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GLOBAL WELL-POSEDNESS OF KIRCHHOFF SYSTEMS

TOKIO MATSUYAMA AND MICHAEL RUZHANSKY

Abstract. The aim of this paper is to establish the H
1 global well-posedness for

Kirchhoff systems. The new approach to the construction of solutions is based
on the asymptotic integrations for strictly hyperbolic systems with time-dependent
coefficients. These integrations play an important rôle to setting the subsequent
fixed point argument. The existence of solutions for less regular data is discussed,
and several examples and applications are presented.

1. Introduction

The Kirchhoff equations of the form

(1.1) ∂2
t u− a

(∫

Rn

|∇u|2dx
)
∆u = 0 (t ∈ R, x ∈ R

n)

have been previously considered for various positive functions a(s). Bernstein first
studied the global existence for real analytic data (see [1]), and after him, many
authors investigated these equations further (see [4, 5, 6, 8, 11, 19, 21, 23]). Also,
the global existence for quasi-analytic data was studied by Nishihara (see [20]), and
variants of the class in [20] were discussed in [7, 10, 13].
The approach of this paper yields new results already in the scalar case of the

classical Kirchhoff equation (1.1) but, in fact, we are able to make advances for
coupled equations as well or, more generally, for Kirchhoff systems. To this end,
Kirchhoff systems are of interest but present several major complications compared
to the scalar case. First of all, even for the linearised system, it is much more difficult
to find a suitable representation of solutions which would, on one hand, work with
the low regularity (C1) of coefficients while, on the other hand, allow one to obtain
sufficiently good estimates for solutions. Moreover, in the case of systems of higher
order, it is impossible to find its characteristics explicitly, and the geometry of the
system or rather of the level sets of the characteristics enters the picture.
The main new idea (even for the classical equation (1.1)) behind this paper is to

approach the problem by developing the “asymptotic integration” method for the
linearised equation to be able to control its solutions to the extent of being able to
prove a-priori estimates necessary for the handling of the fully nonlinear problem.
Thus, for the linear strictly hyperbolic systems we developed in [16] the method of
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asymptotic integrations allowing us to obtain representations of solutions under the
low regularity of the coefficients. Consequently, we apply it in the present setting
to set up a suitable fixed point argument assuring the well-posedness of the Cauchy
problem. The results presented in this paper resolve the well-posedness problem
for a general class of strictly hyperbolic systems. Moreover, even for the classical
Kirchhoff-type equation (1.1) we obtain new results. Thus, the regularity of data in
Theorem 2.7 is lower than that in [2, 4]. Moreover, we prove the well-posedness in
low dimensions n = 1, 2 which remained open since D’Ancona and Spagnolo [4].
We consider the Kirchhoff-type systems of the form

(1.2)

{
DtU = A(s(t), Dx)U, t 6= 0, x ∈ R

n,

U(0, x) = U0(x) =
T (f0(x), f1(x), . . . , fm−1(x)) , x ∈ R

n,

where D = −i∂ and A(s,Dx) is a first order m×m pseudo-differential system with
a suitably smooth behaviour in s ∈ R in a neighbourhood of 0; s(t) is a quadratic
form defined to be

(1.3) s(t) = 〈SU(t, ·), U(t, ·)〉L2(Rn) =

∫

Rn

T (SU(t, x))U(t, x) dx

for some m × m Hermitian matrix S, and we put L
2(Rn) = (L2(Rn))m. We allow

the operator A(s,Dx) to be pseudo-differential since we want our analysis to be
applicable to scalar higher order equations and to coupled equations of higher orders
e.g. to coupled Kirchhoff equations, see Example 2.2 and Example 2.4. The precise
meaning of “pseudo-differential” in this context will be specified below.
We assume that the system (1.2) is strictly hyperbolic. Namely, the characteristic

polynomial of the differential operator Dt − A(s,Dx) has real and distinct roots
ϕ1(s, ξ), . . . , ϕm(s, ξ) for any s in the domain of the definition of matrices A(s, ξ) and
for any ξ ∈ R

n\0, i.e.
(1.4) det(τI − A(s, ξ)) = (τ − ϕ1(s, ξ)) · · · (τ − ϕm(s, ξ)).

We assume that A(s, ξ) is positively homogeneous in ξ of order one, i.e. we have
A(s, λξ) = λA(s, ξ) for all s ∈ [0, δ] for a suitable (usually sufficiently small) δ > 0,
ξ 6= 0, and λ > 0. Then by the strict hyperbolicity, we may assume that

(1.5) inf
s∈[0,δ], |ξ|=1

|ϕj(s, ξ)− ϕk(s, ξ)| > 0 for j 6= k.

In the last part of the next section some examples of (1.2) will be presented (see
Examples 2.2, 2.4 and 2.6).
One of the main difficulties in the analysis of Kirchhoff equations is that even if

the natural H1 well-posedness of (1.2) holds, this would mean that the function s(t)
is at most C1. Consequently, even in the case of a linear system (1.2) we would
need to analyse systems with low regularity C1 of the coefficients, in which case
dispersive and Strichartz estimates are more difficult to obtain due to the lack of a
satisfactory representation for solutions. Such analysis with applications to nonlinear
perturbations and scattering for systems (1.2) will appear elsewhere.
The global existence of (1.2) for differential systems was analysed by Callegari &

Manfrin (see [2], and also [12]), where the Cauchy data are either smooth compactly
supported or belong to a certain special class M (Rn), which contains a weighted
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Sobolev space, and the system is C2 in time. Precise definition of this class will
be introduced as a remark after the statement of Theorem 2.1. The purpose in the
present paper is to find global solutions to (1.2) for a more general class of data,
removing the smooth compactly supported data assumption in the general result.
Our approach is to employ asymptotic integrations for linear hyperbolic systems
with time-dependent coefficients in order to derive a certain integrability of the time-
derivative of coefficients (see Lemma 4.1 in §4), which enables us to use the fixed
point argument. It should be noted that the present argument will also resolve an
open problem of the well-posedness in low dimensions in D’Ancona & Spagnolo [4]
(see Theorem 2.7).
This paper is organised as follows. In §2 we formulate the main result and give

examples and several corollaries for equations of different types. In §3 we will in-
troduce asymptotic integrations for linear hyperbolic systems with time-dependent
coefficients, which enable us to prove Theorem 2.1. The proof of Theorem 2.1 will be
given in §4.

2. Global well-posedness for Kirchhoff equations and systems

To state the main result, let us introduce a class of data which ensures the global
well-posedness for (1.2). A class Y (Rn) consists of all U0 = T (f0, f1, . . . , fm−1) ∈
(S ′(Rn))m such that

|||U0|||Y (Rn) :=
m−1∑

j,k=0

∫ ∞

−∞

(∫

Sn−1

∣∣∣∣
∫ ∞

0

eiτρf̂j(ρω)f̂k(ρω)ρ
n dρ

∣∣∣∣ dσ(ω)
)

dτ < ∞,

where S ′(Rn) is the space of tempered distributions on R
n, and S

n−1 is (n − 1)-
dimensional sphere and dσ(ω) is the (n− 1)-dimensional Hausdorff measure.
We denote Hσ(Rn) = (Hσ(Rn))m for σ ∈ R, where Hσ(Rn) = 〈D〉−σL2(Rn) are the

standard Sobolev spaces, and 〈D〉 = (1 − ∆)1/2. The space H
σ
κ
(Rn) denotes the m

direct product of weighted Sobolev spaces Hσ
κ
(Rn), which consist of all f ∈ S ′(Rn)

such that 〈x〉κf ∈ Hσ(Rn), and 〈x〉 = (1+ |x|2)1/2. Then by using Lemma A.1 in [5],
we conclude that

(2.6) H
1
κ
(Rn) ⊂ Y (Rn), ∀κ > 1.

For a function, say ϕ(ξ), positively homogeneous of order one in ξ, we can factor out
ξ and restrict the function ϕ to the unit sphere; in this case we will be using the
notations like ϕ(ξ/|ξ|) ∈ L∞(Rn\0) instead of L∞(Rn), since an extension of ϕ(ξ/|ξ|)
to ξ = 0 is irrelevant for our analysis.

