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SSUMMARY 

The duplication of genes and whole genomes is an important mechanism to increase genomic novelty. In 

plants, paleopolyploidy events (ancient whole genome duplication events) are found at the basis of all 
important plant lineages (e.g. at the basis of angiosperms, eudicots and monocots) and within the 
domesticated crops polyploids have been selected for their higher yield and better fruits. Therefore, there is 

a need to study how genomes change after duplication events, how the resulting duplicates evolve over time, 
which molecular mechanisms influence duplicate loss and retention, and how these duplicates are integrated 

into the existing gene network context.  

Gene duplicate loss and retention in flowering plants 

Gene duplicates, either generated through whole genome duplications (WGD) or small-scale genome 
duplications (SSD), are believed to play an important role in generating evolutionary novelty and adaptation. 

Hence, “Which genes undergo duplication and are preserved following duplication?” and “Why are certain 
duplicates longer retained?” are important questions. It has been observed that gene duplicability, or the 

ability of genes to be retained following duplication, is a non-random process. For example, certain biological 
function categories tend to be preferentially duplicated through WGD, while other functions are enriched 

among SSD duplicates. However, an overarching view of ‘gene duplicability’ is lacking and the mechanisms 
influencing loss and retention of gene duplicates over evolutionary time are not yet fully elucidated.  

In chapter 2, we present a large-scale study in which we investigated duplicate retention for gene families 

shared between 37 flowering plant species (angiosperm core gene families). For most gene families, we 
observe a strikingly consistent pattern of gene duplicability across species, with gene families being either 

primarily single-copy or multi-copy in all species. An intermediate class contains gene families that are often 
retained in duplicate for periods extending to tens of millions of years after whole-genome duplication, but 

ultimately appear to be largely restored to singleton status, suggesting that these genes may be dosage 
balance-sensitive. The distinction between single-copy and multi-copy gene families is reflected in their 

functional annotation, with single-copy genes being mainly involved in the maintenance of genome stability 
and organelle function and multi-copy genes in signalling, transport and metabolism. The intermediate class 
was overrepresented in regulatory genes, further suggesting that these represent putative dosage-balance 

sensitive genes.  

In Chapter 3, we investigated the impact of protein-protein interactions (PPI) on the evolutionary and 

functional fate of WGD and SSD duplicates in Arabidopsis, tomato and maize. Using a duplicate classification 
based on gene family, phylogenetic trees and synteny analyses, a large RNAseq expression compendium, and 
an extensive protein interaction network, significant divergence at the level of sequence, expression pattern 

and protein interaction partners could be observed between tandem (SSD) and block (WGD) duplicates. 
Furthermore, consistently, duplicates involved in PPIs tend to be more evolutionary constrained than their 

counterparts without interactions in Arabidopsis, tomato and maize. Duplicates with PPI can i) contribute to 
explain the loss and retention patterns of gene families across angiosperms, and ii) are enriched in gene 

families predicted to be dosage balance sensitive based on their reciprocal gene retention pattern. In 
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summary chapter 4 shows based on sequence, expression, interaction and gene retention data the influence 

of PPIs on the evolution of gene duplicates and that duplication mode and PPIs can be considered as 
characteristics of a gene family influencing retention of duplicates throughout all angiosperms. 

TTranSeq: high-throughput 3’-end sequencing 

In chapter 4, we present TranSeq, a high-throughput 3’-end sequencing procedure. TranSeq requires 10- to 

20-fold fewer sequence reads than the current transcriptomics procedures. TranSeq significantly reduces 
costs and allows a great increase in size of sample sets analysed in a single experiment. Furthermore, mapping 

TranSeq reads to the reference tomato genome facilitated the annotation of new transcripts improving > 
45% of the existing gene models. Hence, TranSeq is anticipated to boost large-scale transcriptome assays and 

impact the spatial and temporal resolution of gene expression data and their visualization, in both model and 
non-model plant species. 

Integrated network motif modules  

In chapter 5, we present conceptual insights in the topology of eukaryotic integrated gene regulatory 

networks in a functional, dynamic and evolutionary context. Different types of molecular interactions closely 
work together in these networks to establish proper gene expression in time and space, but many questions 

remain on how they specifically influence one another and how they together coordinate gene regulation, 
especially in higher eukaryotes. To get a systems level understanding of how different molecular interactions 
interrelate to form a coordinated response in gene regulation, we developed a framework to construct and 

investigate integrated gene regulatory networks consisting of undirected protein-protein, genetic and 
homologous interactions, and directed interactions of protein-DNA, regulatory and miRNA-mRNA 

interactions in the worm Caenorhabditis elegans and the plant Arabidopsis thaliana. Specifically, we look at 
network motifs and their clustered modules. We found that composite network motifs cluster together into 

biologically relevant network modules in integrated gene regulatory networks of worm and plant, thereby 
relating network topology to function. We integrated gene expression profiles to obtain dynamic network 

motif modules. We also dissected networks and modules via phylogenetic decomposition to associate the 
evolutionary age of genes with topological and functional properties. Moreover, we discuss the impact of 

specific data types and incomplete networks. 

 



 

SSAMENVATTING 

Genduplicatie is een belangrijk proces voor het introduceren van nieuwe kenmerken en wijzigingen in 

planten. In alle commerciële gewassen zijn oude volledige genoom verdubbelingen gedetecteerd (bijv. aan 
de basis van alle bloemplanten). In gedomesticeerde gewassen zijn polyploïde planten geselecteerd vanwege 
hogere opbrengst en/of interessante vruchteigenschappen. Het is dan ook cruciaal om te bestuderen hoe 

genomen veranderen na duplicatie, hoe deze genduplicaten evolueren en hoe deze duplicaten geïntegreerd 
worden in het reeds bestaande netwerk.  

