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The present paper is devoted to finding conditions on the occurrence of scattering for strictly hyperbolic systems
with time-dependent coefficients whose time-derivatives are in L1 in time. More precisely, it will be shown that
the solutions are asymptotically free if the coefficients are stable in the sense that their improper Riemann inte-
grals converge as t → ±∞, while each nontrivial solution with radially symmetric data is never asymptotically
free provided that the coefficients are not stable as t → ±∞. As a by-product, wave and scattering operators
can be constructed. An important feature is that assumptions on only one derivative of the coefficients are made
so that the results would be applicable to the asymptotic behaviour of Kirchhoff systems.

c© 2013 The Authors. Mathematische Nachrichten published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

1 Introduction

In this paper we investigate scattering for the Cauchy problem of strictly hyperbolic systems with time-dependent
coefficients. The important feature for these results is that we limit the conditions on taking only one derivative
of the coefficients keeping it in the framework of the study of asymptotic behaviours for Kirchhoff systems. In
[5] the first author gave a sufficient condition on the existence of scattering states for wave equations, and found
a special data for non-existence of scattering states. More precisely, there exists a solution u = u(t, x) of the
Cauchy problem to strictly hyperbolic equation of second order of the form

∂2
t u − c(t)2Δu = 0

such that u is not asymptotically free, where we assume that c(t) ∈ Liploc(R) satisfies

inf
t∈R

c(t) > 0, c′(t) ∈ L1(R), lim
t→±∞ c(t) = c±∞ > 0,

and the improper Riemann integrals of c(t)−c±∞ do not exist. On the contrary, if the improper Riemann integrals
of c(t)− c±∞ exist, then each solution u is asymptotically free. As to the strictly hyperbolic equations of second
order for “bounded domains,” a similar result was obtained in [1]. It should be noted that the results of [5]
are applied to deduce non-existence of scattering states for the Kirchhoff equation (see [6]). In this sense the
behaviour of c(t) − c±∞ affects the development of scattering theory for wave equations with time-dependent
coefficients as well as for the Kirchhoff equation.

The first order systems often appear in the analysis of equations of orders larger than two, and of coupled
equations of second order (see Examples 1.4–1.5 below). In the present paper we will find conditions on the
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occurrence of scattering for strictly hyperbolic systems with time-dependent coefficients, and as a result, these
observations will provide some generalisations of the results of [5]. We will also construct wave operators and
scattering operators by using an asymptotic integration method, which was developed in [8], so that such an
approach would yield an improvement for the second order equations as well. In hyperbolic systems it is natural
to impose a stability condition on the characteristic roots of the symbol of the differential operator.

Apart from the scattering problem, dispersion and Strichartz-type estimates for hyperbolic systems are also
of great interest. Large hyperbolic systems appear in many applications, for example the Grad systems of gas
dynamics, hyperbolic systems in the Hermite-Grad decomposition of the Fokker-Planck equation, etc. Thus, for
general hyperbolic equations with constant coefficients a comprehensive analysis of dispersive and Strichartz
estimates was carried out in [14]. The dispersion for scalar equations based on the asymptotic integration method
was analysed by the authors in [8], motivated by the higher order Kirchhoff equations. Decay rates of solutions for
time-dependent hyperbolic systems without L1-condition on time-derivatives have been obtained in [15], but in
this case one has to make assumptions on a larger number of derivatives of coefficients, making it non-applicable
to the theory of Kirchhoff equations. Dispersive estimates in these settings are based on the multi-dimensional
version of the van der Corput lemma established in [12, 13]. Optimal dispersion and Strichartz estimates for
hyperbolic systems with time-dependent coefficients will be discussed in [9, 10] and will appear elsewhere, as
well as the applications to Kirchhoff systems of the results obtained there and in the present paper.

Let us consider the Cauchy problem

DtU = A(t,Dx)U with Dt = −i∂t and Dxj
= −i∂xj

(j = 1, . . . , n), (1.1)

i =
√−1, for t �= 0, with Cauchy data

U(0, x) = T (f0(x), . . . , fm−1(x)) ∈ (L2(Rn )
)m

. (1.2)

The operator A(t,Dx) is a first order m × m pseudo-differential1 system, namely, its symbol A(t, ξ) is assumed
to be of the form

A(t, ξ) = (ajk (t, ξ))m
j,k=1 ,

where functions ajk (t, ξ) are positively homogeneous of order one in ξ, ajk (t, λξ) = λajk (t, ξ) for λ > 0,
ξ ∈ R

n\0, and satisfy

ajk (t, ξ/|ξ|) ∈ Liploc(R;L∞(Rn\0)) and ∂tajk (t, ξ/|ξ|) ∈ L1(R;L∞(Rn\0)) (1.3)

for j, k = 1, . . . , m. We will also assume that Dt − A(t,Dx) is a strictly hyperbolic operator:

det(τI − A(t, ξ)) = 0 has (in τ) real and distinct roots ϕ1(t, ξ), . . . , ϕm (t, ξ) (1.4)

for all t ∈ R and ξ ∈ R
n\0, i.e.,

inf
t∈R,|ξ |=1

|ϕj (t, ξ) − ϕk (t, ξ)| ≥ d > 0 for j �= k. (1.5)

Notice that each characteristic root ϕj (t, ξ) is positively homogeneous of order one in ξ. If we do not care about
the asymptotic behaviour of amplitudes, it is enough to assume that ajk (t, ξ/|ξ|) are of bounded variation in
t. However, the assumption (1.3) on Lipschitz continuity of ajk (t, ξ/|ξ|) in t assures the existence of limiting
functions. Namely, there exist a±

jk (ξ), j, k = 1, . . . ,m, such that

ajk (t, ξ/|ξ|) → a±
jk (ξ/|ξ|) uniformly in ξ ∈ R

n\0 as t → ±∞. (1.6)

Indeed, the first assumption in (1.3) implies that we have

ajk (t, ξ/|ξ|) = ajk (s, ξ/|ξ|) +
∫ t

s

∂τ ajk (τ, ξ/|ξ|) dτ,

1 We note that it is important to allow A(t, Dx ) to be pseudo-differential (or, rather, it is a time-dependent Fourier multiplier) here since
we want the results to include scalar higher order equations as well, e.g. see Example 1.4.
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and we conclude from the L1-assumption on ∂tajk (t, ξ/|ξ|) that there exist the limiting functions a±
jk (ξ/|ξ|) such

that

a±
jk (ξ/|ξ|) = ajk (0, ξ/|ξ|) +

∫ ±∞

0
∂τ ajk (τ, ξ/|ξ|) dτ,

which satisfy (1.6). Thus, a question naturally arises, whether or not the solution U(t, x) of (1.1)–(1.2) is asymp-
totic to some solution of the following hyperbolic systems with constant coefficients as t → ±∞:

DtV = A±(Dx)V. (1.7)

Here A±(Dx) is an m × m first order pseudo-differential system, with symbol

A±(ξ) =
(
a±

jk (ξ)
)m
j,k=1 .