We shall prove here the following:

Theorem 2.1. Assume that system (1.2) is strictly hyperbolic, and that A(s, ξ) =
(ajk(s, ξ))

m
j,k=1 is an m×m matrix, positively homogeneous of order one in ξ, whose

entries ajk(s, ξ/|ξ|) are in Lip([0, δ];L∞(Rn\0)) for some δ > 0. If U0 ∈ L
2(Rn) ∩

Y (Rn) satisfies

(2.7) ‖U0‖2L2(Rn) + |||U0|||Y (Rn) ≪ 1,
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then system (1.2)-(1.3) has a solution U(t, x) ∈ C(R;L2(Rn)). In addition to (2.7),
if U0 ∈ H

1(Rn), then the solution U(t, x) exists uniquely in the class C(R;H1(Rn)) ∩
C1(R;L2(Rn)).

As a related result to Theorem 2.1, Callegari & Manfrin introduced the following
class (see [2]):

M (Rn) =
{
U0(x) =

T (f0(x), f1(x), . . . , fm−1(x)) ∈ (S ′(Rn))m : |||U0|||M (Rn) < ∞
}
,

where

|||U0|||M (Rn) =
2∑

k=0

m−1∑

j=0

sup
ω∈Sn−1

∫ ∞

0

∣∣∣∂k
ρ f̂j(ρω)

∣∣∣
2 (

1 + ρmax{n,2}
)
dρ.

Hence, in particular, Theorem 2.1 generalises [2] since the inclusion among this class
and ours is:

(C∞
0 (Rn))m ⊂ L

1
2(R

n) ∩H
1
2(R

n) ⊂ M (Rn) ⊂ Y (Rn),

where L
1
2(R

n) is the m direct product of L1
2(R

n) = {f ∈ S ′(Rn) : 〈x〉2f ∈ L1(Rn)}.

Needless to say, Theorem 2.1 covers the second order case, i.e., the Kirchhoff equa-
tion

∂2
t u−

(
1 +

∫

Rn

|∇u|2 dx
)
∆u = 0.

In this case, Yamazaki found a general class that ensures global well-posedness (see
[23]). In fact, she proved that the space H2

κ
(Rn)×H1

κ
(Rn) introduced by D’Ancona

& Spagnolo (see [5]) is contained in Yκ(R
n) for any κ ∈ (1, n+1]. The class Yκ(R

n)
consists of the pairs of data (f0, f1) ∈ H3/2(Rn)×H1/2(Rn) such that

1∑

j,k=0

sup
τ∈R

〈τ〉κ
∣∣∣∣
∫

Rn

eiτ |ξ|f̂j(ξ)f̂k(ξ)|ξ|3−j−k dξ

∣∣∣∣ < ∞.

After her, Kajitani found the most general class K (Rn):

K (Rn) =
{
(f0, f1) ∈ H3/2(Rn)×H1/2(Rn) : |||(f0, f1)|||K (Rn) < ∞

}
,

where

|||(f0, f1)|||K (Rn) =
1∑

j,k=0

∫ ∞

−∞

∣∣∣∣
∫

Rn

eiτ |ξ|f̂j(ξ)f̂k(ξ)|ξ|3−j−k dξ

∣∣∣∣ dτ

(see [11], and also Rzymowski [21] who considered the one-dimensional case). As to
the exterior version of the class K (Rn), we can refer to the recent results [14, 15]
(see also [24, 25]). The inclusions among these classes and ours are:

H2
κ
(Rn)×H1

κ
(Rn) ⊂

{
Yκ(R

n)

Y (Rn)
⊂ K (Rn).

Here the first inclusion holds for κ ∈ (1, n + 1] and the second one is valid for any
κ > 1.

In the rest of this section, let us give some examples of applications of our result.
First of all, we note that Theorem 2.1 covers all the examples of Callegari and Manfrin
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[2], in particular, the Kirchhoff equations of higher order etc. There, it is assumed
that the Cauchy data fk(x), k = 0, 1, . . . , m− 1, belong to M (Rn), or even C∞

0 (Rn).
More precisely, we have:

Example 2.2. Let us consider the Cauchy problem

(2.8)





L (Dt, Dx, s(t)) u ≡ Dm
t u+

∑

|ν|+j=m
j≤m−1

bν,j (s(t))D
ν
xD

j
tu = 0,

Dk
t u(0, x) = fk(x), k = 0, 1, · · · , m− 1.

Here the quadratic form s(t) is given by

s(t) =

∫

Rn

∑

|β|=|γ|=m−1

sβγD
βu(t, x)Dγu(t, x) dx,

where β = (βt, βx), γ = (γt, γx), D
β = Dβt

t Dβx
x and sβγ = sγβ. We assume that the

symbol L(τ, ξ, s) of the differential operator L(Dt, Dx, s) has real and distinct roots

ϕ1(s, ξ), . . . , ϕm(s, ξ) for ξ 6= 0 and 0 ≤ s ≤ δ with δ > 0, i.e.,

(2.9) L(τ, ξ, s) = (τ − ϕ1(s, ξ)) · · · (τ − ϕm(s, ξ)),

(2.10) inf
s∈[0,δ], |ξ|=1

|ϕj(s, ξ)− ϕk(s, ξ)| > 0 for j 6= k.

By taking the Fourier transform in the space variables and introducing the vector

V (t, ξ) = T (|ξ|m−1û(t, ξ), |ξ|m−2Dtû(t, ξ), · · · , Dm−1
t û(t, ξ)),

we reduce the problem to the system

DtV =




0 1 . . . 0

0 0
. . . 0

...
. . .

. . . 1
−Hm(s(t), ξ) −Hm−1(s(t), ξ) . . . −H1(s(t), ξ)


 |ξ|V

=A(s(t), ξ)V,

where we put

Hj(s(t), ξ) =
∑

|ν|=j

bν,m−j(s(t))(ξ/|ξ|)ν, (j = 1, . . . , m).

Then we have:

Theorem 2.3. Assume (2.9)–(2.10). If fk ∈ Hm−k(Rn) (k = 0, 1, . . . , m− 1), then
(2.8) has a unique solution u(t, x) ∈ ⋂m−1

k=0 Ck(R;Hm−k(Rn)), provided that the quan-

tity

‖(|Dx|m−1f0, |Dx|m−2f1, . . . , fm−1)‖2L2(Rn) + |||(|Dx|m−1f0, |Dx|m−2f1, . . . , fm−1)|||Y (Rn)

is sufficiently small.

As a new example of (1.2), we can treat the completely coupled Kirchhoff equations
of the following type.
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Example 2.4. Let us consider the Cauchy problem

(2.11)





∂2
t u− a1

(
1 + ‖∇u(t)‖2L2 + ‖∇v(t)‖2L2

)
∆u+ P1(t, Dx)v = 0,

∂2
t v − a2

(
1 + ‖∇u(t)‖2L2 + ‖∇v(t)‖2L2

)
∆v + P2(t, Dx)u = 0,

∂j
tu(0, x) = uj(x), ∂j

t v(0, x) = vj(x), j = 0, 1,

for some second order homogeneous polynomials P1(t, Dx), P2(t, Dx), and for some

constants a1, a2 > 0 with a1 6= a2. The quadratic form is given here by

s(t) = ‖∇u(t)‖2L2 + ‖∇v(t)‖2L2.

We assume that

(2.12) |ξ|−2Pk(t, ξ) ∈ Liploc(R;L
∞(Rn\0)), |ξ|−2∂tPk(t, ξ) ∈ L1(R;L∞(Rn\0))

for k = 1, 2, and that

(2.13) inf
t∈R, |ξ|=1

{
(a1 − a2)

2 + 4P1(t, ξ)P2(t, ξ)
}
> 0,

(2.14) inf
t∈R, |ξ|=1

{
a21a

2
2 − P1(t, ξ)P2(t, ξ)

}
> 0.

By taking the Fourier transform in the space variables and introducing the vector

V (t, ξ) = T (|ξ|û(t, ξ), û′(t, ξ), |ξ|v̂(t, ξ), v̂′(t, ξ)),
we rewrite (2.11) as a system

DtV =




0 −i|ξ| 0 0
ic1(t)

2|ξ| 0 iP1(t, ξ)|ξ|−1 0
0 0 0 −i|ξ|

iP2(t, ξ)|ξ|−1 0 ic2(t)
2|ξ| 0


V =: A(s(t), ξ)V,

where

ck(t) =
√

ak(1 + s(t)), k = 1, 2.

