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ABSTRACT

In manufacturing, a single batch server can
often group a number of customers that re-
quire the same type of service. In this paper,
a shared queue without customer reordering
is used in order to reduce the variability of
throughput time of material throughout the
manufacturing process which guarantees a
global First-Come-First-Served (FCFS) ser-
vice discipline. This is a significant difference
with the more common polling systems where
each type of customer has a dedicated queue.
The batch server in this paper has a variable
service capacity that depends on the classes
of the customers in the queue. This paper ex-
tends previous work by considering a general
number of N customer classes. During the
analysis, we focus on the system occupancy
of this system at random slot boundaries.

INTRODUCTION

Customer differentiation has been studied
mostly in the context of polling systems, for
instance by Boxma et al. (2008) , Goswami

et al. (2006), Dorsman et al. (2012) or Fowler
et al. (2002). These types of models use a
different queue for each class of customer.
However, this is not always feasible because a
more complicated structure is needed to filter
the arrivals which increases the operational
cost of the system. In this paper, we use a
single shared queue for all customer classes
and there is no reordering of customers al-
lowed. This results in a global FCFS ser-
vice discipline which also ensures a consistent
throughput time flow of products throughout
the manufacturing process. A consistent flow
can be a system requirement in manufactur-
ing for accurately predicting the delay un-
til order completion. A global FCFS service
discipline can also be used in telecommunica-
tions where strict fairness rules are required.
This is described in more detail by, for in-
stance, Avi-Itzhak and Levy (2004).

The previously mentioned papers on polling
systems also incorporated batch service but
they assumed the service capacity to be con-
stant. We will look at a batch server with a
stochastic capacity. Examples of these types
of models can be found in Chaudhry and
Chang (2004), Sikdar and Samanta (2016) or
Pradhan et al. (2015). All these examples
have in common that the service capacity is
independent of the state of the system and
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the customers in the queue. In Germs and
Foreest (2013), the authors looked at a sys-
tem where many of the parameters such as
the service capacity and service time are de-
pendent on the number of waiting customers.

The batch server in this paper is capable of
grouping all customers of the same class but
only up to the first customer of another class
due to the lack of customer reordering in the
shared queue. This results in a stochastic ser-
vice capacity that depends on the classes of
the waiting customers. Since the server can
group only same-class customers, the length
of such a sequence will have a key impact
on the performance of this system. For this
reason, we incorporate a tendency for same-
class clustering in the arrival process which
has been studied before for the case of two
classes and without batch service in, for in-
stance, Maertens et al. (2012). In manufac-
turing, this tendency often occurs due to sort-
ing the schedule over short intervals resulting
in correlation between the classes of consec-
utive customers.

In Baetens et al. (2016), we looked at the sys-
tem occupancy of a system that combines the
previously described variable capacity batch
server and 2-class arrival process with clus-
tering. The delay of this model has been
studied in Baetens et al. (2018). The main
contribution of our paper is extending previ-
ous work that only looked at arrival processes
with 2 classes to a more generic case with N
different customer classes which significantly
alters the analysis. An overview of the anal-
ysed system is shown in Figure 1. The fo-
cus of the paper is the probability generat-
ing function (pgf) of the system occupancy
at random slot boundaries. Differentiating
between N customer classes changes the be-
haviour of the system since the alternation
of customer classes is no longer guaranteed
which significantly increases the complexity.
An important part of the analysis is the proof
that the denominator of the pgf of the system
occupancy has N zeroes inside the unit circle
which allows us to find a unique solution for
all unknowns we introduced during the anal-
ysis.
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Figure 1: Overview of the system

We first give a more detailed description of
the discrete-time queueing system. During
the analysis of this system, we focus on the
stability condition and the system occupancy
at random slot boundaries. Afterwards, we
present a numerical example in order to look
at the impact of variance in the arrival pro-
cess, and finish with drawing some conclu-
sions.

