On multipliers on compact Lie groups *

M. V. Ruzhansky and J. Wirth

Abstract

1 In this note we announce L^{p} multiplier theorems for invariant and noninvariant operators on compact Lie groups in the spirit of the well-known Hörmander-Mikhlin theorem on \mathbb{R}^{n} and its variants on tori \mathbb{T}^{n}. Applications are given to the mapping properties of pseudo-differential operators on L^{p}-spaces and to a-priori estimates for non-hypoelliptic operators.

1. Introduction.

Let G be a compact Lie group of dimension n, with identity 1 and the unitary dual \widehat{G}. The following considerations are based on the group Fourier transform

$$
\begin{equation*}
\mathscr{F} \phi=\widehat{\phi}(\xi)=\int_{G} \phi(x) \xi(x)^{*} \mathbf{x}, \quad \phi(x)=\sum_{[\xi] \in \widehat{G}} d_{\xi} \operatorname{Tr}(\xi(x) \widehat{\phi}(\xi))=\mathscr{F}^{-1}[\widehat{\phi}] \tag{1}
\end{equation*}
$$

defined in terms of equivalence classes [$\xi]$ of irreducible unitary representations ξ : $G \rightarrow \mathrm{U}\left(d_{\xi}\right)$ of dimension d_{ξ}. The Peter-Weyl theorem on G implies in particular that this pair of transforms is inverse to each other and that the Plancherel identity

$$
\begin{equation*}
\|\phi\|_{2}^{2}=\sum_{[\xi] \in \widehat{G}} d_{\xi}\|\widehat{\phi}(\xi)\|_{H S}^{2}=:\|\widehat{\phi}\|_{\ell^{2}(\widehat{G})} \tag{2}
\end{equation*}
$$

holds true for all $\phi \in L^{2}(G)$. Here $\|\widehat{\phi}(\xi)\|_{H S}^{2}=\operatorname{Tr}\left(\widehat{\phi}(\xi) \widehat{\phi}(\xi)^{*}\right)$ denotes the HilbertSchmidt norm of matrices. The Fourier inversion statement (1) is valid for all $\phi \in \mathcal{D}^{\prime}(G)$ and the Fourier series converges in $C^{\infty}(G)$ provided ϕ is smooth. It is further convenient to denote $\langle\xi\rangle=\max \left\{1, \lambda_{\xi}\right\}$, where $-\lambda_{\xi}^{2}$ is the eigenvalue of the Laplace-Beltrami (Casimir) operator acting on the matrix coefficients associated to

[^0]the representation ξ. The Sobolev spaces can be characterised by Fourier coefficients as
$$
\phi \in H^{s}(G) \quad \Longleftrightarrow \quad\langle\xi\rangle^{\widehat{\phi}}(\xi) \in \ell^{2}(\widehat{G})
$$
where $\ell^{2}(\widehat{G})$ is defined as the space of matrix-valued sequences such that the sum on the right-hand side of (22) is finite.

In the following we consider continuous linear operators $A: C^{\infty}(G) \rightarrow \mathcal{D}^{\prime}(G)$, which can be characterised by their symbol

$$
\begin{equation*}
\sigma_{A}(x, \xi)=\xi(x)^{*}(A \xi)(x) \tag{3}
\end{equation*}
$$

which is a function on $G \times \widehat{G}$ taking matrices from $\mathbb{C}^{d_{\xi} \times d_{\xi}}$ as values. As a consequence of (1) we obtain that for any given $\phi \in C^{\infty}(G)$ the distribution $A \phi \in \mathcal{D}^{\prime}(G)$ satisfies

$$
\begin{equation*}
A \phi(x)=\sum_{[\xi] \in \widehat{G}} d_{\xi} \operatorname{Tr}\left(\xi(x) \sigma_{A}(x, \xi) \widehat{\phi}(\xi)\right) \tag{4}
\end{equation*}
$$

We denote the operator A defined by a symbol σ_{A} as $\operatorname{op}\left(\sigma_{A}\right)$. This quantisation and its properties have been consistently developed in [7] and we refer to it for details. We speak of a Fourier multiplier if the symbol $\sigma_{A}(x, \xi)$ is independent of the first argument. This is equivalent to requiring that A commutes with left translations. It is evident from the Plancherel identity that such an operator is L^{2}-bounded if and only if $\sup _{[\xi] \in \widehat{G}}\left\|\sigma_{A}(\xi)\right\|_{o p}<\infty$, where $\|\cdot\|_{o p}$ denotes the operator norm on the inner-product space $\mathbb{C}^{d_{\xi}}$.