The four characteristic roots of the equation

det(τI −A(s(t), ξ)) = 0

in τ are given by

ϕ1,2,3,4(s(t), ξ) =

± |ξ|√
2

√
c1(t)2 + c2(t)2 ±

√
{c1(t)2 − c2(t)2}2 + 4P1(t, ξ)P2(t, ξ)|ξ|−4.

Then it follows from (2.12)–(2.14) that

inf
s∈[0,δ], |ξ|=1

|ϕj(s, ξ)− ϕk(s, ξ)| > 0 for j 6= k.

Thus we have the following:

Theorem 2.5. Assume (2.12)–(2.14). If (uj, vj) ∈ H
2−j(Rn) for j = 0, 1, then

(2.11) has a pair of unique solutions (u, v) ∈
⋂

k=0,1C
k(R;H2−k(Rn)) provided that

the quantity

‖(|Dx|u0, u1, |Dx|v0, v1)‖2L2(Rn) + |||(|Dx|u0, u1, |Dx|v0, v1)|||Y (Rn)

is sufficiently small.
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Theorem 2.1 can be also generalised in another direction. In fact, as it is pointed
out in [2], the nonlocal term (1.3) may be replaced by

s(t) =
〈
|ξ|−kSÛ(t, ξ), Û(t, ξ)

〉
L2(Rn)

for 0 ≤ k ≤ n− 1. By this little change we can generalize Theorem 2.3 without any
change in the proof. More precisely, we have the following example, which resolves
an open problem in D’Ancona & Spagnolo [4].

Example 2.6. Let us consider the Cauchy problem for the second order equation of

the form

(2.15) ∂2
t u−

(
1 +

∫

Rn

|u(t, x)|2 dx
)
∆u = 0, t 6= 0, x ∈ R

n,

with data

(2.16) u(0, x) = f0(x), ∂tu(0, x) = f1(x).

In this particular case, the nonlocal term s(t) is defined by

s(t) = ‖u(t)‖2L2(Rn).

Introducing another class of data

Ỹ (Rn) =
{
(f0, f1) ∈ S

′(Rn)× S
′(Rn) : |||(f0, f1)|||Ỹ (Rn) < ∞

}
,

where we put

|||(f0, f1)|||Ỹ (Rn) =
1∑

j,k=0

∫ ∞

−∞

(∫

Sn−1

∣∣∣∣
∫ ∞

0

eiτρf̂j(ρω)f̂k(ρω)ρ
n−j−k dρ

∣∣∣∣ dσ(ω)
)

dτ,

we have:

Theorem 2.7. Let n ≥ 1. Then, for any (f0, f1) ∈ (H1(Rn) × L2(Rn)) ∩ Ỹ (Rn),
(2.15)–(2.16) has a unique solution u ∈

⋂
k=0,1C

k(R;H1−k(Rn)), provided that the

quantity

‖f0‖2L2(Rn) + ‖f1‖2Ḣ−1(Rn)
+ |||(f0, f1)|||Ỹ (Rn)

is sufficiently small. Here Ḣ−1(Rn) = |Dx|L2(Rn) is the homogeneous Sobolev space

of order −1.

Let us give a few remarks on Theorem 2.7. This theorem generalises the results of
[2] and [4]. Indeed, when the space dimension n is greater than 2, n ≥ 3, a similar
result was obtained in [2] and [4]. However, the regularity of data in Theorem 2.7
is lower than that in [2, 4]. It should be noted that Theorem 2.7 also covers low
dimensions n = 1, 2, the case that remained open since [2, 4].
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3. Asymptotic integrations for linear hyperbolic system

In this section we shall derive asymptotic integrations for linear hyperbolic systems
with time-dependent coefficients, a kind of representation formula for their solutions.
In fact, we have discussed such arguments in our recent paper [17] in the context
of the scattering problems. To make the argument self-contained, we must give the
proof completely, because the Fourier integral form of solutions U to Kirchhoff sys-
tem (1.2) will be obtained by a careful observation of the construction of asymptotic
integrations for linear systems. We note that the major advantage of the asymptotic
integration method developed in [16] in comparison to other approaches, e.g. the
diagonalisation schemes for systems as in [22], is the low C1 regularity of coefficients
in t sufficient for the construction compared to higher regularity required for other
methods.

Let us consider the linear Cauchy problem

(3.17)

{
DtU = A(t, Dx)U, (t, x) ∈ R× R

n,

U(0, x) = T (f0(x), f1(x), . . . , fm−1(x)) ∈ (C∞
0 (Rn))m,

where A(t, Dx) is a first order m×m pseudo-differential system, with symbol A(t, ξ)
of the form A(t, ξ) = (aij(t, ξ))

m
i,j=1, positively homogeneous of order one in ξ. We

assume that

(3.18) aij(t, ξ/|ξ|) ∈ Liploc(R;L
∞(Rn\0)) and ∂taij(t, ξ/|ξ|) ∈ L1(R;L∞(Rn\0)),

and that system (3.17) is strictly hyperbolic:

(3.19) det(τI − A(t, ξ)) = 0 has real and distinct roots ϕ1(t, ξ), . . . , ϕm(t, ξ),

i.e.,

(3.20) inf
t∈R,|ξ|=1

|ϕj(t, ξ)− ϕk(t, ξ)| > 0 for j 6= k.

Notice that each characteristic root ϕj(t, ξ) is positively homogeneous of order one
in ξ.
Let us first analyse certain basic properties of characteristic roots ϕk(t, ξ). The

next proposition is established in [17].

Proposition 3.1 ([17] (Proposition 2.1)). Let Dt − A(t, Dx) be a strictly hyperbolic

operator as above. If aij(t, ξ/|ξ|) belong to Liploc(R;L
∞(Rn\0)) for i, j = 1, . . . , m,

then |ϕk(t, ξ)| ≤ C|ξ| for some C > 0, and functions ∂tϕk(t, ξ), k = 1, . . . , m, are

positively homogeneous of order one in ξ. In addition, if ∂taij(t, ξ/|ξ|) belong to

L1(R;L∞(Rn\0)) for i, j = 1, . . . , m, then we have also

∂tϕk(t, ξ/|ξ|) ∈ L1(R;L∞(Rn\0)).
Proof. Let us show first that ϕk(t, ξ) are bounded with respect to t ∈ R, i.e.,

(3.21) |ϕk(t, ξ)| ≤ C|ξ|, for all ξ ∈ R
n, t ∈ R, k = 1, . . . , m.

We will use the fact that ϕk(t, ξ) are roots of the polynomial

L(t, τ, ξ) = det(τI − A(t, ξ))
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of the form

L(t, τ, ξ) = τm + α1(t, ξ)τ
m−1 + · · ·+ αm(t, ξ)

with |αj(t, ξ)| ≤ M |ξ|j, for some M ≥ 1, where

αj(t, ξ) = (−1)j
∑

i1<i2<···<ij

det




ai1i1(t, ξ) · · · ai1ij (t, ξ)
...

. . .
...

aij i1(t, ξ) · · · aij ij (t, ξ)


 .

Suppose that one of its roots τ satisfies |τ(t, ξ)| > 2M |ξ|. Then

|L(t, τ, ξ)| ≥ |τ |m
(
1− |α1(t, ξ)|

|τ | − · · · − |αm(t, ξ)|
|τ |m

)

> 2M |ξ|m
(
1− 1

2
− 1

4M
− · · · − 1

2mMm−1

)
> 0,

hence |τ(t, ξ)| ≤ 2M |ξ| for all ξ ∈ R
n. Thus we establish (3.21).

Differentiating (3.19) with respect to t, we get

∂L(t, τ, ξ)

∂t
=

m∑

j=0

∂tαm−j(t, ξ)τ
j = −

m∑

k=1

∂tϕk(t, ξ)
∏

r 6=k

(τ − ϕr(t, ξ)).

Setting τ = ϕk(t, ξ), we obtain

(3.22) ∂tϕk(t, ξ)
∏

r 6=k

(ϕk(t, ξ)− ϕr(t, ξ)) = −
m∑

j=0

∂tαm−j(t, ξ)ϕk(t, ξ)
j.

The positive homogeneity of order one of ∂tϕk(t, ξ) is an immediate consequence
of (3.22). Now, by using (3.20), (3.21), and the assumption that |ξ|−j∂tαj(·, ξ) ∈
L1(R;L∞(Rn\0)) for all j, we conclude that ∂tϕk(·, ξ/|ξ|) ∈ L1(R;L∞(Rn\0)) for
k = 1, . . . , m. The proof is complete. �

To state the main auxiliary result on the representation of solutions, we prepare
the next lemma.

