View metadata, citation and similar papers at core.ac.uk

CEUR-WS.org/Vol-2179/SSWS2018_paperl.pdf

-

P
brought to you by i CORE

provided by Ghent University Academic Bibliography

The Fundamentals of Semantic Versioned Querying

Ruben Taelmanl, Hideaki Takedaz, Miel Vander Sande!, Ruben Verborgh1

"IDLab, Department of Electronics and Information Systems, Ghent University — imec
ZNational Institute of Informatics, Sokendai University

Abstract. The domain of RDF versioning concerns itself with the storage of dif-
ferent versions of Linked Datasets. The ability of querying over these versions is
an active area of research, and allows for basic insights to be discovered, such as
tracking the evolution of certain things in datasets. Querying can however only
get you so far. In order to derive logical consequences from existing knowledge,
we need to be able to reason over this data, such as ontology-based inferencing.
In order to achieve this, we explore fundamental concepts on semantic querying
of versioned datasets using ontological knowledge. In this work, we present these
concepts as a semantic extension of the existing RDF versioning concepts that
focus on syntactical versioning. We remain general and assume that versions do
not necessarily follow a purely linear temporal relation. This work lays a founda-
tion for reasoning over RDF versions from a querying perspective, using which
RDF versioning storage, query and reasoning systems can be designed.

1. Introduction

RDF versioning has been an active area of research that looks into storage and
querying techniques for different versions of Linked Datasets. These versions do not
necessarily follow a purely linear temporal relation, as multiple different versions or
branches of versions could exist at the same time, as opposed to RDF streams [1].

One of the key benefits of RDF is its ability to encode semantics into the data
through the use of ontologies. This allows reasoners to interpret this data, and use this
encoded meaning to transform and infer knowledge. Reasoning within static RDF
data and temporal RDF streams are already well-established research domains. Rea-
soning over RDF versions is however still an underexplored domain. Some prelimi-
nary work has already been done in the domain of reasoning over RDF versions. In
one work for example, the calculation of semantic differences [2] between versions
has been investigated. In another work, reasoning with multi-version ontologies [3]
was investigated. These works only cover very specific parts of the reasoning de-
mands within RDF versioning.

For instance, given a versioned dataset, it is currently impossible with the existing
systems to efficiently find all versions in which a certain fact can be inferred. Further-
more, the domain of combining reasoning and querying —as is done in Ontology-
Based Data Access techniques [4, 5]— within the domain of RDF versioning remains
unexplored.

In this work, we introduce a general formalization of semantic versioned querying,
i.e., reasoning within RDF versioning from the querying perspective, For this, we ex-
tend the five foundational versioned query types [6] that were introduced to cover the

https://core.ac.uk/display/188642983?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.rubensworks.net/
http://www-kasm.nii.ac.jp/~takeda/
https://ruben.verborgh.org/
https://aic.ai.wu.ac.at/qadlod/docs/semantics16.pdf

retrieval demands within RDF versioning. We formalize concepts such as reasoning
within a single version, version differences, and different versions. Furthermore, we
present a prototypical implementation of a versioned RDF store that offers basic rule-
based reasoning capabilities at query-time. This prototype demonstrates the benefits
of semantic versioning, such as finding all versions in which a certain fact can be in-
ferred, and storage space reduction by inferring facts instead of materializing them
beforehand.

The aim of this work is to provide a foundation for the future research and develop-
ment of semantic versioned querying within RDF stores. This will lead to improve-
ments inside domains that require the semantic analysis on Linked Datasets, for ex-
ample for analyzing concept drift [7] or tracking diseases in biomedical datasets [8]
over time.

This article is structured as follows: In the next section, we discuss related work on
semantic versioned querying. In Section 3, we discuss the fundamental concepts on
RDF versioning. After that, in Section 4, we introduce new foundational semantic ver-
sioned query atoms. In Section 5, we present a proof-of-concept implementation of
these atoms with a preliminary evalution. Finally, we conclude in Section 6.

