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A B S T R A C T

Tissue-resident macrophages form an essential part of the first line of defense in all tissues of the body. Next to
their immunological role, they play an important role in maintaining tissue homeostasis. Recently, it was shown
that they are primarily of embryonic origin. During embryogenesis, precursors originating in the yolk sac and
fetal liver colonize the embryonal tissues where they develop into mature tissue-resident macrophages. Their
development is governed by two distinct sets of transcription factors. First, in the pre-macrophage stage, a core
macrophage program is established by lineage-determining transcription factors. Under the influence of tissue-
specific signals, this core program is refined by signal-dependent transcription factors. This nurturing by the
niche allows the macrophages to perform tissue-specific functions. In the last 15 years, some of these niche
signals and transcription factors have been identified. However, detailed insight in the exact mechanism of
development is still lacking.

1. Introduction

Tissue-resident macrophages were first described by the Russian sci-
entist Élie Metchnikoff in 1883 [1]. These cells are present in all tissues of
the body where they form a first line of defense against pathogens and
play an essential role in maintaining tissue homeostasis [2,3]. In the past
decade, new insights have been gained in the origin of tissue-resident
macrophages. Briefly, they are derived from three progenitors, being yolk
sac macrophages, fetal liver monocytes and circulating monocytes, which
colonize the tissues in consecutive waves (Reviewed in [4,5]).

Tissue-resident macrophages share several common features such as
the ability to phagocytize particles, pathogens and dying cells, initiate
immune responses through the production of cytokines and chemokines
and the expression of markers such as CD11b, F4/80 and CD64 which
are often found on the cell surface of murine tissue-resident macro-
phages [6–10]. These features are part of a core macrophage program
which is largely shared by all tissue-resident macrophages. Next to
these common features, each macrophage population has a unique
identity and function. Interestingly, this functional specialization is
dependent on the tissue in which they reside. For example, it has been
shown recently that cardiac macrophages facilitate electrical conduc-
tion through Cx43-containing gap junctions with cardiomyocytes [11].
By contrast, tissue-resident macrophages located in the brain, called

microglia, are small star-shaped cells with an extensive lamellipodial
network and while they are involved in brain surveillance by constantly
probing the cellular environment, they are also crucial for brain de-
velopment and homeostasis by regulating the synaptic pruning during
postnatal development [12–14]. Another example are the lung alveolar
macrophages which are involved in the clearance of alveolar surfactant
[15]. The tissue-specific function of these macrophages implies that
they must have a different functional identity. This functional specia-
lization is governed by tissue-specific signals which regulate the ex-
pression or activity of signal-dependent transcription factors (TFs). In
turn, these TFs adapt the core macrophage program by activating
functional modules, which gives macrophages their functional identity.

In this review, we will first briefly touch upon the major lineage-
determining TFs that establish the core macrophage program. Second,
we will discuss the signal-dependent TFs which adapt this core program
in response to environmental cues, allowing macrophage to perform
tissue-specific functions.

2. Lineage-determining transcription factors and the core
macrophage program

Macrophages form a very diverse group of mononuclear phagocytes.
Despite this heterogeneity, a large transcriptional network and
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epigenetic landscape is shared among all macrophage populations
[16–18]. This core macrophage program is established by a group of
lineage-determining TFs which perform a general role in myelo-
monocytic development by determining stem cell fate.

One of the most well studied master regulators in macrophage de-
velopment is PU.1, which is regulated by RUNX1 (also known as AML1)
[19,20]. During the early stages of myeloid cell development, PU.1
determines myeloid progenitor fate in a concentration-dependent
manner. A high amount of PU.1 leads to the development of macro-
phages whereas a low level of PU.1 is necessary for B cell development
[21]. This concentration-dependent effect can be attributed to the nu-
merous low- and high-affinity PU.1 binding sites present in the genome
[22]. The low-affinity binding sites are only bound by PU.1 when a
certain threshold concentration is exceeded. The developmental role of
PU.1 is not restricted to macrophages and B cells. For example, PU.1
also regulates dendritic cell (DC) development in a concentration de-
pendent manner through regulation of Flt3 expression [23]. One of the
major target genes of PU.1 in macrophage development is Csf1r [20],
which encodes the receptor for interleukin-34 (IL-34) and monocyte
colony-stimulating factor (M-CSF). IL-34 is specifically required for the
development and maintenance of microglia and Langerhans cells
[24,25], whereas M-CSF is involved in survival, proliferation and
maintenance of most other mononuclear phagocytes [26]. Together,
PU.1 and Csf1r are essential for the formation of yolk sac macrophages
[27]. Generally, PU.1 is involved in tissue-resident macrophage devel-
opment by acting as a scaffold for histone modifiers which establish an
enhancer landscape [28]. In addition, many TFs involved in tissue-re-
sident macrophage development, function and activation perform their
function through interaction with PU.1. For instance, it was shown that
c-Jun can enhance the ability of PU.1 to drive expression of M-CSFR
[29]. In addition, Zeb2 has been recently described as being involved in
M-CSFR regulation in the bone marrow [30] and has been proposed to
be part of the core macrophage program since it is expressed in pre-
macrophages, but this still remains to be validated [16].