Verlies en behoud van gen duplicaten in bloemplanten. 

Genduplicaten kunnen gecreëerd worden door het volledige genoom te dupliceren of door een kleinschalige 

duplicatie. Het is echter zo dat na duplicatie de meeste genen verloren gaan, maar het behoud van bepaalde 
duplicaten en het duplicatie mechanisme zijn echter geen willekeurige processen. Sommige functionele 

categorieën dupliceren bij voorkeur door volledige genoom duplicatie, terwijl andere kleinschalige 
duplicaties verkiezen. Ondanks vele studies in dit veld ontbrak er nog een algemeen beeld van de 

dupliceerbaarheid van genen en zijn de mechanismen die het verlies en behoud van duplicaten beïnvloeden 
onderbelicht. 

Hiervoor gaan we in hoofdstuk twee dieper in op de vragen “Welke genen dupliceren?”, ”Welke duplicaten 

blijven behouden?” en “Waarom blijven bepaalde genen langer behouden?”. In dit hoofdstuk onderzoeken 
we op grote schaal het behoud van genduplicaten voor genfamilies die genen bevatten uit 37 verschillende 

bloemplanten. Voor de meeste genfamilies werd een consistent patroon van genduplicatie in alle species 
geobserveerd. De grootste groep van genfamilies heeft ofwel preferentieel één gen in elk species, of heeft 

preferentieel meerdere kopieën in alle species. In de tussenliggende groep van genfamilies worden 
duplicaten tot wel meer dan tientallen miljoenen jaren na de volledige genoom duplicatie behouden, maar 

uiteindelijk keren deze genfamilies toch terug naar de één-kopie status. De oorzaak van dit patroon is 
mogelijk te wijten aan de dosis-sensitiviteit van deze genen. Dit mechanisme zorgt voor een langer behoud, 

maar kan na verloop van tijd opgeheven worden. Het onderscheid tussen de groepen van genfamilies wordt 
gereflecteerd in de functionele annotatie van deze groepen. De één-kopie genfamilies zijn voornamelijk 
verantwoordelijk voor het behoud van de genoom stabiliteit en de organel functies. De meerdere-kopij 

genfamilies zijn functioneel betrokken bij signalisatie, transport, en metabolisme en de tussenliggende groep 
bestaat voornamelijk uit regulatorische genen. 

In hoofdstuk drie gaan we dieper in op de moleculaire mechanismen achter dit patroon. Hiervoor kijken we 
naar de impact van eiwit-eiwit interacties op het evolutionaire lot van volledige genoom en kleinschalige 
duplicaten in Arabidopsis, tomaat en mais. Door gebruik te maken van een duplicaat classificatie gebaseerd 

op fylogenetische bomen van genfamilies, grote RNAseq expressie compendia en een uitgebreid eiwit-eiwit 
interactie netwerk, konden we significante divergentie op sequentie, expressie en interactiepartner niveau 

waarnemen tussen kleinschalige en volledige genoom duplicaten. Daarnaast tonen we aan dat duplicaten 
die betrokken zijn bij eiwit-eiwit interacties sterker behouden zijn dan duplicaten zonder interacties in 

Arabidopsis, tomaat en mais. Duplicaten met eiwit-eiwit interacties zijn overgerepresenteerd in de 
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genfamilies die verondersteld worden dosis-sensitief te zijn en kunnen deels de patronen uit hoofdstuk twee 

helpen verklaren. Samenvattend toont dit hoofdstuk de invloed van eiwit-eiwit interacties aan op de evolutie 
van genduplicaten op basis van sequentie, expressie, interactie en genretentie data. Daarnaast tonen we aan 

dat zowel duplicatie type als interacties beschouwd kunnen worden als eigenschappen van genfamilies die 
het behoud van duplicaten beïnvloeden in alle bloemplanten. 

TTranSeq: 3’-einde sequenering 

In hoofdstuk vier presenteren we TranSeq, een sequeneringsmethode die start vanaf het 3’ einde van het 

mRNA. TranSeq vereist 10 tot 20 keer minder `reads` dan de huidige sequeneringsprocedures en verlaagt 
daardoor de kosten significant. Dit laat een grote stijging toe van het aantal stalen dat in één experiment 

geanalyseerd kan worden. In dit hoofdstuk bevestigen we dat deze methode accurate expressieprofielen 
genereert en verder gebruikt kan worden voor het verbeteren van de genoom annotatie. Het mappen van 

de TranSeq reads op het referentie genoom van tomaat heeft geleid tot een verbetering van meer dan 45% 
van de genmodellen. Samenvattend kan TranSeq de grootschalige transcriptoom studies stimuleren en de 

resolutie van genexpressie en genannotatie verbeteren in zowel model als niet model planten. 

Geïntegreerde netwerk motief modules  

In hoofdstuk vijf tonen we conceptuele inzichten aan in de topologie van eukaryote geïntegreerde 
genregulatorische netwerken dit respectievelijk in een functionele, dynamische en evolutionaire context. 
Verschillende types van moleculaire interacties werken nauw samen in deze netwerken om de correcte 

genen tot expressie te laten komen, op de juiste plaats en op het juiste moment. Omtrent hoe genen elkaar 
exact beïnvloeden zijn nog vele vragen onbeantwoord, zeker in hogere eukaryoten. Om inzicht hierin te 

krijgen hebben we een kader ontwikkeld om geïntegreerde genregulatorische netwerken te bouwen en te 
onderzoeken. Deze netwerken bestaan uit ongerichte (eiwit-eiwit, genetische, en homologe) en gerichte 