2. Related Work

Semantic versioned querying lies somewhere in between the domains of semantic
versioning, stream reasoning, and ontology-based data access. In this section, we dis-
cuss the related work in these domains.

2.1. Semantic Versioning

In the context of this paper, we consider semantic versioning to be the logical rea-
soning over a collection of dataset versions and ontologies. On the one hand, this
concerns the management of multiple versions of datasets [6,9, 10, 11], and on the
other hand, the reasoning over these versions [2, 3].

A lot of research has been done in the area of ontology evolution [12], i.e., the
maintenance of ontologies with respect to domain or requirement changes. Some
works focus on the management and maintenance of multiple ontology versions [13],
while other look more into applying different ontology versions on datasets [2, 3]. As
we focus on reasoning with multiple dataset and ontology versions in this work, we
discuss the latter.

SemVersion [2] is a system that provides versioning for RDF ontologies. The au-
thors introduce the concept of a semantic diff that takes the semantics of an ontology
language into account when calculating the difference between two dataset versions.
This concept will be explained in more detail in Section 3, after which we generalize
it in Section 4 to enable versioning over both the dataset and the ontology.

Huang et al. [3] propose a reasoning framework over a versioned ontology, which
is based on a temporal logic approach. They provide a prototypical implementation of
their framework as the MORE system. The difference with our approach is that we

https://aic.ai.wu.ac.at/qadlod/docs/semantics16.pdf

assume non-temporal versions, where the relation between versions is not necessarily
linear.

2.2. Stream Processing

Within the domain of RDF Stream Processing (RSP) [14], stream reasoning is de-
fined as “the logical reasoning in real time on gigantic and inevitably noisy data
streams in order to support the decision process of extremely large numbers of con-
current users” [15]. RSP typically uses the concept of windowing as a scalability mea-
sure to select subsets of data streams to perform reasoning over. This windowing
makes RSP similar to RDF versioning, as not only a single dataset has to be taken into
account, but multiple different parts or versions of the dataset needs to be processed.
Next to this similarity, there are significant differences between the domains of
streaming and versioning which elicits a distinction between them. For instance,
stream elements are temporally identified and sorted, while versions are not necessari-
ly temporal, such as hash-based identifiers in version control systems (such as
Git [16]). Furthermore, streams typically have a high velocity, while versions evolve
at a lower rate. For example, DBpedia [17] publishes a new version at a yearly fre-
quency, and the RDF version of npm [18] is being generated every day. Due to these
significant differences regarding ordering and velocity, we see the domains of stream-
ing and versioning as distinct, but partially overlapping domains.

2.3. Ontology-Based Data Access

Ontology-Based Data Access (OBDA) [19] is a technique that offers a semantic
query interface on top of a non-semantic datasource using semantic mappings that are
applied at query-time. Such mappings can for example be defined between RDF and
SQL, using OWL ontologies. These datasources are typically incomplete, on top of
which semantic mappings can infer additional knowledge through reasoning. In this
work, we are mainly concerned with the inference aspect at query-time, which can be
referred to as Ontology-Based Query Answering (OBQA) [20]. The SPARQL entail-
ment regimes specification [21] defines several entailment regimes that define how
such inferences can be achieved at query-time. At the time of writing, no systems ex-
ist yet that can offer OBQA on top of versioned RDF datasets. Those systems would
require new querying capabilities specific to versioning, which will be introduced in
the next section.

http://git-scm.com/
https://linkedsoftwaredependencies.org/articles/describing-experiments/
https://www.w3.org/TR/2013/REC-sparql11-entailment-20130321/

3. Fundamentals

In this section, we introduce the fundamental concepts on RDF archiving and the
semantic diff.

3.1. RDF Archiving

An RDF archive [6] has been defined by Fernandez et al. as follows:

An RDF archive graph is a set of version-annotated triples, where a version-anno-

tated triple (s, p, 0):[i] is an RDF triple (s, p, 0) with a label i representing the ver-

sion in which this triple holds. The set of all RDF triples [22] is defined as (U U B)

x U x (U UB UL), where U, B, and L, respectively represent the disjoint, infinite
sets of URIs, blank nodes, and literals. Finally, an RDF version of an RDF archive

A at snapshot i is the RDF graph A(i) = {(s, p, 0)|(s, p, 0):[i] EA}.