Upon terminal differentiation, MafB is expressed by tissue-resident
macrophages causing them to exit the cell cycle [31]. MafB, together
with c-Maf, desensitize macrophages from the proliferative effect of M-
CSF by inhibiting the expression of self-renewal genes such as Myc, Klf2
and Klf4 [32]. This happens through direct inhibition of macrophage
enhancers, including PU.1. In self-maintaining tissue-resident macro-
phage populations, the inhibition of these enhancers can be temporarily
lifted, allowing differentiated tissue-resident macrophages to re-enter
the cell cycle [32]. Contrary to regenerative processes, this is not ac-
companied by dedifferentiation of the tissue-resident macrophages
[31,33]. In addition, MafB is essential for F4/80 maturation [34] and is
involved in actin remodeling [35].

Other lineage-determining TFs have been proposed, including Batf3,
Pparg, Irf8 [16]. It is however not clear whether these factors are strictly
needed for macrophage development. Moreover, it is unknown whether
macrophages require continuous expression of these factors for their
maintenance, survival or function.

Together, these lineage-determining TFs establish the core macro-
phage program during the pre-macrophage stage. This core program
includes Cx3cr1, pattern recognition receptors, phagocytic receptors,
Fcγ receptors (e.g. Fcgr1, encoding CD64), Sirpα, Iba1,Mertk and Adgre1
(F4/80) which are expressed by almost all macrophage populations
[7,16,36,37]. Additionally, these lineage-determining TFs shape the
epigenome and form an anchor point for signal-dependent TFs.

3. Niche signals and signal-dependent transcription factors

Despite many similarities, macrophage identity and function are
very diverse and unique for each tissue [6]. This implies that the core

macrophage program, established during early development, has to be
adapted in a tissue-dependent manner. According to the niche hy-
pothesis [38], each macrophage is located in a particular niche which
offers physical support and nurtures the cell through production of
niche signals. These niche signals may include cytokines, metabolites
and cell-cell contacts which initiate tissue-specific transcriptional net-
works in the pre-macrophages upon engraftment by driving signal-de-
pendent TF expression or activation [39]. These signal-dependent TFs
work in concert with lineage-determining TFs to refine the core mac-
rophage program and imprint a transcriptional program in the tissue-
resident macrophage to meet tissue-specific needs. This is done through
direct activation of signature genes or by inducing chromatin re-
modeling which enables signal-dependent TFs to active signature genes
[17,18,37,39]. These signature genes are often required for the func-
tional maturation and/or survival of tissue-resident macrophages. In
this section, we will give an overview of the niche signals and their
corresponding signal-dependent TFs in different macrophage popula-
tions (Fig. 1).

3.1. Red pulp macrophages

The spleen contains multiple subsets of macrophages, among them
red pulp macrophages located in the red pulp of the spleen. They play a
vital role in the clearance of senescent red blood cells, induction of
regulatory T cell differentiation and protection against parasites
through production of type I interferon [40–44]. Many advances have
been made on signal-dependent TFs regulating the differentiation of
these macrophages, among them the discovery of the essential role of
SPIC in their development.

SPIC is a PU.1-related transcription factor which is highly expressed
by red pulp macrophages, bone marrow macrophages and part of the
F4/80hi liver macrophages [41,45]. Kohyama et al. have shown that
Spic−/− mice have a cell-autonomous defect in the development of red
pulp macrophages that can be reverted by retroviral SPIC expression in
bone marrow cells [41]. Of note, no defects were observed in mono-
cytes or other macrophage populations. Heme, a metabolite of ery-
throcyte degradation, was shown to be sufficient to induce Spic in bone
marrow-derived macrophages. At steady state, red pulp macrophages
continuously phagocytize senescent or damaged erythrocytes to recycle
the iron from the heme-containing hemoglobin. Consequently, patho-
logical depletion of red pulp macrophages leads to an accumulation of
heme in the spleen. While Spic expression in monocytes is constitutively
inhibited by BACH1, the presence of heme induces its proteasomal
degradation, thereby allowing SPIC to be expressed by monocytes that
will reconstitute the red pulp macrophage population [45]. Other genes
repressed by BACH1 include ferroportin-1 (Fpn1), which is involved in
iron export [46] and heme oxygenase-1 (Hmox1), essential for heme
catabolism [47]. In addition to being essential for red pulp macrophage
function, HMOX1 is critical for their survival, as accumulation of heme
is cytotoxic [48]. Thus, in the Spic−/− deficient mouse model the in-
ability of macrophages to express SPIC in the red pulp may hinder their
capacity to perform splenic red pulp-specific functions, rendering them
unable to survive in the red pulp. In essence, SPIC is important for both
the functional maturation of red pulp macrophages and their survival.
The discovery of heme as the driver of red pulp macrophage develop-
ment was the first time a metabolic-driven differentiation of macro-
phages was described [45].