(eiwit-DNA, regulatorische, en miRNA-mRNA) interacties. Meer specifiek maken we gebruik van netwerk 
motieven en netwerk motief modules. Deze vormen topologisch biologisch relevante onderdelen van het 

genregulatorische netwerk in wormen en planten. Door integratie van expressie profielen werden 
dynamische netwerk modules bekomen. Via fylogenetische decompositie werden de netwerken ontleed wat 

toelaat de evolutionaire leeftijd van genen te linken aan hun topologische en functionele eigenschappen. 
Daarnaast bespreken we ook de invloed van specifieke data types en incomplete netwerken. 
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CSC (CESA4, CESA7, AND CESA8) AND KOR1, A MEMBRANE-BOUND 1,4-BETA-D-GLUCANASE [369, 370]. THIS MODULE IS 

TIGHTLY CO-EXPRESSED IN THE ABIOTIC STRESS COMPENDIUM AND UPREGULATED UPON BRASSINOSTEROID TREATMENT [371] AND SALT 

STRESS CONDITIONS. COMC 36 HAS A SIGNIFICANT ECD SCORE UNDER GENOTOXIC, HEAT, OXIDATIVE, AND SALT STRESS. IN BIRCH, 

OVEREXPRESSION MUTANTS OF MYB46 SHOW THICKER SECONDARY CELL WALLS AND A HIGHER TOLERANCE TO SALT AND OSMOTIC 

STRESS [372]. CELLULOSE SYNTHASES BIND MICROTUBULES, HENCE STABILIZING CELLULOSE SYNTHASE LOCALIZATION AT THE PLASMA 

MEMBRANE AND RENDERING PLANTS LESS SENSITIVE TO SALT STRESS [373]. THE RELATION BETWEEN MYB46 AND CSC IS THEREFORE 

IMPORTANT FOR THE STRESS TOLERANCE OF CROPS. THIS EXAMPLE HIGHLIGHTS THE POTENTIAL OF INTEGRATING REGULATORS WITH 

NETWORK MOTIF MODULES. B) THE HOMEODOMAIN TF CEH-30, WHICH FUNCTIONS IN NEURONAL CELL FATE AND SEX-SPECIFIC 

APOPTOSIS, WAS FOUND TO TARGET A HOMOLOG GROUP OF HEAT SHOCK PROTEINS IN WORM. C) CBF4 AND ZML2 TRANSCRIPTIONALLY 

REGULATED THE MYB/MYC MODULE ATHA COMC 48. THE TFS MYB28, MYB29 AND MYB76 CONTROL ALIPHATIC GLUCOSINOLATE 

BIOSYNTHESIS [374], WHILE MYB51 AND MYB34 REGULATE INDOLE GLUCOSINOLATE BIOSYNTHESIS [375]. THE JAZ-INTERACTING 
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TFS MYC2, MYC3 AND MYC4 FORM TOGETHER WITH THE MYB TFS DIMERIC TF COMPLEXES TO REGULATE THE DIFFERENT 

GLUCOSINOLATE BIOSYNTHESIS PATHWAYS [376]. GLUCOSINOLATES, A CLASS OF SECONDARY METABOLITES MAINLY FOUND IN 

BRASSICACEAE, ARE PART OF A COMPLEX RESPONSE TO A VARIETY OF ABIOTIC STRESSES. A DECREASE IN ALIPHATIC GLUCOSINOLATES 

MODIFIES THE ABUNDANCE OF AQUAPORINS AND HENCE THE WATER UPTAKE IN ROOTS, THEREBY INCREASING DROUGHT AND SALT 

TOLERANCE [377]. ONLY THE ALIPHATIC GLUCOSINOLATE BIOSYNTHESIS TFS ARE DIRECTLY BOUND BY CBF4. IN OUR ABIOTIC STRESS 

COMPENDIUM, WE OBSERVED AN UPREGULATION OF ALIPHATIC GLUCOSINOLATE BIOSYNTHESIS (MYB26 & MYB76), INDOLIC 

GLUCOSINOLATE BIOSYNTHESIS (MYB51), MYC2, AND ALSO OF CBF4 UPON SALT STRESS; FOR MYB51 AND CBF4 THIS IS MOSTLY IN 

ROOTS. IT HAS BEEN OBSERVED THAT CBF4 SIGNIFICANTLY ALTERS THE ACCUMULATION OF AT LEAST FIVE GLUCOSINOLATES BUT THE 

DIRECT REGULATORY MECHANISM BETWEEN CBF4 AND GLUCOSINOLATE SYNTHESIS HAS NOT BEEN DESCRIBED [378]. HERE WE SHOWED 

THAT THE DROUGHT RESPONSIVE GENE CBF4 IS AN UPSTREAM REGULATOR OF THE ALIPHATIC GLUCOSINOLATE BIOSYNTHESIS WHICH 

INCREASES THE TOLERANCE TO DROUGHT AND SALT STRESS. THE FUNCTION OF ZML2 IN THIS CONTEXT IS STILL TO BE DETERMINED. .. 134 
FIGURE 5.7: TOTAL NUMBER OF DIRECTED AND UNDIRECTED INTERACTIONS BETWEEN AGE GROUPS OF A. THALIANA (LEFT) AND C. ELEGANS 
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(DARKER = OLDER). RED EDGES ARE WITHIN THE AGE GROUPS, BLUE EDGES ARE BETWEEN THE AGE GROUPS. THE THICKNESS OF THE EDGE 

IS SCALED TO THE NUMBER OF INTERACTIONS, WHICH IS ALSO MENTIONED IN THE EDGE LABEL FOR THE INTERACTIONS WITHIN AGE 
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AAIMS & THESIS OUTLINE 

The duplication of genes and whole genomes is an important mechanism to increase evolutionary novelty. 
In plants, paleopolyploidy events (ancient WGD events) are found at the basis of all major lineages (e.g. 

angiosperms, eudicots and monocots) and within the domesticated crops polyploids have been selected for 
their higher yield and better fruits. Therefore, there is a need to study how genomes change after duplication 

events, how the resulting duplicates evolve over time, which molecular mechanisms influence duplicate loss 
and retention, and how these duplicates are integrated into the existing gene network context.  