In the book [7], as well as in the paper [8] the authors gave a characterisation of Hörmander type pseudo-differential operators on G in terms of their matrix-valued symbols. The symbol classes, as well as the multiplier theorems given below, depend on the so-called difference operators acting on moderate sequences of matrices, i.e., on elements of

$$
\Sigma(\widehat{G})=\left\{\sigma: \xi \mapsto \sigma(\xi) \in \mathbb{C}^{d_{\xi} \times d_{\xi}}:\|\sigma(\xi)\|_{o p} \lesssim\langle\xi\rangle^{N} \text { for some } N\right\}
$$

A difference operator Q of order ℓ is defined in terms of a corresponding function $q \in C^{\infty}(G)$, which vanishes to (at least) ℓ th order in the identity element $1 \in G$ via

$$
\begin{equation*}
Q \sigma=\mathscr{F}\left(q(x) \mathscr{F}^{-1} \sigma\right) . \tag{5}
\end{equation*}
$$

Note, that $\sigma \in \Sigma(\widehat{G})$ implies $\mathscr{F}^{-1} \sigma \in \mathcal{D}^{\prime}(G)$ and therefore the multiplication with a smooth function is well-defined. The main idea of introducing such operators is that applying differences to symbols of Calderon-Zygmund operators brings an improvement in the behaviour of $\mathrm{op}(Q \sigma)$ since we multiply the integral kernel of $\mathrm{op}(\sigma)$ by a function vanishing on its singular set.

Different collections of difference operators have been explored in [8] in the pseudodifferential setting. Difference operators of particular interest arise from matrixcoefficients of representations. For a fixed irreducible representation ξ_{0} we define the (matrix-valued) difference operator $\xi_{0} \mathbb{D}=\left(\xi_{0} \mathbb{D}_{i j}\right)_{i, j=1, \ldots, d_{\xi_{0}}}$ corresponding to the matrix elements of the matrix-valued function $\xi_{0}(x)-\mathrm{I}$, with $q_{i j}(x)=\xi_{0}(x)_{i j}-\delta_{i j}$ in (5), $\delta_{i j}$ the Kronecker delta. If the representation is fixed, we omit the index ξ_{0}. For a sequence of difference operators of this type, $\mathbb{D}_{1}={ }_{\xi_{1}} \mathbb{D}_{i_{1} j_{1}}, \mathbb{D}_{2}={ }_{\xi_{2}} \mathbb{D}_{i_{2} j_{2}}, \ldots, \mathbb{D}_{k}=$ $\xi_{k} \mathbb{D}_{i_{k} j_{k}}$, with $\left[\xi_{m}\right] \in \widehat{G}, 1 \leq i_{m}, j_{m} \leq d_{\xi_{m}}, 1 \leq m \leq k$, we define $\mathbb{D}^{\alpha}=\mathbb{D}_{1}^{\alpha_{1}} \cdots \mathbb{D}_{k}^{\alpha_{k}}$. In the sequel we will work with a collection Δ_{0} of representations chosen as follows. Let $\widetilde{\Delta_{0}}$ be the collection of the irreducible components of the adjoint representation, so that $\operatorname{Ad}=(\operatorname{dim} Z(G)) 1 \oplus \bigoplus_{\xi \in \widetilde{\Delta_{0}}} \xi$, where ξ are irreducible representations and 1 is the trivial one-dimensional representation. In the case when the centre $Z(G)$ of the group is nontrivial, we extend the collection $\widetilde{\Delta_{0}}$ to some collection Δ_{0} by adding to $\widetilde{\Delta_{0}}$ a family of irreducible representations such that their direct sum is nontrivial on $Z(G)$, and such that the function

$$
\rho^{2}(x)=\sum_{[\xi] \in \Delta_{0}}\left(d_{\xi}-\operatorname{Tr} \xi(x)\right) \geq 0
$$

(which vanishes only in $x=1$) would define the square of some distance function on
G near the identity element. Such an extension is always possible, and we denote by Δ_{0} any such extension; in the case of the trivial centre we do not have to take an extension and we set $\Delta_{0}=\widetilde{\Delta_{0}}$. We denote further by \otimes the second order difference operator associated to $\rho^{2}(x), \mathbb{A}=\mathscr{F} \rho^{2}(x) \mathscr{F}^{-1}$. In the sequel, when we write \mathbb{D}^{α}, we can always assume that it is composed only of $\xi_{m} \mathbb{D}_{i_{m} j_{m}}$ with $\left[\xi_{m}\right] \in \Delta_{0}$.