For the remainder of this article, we use the shorthand notation 4; to refer to the
RDF version A(i).

To cover the retrieval demands in RDF archiving—also known as RDF versioning
—, five foundational query types were introduced [6], which are referred to as query
atoms. These query atoms are based on the RDF data model [22] and SPARQL query
language [23]. In these models, a triple pattern is defined as (U U V) x (U U V) x (U
UL U V), with V being the infinite set of variables. A set of triple patterns is called a
Basic Graph Pattern, which forms the basis of a SPARQL query. The evaluation of a
SPARQL query Q on an RDF graph G containing RDF triples, produces a bag of so-
lution mappings //O]] ;.

The five foundational query atoms introduced by Fernandez et al. are the following:

1. Version materialization (VM) retrieves data using a query Q targeted at a
single version A4;.

Formally: VM(Q, 4;) = [[Q]]Ai'

Example: Which books were present in the library yesterday?
2. Delta materialization (DM) retrieves query Q’s result change sets between
two versions 4; and 4;.

Formally: DM(Q, 4; A)=(Q", Q7). With Q© = [[Q]] 4, | [[Q]]4; and Q~ =
19114,V [[9]] 4,

Example: Which books were returned or taken from the library between yester-
day and now?

3. Version query (VQ) annotates query Q’s results with the versions (of RDF
archive A) in which they are valid.

Formally: VO(Q, A) = {(Q, W) | W ={A(1) | Q=[[Q]] 4. | EN} 1 Q# O}
Example: At what times was book X present in the library?

4. Cross-version join (CV) joins the results of two queries (Q/ and O2) between
versions 4; and 4;.

Formally: VM(Q1, 4;) XVM(02, 4)).

Example: What books were present in the library yesterday and today?

https://aic.ai.wu.ac.at/qadlod/docs/semantics16.pdf
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://aic.ai.wu.ac.at/qadlod/docs/semantics16.pdf
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/

5. Change materialization (CM) returns a list of versions in which a given
query Q produces consecutively different results.

Formally: {(i, j) | i <j, DM(Q, A(i), A(j)) =(QF, Q7), QT UQ +0 2kEN:i
<k<j}

Example: At what times was book X returned or taken from the library?

3.2. Semantic Diff

Volkel et al. introduce the concept of a semantic diff [2] that takes the semantics of
an ontology language into account when calculating the diff, which is not the case for
a regular structural diff, which calculates which triples have been added and which
ones have been removed. As an example, consider the dataset with two versions from
Listing 1. The typical, structural diff just takes the difference between these two ver-
sions at triple level, without taking into account the meaning of the triples. The struc-
tural diff of this example can be found in Listing 2. A semantic diff on the other hand,
takes into account the meaning of the data. For this example, we know that cat is a
subclass of animal. Therefore, the removal of Bob being an animal does not actually
take place, because it can still be inferred in version 1, as shown in Listing 3.

Version 0:
ex:Bob a ex:Animal.
ex:Bob foaf:name "Bob".

Version 1:
ex:Bob a ex:Cat.

ex:Bob foaf:name "Bob".

Language:
ex:Cat rdf:subClassOf ex:Animal.

Listing 1: A simple example dataset with two versions about Bob the cat, with a
separate ontology language.

Removed:
ex:Bob a ex:Animal.

Added:
ex:Bob a ex:Cat.

Listing 2: The structural diff between the two versions in Listing 1.

Removed:
Added:
ex:Bob a ex:Cat.

Listing 3: The semantic diff between the two versions in Listing 1.

The semantic closure s)(4) of a set of RDF triples 4 is the set of all statements that
can be concluded from the statements in 4 under the semantics of the RDF-based on-
tology language /. A semantic diff di(A,B) of two sets of RDF triples (4 and B) is for-
mally defined by Volkel et al. as dj(4,B) = (+;(4,B),—(A,B)), with +;(4, B) = sy(B) \
(s)(4) N sy(B)) and —y(4, B) = s5)(4) | (s)(4) N 5/(B)).