Chapter 1 introduces all necessary terminology and concepts regarding Omics data, gene regulatory 

networks and gene duplication in plants. This general basis will help understanding and interpreting the 
research chapters. 

The first research chapter, Chapter 2, is a reproduction of a paper published in Plant Cell, in which we look at 

the different types of duplications and associated gene loss and retention patterns across angiosperms. 
Additional topics within this chapter are the various functional categories associated with the duplicate 

retention and loss, as well as the speed at which these losses occur and possible factors influencing either 
retention or loss. In general, this chapter is aimed at providing an overarching view of ‘gene duplicability’ 

across angiosperms. 

The third chapter digs deeper into the influence of duplication mode (small-scale versus large-scale) and 
protein-protein interactions on loss and retention of duplicates by linking theories of duplicate retention like 

dosage balance sensitivity to observations from sequence, expression and interaction data of Arabidopsis 
thaliana, Solanum lycopersicum (tomato) and Zea mays (maize). 

The fourth chapter presents a proof of concept using a novel 3’ UTR sequencing technique, TranSeq. This 

sequencing approach aims to improve gene annotations and allows a cheaper and faster detection of gene 
expression.  

The final research part (Chapter 5) proposes a novel pipeline to integrate multiple interaction data types and 

different experimental methodologies. The topological organization of integrated plant (A. thaliana) and 
worm (C. elegans) networks is studied by assembling the interactions through network motifs into network 

motif modules and adding a regulatory superview on top. Next to revealing topological features of biological 
networks this chapter is aimed at answering questions related to the evolution of networks over time and 

the integration of novel genes into the networks by using a combination of phylogenetic and structural 
decomposition. Overall, this chapter presents conceptual insights in the topology of eukaryotic integrated 

gene regulatory networks in a functional, dynamic and evolutionary context. 

The last chapter (chapter 6) provides a general overview of the achieved goals, a discussion how this relates 
to published research, what questions are still open and what the next steps might be. 

Enjoy the read! 
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INTRODUCTION 

“The hand that gives is among the hand that takes. Genes have no fatherland, 
genomes are without patriotism and without decency, their sole object is gain.” 

 Napoléon Bonaparte
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11 INTRODUCTION 

1.1 SETTING THE SCENE 
The cells of all organisms on earth are built from four different types of molecules: nucleic acids, proteins, 

carbohydrates and lipids. According to the central dogma of molecular biology, the genetic code, encoded in 
the DNA (deoxyribonucleic acid), is transcribed into RNA (ribonucleic acid), which is then translated into 

proteins which carry out a broad range of functions. This “standard cellular pathway” is universal among 
eukaryote organisms. All molecules within a cell interact with each other and together they form a complex 

network, which is shaped by evolutionary pressure acting on the system. Through adaptation and evolution 
of this system, the overwhelming species diversity we see on our planet today was created. Species have 

adapted to occupy almost every niche on earth. 

To learn more about biological systems and their evolution, specialized techniques were developed to detect, 
measure, and characterize each of these molecules. The continuous improvement of nucleotide sequencing 

and high-throughput detection techniques has made the detection and identification of most of these 
molecules affordable and accessible for the whole scientific community. This generates a still expanding 

information tsunami consisting of different types of -Omics data; each linked to a specific molecule or process 
within organisms (e.g. genomics, transcriptomics, metabolomics …). The most commonly used example of 

this tsunami is the exponential increase in the number of available genome sequences (DNA sequences in a 
species) (Figure 1.1). For plants there are 157 genomes available with varying assembly and annotation 
quality [1]. On top of that there are a magnitude of transcriptomes (all RNA sequences in a species) available. 

In recent years the genetic variation within a population is also being assessed by sequencing different 
accessions of the same species [2, 3] and other data types, for example, proteome (proteins) and interactome 

(interaction) data are also being gathered in high-throughput experiments. 

 
Figure 1.1: Increase in available genome sequences in the sequence read archive over time (source: SRA). 

The huge amount of available data opens up a wide range of opportunities to study the molecular and 
evolutionary mechanisms which created the live we see today. This thesis, will take you through my journey 

studying the retention and loss patterns of gene duplicates in Angiosperm plants, the influence of protein-
protein interactions on duplicate evolution, a novel 3’end RNA sequencing approach, and network motif 

modules in integrated gene regulatory networks. 
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11.2 EVOLUTION TROUGH MUTATION AND GENE DUPLICATION 
The genome, which transfers the genetic information on to the next generations, undergoes frequent 
changes. On the nucleotide level mutations make changes in the DNA sequence. A first group of mutations 

are the substitutions in which of one base is exchanged for another one (E.g. A->G, C->T).  If a substitution is 
located within a coding sequence (CDS) region it can be synonymous (silent mutation with no change to the 

amino acid it encodes), non-synonymous (mutation with a change to the amino acid it encodes) or non-sense 
(introducing an early stop codon). A second group of mutations are insertions and deletions, in which one or 

a few base pairs are inserted into or deleted from the DNA. This can cause a frameshift in the reading frame 
leading to wrong transcription and translation. For all mutations the effect is dependent on both the position 

and the type of the change [4]. Within the translated region they can have a direct effect on the protein 
function. If located outside the translated region the effect is dependent on the position of the mutation. 
Mutation within a cis-regulatory region for example can have a severe effect. 

The biggest changes in gene content involve duplications, these can be small- or large scale. Duplicates drive 
evolutionary adaptations and novelty in genomes through introduction of new genetic material. This extra 

genomic content is essential for the creation of developmental functions and regulatory pathways [5]. In this 
part, you will find a general overview of the origin, the types, the use and the fate of duplicates. First, we 
have to introduce some terminology (Figure 1.2). 

