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Abstract: Vibrations in airplane wings have a negative impact on the quality and safety of a 

flight. For this reason, active vibration suppression techniques are of extreme importance. 

In this paper, a smart beam is used as a simulator for the airplane wings and a fractional 

order PD controller is designed for active vibration mitigation. To implement the ideal 

fractional order controller on the smart beam unit, its digital approximation is required. In 

this paper, a new continuous-to-discrete-time operator is used to obtain the discrete-time 

approximation of the ideal fractional order PD controller. The efficiency and flexibility, as 

well as some guidelines for using this new operator, are given. The numerical examples 

show that high accuracy of approximation is obtained and that the proposed method can be 

considered as a suitable solution for obtaining the digital approximation of fractional 

order controllers. The experimental results demonstrate that the designed controller can 

significantly improve the vibration suppression in smart beams. 

Keywords: fractional order controller; novel indirect discretization method; smart beam; 

vibration attenuation; experimental results 

1 Introduction 

A cantilever beam equipped with sensors and actuators is considered to be “smart” 

since its dynamics are always known. This offers countless possibilities to control 

the amplitude and frequency of the beam’s movement, while also eliminating 

undesired vibration. The advantages of such an approach have endless practical 

uses, especially in the case of an airplane wing, which is continuously subjected to 
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random, unwanted vibrations caused by turbulences, engine vibration and 

trajectory changes [1]. 

The displacement of the free end of the beam can be successfully reduced with a 

variety of controllers, from fractional order to integer order PI, PD and PID, from 

Fuzzy Logic to Linear Quadratic Regulator, from adaptive to robust; and any 

hybrid combination between them [2]. In addition, optimization algorithms to 

compute the controller’s parameters such as Particle Swarm Optimization and 

Genetic Algorithms haven’t been neglected in the study of vibration suppression 

[3]. A tuning procedure based on reducing the resonant peak on the frequency 

magnitude plot is successfully presented in [4]. Apart from classical tuning 

procedures and optimization techniques, using neural networks is also a viable 

approach [5], [6]. 

Over previous decades, the popularity of the fractional order controllers has 

increased considerably. The fractional order approach represents a generalization 

of differentiation and integration to an arbitrary order. Compared to the integer 

order controllers, the fractional order ones offer increased flexibility and can 

honor more closed loop performance constraints simultaneously [7]. For this 

reason, a fractional order PD controller has been previously designed for a similar 

cantilever beam, as the case study in this paper, and the experimental results 

demonstrated the advantages of using a fractional order PD controller instead of 

the classical integer order PD [8], [9]. 

One of the key characteristics of fractional order systems is the hereditary effect, 

which offers an accurate mathematical representation of the dynamics of several 

phenomena. However, at the same time, because of their unlimited memory, 

fractional order systems cannot be exactly implemented [10] and thus, they 

require a proper rational approximation [11], [12], [13] in a limited frequency 

range [14]. In this paper, a fractional order PD controller is designed for vibration 

suppression. Its implementation, on a real time controller, requires the discrete-

time approximation of the ideal fractional order control algorithm. To achieve this, 

the indirect discretization method proposed in [14] is used. First, the well-known 

Oustaloup Recursive Approximation method is employed to obtain a continuous-

time approximation for the fractional order controller. Next, to obtain the discrete-

time approximation, a new continuous-to-discrete time operator is proposed as an 

interpolation between the Euler and Tustin rules, allowing for the possibility of 

shaping the discrete-time transfer function through the use of a weighting 

parameter to better approximate the original fractional order system phase or 

magnitude. The purpose of this paper is to show that the proposed discrete-time 

approximation method is simple and efficient, not just in simulation environments, 

but also for real-time implementation of fractional order controllers and even for 

processes that exhibit a fast dynamic. 

The paper is structured as follows. Section II presents the tuning procedure for a 

fractional order PD controller for vibration suppression in a smart beam. Section 



Acta Polytechnica Hungarica Vol. 14, No. 1, 2017 

 – 193 – 

III presents the proposed continuous-to-discrete-time operator, as well as the 

inverse operator. The mapping between the continuous-time and discrete-time 

poles/zeros is given, as well as numerical examples to show the flexibility, as well 

as the problems that can be avoided through the use of the new operator, 

compared to the classical Tustin rule. Section IV consists in the case study: the 

vibration attenuation in a smart beam, and details the design and discrete-time 

implementation of a fractional order controller. Experimental results are also 

provided. The last section includes the concluding remarks. 