3.2. Marginal zone macrophages and metallophilic macrophages

Next to red pulp macrophages, the spleen also contains marginal
zone macrophages and metallophilic macrophages [49]. Both are lo-
cated in the marginal zone of the spleen, where they play a major role
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in the early control of blood-borne antigens [50] and can be dis-
tinguished from each other based on the expression of different surface
receptors: SIGN-R1 [51] and MARCO [52] for marginal zone macro-
phages; CD169 for metallophilic macrophages [53]. Liver X receptor α
(LXRα), encoded by the gene Nr1h3, is a transcription factor which
plays a key role in the control of sterol homeostasis [54]. Gonzalez et al.
have shown that this TF is essential for marginal zone macrophage and
metallophilic macrophage differentiation as LXRα-deficient mice lack
both macrophage populations [55]. Similar to other signal-dependent
TFs, this effect is cell-intrinsic suggesting that the niche signal, which is
potentially oxysterols, is still present in these LXRα-deficient mice [56].
Interestingly, LXRα deficiency does not affect the abundance of F4/80+

cells in the spleen during embryonic development, suggesting that
LXRα is not essential to establish the core macrophage program but is
crucial during the second, signal-dependent, phase of macrophage de-
velopment. However, additional marginal zone signals might be

necessary to facilitate the functional maturation of marginal zone
macrophages, as hyper-activation of LXRα does not induce the marginal
zone macrophage program in other splenic macrophages [55].

3.3. Large peritoneal macrophages

The peritoneum contains two types of macrophages, small perito-
neal macrophages and large peritoneal macrophages, which can be
distinguished from each other based on their differential expression of
CD11b, F4/80 and MHCII [57]. In addition, whereas small peritoneal
macrophages are short-lived and monocyte-derived, large peritoneal
macrophages are thought to be primarily of embryonic origin, requiring
little hematopoietic input in steady-state [58]. However, it was shown
that short-lived peritoneal macrophages act as precursors of long-lived
peritoneal macrophages which displace the embryonically derived po-
pulation with age [59]. Recently, the role of GATA6, a large peritoneal

Fig. 1. Lineage-determining and signal-depen-
dent transcription factors involved in macrophage
development; Macrophage development is regu-
lated by two sets of transcription factors. First, a
set of lineage-determining transcription factors,
including, PU.1, MYB, c-MAF, MAFB and ZEB2,
establish a core macrophage program which is
largely shared by all macrophages. In response to
niche signals, signal-dependent transcription fac-
tors adapt this core program, which gives tissue-
resident macrophages their unique functional
identity. MZ, marginal zone; TGFβ, transforming
growth factor β; IL-34, interleukin 34; RANKL,
Receptor activator of nuclear factor kappa-B li-
gand; OPG, osteoprotegerin; GM-CSF, granulo-
cyte-macrophage colony-stimulating factor; M-
CSF, monocyte colony-stimulating factor; SCFAs,
short chain fatty acids [Illustrations of organs and
cells were provided by Summersault 1824 (CC BY-
NC-SA 4.0)].
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macrophage-specific zinc finger-containing transcription factor, in large
peritoneal macrophage maturation and function was described [60].
Okabe and Medzhitov showed that GATA6 is necessary for the activa-
tion of peritoneal macrophage-specific genes, including TGFβ2 which
promotes IgA class switching in peritoneal B-1 cells. Transcriptional
activation of Gata6 is regulated by a two-step process. First, silencing
H3K27me3 histone modifications are removed from the Gata6 pro-
motor. Second, retinoic acid present in the omentum binds the retinoic
acid receptor which in turn binds the poised Gata6 promotor [60]. Ex
vivo cultured large peritoneal macrophages lose their expression of
GATA6 [61]. This can be restored by adding retinoic acids to the culture
medium, which suggests that this vitamin A metabolite is an important
niche factor that regulates Gata6 [60]. In addition, mice fed with a
vitamin A-deficient diet showed a reduction in GATA6 expression and a
reduced abundance of large peritoneal macrophages [60]. Together,
these experiments showed the essential role of the retinoic acid in large
peritoneal macrophage development and the influence of diet on the
immune system. In essence, its presence in the omentum niche is ne-
cessary to drive expression of GATA6 which in turn activates peritoneal
macrophage-specific genes. However, other omental factors might be
necessary to refine the core macrophage program in a peritoneal
macrophage-specific way, as ex vivo stimulation with retinoic acid can
restore the expression of GATA6 and its effector genes, including some
but not all peritoneal macrophage-specific genes [60]. Thus, not all
peritoneal macrophage-specific genes are GATA6 dependent, implying
that a combination of signals and transcription factors are involved in
establishing the peritoneal macrophage program. TFs driving GATA6-
independent genes may include RARβ and NFE2 [60]. Although GATA6
is not crucial for development, it plays a role in large peritoneal mac-
rophage localization, proliferation, survival and functional maturation
[60–62].

Another transcription factor involved in large peritoneal macro-
phage development is CEBPβ. CEBPβ KO mice exhibit elevated numbers
of small peritoneal macrophage-like cells, but lack functional large
peritoneal macrophages and alveolar macrophages [58]. Adoptive
transfer experiments showed that wild type small peritoneal macro-
phages can differentiate into large peritoneal macrophages in these
CEBPβ KO mice but not in wild type hosts [58]. The authors suggest
that there may be a difference in the peritoneal microenvironment,
potentially due to the presence or absence of endogenous large peri-
toneal macrophages. Indeed, these findings fit with the niche hypoth-
esis [38]. Since the peritoneal niche is not full in CEBPβ KO mice, wild
type small peritoneal macrophage can differentiate into large peritoneal
macrophages which fill the peritoneal niche.