� Homologs: general term for two genes coming from a common ancestral DNA sequence, e.g. all 

genes on Figure 1.2 are homologs of each other. 

� Orthologs: homologs separated by speciation event, e.g. Bα and Cα. A is an ortholog of all other 

genes. 

� Paralogs: homologs separated by a duplication event, e.g. Cβ1 and Cβ2 

� Homeologs: paralogs coming from a polyploidy event. 

� Gene family: a set of genes that are thought to originate from the same gene and expanded through 

duplication and speciation. The genes can encompass one or multiple species and mostly have a 

similar function. E.g. all genes shown on Figure 1.2 form a gene family. 
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Figure 1.2: Gene family with marked duplication and speciation events. The colours each represent a species. 

11.2.1 Small-scale duplications 
There are different types of small-scale duplicates (SSD). The most prevalent ones are the tandem duplicates, 
which mostly originate from unequal crossing-over between two alleles or replication slippage (Figure 1.3A) 

[5]. Replication slippage is caused by mispairing of the DNA strands after denaturation [6]. This often 
produces small repetitive structures or partial gene duplications. Tandem duplication result in a cluster of 

paralogous sequences close to each other on the same chromosome. For example, the small heat shock 
protein gene family in tomato has expanded heavily through tandem duplication events [7]. SSDs can also be 

generated through transposon-mediated duplications (Figure 1.3B). In plants Pack-Mutator-like transposable 
elements (Pack-MULEs) induce the duplication of genes and genomic fragments into different genomic 

regions [8]. In mammals, another system with duplication through transposable elements called segmental 
duplication is active [9]. A third mechanism is retroduplication (Figure 1.3D). In this mechanism, the mRNA 

reversely transcribed to DNA and then re-inserted somewhere else in the genome [10]. The detection of SSD 
duplicates is commonly done with sequence similarity searches (e.g. BLAST search). 
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Figure 1.3: Overview of the SSD mechanisms. A) Tandem duplicates result from unequal cross-over of alleles. B) 
Transposon-mediated duplication of gene located within the transposon boundaries. C) Retroduplication. Reinsertion 
of a gene that underwent reverse transcription followed by insertion. This gene has lost intronic elements. Figure from 
[5]. 

11.2.2 Whole genome duplications 
Polyploid species have multiple sets of chromosomes, this is the result of a WGD. Polyploids occur naturally 

but are also induced during crop-breeding. Polyploidy can either be an alloploidy or an autoploidy event. 
Alloploidy is the fusion of 2 or more chromosomal sets coming from a different species (interspecific 

hybridization), for example wheat is a cross between three grasses (see 1.2.3). In an autopolyploidy event, 
homologous chromosomal sets fuse together, this can be a doubling of the genome or a merge within the 

same species [11]. The merge of two genomes is claimed to give combinatorial benefits called hybrid vigour 
or heterosis [12, 13].  

Despite the frequent occurrence of polyploids in natural populations, the establishment only happens rarely. 

It has even been argued that polyploidy is an evolutionary dead end [14, 15]. Still we detect many cases of 
paleopolyploidy (Figure 1.4) [16]. WGD have been found in the early vertebrate evolution (as Ohno predicted 

in the 70’s [17, 18]), in fungi, amphibia and fishes, but WGDs are especially prevalent in the flowering plants 
(Figure 1.4) [16]. In model plant Arabidopsis thaliana, for example, at least four WGD events were detected. 

The Alpha (±50 Mya), the Beta (±60 Mya), the Gamma WGD which is shared between all Eudicots, and an 
older unnamed one shared between all angiosperms (Figure 1.4) [19-21]. The fact that so many ancient WGDs 

are detected means that at certain points in time the polyploids survived while the diploids became extinct. 
Many independent WGDs are detected around mass extinction events (Figure 1.4) [16, 22-24]. The link 
between WGDs and extinction events is however still debated, but it seems that stress can cause polyploidy 

and that under extreme environmental stress polyploids have an advantage [16, 22-25]. 
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Figure 1.4: Phylogenetic tree with known whole-genome duplications. The WGDs are marked in red on the tree with 
bold black dashed lines reflecting uncertainty in the date of the events. WGDs located around the Cretaceous–Paleogene 
boundary are marked in light red. The shaded areas represent mass extinction events. Figure from [16]. 

DDetection of WGDs 

WGDs can be inferred using computational approaches either by detecting collinearity within a genome or 
by looking at the distribution of synonymous substitution rate (Ks) [26]. Often a combination of both is used. 
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Collinear regions are stretches of genes with conserved gene order and gene content between genomic 
segments. Homologous genes from these segments (multiplicons) are called block duplicates and they 
provide the evidence for large scale duplications (Figure 1.5A). Next to collinearity, Ks based age distribution 

between paralogs can be used to detect WGD events [27]. Synonymous substitutions (Ks) within a CDS region 
of a gene don’t change the associated amino acid sequence, making them neutral due to the unchanged 

protein function. The fact that they appear at a constant rate (within a species) makes them suitable as a 
proxy for age. The age distribution for SSD is typically L-shaped with many recent duplicates and fewer older 

duplicates (Figure 1.5B), due to most duplicate genes getting lost. The other peaks showing a burst of gene 
duplicates, represent WGD events (Figure 1.5B). The underlying events can be found by fitting mixture 

models to the complete duplicate Ks based age distribution [27-29]. Combining the synonymous substitution 
rate with phylogenetic trees calibrated based on fossils makes it possible to estimate the date of the WGD 

event [21]. 