2 Tuning of a Fractional Order Controller for 

Vibration Suppression 

To suppress unwanted vibrations that may occur in a smart beam, a fractional 

order PD controller is designed: 

𝐻𝐹𝑂−𝑃𝐷(𝑠) = 𝑘𝑝(1 + 𝑘𝑑𝑠𝜇)                       (1) 

where kp and kd are the proportional and the derivative gains, respectively, while 

μϵ[0,1] is the fractional order of differentiation. The frequency domain 

representation of (1) is obtained as: 

𝐻𝐹𝑂−𝑃𝐷(𝑗𝜔) = 𝑘𝑝 [1 + 𝑘𝑑𝜔𝜇 (𝑐𝑜𝑠 (
𝜋𝜇

2
) + 𝑗𝑠𝑖𝑛 (

𝜋𝜇

2
))]                                       (2) 

The design of the fractional order controller in (1) is based on imposing three 

different frequency domain specifications [15], [16], regarding the gain crossover 

frequency ωcg, the phase margin of the open loop system φm and the iso-damping 

property. The three performance specifications are mathematically expressed as: 

∠ (𝐻𝑜𝑝𝑒𝑛−𝑙𝑜𝑜𝑝(𝑗𝜔𝑐𝑔)) = −𝜋 + 𝜑𝑚     (3) 

|𝐻𝑜𝑝𝑒𝑛−𝑙𝑜𝑜𝑝(𝑗𝜔𝑐𝑔)| = 1       (4) 

𝑑(∠𝐻𝑜𝑝𝑒𝑛−𝑙𝑜𝑜𝑝(𝑗𝜔))

𝑑𝜔
|

𝜔=𝜔𝑐𝑔

= 0      (5) 

Assuming the smart beam is mathematically modeled through a transfer function 

G(s), then the equations (3)-(5) can be further described as: 

|𝑘𝑝 [1 + 𝑘𝑑𝜔𝑐𝑔
𝜇

(𝑐𝑜𝑠 (
𝜋𝜇

2
) + 𝑗𝑠𝑖𝑛 (

𝜋𝜇

2
))]| =

1

|𝐺(𝑗𝜔𝑐𝑔)|
                (6) 

𝑘𝑑𝜔𝑐𝑔
𝜇

𝑠𝑖𝑛(
𝜋𝜇

2
)

1+𝑘𝑑𝜔𝑐𝑔
𝜇

𝑐𝑜𝑠(
𝜋𝜇

2
)

= 𝑡𝑔 (−𝜋 + 𝜑𝑚 − ∠𝐺(𝑗𝜔𝑐𝑔))                               (7) 

𝜇𝑘𝑑𝜔𝑐𝑔
𝜇−1

𝑠𝑖𝑛(
𝜋𝜇

2
)

1+2𝑘𝑑𝜔𝑐𝑔
𝜇

𝑐𝑜𝑠(
𝜋𝜇

2
)+𝑘𝑑

2𝜔𝑐𝑔
2𝜇 = −

𝑑(∠𝐺(𝑗𝜔))

𝑑𝜔
|

𝜔=𝜔𝑐𝑔

                                              (8) 
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Equations (7) and (8) can then be used to determine the controller parameters kd 

and μ based on a graphical approach [15, 16, 17], in which the derivative gain is 

computed as a function of the fractional order according to (7) kd1=f(μ) and 

according to (8) kd2=g(μ). Then, the two functions f and g are plotted, with the 

final values for kd and μ determined as the intersection point of f and g. The 

proportional gain kp can be determined afterwards based on the modulus equation 

in (6). 

3 The Proposed Approximation Method 

To implement the fractional order PD controller in (1), an indirect discretization 

method is proposed [14]. The approximation method consists in two steps: the 

first one involves the continuous-time fitting of the ideal fractional order PD 

controller with a higher order rational transfer function, while the second step 

requires the discretization of this fitted continuous-time approximation using any 

of the well know discretization techniques [13]. Even though a lot of continuous-

time approximation methods have been developed, in this paper the Oustaloup 

Recursive Approximation method [19] is used because of its wide acceptance and 

efficiency. According to this method, the continuous-time rational transfer 

function is obtained as follows: 

𝐶(𝑠) = 𝐾𝑐

∏ (𝑠−𝑧𝑗
𝑐)𝑚

𝑗=1

∏ (𝑠−𝑝𝑖
𝑐)𝑛

𝑖=1

                    (9) 

where Kc is the gain, 𝑧𝑗
𝑐 are the zeros, j=1,2,...,m and 𝑝𝑖

𝑐 are the poles, i=1,2,…,n. 