MODEL DESCRIPTION

We start by looking at the arrival process
of the discrete-time queueing system being
analysed. The number of arrivals in consecu-
tive slots is independent and identically dis-
tributed and the total number of arrivals in a
single slot follows a generic distribution with
the probability mass function (pmf) e(n) and
generating function E(z) with a mean arrival
rate of λ = E′(1). We distinguish N differ-
ent customer classes in the arrival stream of
packets. In order to model the tendency for
clustering in the arrival process, we introduce
correlation between the classes of consecutive
customers by using the transition matrix σ
given by

σ =

σ1,1 · · · σN,1
... σi,j · · ·

σ1,N · · · σN,N

 ,

where σi,j is the probability that the class of
a random customer is of class j given that its
predecessor is of class i. When σi,i is larger
than the probability that a random customer
belongs to class i, then the expected length
of a sequence of class i customers is larger



than if there would be no correlation between
consecutive customers which results in a ten-
dency for clustering of class i customers.

As mentioned earlier, we use a single shared
queue for customers of all classes and do not
allow reordering of customers in this queue.
The result of these restrictions is a global
FCFS-service discipline. An advantage of us-
ing a shared queue is that the complexity
of the system is lower than with dedicated
queues resulting in a reduced cost. A disad-
vantage of the decreased complexity is that
no optimizing of the arrival stream is possi-
ble, generally resulting in a decreased perfor-
mance.

The last part of the model is the service pro-
cess. The system has a single batch server
that can take all same-class customers that
are waiting at the head of the queue. We
place no limit on the maximum service capac-
ity but in practice the service capacity is lim-
ited by the length of a sequence of same-class
customers, which follows a geometric distri-
bution with parameter σi,i. This means that
the degree of clustering, determined by the
probability σi,i will play an important role
in the performance of the system. The ser-
vice time of a batch of class i customers does
not depend on the size of the batch, nor on
the class of the customers in it, and is always
equal to a single slot.

ANALYSIS

During the analysis, we will first give the sys-
tem equations that capture the behaviour of
the system at random slot boundaries. Then
we will look at the stability condition by look-
ing at a saturated system. At the end of the
analysis, we will obtain a closed-form expres-
sion for the steady-state probability generat-
ing function of the system occupancy at ran-
dom slot boundaries.

System Equations

In order to find the equations that capture
the behaviour of the system, we will first de-
fine three random variables uk, tk and ck.

The random variable uk represents the sys-
tem occupancy at the k-th slot boundary. Be-
cause the server only groups customers that
belong to the same class, we can define the
type or class of a batch as the class of the
customers in it. The class of the most re-
cently initiated batch is denoted by tk. This
corresponds with the class of the batch cur-
rently being processed if uk > 0 or the pre-
vious batch if uk = 0. Lastly, the variable
ck corresponds to the number of customers
in service during slot k which follows a ge-
ometric distribution with parameter σi,i for
a batch of class i customers limited by the
system occupancy.

We can distinguish three cases in the system
equations. The first case occurs when either
the server is idle in the k-th slot or all cus-
tomers in the system are in service, uk = ck,
which results in an empty queue. If there
were also no arrivals during slot k, then the
system will be idle in slot k+1 and tk+1 = tk.
Otherwise, if there was at least one arrival
during slot k, then a new service will be ini-
tiated and the class of the batch will be deter-
mined by the class of the first arrival and the
system occupancy will be equal to the total
number of arrivals during the k-th slot. Since
the single server can only group customers
belonging to the same class, the service ca-
pacity ck+1 follows a geometric distribution
limited by the number of customers in the
system. Lastly, when not all customers in the
system at the k-th slot boundary belonged to
the same class or ck < uk then there will be
at least one customer left behind in the queue
at the next slot boundary which means a new
service can be initiated and the class of the
customers in this batch cannot be the same
as the previous batch. Otherwise the cus-
tomer(s) at the head of the queue would also
have been processed in the k-th slot.

If we now assume that tk = i, we obtain the



following system equations

(uk+1, tk+1, ck+1) =

(0, i, 0) if uk = ck & ek = 0 ,

(ek, Ti,k,min(G(tk+1), ek)

if uk = ck & ek > 0 ,

(uk − ck + ek, T
′
i,k,min(G(tk+1), uk+1))

if 0 < ck < uk ,

(1)

where Ti,k ∈ {1, . . . , N} is class j with prob-
ability σi,j , T

′
i,k ∈ {1, . . . , N}\{i} is of class

j with probability σi,j/(1 − σi,i) and G(i) is
a geometrically distributed random variable
with parameter σi,i.