 

 

Figure 1.5 A: Multiplicon A and B represent two hypothetical genomic segments that are being evaluated for 
homology. Each square represents a gene. Homologous genes are indicated in grey and connected by black lines in the 
collinear region (multiplicon). The homologous genes are also called anchor points and form the evidence for a segmental 
duplication. Figure adapted from [26]. B: Theoretical split up of the synonymous age distribution rate (Ks) into the 
different duplication events. This example shows two whole-genome duplication events (red and blue) and ongoing 
small gene duplication events (SGD). If we add up all these distributions we get the complex full distribution [30]. 

11.2.3 Importance of polyploidy in crop species 
The expected population increase demands a higher food supply and in the same time the impact on the 
ecosystem needs to be reduced. To achieve this plant genes and genomes need to be characterized and 

genetic diversity needs to be explored [31]. Within angiosperms a wide range of paleoploidy events and a 
large amount of lineage-specific WGD events have been detected (Figure 1.4) [21]. These events are major 

force in the creation of adaptation and diversity and contributed to important agronomic traits [5]. Most of 
the crops underwent at least one round of WGD/polyploidy (Figure 1.6). Natural polyploids where 
domesticated and polyploidy was induced within crops. These plants were used within breading programmes 

that gave rise to the crops we grow and eat today. Figure 1.6 shows the importance of polyploids in evolution 
and domestication for wheat and Brassicaceae crops [31]. Multiple rounds of duplications gave rise to large 

complex genomes with a high number of homologs. Understanding the evolution of genome architecture, 
and how duplicated genes and genomes evolve over time, is important to improve agronomic traits of crops. 
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Figure 1.6: Influence of polyploidy in evolution and domestication of plants. A) Polyploidisation and domestication 
history of wheat starting from the common ancestor, Triticeae, over the diploid precursors AA, BB and DD which gave 
rise to the tetraploid durum wheat and hexaploid bread wheat. B) Diverse Brassicaceae crops originating from the same 
ancestral Brassicales that underwent a genome triplication followed by speciation into 3 different species (AA, BB and 
CC). Those were domesticated and together with alloploid combinations they give rise to a wide range of crops that are 
grown worldwide. Figure from [31]. 

11.2.4 Fate of duplicates 
Within the angiosperms clade, WGD duplicates make up the largest amount of genome duplicates [20]. After 

the duplication event fractionation takes place, during which parts of the genome get lost. This results in a 
reduction of the genome size. Depending on the duplication mode, the fractionation can be biased towards 

one of the subgenomes [32]. The loss of duplicates is not restricted to fractionation. On the long term the 
most common fate of duplicates is loss (Figure 1.7) [5, 33, 34]. Loss can take place through increase of the 

mutational load which turns the gene into a pseudogene or the gradual reduction of the expression of one 
of the copies [35]. After this the gene can be removed from the genome without an effect on the fitness. On 

the other hand, retention of duplicates can be achieved through dosage of gene products, selection of the 
existing function, or creation of a novel function (Figure 1.7). The dosage related retention can either be due 

to dosage balance or absolute dosage of the duplicates. The dosage balance theory states that duplicates can 
be maintained because of stoichiometric dosage balance in complexes or pathways (relative dosage). 

Disturbing the balance between genes can have severe effects (e.g. malformed unfunctional protein 
complexes) [36-41]. The retention based on absolute dosage is related to the beneficial effect of a higher 

dosage of the gene product. This could be for example an enzyme being present in a higher concentration 
which leads to an increased flux through a pathway [42]. A second retention mechanism is sub-
functionalisation where the original function is split between the two duplicate copies or the interfering 

function between the copies is resolved (paralog interference) [43]. The third mechanism is 
neofunctionalization, or the retention of duplicates because one copy gains an extra function which makes it 

beneficial for the organism. In this category we can also find the duplicates which escape from adaptive 
conflict in which both duplicates independently resolve their conflicting ancestral functions [5, 44].  
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Figure 1.7: Potential fates of duplicate genes. After duplication, there are different scenarios for the two copies of the 
duplicate. The most common one is loss of one of the copies. Duplicates are preserved because they have dosage related 
advantages or problems. They can split the function of the ancestral gene between the two copies (sub-functionalisation) 
or one of the copies can take on a new function (neofunctionalization). Figure form [45]. 

It has been found that some duplicates are more easily lost while others are frequently retained. The 
retention of duplicates is biased in function and position (Figure 1.8) [46]. These biases can be observed in 

GO categories and duplication modes. Depending on the biological and environmental conditions certain 
functional categories can be maintained [47], similarly linked genes can be co-eliminated (e.g. [48]). 

Constraints related to dosage, regulation, expression or interactions can lead to duplication resistance [33]. 
Functional retention is linked to different duplication modes. After WGD, transcription factors, components 

of multi-protein complexes, and organellar genes are preferentially retained and after SSD involved in stress 
related pathways are retained [29, 49]. WGD duplicates are also asymmetrical lost [11] this has mostly been 

associated with allopolyploidy. Finally, reproductive isolation can lead to reciprocal loss of duplicates with 
loss of mating compatibility between the species [50, 51]. The retention forces which are active after 

duplication relax over time which leads to loss or change in fate of the duplicates. The paths are also not fixed 
paths, genes might jump from one into the other [48, 52].  
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Figure 1.8: Patterns and constraints leading to prolonged gene retention and loss after duplication. Genes can be lost 
or kept due to functional (green) of positional (orange) biases which can originate from constraints related to gene 
ontology (blue) or duplication mode(red). Biological and environmental constraints can lead to retention of certain GO 
categories (1) or co-elimination of linked genes (2). Constraints related to dosage, regulation, expression or interactions 
can lead to duplication resistance (3), link between duplication mode and function (4), asymmetrical loss of WGD 
duplicates (5) or sex chromosome evolution (6). Reproductive isolation can lead to reciprocal loss of duplicates. Figure 
from [46]. 