Since the characteristic roots depend continuously on the coefficients, it follows from (1.3)–(1.6) that the operators
Dt−A±(Dx) are strictly hyperbolic. Indeed, it will be shown in Proposition 2.1 that there exist the limiting phases
ϕ±

j (ξ) of ϕj (t, ξ) for j = 1, . . . ,m:

lim
t→±∞ϕj (t, ξ) = ϕ±

j (ξ) uniformly on the sphere |ξ| = 1. (1.8)

Hence, by using (1.5), we have also

inf
|ξ |=1

|ϕ±
j (ξ) − ϕ±

k (ξ)| ≥ d > 0 for j �= k. (1.9)

We are now in a position to state our results. For this purpose, let us recall the notion of scattering states. We
say that a solution U(t, x) of

DtU = A(t,Dx)U

is asymptotically free in
(
L2(Rn )

)m
, if it is asymptotic to some solutions V±(t, x) of

DtV = A±(Dx)V

such that

‖U(t, ·) − V±(t, ·)‖(L2 (Rn ))m −→ 0 (t −→ ±∞).

We shall prove here the following theorem.

Theorem 1.1 Assume (1.3)–(1.5). Then the following assertions hold:

(i) If the improper Riemann integrals

Θ±
j (ξ) :=

∫ ±∞

0

(
ϕj (s, ξ) − ϕ±

j (ξ)
)

ds, j = 1, . . . , m, (1.10)

exist for each ξ ∈ R
n\0, then each solution U(t, x) ∈ C

(
R;
(
L2(Rn )

)m )
of (1.1)–(1.2) is asymptotically

free in
(
L2(Rn )

)m
. Moreover, the mappings (the inverse of the wave operators W±)

W −1
± : U(0, ·) 	−→ V±(0, ·)

are well-defined and bounded on
(
L2(Rn )

)m
.

(ii) Assume that the initial data U(0, x) are radially symmetric. If the improper Riemann integrals (1.10) of
ϕj (s, ξ) − ϕ±

j (ξ) diverge for a.e. ξ ∈ R
n\0, i.e.,

∣∣Θ±
j (ξ)

∣∣ = +∞, then non-trivial solutions U(t, x) ∈
C
(
R;
(
L2(Rn )

)m )
of (1.1)–(1.2) are never asymptotically free in

(
L2(Rn )

)m
.
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Microlocalising, we also have a version of these statements in cones in the frequency space.

There are different sufficient criteria for (1.10) to hold. For example, if A(t, ξ/|ξ|) ∈ C1
(
R;
(
L∞(Rn\0)

)m 2 )
and we assume that

t
(
ϕj (t, ξ) − ϕ±

j (ξ)
)

= o(1) uniformly on |ξ| = 1 as t → ±∞, (1.11)

and

t∂tϕj (t, ξ/|ξ|) ∈ L1(R;L∞(Rn\0)) for j = 1, . . . , m, (1.12)

then (1.10) follows. Indeed, in this case we have ϕj (t, ξ/|ξ|) ∈ C1(R;L∞(Rn\0)) for all j, and the statement
follows from the trivial identity∫ t

0
s∂sϕj (s, ξ) ds =

∫ t

0

(
ϕ±

j (ξ) − ϕj (s, ξ)
)

ds + t
(
ϕj (t, ξ) − ϕ±

j (ξ)
)
.

Thus, condition (1.10) follows from (1.11)–(1.12).

Next we state a result on the existence of wave operators. Let us consider the Cauchy problems for strictly
hyperbolic systems with constant coefficients

DtV± = A±(Dx)V±, x ∈ R
n , ±t > 0, (1.13)

with Cauchy data

V±(0, x) = T
(
f±

0 (x), . . . , f±
m−1(x)

)
, (1.14)

where A±(Dx) are pseudo-differential operators with symbols (a±
jk (ξ))m

j,k=1 . We will assume that the character-

istic roots ϕ±
1 (ξ), . . . , ϕ±

m (ξ) of the operators Dt − A±(Dx) are real and distinct, i.e.,

det(τI − A±(ξ)) =
(
τ − ϕ±

1 (ξ)
) · · · (τ − ϕ±

m (ξ)
)

for all ξ ∈ R
n\0, (1.15)

inf
|ξ |=1,j �=k

∣∣ϕ±
j (ξ) − ϕ±

k (ξ)
∣∣ ≥ d > 0. (1.16)

Then the following theorem assures the existence of wave operators.

Theorem 1.2 Let a±
jk (ξ) be entries of A±(ξ) satisfying (1.15)–(1.16). Suppose that the ajk (t, ξ), j, k =

1, . . . , m, are positively homogeneous of order one in ξ, and satisfy (1.3)–(1.5) in such a way that

ajk (t, ξ/|ξ|) −→ a±
jk (ξ/|ξ|) uniformly in ξ ∈ R

n\0 as t −→ ±∞.

Assume also that the improper Riemann integrals of ϕj (t, ξ)−ϕ±
j (ξ) exist for each ξ ∈ R

n\0. Then for each solu-

tion V−(t, x) ∈ C
(
R;
(
L2(Rn )

)m )
to (1.13)–(1.14), there exists a unique solution U(t, x) ∈ C

(
R;
(
L2(Rn )

)m )
of

DtU = A(t,Dx)U

such that

‖V−(t) − U(t)‖(L2 (Rn ))m −→ 0 (t −→ −∞).

For a corresponding V+(t, x) the same conclusion with ± reversed holds. Moreover, the mappings (wave
operators)

W± : V±(0, ·) 	−→ U(0, ·)

are well-defined and bounded on
(
L2(Rn )

)m
.
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As a consequence of Theorems 1.1–1.2, we can construct scattering operators. More precisely, we have:

Corollary 1.3 Let W −1
+ and W− be as in Theorems 1.1 and 1.2, respectively. Assume that a+

jk (ξ) = a−
jk (ξ)

for j, k = 1, . . . , m. Then the mapping

S = W −1
+ W− : V−(0, ·) 	−→ V+(0, ·)

defines a scattering operator, and it is bijective and bounded on
(
L2(Rn )

)m
.