3.4. Kupffer cells

Kupffer cells form one of the largest tissue-resident macrophage po-
pulation in the body [63]. They are located in the hepatic sinusoids and
are involved in many homeostatic and immune functions such as iron,
bilirubin and cholesterol metabolism, clearing gut-derived toxins and pa-
thogens from the blood as well as removal of damaged erythrocytes and
hepatocytes through expression of a large repertoire of scavenger receptors
[64,65]. Recently, the Geissmann group showed that inactivation of Id3
impairs the development of liver macrophages [16]. Id3−/− mice have
reduced numbers of macrophages in the liver and head during embryonic
development, which persists in the liver after birth [16]. Interestingly, Id1
is upregulated in Kupffer cells lacking Id3, suggesting that ID1 might
partially take over the role of ID3 [16]. ID1 and ID3 are both TGFβ-
regulated TFs [66] and their expression pattern largely overlaps during
embryogenesis [67], which could indicate that TGFβ might be one of the
niche factors that drives Kupffer cell development. It is important to note
that this study only relied on F4/80 to identify Kupffer cells. However, it
was recently described that the F4/80hi macrophage population in the
liver can be subdivided in three maturation states based on expression of
CLEC4F and TIM4 with bona fide Kupffer cells being CLEC4F+TIM4+

[64]. Other TFs linked to tissue-resident macrophage development include
LXRα and SPIC, although these might be necessary for functional specia-
lization, as no apparent defect in Kupffer cell abundance has been de-
scribed in KO models involving these TFs [45,55]. This was however also
concluded based on F4/80 expression, so it may be required to revisit
these findings using more specific Kupffer cell markers such as CLEC4F
and TIM4.

3.5. Alveolar macrophages

Alveolar macrophages are located in the pulmonary alveoli and play
a major role in the maintenance of alveolar homeostasis by clearing
lipoprotein-containing alveolar surfactant produced by alveolar type II
epithelial cells. They are derived from fetal liver monocytes that dif-
ferentiate into alveolar macrophages during the first weeks of life fol-
lowing exposure to granulocyte-macrophage colony-stimulating factor
(GM-CSF) produced by alveolar type II epithelial cells [16,68]. The
essential role of GM-CSF in pulmonary homeostasis was first shown in
GM-CSFR KO mice which suffer from pulmonary alveolar proteinosis, a
disease characterized by an accumulation of alveolar surfactant [69].
Recently, it was shown that this is due to a defect in alveolar macro-
phage development [68,70]. As mentioned in the introduction, tissue-
resident macrophages derive from three different progenitors. How-
ever, independent adoptive transfer of those progenitors into GM-CSFR
KO mice restored the alveolar macrophage population, thereby showing
the essential role of GM-CSF and the dominant role of the niche on
tissue-resident macrophage development [71]. Binding of GM-CSF to
the GM-CSFR on fetal monocytes leads to the expression of PPARγ [72].
In turn, PPARγ drives expression of genes involved in lipid metabolism,
storage and degradation which are required to break down lipoprotein-
containing surfactant. In addition, PPARγ downregulates M-CSF ex-
pression in alveolar macrophages in an NF-κB dependent manner [73].
Thus, the alveolar type II epithelial cells produce the niche signal which
is necessary for alveolar macrophage development, which in turn
contribute to alveolar homeostasis through clearance of surfactant
produced by alveolar type II epithelial cells. The dominant role of the
niche in imprinting has been shown in several other adoptive transfer
studies. For instance, two studies showed that transfer of large perito-
neal macrophages to the alveolar space causes these cells to gain CD11c
expression [74] and partially shift their transcriptional program to-
wards that of an alveolar macrophage [18]. However, it was not shown
whether these cells are functionally equivalent to alveolar macrophages
and if they can survive and proliferate. Other research has shown that
this conversion is very inefficient and that this is possibly the result of
the reduced plasticity of matured tissue-resident macrophages [71].
Note that PU.1 expression by alveolar macrophages is also regulated by
the presence of GM-CSF and is proposed to play a critical role in the
maintenance of lung homeostasis and innate immune host defense [75].

Although the essential role of the GM-CSF/PPARγ axis in alveolar
macrophage development is well characterized, additional signals and
TFs are involved in the development and functional maturation of al-
veolar macrophages. Recent research has shown that autocrine TGFβ
signaling is critical for alveolar macrophage differentiation, maturation
and maintenance through upregulation of alveolar macrophage sig-
nature genes, including PPARγ [76]. In addition, the alveolar macro-
phage population of BACH2-deficient mice display alterations in lipid
handling, resulting in the development of alveolar proteinosis, whilst
maintaining normal expression of genes involved in GM-CSF signaling
[77]. Research by the same group has shown that the degree of pul-
monary alveolar proteinosis is more severe in Bach1/Bach2 double KO
mice, but absent in Bach1 KO mice [78]. In addition, the alveolar
macrophages of Bach1/Bach2 double KO mice have a more immature
phenotype based on expression of F4/80, CD11b and Siglec-F. Finally,
CEBPβmight also play a role in alveolar macrophage development and/
or survival as the alveolar macrophage population in Cebpb-deficient
mice is strongly reduced [58].
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3.6. Osteoclasts