11.3 THE INTEGRATED GENE REGULATORY NETWORK 
Within and surrounding the cells of organisms there are huge number of functional molecules. All these 

components work together to organise the whole metabolism of the organism, keep it stable, and allow it to 
respond to internal and external factors. All the molecules (nodes) and the interactions between them 
(edges) form multi-layered complex networks. The most common types of biological networks which involve 

genes and proteins are: protein-protein interaction networks (undirected network representing the physical 
relationships between proteins), genetic interaction networks (undirected network showing functional 

relationship between genes) and gene regulatory networks (directed network representing gene regulation). 
Within this thesis we group these three networks involving genes and proteins together into the integrated 

gene regulatory network (GRN) (Figure 1.9) [53]. All these components interact with each other and regulate 
directly or indirectly how the genomic DNA content produces the correct amount of RNA, proteins and 

metabolites under specific conditions. Other biological networks which are less relevant for this thesis are 
metabolic networks (biochemical reactions between enzymes and metabolites) and Cell signalling networks 

(pathways combining gen regulatory and metabolic networks).  
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Figure 1.9: Example of an integrated gene regulatory network. Green nodes are regulators (e.g. TFs) and orange nodes 
are target genes. This example contains directed regulatory edges (black; e.g. protein-DNA interactions) and undirected 
edges between genes (blue and green; e.g. protein-protein interactions or genetic interactions). 

11.3.1 Regulators 
Within the GRN there are many regulators, each with their own characteristics and functions. In this thesis 
we will focus on TFs and miRNAs (Figure 1.9). Other regulation types which will not be discussed here are for 

example epigenetic regulation [54], regulation through RNA binding proteins [55], and post-translational 
protein modification [56]. 

TFs are DNA binding proteins that activate or inhibit transcription of genes by binding to the DNA in the 

promotor region or further away at enhancer regions of a gene. They can work in the form of dimers, together 
with co-factors or chromatin modifying proteins to regulate very specific or broad cellular processes [57]. 

Dimers are a combination of two TFs, if these are identical they are called homodimers and in the case of 
different TFs they are called heterodimers.  

MiRNAs are small RNA molecules (20-24 nucleotides) with a very specific structure. They silence the 

expression by binding to the target site of the mRNA. The mature miRNA is capsuled in the RNA-induced 
silencing complex (RISC). MiRNAs belong to a large group of RNA derived molecules which also contain, small 

interfering RNAs (siRNAs), Piwi-associated RNAs (piRNAs) and long non-coding RNAs (ncRNAs) [58, 59]. They 
vary a lot in size, structure, and mechanism of action; but all of them are proven to be essential parts of the 

gene regulatory network.  

1.3.2 Molecular interactions: types and detection 
Biological networks consist out of a wide range of interactions which can be detected using high- or low-

throughput experimental techniques, computational approaches [60], or extracted from literature using text 
mining algorithms [61]. For most interaction types, there are specific databases which gather all the publicly 

available data (e.g. STRING for protein-protein interactions [62]). In the last decade the amount of available 
interactions has increased largely due to specific efforts of consortia (e.g. Arabidopsis interactome [63]), and 

big projects to characterize all the elements and interactions present in the genomes of model organisms 
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(e.g.: ENCODE for human [64] and modENCODE for Drosophila melanogaster and Caenorhabditis elegans 

[65]). 

Each interaction type has its own characteristics and detection methodology. Protein-protein interactions 

(PPI) can form multi-subunit complexes or transient interactions for regulatory functions such as signalling, 
or during the modification, degradation, or folding of other proteins. The most used techniques for the 

detection and identification of PPIs are Yeast-two-hybrid (Y2H) and Tandem Affinity Purification (TAP) (more 
info [60, 66, 67]). Proteins can also interact with DNA in protein-DNA interactions (PDI). In this category we 
have TFs, chromatin modifying proteins, polymerases and nucleases. Most of these proteins have specific 

DNA interaction domains (e.g. zinc finger). PDIs can be experimentally detected using a transcription factor 
(TF) centred approaches such as chromatin-immuno precipitation (ChIP) in which one TF is crosslinked to all 

binding sequences, or with gene centred approaches such as yeast-one hybrid (Y1H) in which all binding 
partners of a specific genetic region are detected. Prediction of PDIs can be done by searching known binding 

motifs in the promotors of genes or by looking at the change in expression in knock-out mutants. More 
information about the techniques and prediction methods can be found in [68, 69]. Not all interactions 

involve proteins directly, an example of this is miRNA-mRNA interactions. Numerous miRNA-mRNA 
interactions have been experimentally verified and wide range of prediction tools for these have been 

developed [70, 71]. A Genetic interaction originate if the effect of knocking out two genes is unexpected 
compared to the individual gene knock outs, which shows that there is a functional relationship between the 

genes and/or the pathways [72]. This direct or indirect link can come from synergistic effects. An example of 
this is synthetic lethality where the double knock-out is lethal while none of the individuals independently is 

lethal [73]. Next to these, other interaction types such as protein-RNA, RNA-RNA and epigenetic interactions 
are present within a cell. There might still even be unknown molecular interactions inside the complex 
cellular environment.  

11.3.3 The biological network structure and applications 
Networks are usually described using a specific terminology. The degree is the number of edges connected 

to a node. Nodes which have a high degree are called hubs. The Betweenness of a node is the number of 
shortest paths between two nodes that pass through that node. Biological networks have a specific structure. 
They tend to be ‘scale-free’, ‘small-world’ and show a high modularity [74]. In scale-free networks, the degree 

follows a power-law distribution. This means that there many of nodes with only a few interaction partners 
and few nodes with many of interaction partners. In small-world networks the average path length between 

two nodes is short. High modularity points to the fact that the complete network consists out of many smaller 
network clusters and is expressed in the clustering coefficient (CC). Nodes with a high degree, betweenness 

and clustering coefficient are found to be more central in the network and are thought to be more essential 
[75]. 