In Corollary 1.3, the operator S : V−(0, ·) 	→ V+(0, ·) is bijective and bounded on
(
L2(Rn )

)m
also without

the assumption a+
jk (ξ) = a−

jk (ξ) for j, k = 1, . . . , m. The reason to impose this condition is to be able to call S

a scattering operator, with a physical meaning, that the initial state V−(t, x) and the final state V+(t, x) obey the
same PDE whereas initial conditions do not matter.

Finally, let us look at some examples of settings to which our theorems apply. We note that although the
equations may be of high order, it is important that we impose conditions only on one time-derivative of the
coefficients. This is of crucial importance to being able to apply the obtained results to the Kirchhoff equations.

Our first example deals with higher order scalar equations.

Example 1.4 Consider the Cauchy problem for the mth order strictly hyperbolic equation

L(t,Dt,Dx)u ≡ Dm
t u +

∑
|ν |+j=m

j ≤m −1

aν,j (t)Dν
xDj

t u = 0, t �= 0,

with Cauchy data

Dk
t u(x, 0) = fk (x) ∈ Hm−1−k (Rn ), k = 0, 1, . . . ,m − 1, x ∈ R

n ,

where Dt = −i∂t and Dν
x = (−i∂x1 )

ν1 · · · (−i∂xn
)νn , i =

√−1, for ν = (ν1 , . . . , νn ). We assume that aν,j (t)
belong to Liploc(R) and satisfy

a′
ν,j (t) ∈ L1(R) for all ν, j,

and the symbol L(t, τ, ξ) of the operator L(t,Dt,Dx) has real roots ϕ1(t, ξ), . . . , ϕm (t, ξ) which are uniformly
distinct for ξ �= 0, i.e.,

L(t, τ, ξ) = (τ − ϕ1(t, ξ)) · · · (τ − ϕm (t, ξ)),

inf
|ξ |=1,t∈R

j �= k

|ϕj (t, ξ) − ϕk (t, ξ)| ≥ d > 0.

The reference equation is

Dm
t v± +

∑
|ν |+j=m

j ≤m −1

a±
ν,jD

ν
xDj

t v± = 0,

with a±
ν,j = limt→±∞ aν,j (t), and the energy space is Ḣm−1(Rn ) × · · · × L2(Rn ).

The following example deals with coupled second order equations.

Example 1.5 Let us consider the coupled system of Cauchy problems{
∂2

t u − c1(t)2Δu + P1(t,Dx)v = 0,

∂2
t v − c2(t)2Δv + P2(t,Dx)u = 0,

for some second order homogeneous differential operators P1(t,Dx), P2(t,Dx) which may depend on time,
where we assume that

ck (t) ∈ Liploc(R), |ξ|−2Pk (t, ξ) ∈ Liploc(R;L∞(Rn\0))

c′k (t) ∈ L1(R), |ξ|−2∂tPk (t, ξ) ∈ L1(R;L∞(Rn\0))

}
(k = 1, 2),

www.mn-journal.com c© 2013 The Authors. Mathematische Nachrichten published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
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inf
t∈R,|ξ |=1

{(
c1(t)2 − c2(t)2)2 + 4P1(t, ξ)P2(t, ξ)

}
> 0,

inf
t∈R,|ξ |=1

{
c1(t)2c2(t)2 − P1(t, ξ)P2(t, ξ)

}
> 0.

By taking the Fourier transform in the space variables and introducing the vector

V (t, ξ) = T (v1(t, ξ), v2(t, ξ), v3(t, ξ), v4(t, ξ)) = T
(|ξ|û(t, ξ), û′(t, ξ), |ξ|v̂(t, ξ), v̂′(t, ξ)

)
we obtain the system

∂V

∂t
= i

⎛⎜⎜⎝
0 −i|ξ| 0 0

ic1(t)2 |ξ| 0 iP1(t, ξ)|ξ|−1 0
0 0 0 −i|ξ|

iP2(t, ξ)|ξ|−1 0 ic2(t)2 |ξ| 0

⎞⎟⎟⎠V =: iA(t, ξ)V.

The four characteristic roots of det(τI − A(t, ξ)) = 0 in τ are given by

ϕ1,2,3,4(t, ξ) = ± |ξ|√
2

√
c1(t)2 + c2(t)2 ±

√
{c1(t)2 − c2(t)2}2 + 4P1(t, ξ)P2(t, ξ)|ξ|−4 .

The reference system is{
∂2

t u± − c2
1,±Δu± + P1,±(Dx)v± = 0,

∂2
t v± − c2

2,±Δv± + P2,±(Dx)u± = 0,

with the limits

ck,± = lim
t→±∞ ck (t), |ξ|−2Pk,±(ξ) = lim

t→±∞ |ξ|−2Pk (t, ξ)

uniformly in ξ ∈ R
n\0 for k = 1, 2, and the energy space is

(
Ḣ1(Rn ) × L2(Rn )

)2
.

We conclude this section by stating our plan. In Section 2 we will find a representation formula for (1.1)–(1.2).
The proof of Theorem 1.1 will be given in Section 3 and Section 4 separately. In the last section we will prove
Theorem 1.2.

2 Representation formulae via asymptotic integrations

In this section we will derive a representation formula for (1.1) along the method developed in [8]. Let us first
analyse certain basic properties of characteristic roots ϕk (t, ξ) of (1.4).

Proposition 2.1 Let the operator Dt − A(t,Dx) satisfy assumptions (1.4)–(1.5). If the ajk (t, ξ/|ξ|) belong
to Liploc(R;L∞(Rn\0)) for j, k = 1, . . . ,m, then each ∂tϕk (t, ξ), k = 1, . . . ,m, is positively homogeneous
of order one in ξ. In addition, if ∂tajk (t, ξ/|ξ|) belong to L1(R;L∞(Rn\0)) for j, k = 1, . . . ,m, then we have
also ∂tϕk (·, ξ/|ξ|) ∈ L1(R;L∞(Rn\0)). Furthermore, there exist functions ϕ±

k (ξ), k = 1, . . . ,m, positively
homogeneous of order one, such that

ϕk (t, ξ) −→ ϕ±
k (ξ) uniformly on |ξ| = 1 as t −→ ±∞. (2.1)

P r o o f. Let us observe first that ϕk (t, ξ) are bounded with respect to t ∈ R, i.e.,

|ϕk (t, ξ)| ≤ C|ξ|, for all ξ ∈ R
n , t ∈ R, k = 1, . . . ,m. (2.2)

For this, we use the fact that ϕk (t, ξ) are the roots of polynomial L(t, τ, ξ) = det(τI − A(t, ξ)) of the form

L(t, τ, ξ) = τm + α1(t, ξ)τm−1 + · · · + αm (t, ξ)

c© 2013 The Authors. Mathematische Nachrichten published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. www.mn-journal.com
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with |αj (t, ξ)| ≤ M |ξ|j , for some M ≥ 1, and the proof is elementary (see Proposition 2.3 in [8]). Here we put

αk (t, ξ) = (−1)k
∑

i1 <i2 < ···<ik

det

⎛⎜⎝ ai1 i1 (t, ξ) · · · ai1 ik
(t, ξ)

...
. . .