4. Semantic Versioned Query Atoms

As discussed in Section 3, there exist five foundational query atoms for querying
RDF archives. In this section, we introduce semantic extensions of these query atoms,
similar to the structural diff to semantic diff extension introduced by Vdlkel et al.
More concretely, we will extend these five query atoms with parameters for /anguage
versioning, instead of only dataset versioning.

4.1. Versioned Semantic Closure

To remain in line with the definitions on RDF archiving as listed in Section 3, we
extend the semantic closure definition by Vdlkel et al. as follows: The versioned se-
mantic closure s(4;, L) of a version V; is the set of all triples that can be inferred from
the triples in A; under the semantics of the RDF-based ontology language L;. In this
definition, we consider the RDF-based ontology language / to represent an RDF ar-
chive as well, for which we use the notation L; to refer to the RDF version j of the ar-
chive L.

4.2. Query Atoms

In this section, we describe the semantic extensions of the five foundational query
atoms for querying RDF archives. The atoms that apply to multiple versions (VQ and
CM) are subcategorized to handle the different combinations of single and cross-ver-
sion dataset and ontology versions.

Each extension is described formally, and an example of its usage is given. All ex-
amples apply to the use case of a cat shelter that makes use of an evolving ontology of
cat species.

The semantic extension of the five versioned query atoms are defined as follows:

1. Semantic version materialization (S-VM) retrieves data using a query Q tar-
geted at a single version 4; in a single ontology version L;.

Formally: S-VM(Q, 4; L)) = [[Q]]s(Ai, L)

Example: Which African wild cats were present in the shelter yesterday accord-
ing to last year's classification?

2. Semantic delta materialization (S-DM) retrieves query Q’s result change
sets between two versions 4; and 4; respectively using ontology version Lj and
L,

Formally: S-DM(Q, 4; 4, Ly, L) = (27, Q7). With Q" = [[O]]yu. 1,) |

(1915, 1) and @ = [[O]]su; L,y [[O1] 54, 1

Example: Which cats that were present in the shelter since ten years ago became

a different species over the last year?

3. Semantic version query (S-VQ)
1. Semantic intermodal and interontological version query (MOS-VQ)
annotates query Q’s results with the versions of RDF archive 4 and ontol-
ogy L in which they are valid.
Formally: S-VO(Q, 4, L) = {(2, V) | V = {(4;, L) | Q=[[Ql (s, 1y i-] €
N} A Q+)}
Example: At what points in time were there African wild cats in the schelter,
and according to the classification of what time?
2. Semantic intermodal version query (MS-VQ) annotates query Q’s re-
sults with the versions of RDF archive 4 in which they are valid according
to ontology version L;.
Formally: S-VO(0, 4, Ly) = {(2. V) | V = {4; | Q=[[O]]s(1, L)] EN} 2 2
3}
Example: At what points in time were there African wild cats in the
schelter?
3. Semantic interontological version query (OS-VQ) annotates query Q’s
results with the versions of ontology L in which they are valid within
dataset version A4;.

Formally: S-VO(Q, 4;, L) = (@, V) | V = {L; | @=[[0]]st4, 1y | EN} 2 Q
3}

Example: At what points in time were the cats that are currently in the shel-
ter ever African wild cats?

4. Semantic cross-version join (S-CV) joins the results of two queries (Q/ and
02) between versions 4; and 4; respectively using ontology version L and L;.
Formally: S-CV(Qy, O, Aj, Aj, Ly, L) = S-VM(Qy, A, Ly) XS-VM(O5, 4, Ly
Example: Which African wild cats were in the shelter yesterday (according to
last year’s classification) and the day before (according to the current
classification)?
5. Semantic change materialization (S-CM)
1. Semantic intermodal and interontological change materialization
(MOS-CM) returns a list of consecutive archive and ontology versions in
which a given query Q produces different results.
Formally: S-CV(Q, 4, L) = {(i,j, k, 1) | i <j, k<1, S-DM(Q, 4;, A}, Ly, L) =

QY Q) Q" UQ #0 3aEN:i<a<j AbEN: k<b<lI}

Example: A¢ what times and in which classification did Bob become an
African wild cat?