2. Main results.

The following condition (6) is a natural relaxation from the L^{p}-boundedness of zero order pseudo-differential operators to a multiplier theorem and generalises the Hörmander-Mikhlin ([5, 6, , [4) theorem to arbitrary groups.

Theorem 1 Denote by \varkappa be the smallest even integer larger than $\frac{1}{2} \operatorname{dim} G$. Let A : $C^{\infty}(G) \rightarrow \mathcal{D}^{\prime}(G)$ be left-invariant. Assume that its symbol σ_{A} satisfies

$$
\begin{equation*}
\left\|\mathbb{\wedge}^{\varkappa / 2} \sigma_{A}(\xi)\right\|_{o p} \leq C\langle\xi\rangle^{-\varkappa} \quad \text { and } \quad\left\|\mathbb{D}^{\alpha} \sigma_{A}(\xi)\right\|_{o p} \leq C_{\alpha}\langle\xi\rangle^{-|\alpha|} \tag{6}
\end{equation*}
$$

for all multi-indices α with $|\alpha| \leq \varkappa-1$, and for all $[\xi] \in \widehat{G}$. Then the operator A is of weak type $(1,1)$ and L^{p}-bounded for all $1<p<\infty$.

We now give some particular applications of Theorem 1. The selection is not complete and indicates a few applications which could be derived from the main result. Full proofs can be found in [9].

Theorem 2 Assume that $\sigma_{A} \in \mathscr{S}_{\rho}^{0}(G)$, i.e., by definition, it satisfies inequalities

$$
\left\|\mathbb{D}^{\alpha} \sigma_{A}(\xi)\right\|_{o p} \leq C_{\alpha}\langle\xi\rangle^{-\rho|\alpha|}
$$

for some $\rho \in[0,1]$ and all α. Then A defines a bounded operator from $3^{3} W^{p, r}(G)$ to $L^{p}(G)$ for $r=\varkappa(1-\rho)\left|\frac{1}{p}-\frac{1}{2}\right|, \varkappa$ as in Theorem 1 and $1<p<\infty$.

[^1]The previous statement applies in particular to the parametrices constructed in [8]. We will give two examples on the group $\mathrm{SU}(2) \cong \mathbb{S}^{3}$. Let $\mathrm{D}_{1}, \mathrm{D}_{2}$ and D_{3} be an orthonormal basis of $\mathfrak{s u}(2)$. Then both, the sub-Laplacian $\mathcal{L}_{s}=\mathrm{D}_{1}^{2}+\mathrm{D}_{2}^{2}$ as well as the 'heat' operator $\mathcal{H}=D_{3}-D_{1}^{2}-D_{2}^{2}$ have a parametrix from ${ }^{4}$ op $\mathscr{S}_{\frac{1}{2}}^{-1}\left(\mathbb{S}^{3}\right)$ and therefore the sub-elliptic estimates

$$
\begin{equation*}
\|u\|_{\left.\left.W^{p, 1-\left\lvert\, \frac{1}{p}-\frac{1}{2}\right.} \right\rvert\, \mathbb{S}^{3}\right)} \leq C_{p}\left\|\mathcal{L}_{s} u\right\|_{L^{p}\left(\mathbb{S}^{3}\right)} \quad \text { and } \quad\|u\|_{\left.W^{p, 1-\left\lvert\, \frac{1}{p}-\frac{1}{2}\right.} \right\rvert\,\left(\mathbb{S}^{3}\right)} \leq C_{p}\|\mathcal{H} u\|_{L^{p}\left(\mathbb{S}^{3}\right)} \tag{7}
\end{equation*}
$$

are valid for all $1<p<\infty$. The following statement concerns operators which are neither locally invertible nor locally hypoelliptic.