...
aik i1 (t, ξ) · · · aik ik

(t, ξ)

⎞⎟⎠ .

Differentiating (1.4) with respect to t, we get

∂L(t, τ, ξ)
∂t

=
m−1∑
j=0

∂tαm−j (t, ξ)τ j = −
m∑

k=1

∂tϕk (t, ξ)
∏
r �=k

(τ − ϕr (t, ξ)) .

Setting τ = ϕk (t, ξ), we obtain

∂tϕk (t, ξ)
∏
r �=k

(ϕk (t, ξ) − ϕr (t, ξ)) = −
m−1∑
j=0

∂tαm−j (t, ξ)ϕk (t, ξ)j . (2.3)

The positive homogeneity of order one of ∂tϕk (t, ξ) is an immediate consequence of (2.3). Now, by using (1.5),
(2.2), and the assumption that |ξ|−j ∂tαj (·, ξ) ∈ L1(R;L∞(Rn\0)) for all j, we conclude that ∂tϕk (·, ξ/|ξ|) ∈
L1(R;L∞(Rn\0)) for k = 1, . . . ,m.

Finally, setting

ϕ±
k (ξ) = ϕk (0, ξ) +

∫ ±∞

0
∂tϕk (t, ξ) dt,

we get (2.1). The proof is complete.

We prepare the next lemma.

Lemma 2.2 ([11] Proposition 6.4.) Assume (1.3)–(1.5). Then there exists a matrix N = N (t, ξ) positively
homogeneous of order 0 in ξ satisfying the following properties:

(i) N (t, ξ)A(t, ξ/|ξ|) = D(t, ξ)N (t, ξ), where

D(t, ξ) = diag (ϕ1(t, ξ/|ξ|), . . . , ϕm (t, ξ/|ξ|)) ;

(ii) inf
ξ∈Rn \0,t∈R

|det N (t, ξ))| > 0;

(iii) N (t, ξ) ∈ Liploc
(
R; (L∞(Rn \ 0))m 2 )

and ∂tN (t, ξ) ∈ L1
(
R; (L∞(Rn\0))m 2 )

.

(iv) There exists the uniform limits N ±(ξ) of N (t, ξ) as t → ±∞:

N ±(ξ) = lim
t→±∞N (t, ξ) uniformly in ξ ∈ R

n\0.

In fact, Mizohata considered the case where the symbol of a differential system depends on the space-time
variable (x, t) in Proposition 6.4 of [11]. Hence the corresponding diagonaliser N (t, x, ξ) is defined there on a
bounded interval [0, T ], whereas the present case does not depend on x, so the diagonaliser N (t, ξ) is globally
defined on the whole of R.

Let us find a representation formula for solutions to (1.1). Applying the Fourier transform to (1.1), we get the
following ordinary differential system:

Dtvvv = A(t, ξ/|ξ|)|ξ|vvv, vvv = Û , (2.4)

where Û = Û(t, ξ) stands for the Fourier transform of U(t, x) in x on R
n . We proceed with the argument by

following Ascoli [2] and Wintner [16], (cf. Coddington & Levinson [3] and Hartman [4]). Multiplying (2.4) by
N = N (t, ξ) from Lemma 2.2 and putting N vvv = www, we get

Dtwww = D |ξ|www + (DtN )vvv =
(
D |ξ| + (DtN )N −1)www, (2.5)
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since

N A(t, ξ/|ξ|) = DN

by Lemma 2.2. Let us write solutions of (2.5) by using a solution of

Dtyyy = D |ξ|yyy. (2.6)

To this end, let Φ(t, ξ) be the fundamental matrix of (2.6), i.e.,

Φ(t, ξ) = diag
(
ei
∫ t

0 ϕ1 (s,ξ) ds , · · · , ei
∫ t

0 ϕm (s,ξ) ds
)

. (2.7)

If we perform the Wronskian transform

aaa(t, ξ) = Φ(t, ξ)−1www(t, ξ),

then system (2.5) reduces to a system

Dtaaa = C(t, ξ)aaa,

where C(t, ξ) is given by

C(t, ξ) = Φ(t, ξ)−1(DtN (t, ξ))N (t, ξ)−1Φ(t, ξ). (2.8)

We note that C(t, ξ) ∈ L1
(
R; (L∞(Rn\0))m 2 )

, since DtN (t, ξ) ∈ L1
(
R; (L∞(Rn\0))m 2 )

by Lemma 2.2.
Since www(t, ξ) = Φ(t, ξ)aaa(t, ξ) and N (t, ξ)vvv(t, ξ) = www(t, ξ), we get

vvv(t, ξ) = N (t, ξ)−1Φ(t, ξ)aaa(t, ξ).

Now let (vvv0(t, ξ), . . . , vvvm−1(t, ξ)) be the fundamental matrix of (2.4). This means, in particular, that

(vvv0(0, ξ), . . . , vvvm−1(0, ξ)) = I.

Then each vvvj (t, ξ) can be represented by

vvvj (t, ξ) = N (t, ξ)−1Φ(t, ξ)aaaj (t, ξ),

where aaaj (t, ξ) are the corresponding amplitude functions to vvvj (t, ξ). Since

Û(t, ξ) =
m−1∑
j=0

vvvj (t, ξ)f̂j (ξ),

we arrive at

Û(t, ξ) =
m−1∑
j=0

N (t, ξ)−1Φ(t, ξ)aaaj (t, ξ)f̂j (ξ).