Osteoclasts are large multinucleated macrophages derived from
granulocyte-macrophage progenitors that fulfill different functions,
among them the resorption of bone matrix produced by osteoblasts,
thereby maintaining bone homeostasis [79]. One of the major tran-
scription factors involved in osteoclast development is NFATc1 [80,81].
The crucial role of NFATc1 in osteoclast development was first shown in
Nfatc1−/−;Tie2-Nfatc1 mice [82]. These mice develop osteopetrosis, a
disease characterized by an abnormally dense bone structure, caused by
a deficiency in osteoclastogenesis. NFATc1 expression is regulated by
RANKL which exists in two forms, a membrane bound form present on
the surface of osteoblasts and a secreted form resulting from proteolytic
cleavage of the membrane bound protein or alternative splicing
[83,84]. Osteoclastogenesis is a process that has been extensively stu-
died. This process is based on the RANK/RANKL/OPG system that leads
to the activation of NFATc1, the master regulator of osteoclast differ-
entiation [85,86]. Osteoclast differentiation starts with the recognition
of the osteoblast produced RANKL by its receptor RANK found on the
cell surface of osteoclast precursors. This binding leads to the recruit-
ment of the TRAF6-TAB2-TAK1 complex which in turn leads to the
activation of MAPK [87], NF-κB [88,89] and JNK1 [90] signaling
pathways in cooperation with M-CSF signaling [91]. The importance of
M-CSF in osteoclast development was first shown in Csf1op/op mice,
which suffer from congenital osteopetrosis due to a severe deficiency in
osteoclasts [92]. Together with NFATc2, NF-κB activates NFATc1 ex-
pression which is then maintained through auto-amplification [93]. In
resting state, NFATc1 is phosphorylated. In order to translocate into the
nucleus, NFATc1 is subsequently dephosphorylated by calcineurin, a
phosphatase activated by the calcium/calmodulin signaling pathway
[94]. More specifically, the calmodulin CaMKIV has been shown to be
critically involved in osteoclast differentiation and function [95]. In
addition, NFATc1 expression is epigenetically regulated through his-
tone acetylation and H3K27me3 demethylation in response to RANKL,
thereby enhancing its auto-regulatory capacity [96]. Once in the nu-
cleus, NFATc1 forms an osteoclast-specific complex containing AP-1 (c-
Fos/c-Jun complex) [97], PU.1 [98], pCREB and MITF. This complex
then drives expression of osteoclast signature genes involved in acid-
ification and matrix degradation, such as tartrate-resistant acid phos-
phatase (Trap) [80], calcitonin receptor (Ctr), cathepsin K (Ctsk) [99],
ATP6i [100] and β3 integrin (Itgb3) [101]. Concomitant to RANKL se-
cretion, osteoblasts also produce osteoprotegerin (OPG), a soluble
decoy receptor that binds RANKL and thus inhibits osteoclast differ-
entiation [102]. Hence, osteoclastogenesis is a process which is tightly
and specifically regulated by the osteoblast population.

Next to the RANK/RANKL/OPG system, osteoclast development
also depends on TGFβ signaling [103]. The cytokine TGFβ is highly
enriched in bone matrix and was shown to synergize with RANKL for
induction of osteoclast-like cells in vitro [104]. Conversely, inhibition of
TGFβ signaling almost completely abolishes RANKL-induced osteo-
clastogenesis [103]. Additionally, TGFβ1 suppresses apoptosis of os-
teoclast-like cells [104]. The interaction between both signaling path-
ways is mediated by SMAD3 which binds to TRAF6 upon recruitment to
RANK [103].

Recently, a role for Retinoid X Receptors (RXRs) in osteoclast pro-
liferation, differentiation and activation has been described [105]. Loss
of RXR in osteoclast progenitors leads to the formation of abnormally
large, multinucleated, non-resorbing osteoclasts [105]. In steady state,
RXR homodimers controls Mafb expression in osteoclast progenitors.
Loss of RXR results in an increased expression of Mafb and an impaired
response to M-CSF, leading to less proliferation and abnormal organi-
zation of the cytoskeleton. In addition, NFATc1 is downregulated in
RXR-KO osteoclast progenitors, suggesting that there might be an in-
teraction between RXR and NFκB signaling in osteoclast differentiation.

3.7. Microglia

Microglia are the tissue-resident macrophages of the central nervous
system (CNS). They are involved in maintaining CNS homeostasis by
probing the brain parenchyma with their highly motile dendrites. In
addition, they play a role in neuronal proliferation, development and
synapse formation [106–108]. All microglia are derived from yolk sac
macrophages [27]. This unique composition might be explained by the
fact that the blood-brain barrier is formed, and thereby closes the CNS
niche, before fetal liver monocytes are seeded in the tissues, thereby
preventing their entry [109].