The poles and zeros are obtained based on a recursive distribution between a low 

and a high frequency, at well-chosen intervals, such that a constant ratio is 

obtained between two consecutive poles and zeros [19]. 

To obtain the digital approximation of the fractional order PD controller, the 

second step implies the discretization of (9). Instead of using the classical 

discretization rules, such as Euler, Tustin, Simpson, Al-Alaoui, etc., a new 

continuous-to-discrete-time operator is applied [14]: 

𝑠 =
1+𝛼

𝑇

1−𝑧−1

1+𝛼𝑧−1 =
1+𝛼

𝑇

𝑧−1

𝑧+𝛼
                     (10) 

with the inverse operator obtained directly from (10): 

𝑧 =
1+𝛼+𝛼𝑠𝑇

1+𝛼−𝑠𝑇
                                                      (11) 

where T is the sampling time. The proposed operator is an interpolation between 

the Euler and the Tustin discretization rules, with αϵ[0,1] being a weighting 

parameter. The Euler discretization rule is obtained if α=0, while α=1 leads to the 

Tustin rule. 
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The poles, 𝑝𝑖
𝑑, and zeros, 𝑧𝑗

𝑑, of the discrete-time transfer function in (14) are 

computed according to the inverse operator in (11): 

𝑝𝑖
𝑑 =

1+𝛼+𝛼𝑝𝑖
𝑐𝑇

1+𝛼−𝑝𝑖
𝑐𝑇

                                        (12) 

𝑧𝑗
𝑑 =

1+𝛼+𝛼𝑧𝑗
𝑐𝑇

1+𝛼−𝑧𝑗
𝑐𝑇

                                    (13) 

Then, the discrete-time equivalent of (9) has the form: 

𝐶(𝑧) = 𝐾𝑑

∏ (𝑧−𝑧𝑗
𝑑)𝑛

𝑗=1

∏ (𝑧−𝑝𝑖
𝑑)𝑛

𝑖=1

                    (14) 

where Kd is the corresponding discrete-time transfer function gain and it is 

computed based on the equivalency of the continuous-time and discrete-time 

transfer functions from (9) and (14) in steady state (s=0 and z=1): 

𝐾𝑑 = 𝐾𝑐

∏ (−𝑧𝑗
𝑐)𝑚

𝑗=1 ∏ (1−𝑝𝑖
𝑑)𝑛

𝑖=1

∏ (−𝑝𝑖
𝑐)𝑛

𝑖=1 ∏ (1−𝑧𝑗
𝑑)𝑛

𝑗=1

                                 (15) 

Remarks [14]: 

1) To calculate the discrete-time gain Kd using (15) it is necessary to remove first 

all pure integrators and differentiators. 

2) A continuous-time transfer function with dead time can be converted in two 

steps. The rational part is converted using (12), (13) and (14), while the dead time 

is converted separately to the nearest integer number of samples: 𝑒−𝑠𝜏𝑑 ↔ 𝑧−𝑑 

with 𝜏𝑑 ≅ 𝑑𝑇. 

3) If m<n, then (n-m) continuous-time zeros at -∞ are converted into discrete-time 

zeros at –α. In this case, (n-m) zeros are added in discrete-time: 𝑧𝑗
𝑑 = −𝛼

 
with 

𝑗 = 𝑚 + 1, 𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ . 

Figs. 1 a) and b) show the frequency response of the ideal continuous-time 

fractional order system s
-0.35

, as well as the discrete-time approximations. The 

Oustaloup Recursive Approximation method has been used to compute the 

continuous-time rational transfer function, with the maximum and minimum 

frequency bounds taken as ωh=10 and ωl=10
-2

, with a total of 5 poles and zeros. 

The sampling time used in the discretization is T=0.314 s and the weighting 

parameter has been taken as α=0.9 in Fig. 1a) and α=0.2 for Fig. 1b). 

The frequency responses in Fig. 1 demonstrate that the lower the value for α, the 

better the discrete-time approximation of the magnitude curve. On the other hand, 

a higher value for α improves the approximation of the phase curve. However, if α 

is selected close to 1, problems could arise in the discrete-time approximation. 