Finally, let us find estimates for aaaj (t, ξ). Recalling that aaaj (t, ξ) satisfy the system

Dtaaa
j = C(t, ξ)aaaj with

(
aaa0(0, ξ), . . . , aaam−1(0, ξ)

)
= N (0, ξ),

we can write aaaj (t, ξ) by the Picard series:

aaaj (t, ξ) =
(

I + i

∫ t

0
C(τ1 , ξ) dτ1 + i2

∫ t

0
C(τ1 , ξ) dτ1

∫ τ1

0
C(τ2 , ξ) dτ2 + · · ·

)
aaaj (0, ξ).
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This implies that∣∣aaaj (t, ξ)
∣∣ ≤ e

c
∫

R
‖∂t N (s,ξ)‖

(L ∞(Rn \0 ) )m 2 ds ∣∣aaaj (0, ξ)
∣∣ , (2.9)

where we have used the following fact: Let f(t) be a locally integrable function on R. Then

e
∫ t

s
f (τ ) dτ = 1 +

∫ t

s

f(τ1) dτ1 +
∫ t

s

f(τ1) dτ1

∫ τ1

s

f(τ2) dτ2 + · · · .

By using equations Dtaaa
j = C(t, ξ)aaaj , the estimates (2.9), and the fact that C(t, ξ) ∈ L1

(
R; (L∞(Rn\0))m 2 )

,
we conclude that Dtaaa

j (·, ξ) ∈ L1(R; (L∞(Rn\0))m ); thus there exist the limits

lim
t→±∞aaaj (t, ξ) = αααj

±(ξ) uniformly in ξ ∈ R
n\0.

With the above argument in mind, we can obtain the main result in this section.

Proposition 2.3 Assume (1.3)–(1.5). Let N (t, ξ) be the diagonaliser of A(t, ξ/|ξ|) constructed in Lemma 2.2,
and Φ(t, ξ) as in (2.7):

Φ(t, ξ) = diag
(
ei
∫ t

0 ϕ1 (s,ξ) ds , · · · , ei
∫ t

0 ϕm (s,ξ) ds
)

.

Then there exist vector-valued functions aaaj (t, ξ), j = 0, 1, . . . ,m − 1, determined by initial value problems

Dtaaa
j (t, ξ) = C(t, ξ)aaaj (t, ξ),

(
aaa0(0, ξ), . . . , aaam−1(0, ξ)

)
= N (0, ξ),

with C(t, ξ) = Φ(t, ξ)−1(DtN (t, ξ))N (t, ξ)−1Φ(t, ξ) ∈ L1(
R; (L∞(Rn\0))m 2 )

,

such that the solution U(t, x) of (1.1) is represented by

U(t, x) =
m−1∑
j=0

F−1
[
N (t, ξ)−1Φ(t, ξ)aaaj (t, ξ)f̂j (ξ)

]
(x). (2.10)

Here F−1 [·] stands for the inverse Fourier transform on R
n . Moreover, there exists a constant c > 0 such that

sup
t∈R

∥∥aaaj (t, ξ)
∥∥

(L∞(Rn \0))m ≤ c, j = 0, 1, . . . ,m − 1,

and the limits

lim
t→±∞aaaj (t, ξ) = αααj

±(ξ), j = 0, 1, . . . ,m − 1,

exist uniformly in ξ ∈ R
n\0.

Proposition 2.3 is also known as Levinson’s lemma (see Coddington and Levinson [3]) in the theory of ordinary
differential equations; the new feature here is the additional dependence on ξ tracing which is crucial for our
analysis.

3 Proof of Theorem 1.1 (i)

We recall the assumption that

Θ±
j (ξ) =

∫ ±∞

0
Φj,±(s, ξ) ds exists for each ξ ∈ R

n\0, (3.1)

where

Φj,±(s, ξ) = ϕj (s, ξ) − ϕ±
j (ξ).
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Writing ∫ t

0
ϕj (s, ξ) ds = ϕ±

j (ξ)t + Θ±
j (ξ) −

∫ ±∞

t

Φj,±(s, ξ) ds,

we have

ei
∫ t

0 ϕj (s,ξ) ds = ei(ϕ±
j (ξ)t+Θ±

j (ξ)) + Ψj,±(t, ξ), (3.2)

where

Ψj,±(t, ξ) = ei(ϕ±
j (ξ)t+Θ±

j (ξ))
(

exp
(
−i

∫ ±∞

t

Φj,±(s, ξ) ds

)
− 1
)

.

Here we note from (3.1) that

Ψj,±(t, ξ) −→ 0 for each ξ ∈ R
n\0 as t −→ ±∞.

Putting ⎧⎪⎪⎪⎨⎪⎪⎪⎩
Φ±(t, ξ) = diag

(
eiϕ±

1 (ξ)t , . . . , eiϕ±
m (ξ)t

)
,

D±(ξ) = diag
(
eiΘ±

1 (ξ) , . . . , eiΘ±
m (ξ)
)

,

Ψ±(t, ξ) = diag (Ψ1,±(t, ξ), . . . ,Ψm,±(t, ξ)) ,

we can write (3.2) as

Φ(t, ξ) = Φ±(t, ξ)D±(ξ) + Ψ±(t, ξ) with

Ψ±(t, ξ) −→ O for each ξ ∈ R
n\0 as t −→ ±∞. (3.3)

Hence, plugging (3.3) into (2.10) from Proposition 2.3, we find that

U(t, x) =
m−1∑
j=0

F−1
[
N±(ξ)−1Φ±(t, ξ)D±(ξ)αααj

±(ξ)f̂j (ξ)
]
(x)

+
m−1∑
j=0

F−1
[(

N (t, ξ)−1 − N±(ξ)−1)Φ±(t, ξ)D±(ξ)αααj
±(ξ)f̂j (ξ)

]
(x)

+
m−1∑
j=0

F−1
[
N±(ξ)−1Φ±(t, ξ)D±(ξ)

(
aaaj (t, ξ) −αααj

±(ξ)
)

f̂j (ξ)
]
(x)

+
m−1∑
j=0

F−1
[
N (t, ξ)−1Ψ±(t, ξ)aaaj (t, ξ)f̂j (ξ)

]
(x), t ≷ 0.

It can be verified that

V±(t, x) :=
m−1∑
j=0

F−1
[
N±(ξ)−1Φ±(t, ξ)D±(ξ)αααj

±(ξ)f̂j (ξ)
]
(x) (3.4)

satisfy equations (1.7). Thus, by using (3.3) and the following convergences:

N (t, ξ)−1 −→ N±(ξ)−1 , aaaj (t, ξ) −→ αααj
±(ξ) uniformly in ξ ∈ R

n\0 as t −→ ±∞,

we conclude from Plancherel’s identity and Lebesgue’s dominated convergence theorem that

‖U(t, ·) − V±(t, ·)‖(L2 (Rn ))m −→ 0 (t −→ ±∞).