Lemma 3.2 (Mizohata [18] (Proposition 6.4)). Assume (3.18)–(3.20). Then there

exists a matrix N = N (t, ξ) of homogeneous order of 0 in ξ satisfying the following

properties:
(i) N (t, ξ)A(t, ξ/|ξ|) = D(t, ξ)N (t, ξ), where

D(t, ξ) = diag (ϕ1(t, ξ/|ξ|), . . . , ϕm(t, ξ/|ξ|)) ;
(ii) inf

ξ∈Rn\0,t∈R
|detN (t, ξ))| > 0;

(iii) N (t, ξ) ∈ Liploc(R; (L
∞(Rn\0))m2

) and ∂tN (t, ξ) ∈ L1(R; (L∞(Rn\0))m2
).

The next proposition is known as Levinson’s lemma in the theory of ordinary
differential equations (see Coddington and Levinson [3], and also Hartman [9]); the
new feature here is the additional dependence on ξ, which is crucial for our analysis
(see also Proposition 2.3 from [17] and Theorem 3.1 from [16]).
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Proposition 3.3. Assume (3.18)–(3.20). Let N (t, ξ) be the diagonaliser of A(t, ξ/|ξ|)
constructed in Lemma 3.2. Then there exist vector-valued functions aaaj(t, ξ), j =
0, 1, . . . , m− 1, determined by the initial value problem

Dtaaa
j(t, ξ) = C(t, ξ)aaaj(t, ξ),

(
aaa0(0, ξ), · · · , aaam−1(0, ξ)

)
= N (0, ξ),

with C(t, ξ) = Φ(t, ξ)−1(DtN (t, ξ))N (t, ξ)−1Φ(t, ξ) ∈ L1(R; (L∞(Rn\0))m2

),

such that the solution U(t, x) of (3.17) is represented by

(3.23) U(t, x) =

m−1∑

j=0

F
−1

[
N (t, ξ)−1Φ(t, ξ)aaaj(t, ξ)f̂j(ξ)

]
(x),

where F−1 stands for the inverse Fourier transform and we put

Φ(t, ξ) = diag
(
ei

∫ t

0 ϕ1(τ,ξ) dτ , · · · , ei
∫ t

0 ϕm(τ,ξ) dτ
)
.

Moreover, the following estimates hold:

(3.24) sup
t∈R

∥∥aaaj(t, ξ)
∥∥
(L∞(Rn\0))m

≤ C

for j = 0, 1, . . . , m− 1.

Proof. Applying the Fourier transform on R
n
x, we get the following ordinary differen-

tial system from (3.17):

(3.25) Dtvvv = A(t, ξ/|ξ|)|ξ|vvv, (vvv = Û).

Multiplying (3.25) by N = N (t, ξ) from Lemma 3.2 and putting N vvv = www, we get

(3.26) Dtwww = D |ξ|www + (DtN )vvv =
(
D |ξ|+ (DtN )N −1

)
www,

since N A(t, ξ/|ξ|) = DN by Lemma 3.2. We can expect that the solutions of (3.26)
are asymptotic to some solution of

(3.27) Dtyyy = D |ξ|yyy.
Let Φ(t, ξ) be the fundamental matrix of (3.27), i.e.,

Φ(t, ξ) = diag
(
ei

∫ t

0
ϕ1(τ,ξ) dτ , · · · , ei

∫ t

0
ϕm(τ,ξ) dτ

)
.

If we perform the Wronskian transform aaa(t, ξ) = Φ(t, ξ)−1www(t, ξ), then system (3.26)
reduces to the system Dtaaa = C(t, ξ)aaa, where C(t, ξ) is given by

C(t, ξ) = Φ(t, ξ)−1(DtN (t, ξ))N (t, ξ)−1Φ(t, ξ).

We note that C(t, ξ) ∈ L1(R; (L∞(Rn\0))m2
), sinceDtN (t, ξ) ∈ L1(R; (L∞(Rn\0))m2

)
by Lemma 3.2. Since www(t, ξ) = Φ(t, ξ)aaa(t, ξ) and N (t, ξ)vvv(t, ξ) = www(t, ξ), we get

vvv(t, ξ) = N (t, ξ)−1Φ(t, ξ)aaa(t, ξ).

Now let (vvv0(t, ξ), . . . , vvvm−1(t, ξ)) be the fundamental matrix of (3.25). This means,
in particular, that

(vvv0(0, ξ), . . . , vvvm−1(0, ξ)) = I.

Then each vvvj(t, ξ) can be represented by

vvvj(t, ξ) = N (t, ξ)−1Φ(t, ξ)aaaj(t, ξ),



GLOBAL WELL-POSEDNESS OF KIRCHHOFF SYSTEMS 11

where aaaj(t, ξ) are the corresponding amplitude functions to vvvj(t, ξ). Since Û(t, ξ) =∑m−1
j=0 vvvj(t, ξ)f̂j(ξ), we arrive at

Û(t, ξ) =
m−1∑

j=0

N (t, ξ)−1Φ(t, ξ)aaaj(t, ξ)f̂j(ξ).

Finally, let us find the estimates for the amplitude functions aaaj(t, ξ). Recalling that
aaaj(t, ξ) satisfy the problem

Dtaaa
j = C(t, ξ)aaaj with (aaa0(0, ξ), · · · , aaam−1(0, ξ)) = N (0, ξ),

we can write aaaj(t, ξ) by the Picard series:

(3.28) aaaj(t, ξ) =
(
I + i

∫ t

0

C(τ1, ξ) dτ1 + i2
∫ t

0

C(τ1, ξ) dτ1

∫ τ1

0

C(τ2, ξ) dτ2 + · · ·
)
aaaj(0, ξ).

This implies that

(3.29)
∣∣aaaj(t, ξ)

∣∣ ≤ ec
∫
R
‖∂τN (τ,ξ)‖L∞(Rn) dτ |aaaj(0, ξ)|,

where we have used the following fact:

Let f(t) be a L1
loc-function on R. Then

e
∫ t

s
f(τ) dτ = 1 +

∫ t

s

f(τ1) dτ1 +

∫ t

s

f(τ1) dτ1

∫ τ1

s

f(τ2) dτ2 + · · · .

The proof of Proposition 3.3 is now finished. �

4. Proof of Theorem 2.1

In this section we shall prove the global well-posedness for Kirchhoff system (1.2).
The strategy is to employ the Schauder-Tychonoff fixed point theorem. Let us con-
sider the linear Cauchy problem (3.17) again:

{
DtU = A(t, Dx)U, (t, x) ∈ R× R

n,

U(0, x) = T (f0(x), f1(x), . . . , fm−1(x)) ,

where A(t, Dx) is the first order m × m pseudo-differential system, with symbol
A(t, ξ) positively homogeneous of order one. We assume that A(t, ξ) satisfies the
regularity condition (3.18) and the strictly hyperbolic condition (3.19)–(3.20). Notice
that each characteristic root ϕj(t, ξ) and its time derivative ∂tϕj(t, ξ) are positively
homogeneous of order one in ξ on account of Proposition 3.1. Furthermore, we observe
from (3.23) and Plancherel’s identity that if U0 ∈ H

σ(Rn) for some σ ≥ 0, then the
solution U(t, x) to the linear equation (3.17) satisfies an energy estimate

(4.30) ‖U(t, ·)‖Hσ(Rn) ≤ C‖U0‖Hσ(Rn), ∀t ∈ R.

Let us introduce a class of symbols of differential operators, which is convenient
for the fixed point argument.
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Class K . Given two constants Λ > 0 and K > 0, we say that a symbol A(t, ξ) of a
pseudo-differential operator A(t, Dx) belongs to K = K (Λ, K) if A(t, ξ/|ξ|) belongs
to Liploc(R; (L

∞(Rn\0))m2
) and satisfies

‖A(t, ξ/|ξ|)‖L∞(R;(L∞(Rn\0))m2 ) ≤ Λ,

∫ ∞

−∞

‖∂tA(t, ξ/|ξ|)‖(L∞(Rn\0))m2 dt ≤ K.

The next lemma is the heart of our argument. It will be applied with a sufficiently
small constant K0 > 0 which will be fixed later, and for which all the constants in
the estimates of the next lemma are positive.