2. Semantic intermodal change materialization (MS-CM) returns a list
of consecutive archive versions in which a given query Q produces different
results between two ontology versions.

Formally: S-CV(Q, 4, Ly, L) = {(i, j) | i <j, S-DM(Q, 4; 4;, Ly, L) = (@,

Q) QTUQ #D JaEN:i<a<j FbEN:k<b<l}

Example: At what times did Bob become an African wild cat between last
year'’s and today s classification?

3. Semantic interontological change materialization (MS-CM) returns a
list of consecutive language versions in which a given query O produces
different results between two dataset versions.

Formally: S-CV(Q, 4; A; L) = {(k,) | k <1, S-DM(Q, 4; 4;, Ly, L) = (27,

Q) QTUQ #D JaEN:i<a<j AbEN:k<b<l}
Example: In which classification versions did Bob become an African wild
cat between yesterday and today?

4.3. Query Atom Derivations

Based on the semantic query atom extensions that were introduced in last section,
we can derive subtypes for the semantic delta materialisation and semantic cross-ver-
sion join. These subtypes can be used as simplified form of the foundational semantic
query atoms.
Semantic delta materialisation The definition of semantic delta materialization (S-
DM) is similar to, but more generic than the semantic diff definition by Volkel et
al [2]. While the semantic diff only allows versioning on the dataset, our S-DM defin-
ition also enables versioning of the ontology. Similarly, Huang et al. [3] introduce a
diff that enables versioning of the ontology, but not on the dataset. As such, our se-
mantic delta materialization definition can be seen as a combination of both. Further-
more, we can express these diff methods in terms of S-DM as follows:
¢ Intermodal semantic delta materialisation (MS-DM) is semantic delta materi-
alization of different versions under the same ontology. This corresponds to the
diff method of Volkel et al. [2].
Formally: MS-DM(Q, 4;, 4;, Ly) = S-DM(Q, 4;, 4, Ly, Ly).

¢ Interontological semantic delta materialisation (OS-DM) is semantic delta
materialization of the same version under different ontologies. This corresponds
to the diff method of Huang et al. [3].
Formally: OS-DM(Q, A;, Ly, Ly) = S-DM(Q, A;, A;, Ly, Ly).

Semantic cross-version join Similarly, we can define the following derivations of
the semantic cross-version join:
¢ Intermodal semantic cross-version join (MS-CV) is semantic cross-version
join for different versions under the same ontology. Formally, MS-CV(Q;, O», 4,
Aj, L) = S-CV(Qy, Oy A;, Aj, Ly, Ly).
¢ Interontological semantic cross-version join (OS-CV) is semantic cross-ver-
sion join of the same version under different ontologies. Formally, OS-CV(Q,,

O Ajy Ly, Ly = S-CV(Qy, O, 4; 4, Ly, L.

5. Proof of Concept

In order to provide a baseline of the proposed semantic versioned querying atoms,
we provide a prototypical implementation of a subset of the semantic versioned query
atoms that were introduced in Section 4. In this section, we describe this system, fol-
lowed by an evaluation description, and a presentation of the results.

5.1. System

Our prototype is implemented as an additional semantic layer on top of
OSTRICH [9], which is a versioned RDF triple store that offers syntactical version-
ing. As OSTRICH only supports VM, DM and VQ triple pattern queries at the time of
writing, we limit our implementation to the semantic extension of these atoms, name-
ly, S-VM, S-DM and S-VQ triple pattern queries.

As can be seen in Fig. 1, our semantic layer internally uses two OSTRICH stores,
one for the versioned dataset, and one for the versioned language.

