered range, and that both RM codes have ap-
proximately the same performance. Both observations are
consistent with the minimum distances provided in Ta-
ble 1 together with optimal bounds [36]. Let us notice
that the PC-Polar codes with k = 4 and 8 have the same
minimum distance as the corresponding RM codes, but
Table 2 shows that they have less codewords at the mini-
mum distance, explaining the performance difference. At
k = 11 the number of minimum weight codewords is ap-
proximately the same for both RM and PC-Polar.

Figures 8 and 9 show the SNR, expressed in terms of
Eb/N0, at a WER target of 10−2 for very short RM-based
and Golay-based codes of codelength 20 and 32.

In the case of a code-length of 20 bits, it is shown that
the Golay-based code is the best candidate at almost all
considered values of k, except for 3 and 10. This is in line
with the minimum distances in Table 1.

At the code-length of 32 bits, no common best code to all
the considered dimensions is revealed. As for k ∈ {3, 4, 5},
each code outperforms the others once. When k varies
between 6 and 11 all codes perform alike, again with each
one outperforming the others an equal number of times.
Looking at Table 1, let us notice that the performance in
Figure 9 is not entirely in line with the minimum distance
behaviour. This can be explained by noting that at low
SNR the union upper bound on the WER is not dominated
by the codewords at minimum distance. As a result the
complete weight distribution of the code needs to be taken
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Table 1: Comparison of the minimum distance of the considered codes.

N K 3 4 5 6 7 8 9 10 11
20 LTE RM 8 8 8 8 6 6 6 6 4

RM-based 11 8 8 8 6 6 6 6 4
PC-Polar 11 8 8 8 6 6 6 6 4

Golay-based 10 10 8 8 8 8 7 6 5
Bound 11 10 9 8 8 8 7 6 5

32 LTE RM 16 16 16 16 12 12 12 12 10
RM-based 18 16 16 16 12 12 12 12 12

Golay-based 17 16 16 13 12 11 11 10 9
Bound 18 16 16 16 14 13 12 12 12

Table 2: Weight distributions of some of the considered codes.

N K Name Weight enumerator polynomial
20 4 LTE RM 3x8 + 8x10 + 3x12 + x20

RM-based 3x8 + 8x10 + 4x12

PC-Polar x8 + 4x10 + 8x11 + 2x12

Golay-Based 11x10 + 3x12 + x14

20 11 LTE RM
10x4 + 170x6 + 485x8 + 716x10 + 485x12

+ 170x14 + 10x16 + x20

RM-based
11x4 + 164x6 + 500x8 + 696x10 + 500x12

+ 164x14 + 11x16 + x20

PC-Polar
10x4 + 180x6 + 448x8 + 760x10 + 478x12

+ 148x14 + 23x16

Golay-Based

16x5 + 120x6 + 240x7 + 130x8 + 160x9

+ 528x10 + 480x11 + 120x12

+ 80x13 + 120x14 + 48x15 + 5x16

32 4 LTE RM 14x16 + x32

RM-based 15x16

Golay-Based 3x16 + 8x17 + 4x18

32 11 LTE RM
64x10 + 240x12 + 448x14 + 542x16 + 448x18

+ 240x20 + 64x22 + x32

RM-based 496x12 + 1054x16 + 496x20 + x32

Golay-Based

x9 + 31x10 + 99x11 + 122x12 + 155x13 + 189x14

+ 225x15 + 333x16 + 319x17 + 217x18 + 141x19

+ 82x20 + 69x21 + 43x22 + 15x23 + 6x24

into account. In Table 1, we observe that at k = 4 all codes
have the same minimum distance, though the number of
codewords of minimum distance is different from one code
to another. Whereas at k = 11, all codes show different
minimum distances but perform alike at the target rate of
10−2 due to their different weight distributions.

For the complexity analysis of the OSD, we consider the
LTE RM code with (k, n) = (8, 32) where the ML decoder
is known to consider 256 candidates whereas the FHT de-
coder considers 128 correlations [31]. In Fig. 10, the aver-
age number of accepted patterns n̄accepted for different sets
of OSD parameters and SNR is plotted. We notice that
the number of checked patterns is not only dependent on
the parameters λ and τ of the probabilistic necessary and
sufficient conditions, but that it also varies with the SNR

as a result of these two optimizations.

In Fig. 11 we provide the WER obtained with the same
choice of OSD parameters, together with the correspond-
ing ML lower bound. Note that for a well chosen set of pa-
rameters, order 1 OSD approaches ML performance, while
order 2 OSD reaches it.

The results show that the fast OSD improvements dras-
tically reduce the number of checked patterns, especially
at higher SNR values. The algorithm adapts itself to the
current SNR by checking more patterns when the channel
introduces many errors and checking less patterns when
the channel introduces less errors. Carefully choosing the
optimisation parameters λ and τ allows lowering the com-
plexity significantly, without impacting the ML error per-
formance reached at order 2.
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Figure 8: SNR versus code dimension at a target WER of 10−2.
Comparison of very short linear block codes of length 20.
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Figure 10: Average number of accepted patterns versus SNR while
decoding the (32,8) LTE Reed-Muller code.

6. Conclusions

The OSD soft-decision universal near optimal decoder with
complexity improvements was described and used to com-
pare the performance of short-length linear binary codes
on the BI-AWGN channel, the fast Rayleigh fading chan-
nel and the quasi-static flat Rayleigh fading channel. The
word error rate versus the SNR was plotted for LDPC,
Reed-Muller, Polar, Turbo, BCH, and random codes. From
simulation results, we conclude that the BCH and ran-
dom codes outperform other code families. This behaviour
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Figure 9: SNR versus code dimension at a target WER of 10−2.
Comparison of very short linear block codes of length 32.
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Figure 11: Word error rate versus signal-to-noise ratio for decoding
the (32,8) LTE Reed-Muller code.

changes when we concatenate the considered codes with a
CRC and perform joint decoding. Resulting in an almost
equal performance approaching that of the random code
over the considered range of SNR values.

A performance comparison of very short-length codes con-
sidered for 5G signalling was also carried out. Complexity
of the OSD was analysed and shown to be competitive
with other ML decoders without sacrificing the ML per-
formance. At a code length of 20 bits the Golay-based code
outperforms the other considered codes, at a length of 32
bits, no common best code to all considered dimensions is
revealed.
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et quelques sujets sur la complexité du décodage”, PhD Thesis,
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