Lemma 4.1. Let n ≥ 1. Assume that the symbol A(t, ξ) of a pseudo-differential

operator A(t, Dx) satisfies (3.19)–(3.20) and belongs to K = K (Λ, K) for some Λ >
0 and 0 < K ≤ K0 with a sufficiently small constant K0 > 0. Let U ∈ C(R;L2(Rn))
be a solution to the Cauchy problem

DtU = A(t, Dx)U, U(0, x) = U0(x) ∈ L
2(Rn) ∩ Y (Rn),

and let s(t) be the function

s(t) = 〈SU(t, ·), U(t, ·)〉L2(Rn).

Then there exist two constants M > 0 and c > 0 independent of U and K such that

‖A(s(t), ω)‖(L∞(Sn−1))m2(4.31)

≤‖A(s(0), ω)‖(L∞(Sn−1))m2 +M

(
K‖U0‖2L2(Rn) +

1

1− cK
‖U0‖Y (Rn)

)
,

(4.32)

∫ ∞

−∞

‖∂t [A(s(t), ω)]‖(L∞(Sn−1))m2 dt

≤ M

(
K‖U0‖2L2(Rn) +

1

1− cK
‖U0‖Y (Rn)

)
.

We will be interested in sufficiently small K0 > 0 so that we would have 1−cK > 0
in the estimates above.

Proof. The estimate (4.31) easily follows from (4.32) and the following identity:

A(s(t), ω) = A(s(0), ω) +

∫ t

0

∂τ [A(s(τ), ω)] dτ.

Hence it is sufficient to concentrate on proving (4.32). However, since

‖∂t [A(s(t), ω)]‖(L∞(Sn−1))m2 ≤ C|s′(t)|,

we only have to show that

(4.33)

∫ ∞

−∞

|s′(t)| dt ≤ M

(
K‖U0‖2L2(Rn) +

1

1− cK
‖U0‖Y (Rn)

)
.
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We recall from Proposition 3.3 that

Û(t, ξ) =

m−1∑

j=0

N (t, ξ)−1Φ(t, ξ)aaaj(t, ξ)f̂j(ξ),

and its time-derivative version is given by

Û ′(t, ξ) =

m−1∑

j=0

{∂tN (t, ξ)−1Φ(t, ξ)aaaj(t, ξ) + N (t, ξ)−1∂tΦ(t, ξ)aaa
j(t, ξ)

+ N (t, ξ)−1Φ(t, ξ)∂taaa
j(t, ξ)}f̂j(ξ).

Plugging these equations into s′(t), we can write

(4.34) s′(t) = 2Re
〈
SÛ ′(t, ξ), Û(t, ξ)

〉
L2(Rn)

= 2{I(t) + J(t)},

where

I(t) =

Re
m−1∑

j,k=0

〈
SN (t, ξ)−1∂tΦ(t, ξ)aaa

j(t, ξ)f̂j(ξ),N (t, ξ)−1Φ(t, ξ)aaak(t, ξ)f̂k(ξ)
〉
L2(Rn)

,

J(t) =

Re

m−1∑

j,k=0

〈
S∂tN (t, ξ)−1Φ(t, ξ)aaaj(t, ξ)f̂j(ξ),N (t, ξ)−1Φ(t, ξ)aaak(t, ξ)f̂k(ξ)

〉
L2(Rn)

+
〈
SN (t, ξ)−1Φ(t, ξ)∂taaa

j(t, ξ)f̂j(ξ),N (t, ξ)−1Φ(t, ξ)aaak(t, ξ)f̂k(ξ)
〉
L2(Rn)

.

Since ∫ ∞

−∞

{∥∥∂tN (t, ξ)−1
∥∥
(L∞(Rn\0))m2 +

∥∥∂taaaj(t, ξ)
∥∥
(L∞(Rn\0))m

}
dt ≤ CK

on account of Proposition 3.3, it follows that

(4.35)

∫ ∞

−∞

|J(t)| dt ≤ CK‖U0‖2L2(Rn)

with a certain constant C > 0.
It remains to estimate the oscillatory integral I(t). Writing

aaaj(t, ξ) = T (a1j(t, ξ), . . . , amj(t, ξ)) and N (t, ξ)−1 = (nlp(t, ξ)),

we have

I(t) = Re

m−1∑

j,k=0

m∑

b,l,p,q=1

Ij,k;b,l,p,q(t),

where

Ij,k;b,l,p,q(t) = i
〈
sbln

lp(t, ξ)ϕp(t, ξ)e
iϑp(t,ξ)apj(t, ξ)f̂j, n

bq(t, ξ)eiϑq(t,ξ)aqk(t, ξ)f̂k

〉
L2(Rn)
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with

ϑp(t, ξ) =

∫ t

0

ϕp(s, ξ) ds (p = 1, . . . , m).

Here the sum in Ij,k;b,l,p,q(t) over p = q does not contribute to I(t). In fact, these
integrals are pure imaginary. To see this fact, let us write

ϕp(t, ξ) = ϕ+
p (t, ξ)− ϕ−

p (t, ξ),

where ϕ+
p (t, ξ) and ϕ−

p (t, ξ) are positive and negative parts of ϕp(t, ξ), respectively.
Then we can write

i−1Ij,k;b,l,p,p(t) =
∑

±

±
〈
sbln

lp(t, ξ)
√
ϕ±
p (t, ξ)a

pj(t, ξ)f̂j, n
bp(t, ξ)

√
ϕ±
p (t, ξ)a

pk(t, ξ)f̂k

〉
L2(Rn)

and since S is Hermitian, the sum
∑m−1

j,k=0

∑m
b,l,p=1 i

−1Ij,k;b,l,p,p(t) is real, and the real
part

Re

m−1∑

j,k=0

m∑

b,l,p=1

Ij,k;b,l,p,p(t) = 0

vanishes. Therefore, by putting

ϕpq(t, ξ) =
∑

b,l

sbln
lp(t, ξ)ϕp(t, ξ)nbq(t, ξ),

which are positively homogeneous of order one in ξ, we can write

I(t) =Re
∑

p 6=q

∑

j,k

〈
iϕpq(t, ξ)e

iϑp(t,ξ)apj(t, ξ)f̂j, e
iϑq(t,ξ)aqk(t, ξ)f̂k

〉
L2(Rn)

=− Im
∑

p 6=q

∑

j,k

〈
ϕpq(t, ξ)e

iϑp(t,ξ)apj(t, ξ)f̂j, e
iϑq(t,ξ)aqk(t, ξ)f̂k

〉
L2(Rn)

.

Now let us consider the functional

Ip,q(η(·), t) = −Im
∑

j,k

∫

Sn−1

Ip,q,j,k(η(ω), t) dσ(ω),

where η(ξ) is a function of homogeneous order zero, dσ(ω) is the (n− 1)-dimensional
Hausdorff measure, and we put

Ip,q,j,k(η(ω), t) =

∫ ∞

0

eiη(ω)ρapj(t, ρω)aqk(t, ρω)ϕpq(t, ω)f̂j(ρω)f̂k(ρω)ρ
n dρ.

Furthermore, replacing η(·) in I(η(·), t) by a real parameter τ , we define

I∗p,q(τ) = sup
t∈R

|Ip,q(τ, t)|, τ ∈ R.

If we prove that

(4.36)
∑

p 6=q

∫ ∞

−∞

I∗p,q(τ) dτ ≤ C

1− cK
|||U0|||Y (Rn),
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then we conclude that

(4.37)

∫ ∞

−∞

|I(t)| dt ≤ C

1− cK
|||U0|||Y (Rn).

Indeed, since

|I(t)| ≤C
∑

p 6=q

∫

Sn−1

|Ip,q(ϑp(t, ω)− ϑq(t, ω), t)| dσ(ω)

≤C
∑

p 6=q

∫

Sn−1

I∗p,q(ϑp(t, ω)− ϑq(t, ω)) dσ(ω),

it follows from the Fubini-Tonnelli theorem that∫ ∞

−∞

|I(t)| dt ≤ C
∑

p 6=q

∫

Sn−1

(∫ ∞

−∞

I∗p,q(ϑp(t, ω)− ϑq(t, ω)) dt

)
dσ(ω).