Stability Condition

In order to obtain a condition under which
the system is stable, we will look at a satu-
rated system. That is a system where there
are always more than enough waiting cus-
tomers so that the system is never idle and
the service capacity is not limited by the
number of waiting customers. More details
on this method can be found in Baccelli and
Foss (1995). With this assumption, the sys-
tem equations of Eq. are reduced to the last
line since 0 < ck < uk always holds true. If
we denote the steady-state probability that a
random batch contains class i customers by
Pr[t = i], then by using the definition

[σ′]i,j :=

{
0 if i = j,
σi,j

1−σi,i
otherwise ,

where i and j are respectively the row and
column indices, we obtain the following equa-
tions for these probabilities

Pr[t = 1]
Pr[t = 2]

...
Pr[t = N ]

 = σ′


Pr[t = 1]
Pr[t = 2]

...
Pr[t = N ]

 .

We obtain the probability that a random
batch contains class i customers by solv-
ing this set of N equations with the addi-

tional equation for the sum of the probabili-

ties
N∑
i=1

Pr[t = i] = 1.

The stability condition dictates that the
mean number of customers arriving in a slot,
defined in the model description as λ, must be
smaller than the mean number of customer
leaving. Since the size of a sequence of class
i customers follows a geometric distribution
with the parameter σi,i and expected length
of 1

1−σi,i
customers, the system will only be

stable if and only if the following condition
holds

λ <

N∑
i=1

Pr[t = i]
1

1− σi,i
. (2)

System Occupancy

As mentioned earlier, we will focus on obtain-
ing the steady-state pgf of the system occu-
pancy at random slot boundaries. The first
step is to find the probabilities that the sys-
tem is idle in a random slot and the most
recently initiated batch contained class i cus-
tomers, denoted by UI,i. Then we will cal-
culate the partial pgfs Ui(z), with the cor-
responding pmf ui(n) = limk→∞ Pr[uk =
n, tk = i], of the system occupancy at random
slot boundaries on which the server initiated
a batch of class i customers. The probabili-
ties UI,i can be calculated by using the first
case in Eq. (1). We obtain that

UI,i =UI,iE(0) + E(0)

∞∑
m=1

ui(m)σm−1i,i

UI,i =
E(0)

1− E(0)

Ui(σi,i)

σi,i
. (3)

The partial pgfs Ui(z) =
∑∞
m=1 ui(m)zm

(1 ≤ i ≤ N) of the system occupancy at
random slot boundaries in which a batch of
class i customers is initiated, are obtained by
using the system equations that lead to a ser-
vice initiation. These system equations cor-
respond with the second and third case of Eq.



(1), resulting in

Ui(z) =

N∑
j=1

lim
k→∞

σj,iE[zek |uk = ck, ek > 0,

tk = j, tk+1 = i] +
∑
j 6=i

lim
k→∞

σj,i
1− σj,j

· E[zuk+1 |0 < ck < uk, tk = j, tk+1 = i] .

Since the service times of classes of all batches
are single slots, this leads to

Ui(z) =

N∑
j=1

UI,j(E(z)− E(0))σj,i

+

N∑
j=1

Uj(σj,j)

σj,j
(E(z)− E(0))σj,i

+
∑
j 6=i

∞∑
m=1

m−1∑
n=1

uj(m)σn−1j,j zm−nE(z)σj,i

=

N∑
j=1

σj,iUj(σj,j)

σj,j

E(z)− E(0)

1− E(0)

+ σj,iE(z)
∑
j 6=i

zUj(σj,j)− σj,jUj(z)
σj,j(σj,j − z)

. (4)

Each class i has such an equation, we obtain
the following matrix equation

[A]i,j :=

{
1 if i = j,
σj,iE(z)
σj,j−z otherwise ,

A·

U1(z)
...