Corollary 3 Let X be a left-invariant real vector field on G. Then there exists a discrete exceptional set $\mathscr{C} \subset i \mathbb{R}$, such that for any complex number $c \notin \mathscr{C}$ the operator $X+c$ is invertible with inverse in op $\mathscr{S}_{0}^{0}(G)$. Consequently, the inequality

$$
\|f\|_{L^{p}(G)} \leq C_{p}\|(X+c) f\|_{\left.W^{p, \kappa \left\lvert\, \frac{1}{p}-\frac{1}{2}\right.}\right|_{(G)}}
$$

holds true for all $1<p<\infty$ and all functions f from that Sobolev space, with \varkappa as above.

For the particular case $G=\mathrm{SU}(2)$, the exceptional set coincides with the spectrum of the skew-selfadjoint realisation of X suitably normalised with respect to the Killing norm, e.g., $\mathscr{C}=\mathrm{i} \frac{1}{2} \mathbb{Z}$ if $X=\mathrm{D}_{3}$.

The Hörmander multiplier theorem [4], although formulated in \mathbb{R}^{n}, has a natural analogue on the torus \mathbb{T}^{n}. The assumtions in Theorem 1 on the top order difference brings a refinement of the toroidal multiplier theorem, at least for some dimensions. If $G=\mathbb{T}^{n}=\mathbb{R}^{n} / \mathbb{Z}^{n}$, the set Δ_{0} can be chosen to consist of $2 n$ functions $\mathrm{e}^{ \pm 2 \pi \mathrm{i} x_{j}}$, $1 \leq j \leq n$. Consequently, we have that $\rho^{2}(x)=2 n-\sum_{j=1}^{n}\left(\mathrm{e}^{2 \pi \mathrm{i} x_{j}}+\mathrm{e}^{-2 \pi \mathrm{i} x_{j}}\right)$ in ()$\left._{\mathrm{o}}\right)$,

[^2]and hence $\triangle \sigma(\xi)=2 n \sigma(\xi)-\sum_{j=1}^{n}\left(\sigma\left(\xi+e_{j}\right)+\sigma\left(x-e_{j}\right)\right)$, where $\xi \in \mathbb{Z}^{n}$ and e_{j} is its j th unit basis vector in \mathbb{Z}^{n}.

A (translation) invariant operator A and its symbol σ_{A} are related by $\sigma_{A}(k)=$ $\mathrm{e}^{-2 \pi \mathrm{i} x \cdot k}\left(A \mathrm{e}^{2 \pi \mathrm{i} \cdot k}\right)=\left.\left(A \mathrm{e}^{2 \pi \mathrm{i} x \cdot k}\right)\right|_{x=0}$ and $A \phi(x)=\sum_{k \in \mathbb{Z}^{n}} e^{2 \pi \mathrm{i} x \cdot k} \sigma_{A}(k) \widehat{\phi}(k)$. Thus, it follows from Theorem 1 that, for example on \mathbb{T}^{3}, a translation invariant operator A is bounded on $L^{p}\left(\mathbb{T}^{3}\right)$ provided that there is a constant $C>0$ such that $\left|\sigma_{A}(k)\right| \leq C$, $|k|\left|\sigma_{A}\left(k+e_{j}\right)-\sigma_{A}(k)\right| \leq C$ and

$$
\begin{equation*}
|k|^{2}\left|\sigma_{A}(k)-\frac{1}{6} \sum_{j=1}^{3}\left(\sigma_{A}\left(k+e_{j}\right)+\sigma_{A}\left(k-e_{j}\right)\right)\right| \leq C \tag{8}
\end{equation*}
$$

for all $k \in \mathbb{Z}^{3}$ and all (three) unit vectors $e_{j}, j=1,2,3$. Here we do not make assumptions on all second order differences in (8), but only on one of them.

Finally, Theorem 1 also implies a boundedness statement for operators of form (4). Let for this $\partial_{x_{j}}, 1 \leq j \leq n$, be a collection of left invariant first order differential operators corresponding to some linearly independent family of the left-invariant vector fields on G. As usual, we denote $\partial_{x}^{\beta}=\partial_{x_{1}}^{\beta_{1}} \cdots \partial_{x_{n}}^{\beta_{n}}$.