One of the major niche signals involved in microglial development
is TGFβ, a cytokine expressed in the developing CNS of the embryo and
by most cells in the CNS during adulthood [110]. Mice which lack TGFβ
in the brain have a significantly reduced microglia population [111]. In
addition, TGFβ is required to upregulate microglia signature genes in
vitro [111]. Furthermore, the combination of M-CSF and TGFβ upre-
gulates more microglial genes in in vitro cultured macrophages than M-
CSF alone, suggesting that both signals are essential for microglial de-
velopment [111]. However, it was recently shown that TGFβ signaling
is not required for microglia survival, but rather to keep them in an
inactivated state [112]. As a consequence of their activation, deletion of
TGFβ signaling in microglia is accompanied by an altered surface
phenotype with differential expression of key markers such as CD45,
F4/80, MHCII and Siglec-H. This quiescent state is regulated by
SMAD2/3 activation through TGFβ-dependent phosphorylation [113].
Next to TGFβ signaling, different groups proposed CSF1R signaling to
be more important for microglia homeostasis in the adult brain as de-
letion of this signaling induces a rapid loss of microglia [27,112,114].
However, Csf1op/op mice, which have an inactivating mutation in the
Csf1 gene [92], exhibit a moderate reduction of the microglia popula-
tion and only in distinct regions of the brain, indicating that an alter-
native mechanism exists to compensate for the absence of M-CSF
[115,116]. CSF1R can also bind IL-34 which was shown to induce
macrophage survival, proliferation and differentiation in vitro [117]. In
line with this, deletion of IL-34 considerably impairs microglia devel-
opment in specific brain regions that do not overlap with those of the
Csf1op/op model. This differential spatial loss of microglia can be ex-
plained by the distinct spatial expression pattern of M-CSF and IL-34,
both expressed by neurons [118], that are expressed in distinct regions,
thus indicating a non-redundant function of these two cytokines [24].

Recently, SALL1, a zinc finger transcription factor, has been iden-
tified as a microglia-specific transcription factor [112]. SALL1-deficient
microglia have a reduced expression of microglia signature genes and
upregulate genes associated with other macrophage populations, in-
dicating that SALL1 is important in microglia development and the
maintenance of microglia identity [112]. Interestingly, microglia sig-
nature genes, including Sall1, are lowly expressed in neonates. After
birth, the expression of these genes gradually increases and reach
maximum expression between 3weeks and 2months [111]. This might
be explained by the fact that M-CSFR ligands are maximally expressed
during postnatal brain development [118]. In addition, monocyte-de-
rived microglia-like cells do not express SALL1, making SALL1 a spe-
cific marker for embryonically-derived microglia [112]. Moreover, this
shows that both ontogeny and microenvironment influence the mature
macrophage profile. Despite the importance of SALL1 in microglia de-
velopment and function, the niche signal that drives its expression re-
mains unknown. Intriguingly, recent research has shown that the gut
microbiota is involved in microglia homeostasis through the production
of short chain fatty acids. [119,120]. As the gut microbiome changes
after weaning (around 3–4weeks after birth) [121], there might be a
link with the increasing expression of SALL1 and other microglia sig-
nature genes after birth.
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3.8. Langerhans cells and intestinal macrophages

Langerhans cells (LCs) are the bone marrow-derived mononuclear
phagocytes of the epidermis which are involved in the uptake and
transport of antigens to the skin-draining lymph nodes [122–124]. Due
to this function, they are often categorized as DCs. However, unlike
DCs, the LC population can self-maintain through proliferation in
steady state conditions [125]. LCs require IL-34, produced by kerati-
nocytes [24], and TGFβ1 for their development [126]. TGFβ1 is ex-
pressed by both keratinocytes and LCs, but only the autocrine TGFβ1
signaling is essential for LC development [127]. TGFβ induces the ex-
pression of RUNX3 and ID2, which are required for Langerhans cell
maintenance [128,129]. A more recent study has shown that inducible
loss of TGFβ1 leads to a synchronized wave of LC migration to the
lymph nodes [130]. Therefore, the absence of LCs in the epidermis of
TGFβ1-deficient mice might be the result of a constant migration of
newly formed LCs.

TGFβ signaling is also important for monocyte differentiation into
colonic macrophages [131] and may also function through RUNX3, as
this TF is highly expressed in intestinal macrophages [18]. In this same
study, it was shown that TGFβ signaling regulates the expression of
genes involved in Notch signaling, including Hes1 and Dtx4 [131].

3.9. Adipose tissue macrophages

At steady state, adipose tissue macrophages represent around 5% of
total adipose tissue cells but increase up to 50% in obese mice, sug-
gesting a potential role for this population in obesity [132]. This ex-
pansion has been linked to both local proliferation of resident macro-
phages and CCL2-mediated recruitment of monocytes followed by their
differentiation into macrophages [133,134]. However, the ontogeny of
adipose tissue macrophages at steady state is still unclear. This mac-
rophage subset fulfills different functions in the tissue such as removal
of dead adipocytes, regulation of adipocyte lipolysis, storage of ex-
cessive adipocyte-released lipids as well as its gradual release into the
bloodstream [135].

Recently, the heterogeneity of this population has been highlighted.
Pirzgalska et al. have shown that some macrophages are found to be in
close interaction with sympathetic neurons in the white adipose tissue
[136]. This subset of neurons produces, among others, norepinephrine
(NE), a neurotransmitter mediating lipolysis and fat mass reduction.
Unlike other adipose tissue macrophages and consistent with their lo-
cation, sympathetic neuron-associated macrophages express two pro-
teins involved in the import and the degradation of NE allowing its
regulation in the extracellular space: the NE transporter SLC6A2 and
the NE catalyzer monoamine oxidase A. However, they have shown that
this macrophage population plays a major role in obesity because
specific ablation of SLC6A2 in these macrophages induced weight loss
and lipid mobilization. Interestingly, they also highlight the presence of
similar macrophages in the brown adipose tissue, where these macro-
phages are found in close interaction with nerve fibers and act as a NE
sink [136].