In conclusion, U(x, t) is asymptotically free. Moreover, the mappings

W −1
± : U(0, ·) 	−→ V±(0, ·) =

m−1∑
j=0

F−1
[
N±(ξ)−1D±(ξ)αααj

±(ξ)f̂j (ξ)
]
(·)

are bijective and bounded on
(
L2(Rn )

)m
. The part (i) of Theorem 1.1 is thus proved.
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4 Proof of Theorem 1.1 (ii)

Observing from representation formulae (2.10) and (3.4) of U(t, x) and V±(t, x), respectively, we can write, by
using Plancherel’s identity,

Û(t, ξ) =
m−1∑
j=0

m∑
k=1

∫
Rn

aaa
(j )
k (t, ξ)ei

∫ t
0 ϕk (s,ξ) ds f̂j (ξ) dξ,

V̂±(t, ξ) =
m−1∑
j=0

m∑
k=1

∫
Rn

aaa
(j )
k,±(ξ)eiϕ±

k (ξ)t f̂j (ξ) dξ,

where aaa
(j )
k (t, ξ) and aaa

(j )
k,±(ξ) are m-row vector-valued functions satisfying

sup
t∈R,ξ∈Rn \0

∣∣∣aaa(j )
k (t, ξ)

∣∣∣ ≤ C and sup
ξ∈Rn \0

∣∣∣aaa(j )
k,±(ξ)

∣∣∣ ≤ C.

Hence

aaa
(j )
k (t, ξ)f̂j (ξ), aaa

(j )
k,±(ξ)f̂j (ξ) ∈

(
L2(Rn )

)m
.

The next lemma is part of the subsequent argument.

Lemma 4.1 Let ϑ(t, ξ) be a real-valued function on R × R
n which is positively homogeneous of order one

in ξ, and satisfies ϑ(t, ξ/|ξ|) → ∞ for a.e. ξ ∈ R
n\0 as t → ∞. Assume that a function a(t, ξ) belongs to

L∞(
R;L1(Rn )

)
and satisfies

sup
t∈R

|a(t, ξ)| ≤ m(|ξ|) (4.1)

for some radially symmetric function m(ξ) = m(|ξ|) ∈ L1(Rn ). Then

I(t) :=
∫

Rn

eiϑ(t,ξ)a(t, ξ) dξ −→ 0 as t −→ ∞.

P r o o f. Making change of variable ξ = ρω (ρ = |ξ|, ω = ξ/|ξ| ∈ S
n−1), we get

I(t) =
∫

Sn −1

(∫ ∞

0
eiρϑ(t,ω )a(t, ρω)ρn−1 dρ

)
dσ(ω),

where dσ(ω) is the (n − 1)-dimensional Hausdorff measure. By using the assumption that a(t, ξ) belongs to
L∞(R;L1(Rn )), we see from Fubini’s theorem that a(t, ρω)ρn−1 ∈ L∞(

R;L1(0,∞)
)
. Since ϑ(t, ω) → ∞ for

a.e. ω ∈ S
n−1 as t → ∞, extending the function a by zero to ρ < 0 and applying Riemann-Lebesgue’s lemma,

we conclude that for a.e. ω ∈ S
n−1 ,∫ ∞

0
eiρϑ(t,ω )a(t, ρω)ρn−1 dρ −→ 0 as t −→ ∞.

Moreover, by using (4.1), we have∣∣∣∣∫ ∞

0
eiρϑ(t,ω )a(t, ρω)ρn−1 dρ

∣∣∣∣ ≤ ∫ ∞

0
m(ρ)ρn−1 dρ ∈ L1(

S
n−1).

Thus, this estimate together with the previous convergence imply, by using Lebesgue’s dominated convergence
theorem, that I(t) → 0 as t → ∞. This proves the lemma.

The proof of part (ii) in Theorem 1.1 is reduced to the next lemma provided that (f0(x), . . . , fm−1(x)) are
non-trivial and radially symmetric.
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Lemma 4.2 Let ϕj (t, ξ) and ϕ±
j (ξ), j = 1, . . . , m, be the phase functions as in (1.5) and (1.9), respectively.

Suppose that

|ϑj (t, ξ) − ϕ±
j (ξ)t| −→ +∞ for a.e. ξ ∈ R

n\0 as t −→ ±∞, (4.2)

where ϑj (t, ξ) =
∫ t

0 ϕj (s, ξ) ds. Let Aj (t, ξ), Bj (t, ξ) ∈ C
(
R;L2(Rn )

)
, j = 1, . . . , m − 1, satisfy

Aj (t, ξ) −→ A±
j (ξ), Bj (t, ξ) −→ B±

j (ξ) uniformly in ξ as t −→ ±∞,

with some A±
j (ξ), B±

j (ξ) ∈ L2(Rn ). Assume also that Aj (t, ξ) and Bj (t, ξ) are bounded by some radially
symmetric functions Mj (|ξ|) and Nj (|ξ|) from L2(Rn );

|Aj (t, ξ)| ≤ Mj (|ξ|) and |Bj (t, ξ)| ≤ Nj (|ξ|), j = 1, . . . ,m − 1.

Then we have∥∥∥∥∥∥
m∑

j=1

{
Aj (t, ξ)eiϑj (t,ξ) − Bj (t, ξ)eiϕ±

j (ξ)t
}∥∥∥∥∥∥

L2 (Rn )

−→
⎧⎨⎩

m∑
j=1

(∥∥A±
j (ξ)

∥∥2
L2 (Rn ) +

∥∥B±
j (ξ)

∥∥2
L2 (Rn )

)⎫⎬⎭
1/2

as t → ±∞.

P r o o f. Putting

K±(t, ξ) =
m∑

j=1

{
Aj (t, ξ)eiϑj (t,ξ) − Bj (t, ξ)eiϕ±

j (ξ)t
}

,

we can write

|K±(t, ξ)|2 =
m∑

j=1

(|Aj (t, ξ)|2 + |Bj (t, ξ)|2
)

+ Re H±(t, ξ), (4.3)

where

H±(t, ξ) = 2
∑
j<k

{
ei{ϑj (t,ξ)−ϑk (t,ξ)}Aj (t, ξ)Ak (t, ξ) + ei{ϕ±

j (ξ)t−ϕ±
k (ξ)t}Bj (t, ξ)Bk (t, ξ)

}
− 2

m∑
j=1

ei{ϑj (t,ξ)−ϕ±
j (ξ)t}Aj (t, ξ)Bj (t, ξ) − 2

∑
j<k

ei{ϑj (t,ξ)−ϕ±
k (ξ)t}Aj (t, ξ)Bk (t, ξ).