The next numerical example demonstrates this issue. 
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a) b) 

Figure 1 

Frequency responses of s-0.35 for a) α=0.9; b) α=0.2 

Consider the fractional order PID controller: 

𝐻𝐹𝑂−𝑃𝐼𝐷(𝑠) = 10 + 20𝑠−0.2 + 2𝑠0.7                      (16) 

The Oustaloup Recursive Approximation method, with 5 poles and zeros and 

within the frequency interval ωϵ(10
1
, 10

2
), is used to approximate the fractional 

order integrator and differentiator in (16). The discrete-time approximation is then 

computed with a sampling time T=0.0314 and two different values for the 

weighting parameter, α=0.3 and α=1, respectively. Fig. 2 shows the frequency 

responses of the ideal fractional order controller in (16), along with the two 

discrete-time approximations corresponding to the two different choices for α. The 

step responses of the two controllers are given in Fig. 3. As indicated here, when 

α=1, the ringing phenomenon occurs. Ringing of the controller output is usually 

unwanted in practice because of its wear effect on the actuators. 

 

Figure 2 

Frequency responses of a fractional order PID controller: ideal vs. discrete-time approximations using 

the proposed method 
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Figure 3 

Step responses of the discrete-time approximations of a fractional order PID controller using different 

values for α 

As a conclusion, it is usually bad practice to convert a continuous-time fractional 

order system (obtained according to the Oustaloup Recursive Approximation 

method) to its discrete-time equivalent by taking the weighting parameter α close 

to 1. A fortiori, taking α=1 (Tustin) should be avoided. A theoretical explanation 

of the cause of the ringing phenomenon is given in [14]. 

4 Case Study 

A smart beam system is considered, in this paper, as the case study. An 

experimental laboratory scale smart beam unit was developed and built at the 

Technical University of Cluj-Napoca in Romania, (Fig. 4). 

 

Figure 4 

The experimental stand 
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4.1 Hardware Setup 

The block diagram of the system, including the programmable automation 

controller and a dedicated system with power amplifier (E503.00), the signal 

processing module (E509.X3), chassis (E501.00), the smart beam, two actuators 

PZT (P-878.A1) and two piezo resistive sensors (1-LY11-3/120) placed on both 

sides of the smart beam is presented in Fig. 5. 

 

Figure 5 

Block diagram of the experimental stand 

The PAC embedded system used for implementation is a reconfigurable control 

and acquisition system providing high performance and reliability. The device 

includes a real time controller (NI 9014), a chassis with FPGA (NI 9103), two 

extension modules with analog input lines (NI 9230) and analog output lines (NI 

9263). 

The architecture of the embedded system is built around two chips: the first one, 

which runs the VxWorks real-time operating system and is programmable with 

LabVIEWTM Real Time, and the second which is programmable through 

LabVIEWTM FPGA. 

The real time controller is used for control purposes and is based on an industrial 

400 MHz Free scale processor for deterministic and reliable real-time 

applications. An advantage of this processor is the support for floating point 

calculations, which is necessary for the control algorithm chosen, having 128 MB 

of DRAM memory and 2 GB of nonvolatile storage. 

The programmable chassis module harbors the user-programmable Virtex II 

FPGA, which will be used to implement all time critical operations and data 

acquisition. The input module provides connections for three differential analog 

input channels. It includes a 24-bit analog-to-digital converter (ADC), is dedicated 

for piezoelectric sensors and is compatible with TEDS sensors. The NI 9263 

provides 4 analog output channels and is used for the command signal applied to 

the power amplifier and PZT. 
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4.2 System Identification 

The transfer function of the process was determined experimentally by applying a 

sine wave excitation to the two actuators attached near the fixed end of the beam. 

By applying a swept sine with varying frequency between 5 and 100 Hz, it was 

experimentally observed that the largest vibration amplitude is obtained around 

14.5 Hz which is the resonant frequency characterizing the first flexural mode. 

A second order model for the process was determined exciting the beam with a 

sine wave of amplitude 1V and 14.5 Hz. 

𝐺(𝑠) =
78.35

𝑠2+1.221 𝑠+8222
                                                          (17) 

Figs. 6, 7 and 8 show the experimental data used in the identification, as well as a 

zoomed view of the transient and steady state responses. A 93.22% fit over the 

experimental data has been obtained using the mathematical model in (17). 

Obtaining such a high similarity between the identified model and the 

experimental data doesn’t justify the effort necessary to approximate the dynamics 

of the process with a higher order model. 

A swept sine of 1V amplitude and a frequency range between 12 and 16 Hz has 

also been applied to the smart beam. The simulated and experimental data in Fig. 

9 show a good accuracy for the mathematical model with a 73.66% fit. 