UN (z)

 =

B1(z)
...

BN (z)

 ,

where i and j respectively correspond with
the class of the new and previous service, and
Bi(z) is equal to

Bi(z) :=

N∑
j=1

σj,iUj(σj,j)

σj,j

E(z)− E(0)

1− E(0)

+
∑
j 6=i

zσj,iE(z)

σj,j − z
Uj(σj,j)

σj,j
.

At this point, we have a set ofN equations for
the N partial pgfs Ui(z) which allows us to

find a unique expression for each Ui(z). By
summing all partial pgfs Ui(z) and the idle
probabilities in Eq. (3), we obtain the steady-
state pgf U(z) of the system occupancy at
random slot boundaries

U(z) =

N∑
i=1

UI,i +

N∑
i=1

Ui(z) .

From Eq. (3) and (4), it is clear that there are
still N remaining unknowns, namely Ui(σi,i)
for 1 ≤ i ≤ N , in this expression. The de-
nominator DN (z) of the pgf U(z) of the sys-
tem occupancy at random slot boundaries is
equal to the determinant ofAmultiplied with

the term
N∏
i=1

(z−σi,i) in order to eliminate all

denominators in Bi(z). Due to the proper-
ties of the determinant, this is equal to mul-
tiplying each column j with (z− σj,j), which
results in

[D(z)]i,j =

{
z − σi,i if i = j,

−σj,iE(z) otherwise ,

DN (z) = |D(z)| .

In the last part of the analysis, we will prove
that this denominator has N zeroes inside
the circle |z| = 1 + ε. These N zeroes will
be used to obtain a set of N equations that
will allow us to find the N remaining un-
knowns Ui(σi,i), for 1 ≤ i ≤ N . This proof
is based on work done by Chaudhry et al.
(2016) where a similar result was obtained
by using induction on the size of the matrix.
For the case that N is equal to 1, we obtain
(z − σ1,1) for the denominator which clearly
has a single zero inside the unit circle. In the
next part, we assume that DN−1(z) has N−1
zeroes inside or on the unit circle and try to
use this assumption to prove that DN (z) has
N zeroes in the same area. We first write
DN (z) as

DN (z) =(z − σN,N )DN−1(z)

−
N−1∑
i=1

σN,iE(z)CN,i(z) ,

where CN,i(z) corresponds with the cofactor
of the element at row i and column N . By



substituting |yN,i(z)| = |CN,i(z)|
|DN−1(z)| , we obtain∣∣∣∣DN (z)− (z − σN,N )DN−1(z)

(z − σN,N )DN−1(z)

∣∣∣∣
=

∣∣∣∣∣∣∣∣
N−1∑
i=1

σN,iE(z)CN,i(z)

(z − σN,N )DN−1(z)

∣∣∣∣∣∣∣∣
≤

N−1∑
i=1

σN,i|E(z)||yN,i(z)|

|z − σN,N |
, (5)

We can also prove that the following inequal-
ity holds for 1 ≤ i ≤ N

|z − σi,i| >|
N∑

j=1,j 6=i

σi,jE(z)| . (6)

By using the Taylor expansion, the left-hand
and right-hand side of the inequality can be
approximated respectively by

|z − σi,i| ≥1− σi,i + ε

|
N∑

j=1,j 6=i

σi,jE(z)| ≤(1 + λε+O(ε2))(1− σi,i) .

By trying to prove the opposite of Eq. (6), we
get a result that violates the stability condi-
tion of Eq. (2) which proves that the inequal-
ity holds on the circle |z| = 1 + ε. By com-
bining Eq. (6) with the observation that the
modulus of each entry of DN (z) is less than
1, we see that the entries satisfy Hadamard’s
condition on the circle |z| = 1 + ε. This im-
plies that |yN,i(z)| < 1 for 1 ≤ i < N which,
based on Eq. (5), results in the following in-
equality∣∣∣∣DN (z)− (z − σN,N )DN−1(z)

(z − σN,N )DN−1(z)