We can check that all the phases in H±(t, ξ) are unbounded in t. Indeed, it follows from (1.5) and (1.9) that if
j < k, then

|ϑj (t, ξ) − ϑk (t, ξ)| =
∣∣∣∣∫ t

0
(ϕj (s, ξ) − ϕk (s, ξ)) ds

∣∣∣∣ ≥ d|ξ||t| −→ +∞, (4.4)∣∣ϕ±
j (ξ)t − ϕ±

k (ξ)t
∣∣ ≥ d|ξ||t| −→ +∞, (4.5)

as t → ±∞. Since ϕj (t, ξ) → ϕ±
j (ξ) uniformly in |ξ| = 1 as t → ±∞ by Proposition 2.1, it follows that for any

ε > 0 there exists a number T > 0 such that∣∣ϕj (s, ξ) − ϕ±
k (ξ)

∣∣ ≥ (d − ε)|ξ|, j �= k, |s| > T, ξ �= 0.
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Hence,

∣∣ϑj (t, ξ) − ϕ±
k (ξ)t

∣∣ = ∣∣∣∣∫ t

0

(
ϕj (s, ξ) − ϕ±

k (ξ)
)

ds

∣∣∣∣
≥
∣∣∣∣∫ t

T

(
ϕj (s, ξ) − ϕ±

k (ξ)
)

ds

∣∣∣∣−
∣∣∣∣∣
∫ T

0

(
ϕj (s, ξ) − ϕ±

k (ξ)
)

ds

∣∣∣∣∣
≥ (d − ε)|t − T ||ξ| −

∣∣∣∣∣
∫ T

0

(
ϕj (s, ξ) − ϕ±

k (ξ)
)

ds

∣∣∣∣∣ −→ +∞ (t −→ ±∞).

(4.6)

Thus by using Lemma 4.1, (4.2)–(4.6), the fact that ϕj (s, ξ)−ϕ±
k (ξ) does not change sign for s large enough by

strict hyperbolicity, and the fact that the product of two functions in L2(Rn ) belongs to L1(Rn ), we get∫
Rn

H±(t, ξ) dξ −→ 0

as t → ±∞. In conclusion, we have∫
Rn

|K±(t, ξ)|2 dξ −→
m−1∑
j=0

∫
Rn

(∣∣A±
j (ξ)

∣∣2 +
∣∣B±

j (ξ)
∣∣2) dξ (t −→ ±∞),

respectively. The proof of Lemma 4.2 is complete.

5 Proof of Theorem 1.2

Let V± = V±(t, x) be solutions to the Cauchy problems

DtV± = A±(Dx)V±, x ∈ R
n , ±t > 0,

with Cauchy data

V±(0, x) = T
(
f±

0 (x), . . . , f±
m−1(x)

)
.

Let N±(ξ) be diagonalisers of A±(ξ/|ξ|), i.e.,

N±(ξ)A±(ξ/|ξ|) = D±(ξ/|ξ|)N±(ξ),

where we put

D±(ξ) = diag
(
ϕ±

1 (ξ), . . . , ϕ±
m (ξ)

)
.

Denoting by eee0 , . . . , eeem−1 the standard unit vectors in R
m , we can write

V±(t, x) =
m−1∑
j=0

F−1
[
N±(ξ)−1Φ±(t, ξ)eeej f̂±

j (ξ)
]
(x).

We will find an asymptotic integration for

DtÛ(t, ξ) = A(t, ξ)Û(t, ξ),

such that Û(t, ξ) is asymptotic to V̂±(t, ξ) as t → ±∞.

We shall prove the following:
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Proposition 5.1 Assume (1.15)–(1.16). Let N (t, ξ) be the diagonaliser of A(t, ξ/|ξ|) from Lemma 2.2, and
put

Φ(t, ξ) = diag
(
ei
∫ t

0 ϕ1 (s,ξ) ds , . . . , ei
∫ t

0 ϕm (s,ξ) ds
)

.

Then there exist fundamental matrices W±(t, ξ) of DtÛ(t, ξ) = A(t, ξ)Û(t, ξ) such that

W±(t, ξ) = N (t, ξ)−1Φ(t, ξ)(I + R±(t, ξ)) with

R±(t, ξ) −→ O uniformly in ξ ∈ R
n\0 as t −→ ±∞.

P r o o f. We prove the case “−”, since the case “+” is similar. The idea of the proof resembles that of Hartman
[4]. Similar to (2.8), we define a matrix C−(t, ξ) to be

C−(t, ξ) = Φ(t, ξ)−1(DtN (t, ξ))N (t, ξ)−1Φ(t, ξ). (5.1)

For an arbitrarily fixed σ ∈ R, let aaaj
−(t, ξ;σ), j = 0, . . . ,m − 1, be solutions of the following problems:

Dtaaa
j
−(t, ξ;σ) = C−(t, ξ)aaaj

−(t, ξ;σ), aaaj
−(σ, ξ;σ) = eeej ,

where eeej = T (0, . . . ,

j

�
1, . . . , 0). Hence aaaj

−(t, ξ;σ) can be written as Picard series:

aaaj
−(t, ξ;σ) =

(
I + i

∫ t

σ

C−(τ1 , ξ) dτ1 + i2
∫ t

σ

C−(τ1 , ξ) dτ1

∫ τ1

σ

C−(τ2 , ξ) dτ2 + · · ·
)

eeej

for all t ∈ R and ξ ∈ R
n\0. Then we can estimate∣∣aaaj

−(t, ξ;σ)
∣∣ ≤ e

∫
R
‖C−(s,ξ)‖

(L ∞(Rn \0 ) )m 2 ds ≤ e
c
∫

R
‖∂s N (s,ξ)‖

(L ∞(Rn \0 ) )m 2 ds
. (5.2)

Put
wwwj

−(t, ξ;σ) = N (t, ξ)−1Φ(t, ξ)aaaj
−(t, ξ;σ), j = 0, 1, . . . , m − 1.