As a backwards rule-based reasoner, this semantic layer infers additional triples for
each S-VM, S-DM or S-VQ query. Rules can be provided in the Notation 3
syntax [24] at query time. It does this through the following steps:

1. Select applicable rules for the given triple pattern.
2. Query the dataset for the given triple pattern and version options.
3. Loop until set of inferred triples stops growing.
1. Determine rules that can infer new triples
2. Perform backwards reasoning with these rules by querying the dataset
and language for the given triple pattern and version options.
3. Add newly inferred triples to set of triples

S-VM S-DM S-va

d .l d d ! ;
s,p,0,v%,v 5,005 Ustarts Vend> Vstarts Vend 5P, 0

Rules

Data Language
OSTRICH Store OSTRICH Store

Fig. 1: Architecture overview of our semantic versioned querying layer on top of
OSTRICH. The required parameters for the three triple pattern-based queries are
indicated, with v/ indicating the version of the dataset, and W indicating the version of
the language.

https://rdfostrich.github.io/article-demo/
http://www.w3.org/DesignIssues/Notation3.html

The source code of this prototype can be found on GitHub (https.//github.com/rd-
fostrich/semantic-ostrich) and is available under the MIT license.

5.2. Evaluation

In order to evaluate the performance of our semantic layer, we executed several
queries with inferencing of rdfs:subClassOf relationships within the BEAR-B-
daily dataset from the BEAR benchmark [6]. The BEAR benchmark evaluates using
triple pattern queries, which form the basis of more expressive query evaluation.

To achieve this, we created a derived version of this BEAR-B-daily dataset where
we removed all rdf:type relationships from instances to classes that can be in-
ferred through rdfs: subClassOf relationships for each instance. The (44) triples
identifying the subclass relationships were stored in a single version inside the lan-
guage store. As the BEAR-B-daily dataset does not provide any versioning of the lan-
guage, our evaluation excludes versioning of the language.

As OSTRICH only supports VM, DM and VQ triple pattern queries, we only eval-
uate their respective semantic extension, always using the single language version.
For S-VM, we query the last version, for S-DM, we query between the first and last
version, and for S-VQ, we do an intermodal query using the single language version.

The source code of this evaluation can be found on GitHub (https://github.com/rd-
fostrich/semantic-ostrich/blob/master/evaluate.js).

5.3. Results

The original BEAR-B-daily dataset contains 48,914 unique triples in 88 dataset
versions, while the derived dataset contains 31,761 triples, which is a reduction of
35,07%.

Table 1, Table 2 and Table 3 respectively contain the evaluation results for the S-
VM, S-DM and S-VQ queries. The table columns indicate the following:

e Query: The subject of the triple pattern that is queried.

e Original: Execution time of the query against the original BEAR-B-daily dataset.

e Reduced: Execution of the query against the derived BEAR-B-daily dataset,

without inference from our semantic layer.

e [nferred: Execution of the query against the derived BEAR-B-daily dataset, with

inference using our semantic layer.

o [nference queries: The number of queries against the OSTRICH store that were

performed by the semantic layer.

o [nferred normalized: Inferred execution time divided by the number of inference

queries.

The results show that the backwards reasoner within our prototype requires almost
eight queries to the OSTRICH stores on average for this dataset. The queries to the
OSTRICH stores form the main bottleneck.

10

https://github.com/rdfostrich/semantic-ostrich
https://aic.ai.wu.ac.at/qadlod/docs/semantics16.pdf
https://github.com/rdfostrich/semantic-ostrich/blob/master/evaluate.js

Query Original Reduced Inferred Inference Inferred
queries normalized

dbr:Palazzo Parisio_(Valletta) 0.56 0.25 2.51 10 0.25
dbr:Singaporean_general election, 2015 0.47 0.21 2.26 10 0.23
dbr:What Do _You Mean? 0.63 0.22 1.76 9 0.20
dbr:Dancing_with_the Stars ... 0.58 0.23 1.55 6 0.26
dbr:Doctor Who_(series 9) 0.33 0.15 0.97 6 0.16
dbr:My Little Pony... 0.15 0.09 0.94 7 0.13
dbr:2015 0.26 0.12 0.89 6 0.15
Average 0.42 0.18 1.55 7.71 0.20

Table 1: Execution times in milliseconds for S-VM queries against the last dataset
version, using the first language version for an 7 S?? triple patterns.