Theorem 4 Denote by \varkappa be the smallest even integer larger than $\frac{n}{2}, n$ the dimension of the group G. Let $1<p<\infty$ and let $l>\frac{n}{p}$ be an integer. Let $A: C^{\infty}(G) \rightarrow \mathcal{D}^{\prime}(G)$ be a linear continuous operator such that its matrix symbol σ_{A} satisfies

$$
\left\|\partial_{x}^{\beta} \mathbb{D}^{\alpha} \sigma_{A}(x, \xi)\right\|_{o p} \leq C_{\alpha, \beta}\langle\xi\rangle^{-|\alpha|}
$$

for all multi-indices α, β with $|\alpha| \leq \varkappa$ and $|\beta| \leq l$, for all $x \in G$ and $[\xi] \in \widehat{G}$. Then the operator A is bounded on $L^{p}(G)$.
3. Discussion. 1. The conditions are needed for the week type $(1,1)$ property. Interpolation allows to reduce assumptions on the number of differences for L^{p}-boundedness. The result generalises the corresponding statements in the case of the group $\mathrm{SU}(2)$ in [1], 2], also presented in [3].
2. Examples similar to (7) can be given for arbitrary compact Lie groups. The assumptions of Theorem 2 concerning the numbers of difference operators can be relaxed to the same as those in Theorem 1 .
3. If the operator $A \in \Psi^{0}(G)$ is the usual pseudo-differential operator of Hörmander type of order 0 on G (i.e. in all local coordinate it belongs to Hörmander class $\Psi^{0}\left(\mathbb{R}^{n}\right)$), it was shown in [7] the estimates (4) hold for all α, β. The converse is also true. Namely, if estimates (4) hold for all α, β, then $A \in \Psi^{0}(G)$, cf. 8].
4. Noncommutative matrix quantisation (3)-(4) has a full symbolic calculus (compositions, adjoints, parametrix, etc.), which have been established in the monograph [7].
5. On $\operatorname{SU}(2)$ the operators corresponding to our difference operators but defined explicitly in terms of the Clebsch-Gordan coefficients have been used in [2, 3]. The general definition (5), the main tool in the present investigation, has been introduced and analysed in [7] and [8].

References

[1] R. Coifman and M. de Guzman, Rev. Un. Mat. Argentina, 25 (1970), 137-143.
[2] R. Coifman and G. Weiss, Rev. Un. Mat. Argentina, 25 (1970), 145-166.
[3] R. Coifman and G. Weiss, Analyse Harmonique Non-Commutative sur Certains Espaces Homogenes, Springer, 1971.
[4] L. Hörmander, Acta Math., 104 (1960), 93-140.
[5] S. G. Mihlin, Dokl. Akad. Nauk SSSR, 109 (1956), 701-703.
[6] S. G. Mihlin, Vestnik Leningrad. Univ. Ser. Mat. Meh. Astr., 12 (1957), 143-155.
[7] M. Ruzhansky and V. Turunen, Pseudo-differential operators and symmetries, Birkhäuser, 2010.
[8] M. Ruzhansky, V. Turunen and J. Wirth, preprint, arXiv:1004.4396.
[9] M. Ruzhansky and J. Wirth, preprint, arXiv:1102.3988.
M. V. Ruzhansky, Imperial College London, ruzh@ic.ac.uk
J. Wirth, University of Stuttgart, jens.wirth@mathematik.uni-stuttgart.de

[^0]: *The research was supported by the EPSRC grant EP/G007233/1.
 ${ }^{1}$ Keywords: mutipliers, pseudo-differential operators, Lie groups

[^1]: ${ }^{2}$ The operator A is said to be of weak type $(1,1)$ if there exists a constant $C>0$ such that for all $\lambda>0$ and $u \in L^{1}(G)$ the inequality $\mu\{x \in G:|A u(x)|>\lambda\} \leq C\|u\|_{L^{1}(G)} / \lambda$ holds true, where μ is the Haar measure on G.
 ${ }^{3}$ Here $W^{p, r}(G)$ stands for the Sobolev space consisting of all distributions f such that ($I-$ $\mathscr{L})^{r / 2} f \in L^{p}(G)$, where \mathscr{L} is a Laplacian (Laplace-Betrami operator, Casimir element) on G.

[^2]: ${ }^{4}$ The class op $\mathscr{S}_{\frac{1}{2}}^{-1}\left(\mathbb{S}^{3}\right)$ is defined as the class of operators with symbols σ_{A} satisfying the inequalities $\left\|\mathbb{D}^{\alpha} \sigma_{A}(\xi)\right\|_{o p} \leq C_{\alpha}\langle\xi\rangle^{-1-|\alpha| / 2}$.