∣∣∣∣
<

N−1∑
i=1

σN,i|E(z)|

|z − σN,N |
< 1 ,

where we again used Eq. (6) that indicates
that the modulus of the diagonal elements
is larger than the sum of the modulus of
the remaining elements on the row. This

means that |f(z)| > |g(z)|, where f(z) =
(z − σN,N )DN−1(z) and g(z) = DN (z) −
(z − σN,N )DN−1(z). Rouché’s theorem, see
Adan et al. (2006), then indicates that f(z)
and f(z) + g(z) have the same number of
zeroes inside the unit circle |z| = 1. Since
we assumed at the start of the proof that
DN−1(z) has N − 1 zeroes and (z − σN,N )
clearly has a single zero in the same area,
DN (z) = f(z) + g(z) has N zeroes. These
N zeroes, assuming they are all distinct, al-
low us to form a set of N equations to find a
unique solution for the remaining unknowns.
However, if not all zeroes are distinct, then
it is an indication of a high degree of sym-
metry between two or more classes in the ar-
rival process. This symmetry can be used to
complete the set of equations necessary for
finding a unique solution.

NUMERICAL EXAMPLES

During our discussion of some numerical ex-
amples, we will focus on the impact of vari-
ance in the arrival process. For this reason,
we use an arrival process that is the weighted
sum of two geometrics with the following pgf

E(z) =
a

1 + λ
2a (1− z)

+
1− a

1 + λ
2(1−a) (1− z)

,

where the parameter a is chosen so that the
variance in the arrival process with parame-
ter a is equal to σ2

a = νσ2
0.5 where σ2

0.5 is the
variance of the geometric distribution with
mean λ. In our examples we look at three
customer classes, N = 3, and the matrix σ
that contains the transition probabilities, is
given by

σ =

0.7 0.2 0.1
0.1 0.8 0.1
0.2 0.2 0.6

 .

In Figure 2 and 3, we look at the impact of
variance in the arrival process on the mean
system occupancy and the idle probability
(which is the sum of all UI,i with 1 ≤ i ≤ N)
by changing the parameter ν. The parame-
ter ν is used to compare the variance in the
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Figure 2: Impact of increased variance in
the arrival process on the mean system oc-
cupancy

arrival process to the variance of a normal
geometric distribution. In Figure 2, we first
notice that an increased variance in the ar-
rival process significantly increases the mean
system occupancy. One important note is
that the impact of higher variance becomes
stronger when the arrival rate is higher. This
observation is however not true for the prob-
ability that the server is idle in a random slot.
In Figure 3, we notice that although a higher
variance always increases the probability that
the server is idle, a point is rapidly reached
at which increasing the variance further only
leads to a negligible change in the idle proba-
bility. We also observe that the line for ν = 1
(minimal variance) first decreases faster than
the other lines but for higher arrival rates,
the lines again move closer together. This
means that there is an arrival rate at which
the impact of the degree of variance in the
arrival process reaches a maximum value and
increasing the arrival rate does not further
increase this impact which is different from
what we observed for the mean system occu-
pancy in Figure 2.
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Figure 3: Impact of increased variance in the
arrival process on the idle probability

CONCLUSIONS

In this paper, we analysed a multi-class sys-
tem with a batch server that has a service
capacity that depends on the content of the
queue. More specific, the batch server can
group all waiting customers at the head of
the queue as long as they belong to the same
class. Due to the way customers are grouped
together, we also incorporated a method to
include clustering of same-class customers in
the arrival stream. During the analysis, we
looked at the condition under which the sys-
tem is stable and we obtained the steady-
state pgf of the system occupancy at ran-
dom slot boundaries. In the numerical ex-
amples, we focused on the impact of variance
in the arrival process on the idle probabil-
ity and mean system occupancy. We noticed
that an increase of the variance in the arrival
process always leads to a significant increase
of the mean system occupancy but that this
is not the case when we look at the idle prob-
ability. For this performance value, a point
is quickly reached at which further increasing
the variance in the arrival process has a neg-



ligible impact. The main extension that we
are working towards is to include a more com-
plex service process with class-dependent ser-
vice and switch-over times which would allow
us to more accurately model systems where
switching between types can take a long time,
for instance in manufacturing.
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