Here we note that

inf
t∈R,ω∈Sn−1

|ϕp(t, ω)− ϕq(t, ω)| ≥ d(> 0) for p 6= q,

for some d > 0. Then, by changing the variable τω = ϑpq(t, ω) = ϑp(t, ω)− ϑq(t, ω),
and by using (4.36), we can estimate

∑

p 6=q

∫

Sn−1

(∫ ∞

−∞

I∗p,q(ϑp(t, ω)− ϑq(t, ω)) dt

)
dσ(ω)

=
∑

p 6=q

∫

Sn−1

(∫ ∞

−∞

1

ϕp(ϑ−1
pq (τω, ω))− ϕq(ϑ−1

pq (τω, ω))
I∗p,q(τω) dτω

)
dσ(ω)

≤d−1
∑

p 6=q

∫

Sn−1

(∫ ∞

−∞

I∗p,q(τω) dτω

)
dσ(ω)

≤ C

1− cK
|||U0|||Y (Rn),

which implies the estimate (4.37).
We now turn to prove the estimate (4.36). Recall the Picard series (3.28) for

apj(t, ξ); since apj(0, ξ) = npj(0, ξ), it follows that

apj(t, ξ) = npj(0, ξ) + i

∫ t

0

cpl1(τ1, ξ)nl1j(0, ξ) dτ1

+ i2
∫ t

0

cpl1(τ1, ξ) dτ1

∫ τ1

0

cl1l2(τ2, ξ)nl2j(0, ξ) dτ2 + · · · ,

where each entry clk(t, ξ) of C(t, ξ) is of the form nlq(t, ξ)∂tnpk(t, ξ)e
iϑpq(t,ξ), and the

behaviour of nlq(t, ξ) is similar to that of npk(t, ξ). In the sequel we omit the indices
of ϑpq(t, ξ), npk(t, ξ) and nlq(t, ξ). Then ϑ(t, ξ) is positively homogeneous of order one
and n(t, ξ) is homogeneous of order zero in ξ satisfying

(4.38)

∫ ∞

−∞

‖∂tn(t, ·)‖L∞(Rn\0) dt ≤ CK.
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Plugging these series into Ip,q,j,k(τ, t), we extract the integrals depending on Kj for
j = 0, 1, 2, . . ., and estimate as follows:

(i) Integrals independent of K are easily handled by the estimate
∫ ∞

−∞

∣∣∣∣
∫

Rn

eiτ |ξ|n(t, ξ)2ϕpq(t, ξ)f̂j(ξ)f̂k(ξ) dξ

∣∣∣∣ dτ ≤ C|||U0|||Y (Rn).

Indeed, making the change of variable ξ = ρω (ρ = |ξ|, ω = ξ/|ξ| ∈ S
n−1), the

left-hand side becomes
∫ ∞

−∞

∣∣∣∣
∫

Sn−1

n(t, ω)2ϕpq(t, ω)

(∫ ∞

0

eiτρf̂j(ρω)f̂k(ρω)ρ
n dρ

)
dσ(ω)

∣∣∣∣ dτ

≤C

∫ ∞

−∞

(∫

Sn−1

∣∣∣∣
∫ ∞

0

eiτρf̂j(ρω)f̂k(ρω)ρ
n dρ

∣∣∣∣ dσ(ω)
)

dτ ≤ C|||U0|||Y (Rn),

since |n(t, ω)2ϕpq(t, ω)| ≤ C for all t ∈ R.

(ii) Integrals depending on K are reduced to the following:
∫ ∞

−∞

∣∣∣∣
∫

Rn

eiτ |ξ|i

(∫ t

0

∂τ1n(τ1, ξ)e
iϑ(τ1,ξ) dτ1

)
n(0, ξ)ϕpq(t, ξ)f̂j(ξ)f̂k(ξ) dξ

∣∣∣∣ dτ.

Making the change of variable ξ = ρω, using the bounds |n(0, ω)ϕpq(t, ω)| ≤ C and
Fubini’s theorem, we estimate the above integrals as

C

∫ ∞

−∞

∫

Sn−1

(∫ t

0

|∂τ1n(τ1, ω)|
∣∣∣∣
∫ ∞

0

ei(τ+ϑ(τ1,ω))ρf̂j(ρω)f̂k(ρω)ρ
n dρ

∣∣∣∣ dτ1
)

dσ(ω)dτ.

Since U0 ∈ Y (Rn), resorting to the invariance property of Lebesgue integrals with
respect to the measure dτ and estimate (4.38), we conclude that the above integrals
can be estimated as

C

∫ t

0

‖∂τ1n(τ1, ·)‖L∞(Sn−1) dτ1×
∫ ∞

−∞

(∫

Sn−1

∣∣∣∣
∫ ∞

0

eiτρf̂j(ρω)f̂k(ρω)ρ
n dρ

∣∣∣∣ dσ(ω)
)

dτ

≤ CK|||U0|||Y (Rn).

(iii) In the integrals depending on Kj for j ≥ 2, the factors

eiτρ
∫

· · ·
∫

︸ ︷︷ ︸
j

∂τ1n1(τ1, ω)e
iϑ1(τ1,ρω) · · ·∂τjnj(τj, ω)e

iϑj(τj ,ρω) dτ1 · · · dτj

appear. Writing oscillatory factors as ei(τ+ϑ(τ1,ω)+···+ϑ(τj ,ω))ρ, one can also handle such
a factor by the invariance property of Lebesgue integrals. As a result, by using esti-
mate (4.38), the present terms are bounded by cjKj|||U0|||Y (Rn) for some constant c > 0.
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Summing up these integrals and noting that 0 < K < 1, we arrive at the estimate
(4.36), namely at

∫ ∞

−∞

I∗(τ) dτ ≤ C(1 + cK + c2K2 + · · · )|||U0|||Y (Rn) =
C

1− cK
|||U0|||Y (Rn),

provided that 0 < K ≤ K0 for some sufficiently small constant K0 > 0. In conclusion,
by combining (4.35) and (4.37), we get (4.33). The proof of Lemma 4.1 is now
finished. �

Proof of Theorem 2.1. We employ the Schauder-Tychonoff fixed point theorem. Let
A(t, ξ) ∈ K , and we fix the data U0 ∈ L

2(Rn) ∩ Y (Rn). Then it follows from
Lemma 4.1 that the mapping

Θ : A(t, ξ) 7→ A(s(t), ξ)

maps K = K (Λ, K) into itself provided that ‖U0‖2L2(Rn) + ‖U0‖Y (Rn) is sufficiently

small, with Λ > 2‖A(0, ξ/|ξ|)‖(L∞(Rn\0))m2 and sufficiently small 0 < K < K0. Now

K may be regarded as the convex subset of the Fréchet space L∞
loc(R; (L

∞(Rn\0))m2
),

and we endow K with the induced topology. We shall show that K is compact in
L∞
loc(R; (L

∞(Rn\0))m2
) and the mapping Θ is continuous on K .

Compactness of K . Since K is uniformly bounded and equi-continuous on every
compact t-interval, one can deduce from the Ascoli-Arzelà theorem that K is rela-
tively compact in L∞

loc(R; (L
∞(Rn\0))m2

), and it is sequentially compact. This means
that every sequence {Aj(t, ξ/|ξ|)}∞j=1 in K has a subsequence, denoted by the same,

converging to some A(·, ξ/|ξ|) ∈ Liploc(R; (L
∞(Rn\0))m2

):




Aj(t, ξ/|ξ|) →
(j→∞)

A(t, ξ/|ξ|) in L∞
loc(R; (L

∞(Rn\0))m2

),

‖A(t, ξ/|ξ|)‖L∞
loc(R;(L

∞(Rn\0))m2 ) ≤ Λ,

where we used the fact that the absolute continuity of {Aj(t, ξ/|ξ|)} is uniform in j on
account of the Vitali-Hahn-Saks theorem (see e.g., §2 in Chapter II from [26]), since

the finite limit limj→∞

∫ t

s
∂τAj(τ, ξ/|ξ|) dτ exists for every interval (s, t). Moreover,

the derivative ∂tA(t, ξ/|ξ|) exists almost everywhere on R. Now, for the derivative
∂tA(t, ξ/|ξ|), if we prove that

(4.39)

∫ +∞

−∞

‖∂tA(t, ξ/|ξ|)‖(L∞(Rn\0))m2 dt ≤ K,

then A(t, ξ/|ξ|) ∈ K , which proves the compactness of K .
For the proof of the estimate (4.39), we observe from Theorem 4 in §1 of Chap-

ter V of [26] that the sequence {∂tAj(·, ξ/|ξ|)} converges weakly to some matrix-

valued function B(·, ξ/|ξ|) ∈ L1(R; (L∞(Rn\0))m2
) as j → ∞, since the finite limit

limj→∞

∫ t

s
∂τAj(τ, ξ/|ξ|) dτ exists for every interval (s, t) and {∂tAj(·, ξ/|ξ|)} is uni-

formly bounded in L1(R; (L∞(Rn\0))m2
):

(4.40)

∫ ∞

−∞

‖∂tAj(t, ξ/|ξ|)‖(L∞(Rn\0))m2 dt ≤ K.
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By standard arguments we can conclude that ∂tA(t, ξ/|ξ|) = B(t, ξ/|ξ|) for a.e. t ∈ R.
Hence (4.39) is true, since
∫ +∞

−∞

‖∂tA(t, ξ/|ξ|)‖(L∞(Rn\0))m2 dt ≤ lim inf
j→∞

∫ +∞

−∞

‖∂tAj(t, ξ/|ξ|)‖(L∞(Rn\0))m2 dt ≤ K,

where we used (4.40).