 

Figure 6 

Validation of the identified transfer function on a sine excitation with amplitude 1 and  

frequency 14.5 Hz 
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Figure 7 

Zoomed transient regime 

 

 

Figure 8 

Zoomed steady-state regime 
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Figure 9 

Comparison of actual smart beam response and mathematical model for a swept sine response 

4.3 Controller Tuning and Experimental Results 

To tune the fractional order PD controller for the smart beam modeled as indicated 

in (17), the following performance specifications are imposed: a) a gain crossover 

frequency ωcg=105 rad/s, b) the phase margin φm=60
o
 and the iso-damping 

property. The graphical solution for equations (7) and (8) is given in Fig. 10. The 

intersection point in Fig. 10 gives kd=0.0308 and μ=0.9043. Based on the modulus 

condition in (6), the proportional gain kp =14.736. The transfer function of the 

fractional order PD controller is then: 

𝐻𝐹𝑂−𝑃𝐷(𝑠) = 14.736(1 + 0.0308𝑠0.9043)                      (18) 

 

Figure 10 

Graphical solution for fractional order PD controller parameters: kd and μ 
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The Oustaloup Recursive Approximation method is used to obtain the continuous-

time rational transfer function, within the frequency range ωϵ(0.0638, 628): 

𝐶(𝑠) =
1248.8 (𝑠+468.3) (𝑠+58.64) (𝑠+18.23) (𝑠+1.368) (𝑠+0.08718)

(𝑠+5505) (𝑠+347.3) (𝑠+21.92) (𝑠+1.383) (𝑠+0.08725)
                            (19) 

The discrete-time approximation, based on the proposed method, is obtained with 

α=0.2 and a sampling time T=0.005 seconds: 

𝐺(𝑧) = 77.175
(𝑧−0.206)(𝑧−0.764)(𝑧−0.915)(𝑧−0.993)(𝑧−0.9996)

(𝑧+0.15)(𝑧−0.29)(𝑧−0.89)(𝑧−0.993)(𝑧−0.9995)
              (20) 

The Bode diagrams of the ideal fractional order PD controller in (18), along with 

its discrete-time approximation in (20), are given in Fig. 11 showing a good 

similarity between the two frequency responses. The discrete-time controller in 

(20) is then implemented on the smart beam. The experimental results considering 

a tip displacement of the beam’s free end are given in Fig. 12, while Fig. 13 shows 

the free response of the beam considering the same initial tip displacement. The 

settling time for the free response is 6.88 seconds; as indicated in Fig. 12, the 

settling time for the controlled response is reduced to 2.92 seconds, which is less 

than a half. 

 

Figure 11 

Bode diagrams of the ideal fractional order PD controller and its discrete-time approximation 
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Figure 12 

Vibration attenuation using fractional order PD controller 

 

Figure 13 

Free response of the smart beam 

Conclusions 

Suppressing unwanted vibrations are a key concern in numerous industrial 

domains, including the aerospace industry. Smart structural beams are generally 

considered an accurate means of studying the behavior of airplane wings. 

Numerous active vibration control strategies have been proposed, analyzed and 

experimentally tested, with a new focus on fractional order control algorithms. In 

this paper, a fractional order PD controller is designed for such a purpose. The 

major disadvantage of such controllers is that their unlimited memory causes 

problems when it comes to the actual implementation of the controllers on real 

environments. The solution to this problem consists in the proper, rational 

approximation of these fractional order controllers. 
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In this paper, a novel indirect approach to compute a rational discrete-time 

approximation of the fractional order PD controller is used. The preliminary 

results of using this new method have been presented in [14]. The first step 

consists in obtaining a rational continuous-time transfer function according to the 

Oustaloup Recursive Approximation method. Then, the new continuous-to-

discrete-time operator is used to compute the digital transfer function. The new 

operator is an interpolation between the Euler and Tustin rules, which ensures an 

increased flexibility in guaranteeing a better fitting of the magnitude or phase 

curve of the original fractional order controller. Numerical examples are provided 

to point out the advantages of this new operator. 

Furthermore, this paper presents and demonstrates that the proposed discrete-time 

approximation method is simple and efficient, not just in simulation environments, 

but also for real-time implementation of fractional order controllers and even for 

processes that exhibit a fast dynamic. In this regard, the case study presented 

shows that the use of this new operator in the approximation of a fractional order 

PD controller leads to a discrete-time rational transfer function that can be further 

implemented on the dedicated real time control device. The experimental results, 

obtained using this discrete-time approximation of the fractional order PD 

controller, demonstrate the efficiency of the designed algorithm, providing for a 

57.5% improvement in the vibration suppression. 
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