In correlation with the latter finding, another group has confirmed
that brown adipose tissue macrophages play a major role in obesity.
Rett syndrome is a neurodevelopmental disorder caused by mutations
in the gene encoding methyl-CpG binding protein 2 (MECP2). Wolf
et al., have shown that MECP2 deficiency in brown adipose tissue
macrophages results in spontaneous obesity due to a reduction of the
brown adipose tissue sympathetic innervation and thus of the NE tissue
levels which ultimately leads to an altered thermogenesis [137]. How
this population of macrophages is regulating the tissue innervation
remains to be elucidated, but these studies showed that the genetic
profile of macrophages is finely shaped by their niche to perform
functions that are essential for tissue homeostasis.

4. Refining the niche hypothesis: intra-organ local and inter-
organ similar niches

Besides their immune functions, macrophages are actively con-
tributing to the homeostasis of their tissue of residence by fulfilling
functions that are strictly related to the latter. This implies that there is
a strong imprinting by the tissue, which shapes the macrophage genetic
program into a specific macrophage population. Of note, the niche
signals should not be restricted to the presence in one or other organ.
Indeed, different macrophage populations can be found in the same
organ, suggesting the existence of distinct intra-organ niches which
provide different niche signals.

For a long time, the liver was considered to harbor only one tissue-
resident macrophage population, i.e. Kupffer cells. However, a new
population of liver-resident macrophages, called liver capsular macro-
phage, has recently been described by Sierro et al. [138]. Although
seeding the same organ, these two populations are distinct in term of
location and function. Indeed, while Kupffer cells are located within the
liver sinusoids and participate in liver metabolic functions, the newly
described subset of macrophage is located along the hepatic capsule
and is involved in the immune response against peritoneal pathogens
that access the liver’s outer membrane [64,65,138]. Of note, unlike
Kupffer cells this macrophage population is derived from Ly6Chi

monocytes and start to accumulate in the liver around weaning. Thus,
one could argue that their origin shapes their location and functions.
However, it has been shown that specific depletion of Kupffer cells
leads to the replenishment of the population by Ly6Chi monocytes that
will rapidly differentiate into Kupffer cells that are transcriptionally and
functionally identical to embryonically-derived Kupffer cells [64].

The gut is another striking example. To avoid development of auto-
immune disease and food allergies, the immune system has to be tol-
erant to commensal bacteria and food antigens. However, the gut is also
an important entry site for a broad spectrum of pathogens. To solve this
problem, the gut is divided into sites specialized either in nutrient ab-
sorption (villi) or in pathogen detection (Peyer’s patches), each of them
colonized by different macrophage populations that are fully adapted to
their micro-environment. Indeed, villi macrophages are strongly in-
volved in the establishment of a tolerogenic environment through the
release of anti-inflammatory cytokines, such as IL-10 [139]. Unlike the
former, Peyer’s patch macrophages are unable to release IL-10 after
stimulation but instead will produce pro-inflammatory cytokines such
as IL-6 and TNF [140,141]. Furthermore, the IL-10 signaling pathway is
downregulated in Peyer’s patch macrophages compared to villi mac-
rophages [142,143]. Contrary to the liver, this could not be attributed
to their origin as both populations are continuously replaced in adult
mice by Ly6Chi monocytes, but rather to their micro-environment as the
surface of villi is protected by physical and chemical barriers that are
almost absent on Peyer’s patch surface [8,140,141,144,145]. The epi-
thelium of Peyer’s patches is also enriched in a particular cell type
specialized in the transport of microorganism from the gut lumen to the
Peyer’s patch, contributing to the stimulation of Peyer’s patch macro-
phages [146].

In the brain, microglia are the most abundant macrophage popu-
lation and are found to be in close interaction with neurons in the
parenchyma. Through secreted and membrane bound signals such as
CD200 and CX3CL1, neurons are able to keep microglia under a
quiescent state while a reduction in these factors can induce their re-
activation [147,148]. Thus, by their constant communication with
microglia, neurons are able to shape the phenotype of this macrophage
population. Three other brain macrophage population have been de-
scribed and are located in different CNS niches. In detail, (1) perivas-
cular macrophages are located between endothelial and glial basement
membranes, (2) subdural meningeal macrophages are closely asso-
ciated to ER-TR7+ fibroblast-like cells lining the meninges and me-
ningeal vasculature and finally (3) choroid plexus macrophages are
located in the stroma and epithelial layer of the choroid plexus
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[149,150]. Through RNA-seq analysis, Goldmann et al., have shown
that although microglia and perivascular macrophages are tran-
scriptionally closely related as compared to monocytes and peritoneal
macrophages, which might be due to an organ-specific effect, they re-
tain some cell-specific differences [151]. Furthermore, while all brain
macrophage populations are embryonically-derived, only choroid
plexus macrophages are partially renewed by Ly6Chi monocytes during
adulthood and exhibit a shorter turnover. These differences among
brain macrophage subsets might be the result of local CNS environ-
mental cues.