Query Original Reduced Inferred Inference Inferred
queries normalized
dbr:Palazzo Parisio (Valletta) 0.45 0.21 3.32 10 0.33
dbr:Singaporean_general election, 2015 0.39 0.18 2.27 10 0.23
dbr:What Do _You Mean? 0.34 0.13 2.17 9 0.24
dbr:Dancing with_the Stars ... 0.40 0.20 1.06 6 0.18
dbr:Doctor Who_(series_9) 0.18 0.12 1.14 6 0.19
dbr:My _Little Pony... 0.12 0.11 247 7 0.35
dbr:2015 0.36 0.18 1.84 6 0.31
Average 0.32 0.16 2.04 7.71 0.26

Table 2: Execution times in milliseconds for S-DM queries between the first and last
dataset versions, both using the first language version for 7 S?? triple patterns.

11

Query Original Reduced Inferred Inference Inferred
queries normalized

dbr:Palazzo Parisio_(Valletta) 0.65 0.29 2.48 10 0.25
dbr:Singaporean_general election, 2015 0.83 0.28 2.16 10 0.22
dbr:What Do _You Mean? 0.58 0.17 1.24 9 0.14
dbr:Dancing_with_the Stars ... 0.43 0.27 0.96 6 0.16
dbr:Doctor Who_(series 9) 0.26 0.12 0.75 6 0.13
dbr:My Little Pony... 0.13 0.09 1.06 7 0.15
dbr:2015 0.24 0.10 1.17 6 0.20
Average 0.45 0.19 1.40 7.71 0.18

Table 3: Execution times in milliseconds for S-VQ queries for 7 S?? triple patterns.

6. Conclusions

In this work, we introduced fundamental concepts on how to evaluate semantic
queries over versioned Linked Datasets. For this, we extended existing structural ver-
sioned query atoms by coupling them with language versioning and reasoning.

Our wrapper-based prototypical implementation of these semantic extensions
shows that semantic querying, i.e., inference at runtime, is able to significantly reduce
storage requirements at the cost of an increase in query time. Together with that, it
also brings the additional benefit of being able to select the language version(s) for
each query, which would otherwise require dataset duplication when no semantic
querying layer is present.

As this is merely a wrapper-based prototype, inference is sub-optimal, and a lot of
room for improvement exist. In future work, we foresee improvements regarding the
runtime inference based on techniques from the world of OBDA. Furthermore, some
RDF stream reasoning techniques could potentially be generalized to work for ver-
sioned querying. Native implementations of semantic versioning engines could also
reduce the overhead of this wrapper-based approach.

The newly introduced foundational semantic versioned query atoms forms a basis
for future research and development of semantic versioned querying within RDF
stores, and will consequently enable enhanced analysis over multiple Linked Dataset
versions.

References

1. Della Valle, E., Ceri, S., Barbieri, D.F., Braga, D., Campi, A.: A first step towards
stream reasoning. In: Future Internet Symposium. pp. 72—81. Springer (2008).

2. Volkel, M., Groza, T.: SemVersion: An RDF-based ontology versioning system.
In: Proceedings of the IADIS international conference WWW/Internet. p. 44
(20006).

12

10.

11.

12.

13.

14.

15.

16.

17.

. Huang, Z., Stuckenschmidt, H.: Reasoning with multi-version ontologies: A tem-

poral logic approach. In: International Semantic Web Conference. pp. 398—412.
Springer (2005).

. Heymans, S., Ma, L., Anicic, D., Ma, Z., Steinmetz, N., Pan, Y., Mei, J., Fokoue,

A., Kalyanpur, A., Kershenbaum, A., others: Ontology reasoning with large data
repositories. In: Ontology Management. pp. 89—128. Springer (2008).

. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.:

Linking data to ontologies. In: Journal on data semantics X. pp. 133-173.
Springer (2008).