Continuity of Θ on K . Let us take a sequence {Ak(t, ξ/|ξ|)} in K such that

(4.41) Ak(t, ξ/|ξ|) → A(t, ξ/|ξ|) ∈ K in L∞
loc(R; (L

∞(Rn\0))m2

) (k → ∞),

and let Uk(t, x) and U(t, x) be the corresponding solutions to Ak(t, ξ) and A(t, ξ),
respectively, with fixed data U0 satisfying the assumption of Theorem 2.1. Put

(4.42) sk(t) = 〈SUk(t), Uk(t)〉L2(Rn).

Then we prove that the images

Ak(sk(t), ξ) = Θ(Ak(t, ξ)) and A(s(t), ξ) = Θ(A(t, ξ))

satisfy

(4.43) Ak(sk(t), ξ/|ξ|) → A(s(t), ξ/|ξ|) in L∞
loc(R; (L

∞(Rn\0))m2

) (k → ∞).

Using Proposition 3.3 again, we can write

U(t, x) =
m−1∑

j=0

F
−1

[
N (t, ξ)−1Φ(t, ξ)aaaj(t, ξ)f̂j(ξ)

]
(x),

Uk(t, x) =

m−1∑

j=0

F
−1

[
Nk(t, ξ)

−1Φk(t, ξ)aaa
j
k(t, ξ)f̂j(ξ)

]
(x).

Notice that

(4.44) Φk(t, ξ) → Φ(t, ξ) in L∞
loc(R; (L

∞(Rn\0))m2

) (k → ∞),

(4.45) Nk(t, ξ)
−1 → N (t, ξ)−1 in L∞

loc(R; (L
∞(Rn\0))m2

) (k → ∞)

on account of (4.41). Furthermore, we have

(4.46) aaajk(t, ξ) → aaaj(t, ξ) in L∞
loc(R; (L

∞(Rn\0))m) (k → ∞).

Indeed, we observe from previous argument that {∂tAk(t, ξ/|ξ|)} is weakly convergent
to ∂tA(t, ξ/|ξ|) in L1(R; (L∞(Rn\0))m2

), and hence, {∂tNk(t, ξ)} is also weakly con-

vergent to ∂tN (t, ξ/|ξ|) in L1(R; (L∞(Rn\0))m2
). Thus we find from this observation

and the Picard series (3.28) for aaajk(t, ξ) that the convergence (4.46) is proved. Then,
by using the Lebesgue dominated convergence theorem, we conclude from (4.42)–
(4.46) that sk(t) → s(t) (k → ∞), which implies (4.43).

Completion of the proof of Theorem 2.1. By using the Schauder–Tychonoff fixed
point theorem, we can show that Θ has a fixed point in K , with K0 > 0 in Lemma 4.1
sufficiently small, so that constants in (4.31)-(4.32) are positive. Hence, we conclude
that if U0 ∈ L

2(Rn) ∩ Y (Rn), then the solutions U(t, x) of

DtU = A(t, Dx)U
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with the Cauchy data U(0, x) = U0(x) are solutions to the nonlinear system (1.2) and
belong to C(R;L2(Rn)). Furthermore, these solutions U satisfy the energy estimates
(4.30).
Finally, we prove the uniqueness. Let U, V be two solutions to the nonlinear system

(1.2) with U(0, x) = V (0, x) = U0(x), and let

sU(t) = 〈SU(t), U(t)〉L2(Rn) and sV (t) = 〈SV (t), V (t)〉L2(Rn)

be the corresponding nonlocal terms, respectively. In this time, we need to assume
that U0 ∈ H

1(Rn). We observe from Proposition 3.3 and the property of the mapping
Θ in the fixed point argument that, when we consider the integral representations
of U and V , the functions Φ(t, ξ) and N (t, ξ) in the representation (3.23) may be
replaced by

Φ(s(t), ξ) = diag
(
ei

∫ t

0
ϕ1(s(τ),ξ) dτ , · · · , ei

∫ t

0
ϕm(s(τ),ξ) dτ

)
and N (s(t), ξ),

respectively, where s(t) = sU(t) or sV (t). Since aaaj(t, ξ) are solutions to the linear
system Dtaaa

j(t, ξ) = C(t, ξ)aaaj(t, ξ), where

C(t, ξ) = Φ(t, ξ)−1(DtN (t, ξ))N (t, ξ)−1Φ(t, ξ),

the amplitude functions aaaj(s, ξ) for nonlinear system satisfy ordinary differential sys-
tems

(4.47) Dtaaa
j(s(t), ξ) = C(s(t), ξ)aaaj(s(t), ξ),

where

C(s(t), ξ) = Φ(s(t), ξ)−1(DtN (s(t), ξ))N (s(t), ξ)−1Φ(s(t), ξ)

are in L1(R; (L∞(Rn\0))m2
). Thus the solutions U, V of (1.2) have the following

forms:

U(t, x) =
m−1∑

j=0

F
−1

[
N (sU(t), ξ)

−1Φ(sU (t), ξ)aaa
j(sU(t), ξ)f̂j(ξ)

]
(x),

V (t, x) =
m−1∑

j=0

F
−1

[
N (sV (t), ξ)

−1Φ(sV (t), ξ)aaa
j(sV (t), ξ)f̂j(ξ)

]
(x).

Then we can write

‖U(t)− V (t)‖2
L2(Rn)

(4.48)

=
m−1∑

j,k=0

∫

Rn

(
bbbj(sU(t), ξ)− bbbj(sV (t), ξ)

)
· (bbbk(sU(t), ξ)− bbbk(sV (t), ξ))f̂j(ξ)f̂k(ξ)dξ,

where we put

bbbj(sU(t), ξ) = N (sU(t), ξ)
−1Φ(sU(t), ξ)aaa

j(sU(t), ξ),

bbbj(sV (t), ξ)) = N (sV (t), ξ)
−1Φ(sV (t), ξ)aaa

j(sV (t), ξ).
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The functional sU(t) is Lipschitz with respect to U since

|sU(t)− sV (t)| ≤|〈S(U(t)− V (t)), U(t)〉L2(Rn)|+ |〈SV (t), U(t)− V (t)〉L2(Rn)|
≤C‖U0‖L2(Rn)‖U(t)− V (t)‖L2(Rn).(4.49)

Since A(s, ξ/|ξ|) is Lipschitz with respect to s, N (s, ξ)−1 and ϕk(s, ξ) also depend
on s Lipschitz continuously; thus we find from (4.49) that

∥∥N (sU(t), ξ)
−1 − N (sV (t), ξ)

−1
∥∥
(L∞(Rn\0))m2(4.50)

≤C|sU(t)− sV (t)| ≤ C‖U0‖L2(Rn)‖U(t)− V (t)‖L2(Rn),

‖Φ(sU(t), ξ)− Φ(sV (t), ξ)‖ ≤
m∑

k=1

∣∣∣ei
∫ t

0
ϕk(sU (τ),ξ) dτ − ei

∫ t

0
ϕk(sV (τ),ξ) dτ

∣∣∣(4.51)

≤
m∑

k=1

∫ t

0

|ϕk(sU(τ), ξ)− ϕk(sV (τ), ξ)| dτ

≤C|ξ|
∫ t

0

|sU(τ)− sV (τ)| dτ

≤C|ξ|‖U0‖L2(Rn)

∫ t

0

‖U(τ)− V (τ)‖L2(Rn) dτ,

where ‖ · ‖ denotes a matrix norm. Furthermore, the amplitude functions aaaj(s, ξ)
satisfy the following estimates:

(4.52) ‖aaaj(sU(t), ξ)− aaaj(sV (t), ξ)‖(L∞(Rn\0))m ≤ C‖U0‖L2(Rn)‖U(t)− V (t)‖L2(Rn).