Then we see from (5.1) that each wwwj
−(t, ξ;σ) satisfies the following equation:

Dtwww
j
−(t, ξ;σ) = A(t, ξ)wwwj

−(t, ξ;σ).

It follows from (5.2) that the aaaj
−(t, ξ;σ) exist uniformly in ξ ∈ R

n\0 for all t ∈ R, and hence, we can estimate∣∣Dtaaa
j
−(t, ξ;σ)

∣∣ ≤ ‖C−(t, ξ)‖∣∣aaaj
−(t, ξ;σ)

∣∣ ≤ c1e
c
∫

R
‖∂τ N (τ ,ξ)‖

(L ∞(Rn \0 ) )m 2 dτ ‖∂tN (t, ξ)‖,

where we denote by ‖A‖ a (standard) matrix norm of matrices A. Since ∂tN (·, ξ) ∈ L1
(
R; (L∞(Rn\0))m 2 )

,
these estimates imply that, for |t| ≤ |σ|,

∣∣aaaj
−(t, ξ;σ) − eeej

∣∣ = ∣∣∣∣∫ t

σ

∂taaa−(τ, ξ;σ) dτ

∣∣∣∣ (5.3)

≤ c1e
c
∫

R
‖∂τ N (τ ,ξ)‖

(L ∞(Rn \0 ) )m2 dτ
∫ |σ |

|t|
‖∂sN (s, ξ)‖(L∞(Rn \0))m2 ds.

In particular, the family
{
aaaj
−(t, ξ;σ)

}
σ∈R

is uniformly bounded in σ, ξ and equi-continuous on every bounded
t-interval. Hence there exists a sequence {σ�}∞�=1 such that

|σ1 | < |σ2 | < · · · , |σ� | −→ ∞ (� −→ ∞),
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and the limits

aaaj
−(t, ξ) = lim

�→∞
aaaj
−(t, ξ;σ�)

exist uniformly in ξ ∈ R
n\0 on every bounded t-interval. Moreover, the limits

wwwj
−(t, ξ) = lim

�→∞
wwwj

−(t, ξ;σ�) = N (t, ξ)−1Φ(t, ξ)aaaj
−(t, ξ)

also exist. Hence the aaaj
−(t, ξ) are solutions of Dtaaa

j
−(t, ξ) = C−(t, ξ)aaaj

−(t, ξ), and the wwwj
−(t, ξ) are solutions of

Dtwww
j
−(t, ξ) = A(t, ξ)wwwj

−(t, ξ). Putting σ = σ� in (5.3), and letting � → ∞, with t fixed, we see that

∣∣aaaj
−(t, ξ) − eeej

∣∣ ≤ c1e
c
∫

R
‖∂τ N (τ ,ξ)‖

(L ∞(Rn \0 ) )m 2 dτ
∫ t

−∞
‖∂sN (s, ξ)‖(L∞(Rn \0))m 2 ds (5.4)

for all t ∈ R. The uniqueness of each aaaj
−(t, ξ) is obvious.

Now we can write, by putting rrrj
−(t, ξ) = aaaj (t, ξ) − eeej ,

wwwj
−(t, ξ) = N (t, ξ)−1Φ(t, ξ)

(
eeej + rrrj

−(t, ξ)
)
, (5.5)

where the rrrj
−(t, ξ) satisfy

rrrj
−(t, ξ) −→ 000 uniformly in ξ ∈ R

n\0 as t −→ −∞ (5.6)

on account of (5.4). It remains to prove that

W−(t, ξ) ≡ (www1
−(t, ξ), . . . ,wwwm−1

− (t, ξ)
)

is the fundamental matrix for

DtV̂ = A(t, ξ)V̂ .

Taking the determinant of W−(t, ξ), we have, by using (5.6), N (t, ξ)−1 → N−(ξ)−1 uniformly in ξ ∈ R
n\0

(t → −∞) and |detΦ(t, ξ)| = 1, that

|detW−(t, ξ)| −→ |detN−(ξ)|−1 �= 0 uniformly in ξ ∈ R
n\0 as t −→ −∞.

Hence there exists a number t0 ≤ 0 such that

detW−(t, ξ) �= 0 for all t ≤ t0 .

Since W−(t, ξ) satisfies DtW−(t, ξ) = A(t, ξ)W−(t, ξ), it follows from Abel-Jacobi formula that

detW−(t, ξ) = detW−(t0 , ξ) exp
∫ t

t0

trA(s, ξ) ds �= 0

for all ξ ∈ R
n \ 0 and all t ∈ R. This means that W−(t, ξ) is the fundamental matrix for

DtÛ = A(t, ξ)Û .

This completes the proof of Proposition 5.1.

Completion of the proof of Theorem 1.2. Let us find a solution U(t, x) of DtU = A(t,Dx)U such that

‖V±(t, ·) − U(t, ·)‖(L2 (Rn ))m −→ 0 (t −→ ±∞). (5.7)
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Going back to (3.2)–(3.3) in the proof of Theorem 1.1 (i), we have

W±(t, ξ) = N±(ξ)−1Φ±(t, ξ)D±(ξ)

+
(
N (t, ξ)−1 − N±(ξ)−1)Φ±(t, ξ)D±(ξ) + N (t, ξ)−1Ψ±(t, ξ).

Thus putting

Û(t, ξ) =
m−1∑
j=0

W±(t, ξ)D±(ξ)−1eeej f̂±
j (ξ),

we can decompose Û(t, ξ) into three terms:

Û(t, ξ) =V̂±(t, ξ) +
m−1∑
j=0

(
N (t, ξ)−1 − N±(ξ)−1)Φ±(t, ξ)eeej f̂±

j (ξ)

+
m−1∑
j=0

N (t, ξ)−1Ψ±(t, ξ)D±(ξ)−1eeej f̂±
j (ξ).

It can be readily seen that this Û(t, ξ) satisfies

DtÛ(t, ξ) = A(t, ξ)Û(t, ξ).

Since N (t, ξ)−1−N±(ξ)−1 → O uniformly in ξ ∈ R
n\0 and Ψ±(t, ξ) → O for each ξ ∈ R

n\0 as t → ±∞, we
conclude from Plancherel’s identity and Lebesgue’s dominated convergence theorem that (5.7) is true. Moreover,
the mappings

W± : V±(0, ·) 	−→ U(0, ·) =
m−1∑
j=0

[
W±(0, ξ)D±(ξ)−1eeej f̂±

j (ξ)
]
(·)

are bijective and bounded on
(
L2(Rn )

)m
. The proof of Theorem 1.2 is finished.
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