. Fernandez, J.D., Umbrich, J., Polleres, A., Knuth, M.: Evaluating Query and Stor-

age Strategies for RDF Archives. In: Proceedings of the 12th International Con-
ference on Semantic Systems. ACM (2016).

. Wang, S., Schlobach, S., Klein, M.: Concept drift and how to identify it. Web Se-

mantics: Science, Services and Agents on the World Wide Web. 9, 247-265
(2011).

. Afgan, E., Baker, D., Van den Beek, M., Blankenberg, D., Bouvier, D., Cech, M.,

Chilton, J., Clements, D., Coraor, N., Eberhard, C., others: The Galaxy platform
for accessible, reproducible and collaborative biomedical analyses: 2016 update.
Nucleic acids research. 44, W3—-W10 (2016).

. Taclman, R., Vander Sande, M., Verborgh, R.: OSTRICH: Versioned Random-Ac-

cess Triple Store. In: Proceedings of the 27th International Conference Compan-
ion on World Wide Web (2018).

Meimaris, M., Papastefanatos, G., Viglas, S., Stavrakas, Y., Pateritsas, C., Anag-
nostopoulos, I.: A Query Language for Multi-version Data Web Archives. Expert
Systems. 33, 383-404 (2016).

Neumann, T., Weikum, G.: x-RDF-3X: fast querying, high update rates, and con-
sistency for RDF databases. Proceedings of the VLDB Endowment. 3, 256-263
(2010).

Zablith, F., Antoniou, G., d’Aquin, M., Flouris, G., Kondylakis, H., Motta, E.,
Plexousakis, D., Sabou, M.: Ontology evolution: a process-centric survey. The
knowledge engineering review. 30, 4575 (2015).

Zekri, A., Brahmia, Z., Grandi, F., Bouaziz, R.: Temporal schema versioning in
\tauOWL: a systematic approach for the management of time-varying knowledge.
Journal of Decision Systems. 26, 113—-137 (2017).

Dell’Aglio, D., Della Valle, E., Calbimonte, J.-P., Corcho, O.: RSP-QL semantics:
a unifying query model to explain heterogeneity of RDF stream processing sys-
tems. International Journal on Semantic Web and Information Systems (IJSWIS).
10, 1744 (2014).

Barbieri, D., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: Stream reason-
ing: Where we got so far. In: NeFoRS 2010: 4th International Workshop on New
Forms of Reasoning for the Semantic Web: Scalable and Dynamic (2010).
Torvalds, L., Hamano, J.: Git: Fast version control system. http://git-scm.com
(2010).

Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: Dbpedia:
A nucleus for a web of open data. In: The semantic web. pp. 722—735. Springer

13

http://git-scm.com/

18.

19.

20.
. Glimm, B., Ogbuji, C.: SPARQL 1.1 Entailment Regimes. W3C, https:/

21

22.

23.

24,

(2007).

Van Herwegen, J., Taclman, R., Capadisli, S., Verborgh, R.: Describing configura-
tions of software experiments as Linked Data. In: Proceedings of the First Work-
shop on Enabling Open Semantic Science (SemSci) (2017).

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-
Muro, M., Rosati, R., Ruzzi, M., Savo, D.F.: The MASTRO system for ontology-
based data access. Semantic Web. 2, 43-53 (2011).

Ortiz, M.: Ontology Based Query Answering The Story So Far. (2013).

www.w3.org/TR/2013/REC-sparql11-entailment-20130321/ (2013).

Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1: Concepts and Abstract Syntax.
W3C, http://www.w3.0org/TR/2014/REC-rdf11-concepts-20140225/ (2014).
Harris, S., Seaborne, A., Prud’hommeaux, E.: SPARQL 1.1 Query Language.
W3C, http://www.w3.0org/TR/2013/REC-sparql11-query-20130321/ (2013).
Berners-Lee, T. Notation 3, 1998. http://
www.w3.org/Designlssues/Notation3.html (1998).

14

https://www.w3.org/TR/2013/REC-sparql11-entailment-20130321/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/DesignIssues/Notation3.html