In fact, since aaaj(s, ξ) satisfy the ordinary differential system (4.47) with C(s, ξ) ∈
L1((0, δ); (L∞(Rn\0))m2

), it follows that

Dsaaa
j(s, ξ) = C(s, ξ)aaaj(s, ξ),

and hence, aaaj(s, ξ) are Lipschitz in s. Therefore, there exists a constant L > 0 such
that

‖aaaj(sU(t), ξ)− aaaj(sV (t), ξ)‖(L∞(Rn\0))m

≤L|sU(t)− sV (t)|
≤C‖U0‖L2(Rn)‖U(t)− V (t)‖L2(Rn),

where we used (4.49) in the last step. This proves (4.52). Summarising (4.50)–(4.52),
we conclude that

|bbbj(sU(t), ξ)− bbbj(sV (t), ξ)|

≤C‖U0‖L2(Rn)

(
‖U(t)− V (t)‖L2(Rn) + |ξ|

∫ t

0

‖U(τ)− V (τ)‖L2(Rn) dτ

)
.
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Thus, (4.48) together with these estimates imply that

‖U(t)− V (t)‖2
L2(Rn) ≤ C

{
‖U0‖4L2(Rn)‖U(t)− V (t)‖2

L2(Rn)

+‖U0‖2L2(Rn)‖DxU0‖2L2(Rn)

(∫ t

0

‖U(τ)− V (τ)‖L2(Rn) dτ

)2
}
.

Since ‖U0‖L2(Rn) is sufficiently small, we obtain

‖U(t)− V (t)‖L2(Rn) ≤ C(‖U0‖L2(Rn))‖DxU0‖L2(Rn)

∫ t

0

‖U(τ)− V (τ)‖L2(Rn) dτ

for some function C(‖U0‖L2(Rn)). Thus, applying Gronwall’s lemma to the above in-
equality, we conclude that U(t) = V (t) for all t ∈ R. This proves the uniqueness of
solutions. The proof of Theorem 2.1 is now finished. �

5. A final remark

Observing the inclusion (2.6), we can also prove:

Theorem 5.1. Let n ≥ 1 and κ ∈ (1, n + 1]. Assume that system (1.2) is strictly

hyperbolic, and that A(s, ξ) = (ajk(s, ξ))
m
j,k=1 is an m × m matrix, positively ho-

mogeneous of order one in ξ, whose entries ajk(s, ξ) satisfy |ξ|−1+|α|∂α
ξ ajk(s, ξ) ∈

Lip([0, δ];L∞(Rn\0)) for any 0 ≤ |α| ≤ [κ] + 1 and for some δ > 0. If U0 are small

in the space H
1
κ
(Rn), then system (1.2) has a unique solution U ∈ C(R;H1(Rn)) ∩

C1(R;L2(Rn)).

Outline of the proof. In order to prove the theorem, let us introduce a subclass of K

as follows:

Class K ′. Given three constants Λ > 0, K > 0 and κ > 1, we say that the symbol

A(t, ξ) of a pseudo-differential operator A(t, Dx) belongs to K ′ = K ′(Λ, K,κ) if

A(t, ξ) belongs to Liploc(R; (C
[κ]+1(Rn\0))m2

) and satisfies

‖A(t, ξ/|ξ|)‖L∞(R;(L∞(Rn\0))m2 ) ≤ Λ,

∥∥|ξ|−1+|α|∂α
ξ ∂tA(t, ξ)

∥∥
(L∞(Rn\0))m2 ≤ CαK〈t〉−κ, 0 ≤ ∀|α| ≤ [κ] + 1.

We have the following lemma:

Lemma 5.2. Let n ≥ 1 and 1 < κ ≤ n + 1. Assume that the symbol A(t, ξ) of a

differential operator A(t, Dx) satisfies (3.19)–(3.20) and belongs to K ′ for some Λ > 0
and 0 < K < K0 with sufficiently small K0. Let U ∈ C(R;H1(Rn)) ∩ C1(R;L2(Rn))
be a solution to the Cauchy problem

DtU = A(t, Dx)U, U(0, x) = U0(x) ∈ H
1
κ
(Rn),

and let s(t) be the functional

s(t) = 〈SU(t, ·), U(t, ·)〉L2(Rn).
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Then, for any 0 ≤ |α| ≤ [κ] + 1, there exist constants Mα > 0 and cα,κ > 0 indepen-

dent of U such that

‖A(s(t), ξ/|ξ|)‖(L∞(Rn\0))m2

≤‖A(s(0), ξ/|ξ|)‖(L∞(Rn\0))m2 +M0

(
K‖U0‖2L2(Rn) +

1

1− cα,0K
‖U0‖2H1

κ(R
n)

)
,

∥∥|ξ|−1+|α|∂α
ξ ∂tA(s(t), ξ)

∥∥
(L∞(Rn\0))m2

≤ Mα

(
K‖U0‖2L2(Rn) +

1

1− cα,κK
‖U0‖2H1

κ(R
n)

)
〈t〉−κ.

The proof of Lemma 5.2 can be done by some modifications of the argument of
Lemma 4.1, and we take K0 > 0 small enough so that 1− cα,κK0 > 0 for all α and κ.
The following lemma can be obtained by a similar proof as Lemma A.1 of D’Ancona
& Spagnolo [5] (see also Lemma 3.2 of [14], and [23]).

Lemma 5.3. Let n ≥ 1 and κ ∈ (1, n + 1]. Assume that ϕ(ξ) ∈ C(Rn\0) is a

positively homogeneous function of order one. Then
∫

Sn−1

∣∣∣∣
∫ ∞

0

eiτρf̂1(ρω)f̂2(ρω)ϕ(ω)ρ
n dρ

∣∣∣∣ dσ(ω) ≤ Cκ〈τ〉−κ‖f1‖H1
κ(R

n)‖f2‖H1
κ(R

n)

for any f1, f2 ∈ S (Rn), where τ is a real parameter.

In particular, observing the proof of Lemma 3.2 (see Proposition 6.4 in [18]), one
can check that if A(t, ξ) ∈ K ′, then derivatives of N (t, ξ) = (njk(t, ξ))

m
j,k=1 and

N (t, ξ)−1 = (npq(t, ξ))mp,q=1 satisfy∥∥|ξ|−|α|∂α
ξ njk(t, ξ)

∥∥
L∞(Rn\0)

,
∥∥|ξ|−|α|∂α

ξ n
pq(t, ξ)

∥∥
L∞(Rn\0)

≤ CαΛ,
∥∥|ξ|−|α|∂α

ξ ∂tnjk(t, ξ)
∥∥
L∞(Rn\0)

,
∥∥|ξ|−|α|∂α

ξ ∂tn
pq(t, ξ)

∥∥
L∞(Rn\0)

≤ CαK〈t〉−κ,

for any 0 ≤ |α| ≤ [κ] + 1. Furthermore, t-derivatives of amplitudes aaaj(t, ξ) are
estimated by

‖∂taaaj(t, ξ)‖(L∞(Rn\0))m ≤ CK〈t〉−κ.

Combining these estimates and the decay estimates for oscillatory integrals given
in Lemma 5.3, we can perform the integration by parts with respect to ρ = |ξ| in
oscillatory integrals Ip,q(τ, t). Thus we find that

∑

p 6=q

I∗p,q(τ) ≤
Cκ

1− cα,κK
‖U0‖2H1

κ(R
n)〈τ〉−κ

for any κ ∈ (1, n+ 1], which implies that

|I(t)| ≤ Cκ

1− cα,κK
‖U0‖2H1

κ(R
n)〈t〉−κ.

As to J(t), we easily obtain

|J(t)| ≤ CK‖U0‖2L2(Rn)〈t〉−κ.

Hence Lemma 5.2 is proved by combining the decay estimates for I(t) and J(t).
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Resorting to Lemma 5.2, we can perform the fixed point argument as in the previous
section (see also [14]), and as a result, the solution U(t, x) to the linear system will
be, of course, a solution to the original nonlinear system, which allows us to conclude
the proof of Theorem 5.1. ✷
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