Opposite to intra-organ local niches, the notion of similar niches in
different organs may add an extra layer of complexity to the concept.
One could argue that a similar niche provides similar niche signals to
developing macrophages. For example, some macrophages can be
found in close interaction with nerve cells, such as sympathetic neuron-
associated macrophages in the adipose tissue, nerve-associated macro-
phages in the cornea, microglia with neurons in the brain or even
muscularis macrophages with enteric neurons in the gut
[136,152–154]. Thus, it cannot be excluded that muscularis macro-
phages and microglia for example, may share part of their genetic
profile because of their proximity to nerve cells. In line with this,
Gautier et al. have shown by a hierarchical clustering analysis based on
macrophage-core signature a close transcriptional relationship between
gut macrophages and microglia as compared to other tissue-resident
macrophages [37]. Future research will have to point out to what ex-
tent these different macrophages are functionally related and if their
respective niches contain similar signals that induce the same signaling
pathways in these macrophages.

5. The importance of nature and nurture in functional
specialization

As mentioned above, macrophage can be embryonically-derived
and monocyte-derived and all precursors have the potential to differ-
entiate into the same type of tissue-resident macrophage when given
the opportunity as was shown in the lung [71]. In other words, nurture
rather than nature seems to play a dominant role in macrophage de-
velopment. The question remains whether these macrophages are
completely identical. For instance, a recent study has shown that
monocytes which infiltrate the alveolar space after gammaherpesvirus
infection can differentiate into long-lived alveolar macrophages that
inhibit house dust mite-induced allergy [155]. In this case, nature
seems to play a significant role in the function of alveolar macrophages.
However, it is possible that the niche is (permanently) affected due to
the viral infection, causing the monocytes to receive a different im-
printing during their development into alveolar macrophages. Addi-
tional evidence for the importance of nature is found in the CNS.
Buttgereit et al. have shown that SALL1, a microglia-specific tran-
scription factor, is not expressed by monocyte-derived microglia after
microglia depletion [112]. This indicates that expression of SALL1 is
inherent to embryonically-derived microglia and is not induced by
niche signals. As discussed in a recent opinion paper by Bonnardel &
Guilliams, the interplay between nature and nurture in steady state and
during inflammation will require novel “functional” fate-mapping tools
[156].

6. Conclusion and future perspectives

In this review, we gave an overview of the major lineage-de-
termining TFs that establish the core macrophage program and the
niche signals and signal-dependent TFs which drive tissue-resident
macrophage development by adapting the core macrophage program to
meet tissue-specific needs. These signal-dependent TFs are often re-
ferred to as being essential for tissue-resident macrophage develop-
ment. However, it is important to note that functional specialization
during macrophage development is often essential for their survival in

their respective niche. By contrast, it is possible that a signal-dependent
TF is important to acquire a specific function which is part of its
identity, but does not affect its survival in steady state conditions.

Despite the heterogeneity of tissue-resident macrophage popula-
tions in the body, certain common features in their development can be
appreciated. For instance, macrophage development is driven by an
interplay between multiple niche signals, signaling pathways and TFs.
Conversely, certain signaling pathways are involved in the development
of multiple tissue-resident macrophage populations. Intriguingly, there
is often a functional relationship between the cell that produces the
niche signal and its corresponding tissue-resident macrophage. This is
most apparent in the lung, bone and brain. Recently, such a functional
module consisting of a fibroblast and a macrophage was generated in
vitro [157].

Until now, only one or a small number of TFs and associated niche
signals have been described for some tissue-resident macrophages.
These were often discovered by studying KO models with a severe re-
duction of a particular tissue-resident macrophage population. Taking
into account the close relationship between development, functional
specialization and survival, it is possible that certain functional spe-
cializations are only important when homeostasis is disturbed.
Conversely, a seemingly unaffected population does not mean the
tissue-resident macrophages have reached functional maturity, since we
often use only a limited number of general macrophage markers to
identify tissue-resident macrophage populations. Therefore, TF KO
models should be studied in steady state and under a number of re-
levant disease conditions using an integrated approach. This may in-
clude the measurement of relevant physiological parameters, (single
cell) RNA-seq, multi-parameter flow cytometry and mass cytometry.
Consequently, generation of such multidimensional datasets will in-
crease the need for bio-informatics tools [158,159].

These tools will also help us identify unique tissue-resident macro-
phage markers, such as CLEC4F in Kupffer cells [64], which will allow
us to better understand the mechanisms involved in tissue-resident
macrophage development. Until now, tissue-resident macrophage po-
pulations are still identified based on common markers such as F4/80
and CD64, which poorly define macrophage diversity in the body.
Using these macrophage-specific markers, new macrophage-specific Cre
lines can be created to knock-out signal-dependent TFs of interest to
study their effect on the macrophage function in homeostasis and dis-
ease conditions. In addition, niche cell-specific Cre lines will allow us to
knock-out genes involved in niche signaling to the developing tissue-
resident macrophage. Using both systems, a direct and specific con-
nection between niche cell, niche signal and developing tissue-resident
macrophage can be made.

Once we have elucidated the regulation of tissue-resident macro-
phage development under steady state conditions, it will be interesting
to investigate how inflammation or cancer affects the niche signals that
instruct the development of monocyte-derived macrophages which play
an important and often dual role in these diseases. Consequently, this
may pave the way for the development of therapies involving com-
pounds that block or induce certain signal-dependent TFs, thereby al-
lowing us to modulate the function of macrophages.
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