Within the network there are smaller structures like network motifs or modules [74]. Network motifs are 

small, well defined, network patterns which appear frequently (Figure 1.10). They usually consist out of two 
to five nodes and can be seen as the small building blocks of the network. The detection happens through 

enrichment analysis in real versus random networks. The best known and most abundant motif is the feed-
forward loop, where a regulator regulates a target gene directly and indirectly through another regulator 

(Figure 1.10; FFL). Other types of motifs have been described in multiple organisms (Figure 1.10) [76-81]. 



Introduction 

42 

Where motifs have a small number of nodes with a defined structure, network modules are sets of genes 
without a defined structure of size. They can be up to a couple of hundreds of genes. These genes can be 
assigned into modules based on network or gene characteristics such as interaction density, function or 

expression similarity.  

Biological networks, motifs, and modules can be used for many different applications [82]. A first one being 

the prediction of the function of a certain gene by looking at its context. Vice versa it is also possible to 
determine new genes functioning in a certain process (e.g. [83]). Through networks it is also possible to 
explain or predict the outcome of gene perturbations or predict the relationship between genes. The latter 

can be useful for predictions related to disease or mutant conditions (e.g. [84]). 

 

Figure 1.10: Network motifs. Examples of 2 and 3-node network motifs composed out of directed and undirected edges. 
COM: three nodes connected through undirected interactions (e.g. protein-protein interactions). COR: two interacting 
regulators that regulate the same gene (e.g. dimers). COP: co-pointing motif, a regulator regulating two connected 
genes. FFL: feed-forward loop, where a regulator regulates a target gene directly and indirectly through another 
regulator.  

11.3.4 Measuring the RNA level 
The activity of genes in GRNs is mostly measured by quantifying the RNA expression level, which can be done 

using microarrays or RNA sequencing (RNAseq). Microarrays are composed of probes attached to a solid 
plate (mostly glass). These probes are a set of short nucleotide sequences which are representative for a set 
of genes [85, 86]. For this, the sequence of the species under investigation has to be known. The RNA 

abundance of the probe set is determined by hybridising fluorescently labelled transcripts and measuring the 
intensity of each probe [87]. Since a couple of years RNAseq has overtaken microarrays as the most used 

transcriptional technique [88]. This technique, based on high-throughput sequencing, allows for the deep 
sampling of the whole transcriptome and is not limited to a set of predefined genes as is the case with 

microarrays. The generated reads can be aligned to a known genome/transcriptome or can be de-novo 
assembled [89]. This allows to quantify genes under specific conditions and enables the identification of novel 

genes. The ever-proceeding challenge for higher specificity and accuracy has now enabled to the detection 
of the transcriptome of single cells [90]. Next to measuring RNA levels it is also possible to quantify the 

protein expression levels using proteomics [91, 92]. 

1.3.5 Functional annotation of genes using gene ontology 
Gene ontology (GO) is an initiative to make a uniform vocabulary to functionally annotate genes and their 

products [93]. It is developed as a species neutral machine-readable data format to enable easy access and 
use for functional interpretation of experimental data. The terms, called ‘ontologies’, are split into three 

domains: cellular component (part in or out the cell), molecular function (activity at molecular level) and 
biological process (operations or sets of molecular events). GO is structured as a directed acyclic graph with 

defined relationships between them. The most known usage of GO is enrichment analysis of gene sets [94]. 



43 

Through orthology the functional knowledge can be transferred to other species. This is for example done 

for plants in the comparative genomics platform PLAZA [1]. 
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22.1 ABSTRACT 
Gene duplication is an important mechanism for adding to genomic novelty. Hence, which genes undergo 
duplication and are preserved following duplication is an important question. It has been observed that gene 

duplicability, or the ability of genes to be retained following duplication, is a non-random process, with 
certain genes being more amenable to survive duplication events than others. Primarily, gene essentiality 

and the type of duplication (small-scale versus large-scale) have been shown in different species to influence 
the (long-term) survival of novel genes. However, an overarching view of ‘gene duplicability’ is lacking, mainly 

due to the fact that previous studies usually focused on individual species and did not account for the 
influence of genomic context and the time of duplication. Here, we present a large-scale study in which we 

investigated duplicate retention for 9,178 gene families shared between 37 flowering plant species, referred 
to as angiosperm core gene families. For most gene families, we observe a strikingly consistent pattern of 
gene duplicability across species, with gene families being either primarily single-copy or multi-copy in all 

species. An intermediate class contains gene families that are often retained in duplicate for periods 
extending to tens of millions of years after whole-genome duplication, but ultimately appear to be largely 

restored to singleton status, suggesting that these genes may be dosage balance-sensitive. The distinction 
between single-copy and multi-copy gene families is reflected in their functional annotation, with single-copy 

genes being mainly involved in the maintenance of genome stability and organelle function and multi-copy 
genes in signalling, transport and metabolism. The intermediate class was overrepresented in regulatory 

genes, further suggesting that these represent putative dosage-balance sensitive genes.  

2.2 CONTRIBUTION 
� Performing the research together with Zhen Li and Setareh Tasdighian 
� Designing and performing analyses on gene family data, gene family evolution and gene function 
� Figures: 2.3, 2.4, 2.5, 2.6, S2.6, S2.7, S2.8, S2.9, S2.11 and S2.12 
� Tables: S2.1, S2.2 and S2.3 
� Assisting in writing the manuscript 
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22.3 INTRODUCTION 
Since the seminal work of Susumu Ohno [17], the importance of gene and genome duplication for evolution 
and adaptation has been well-appreciated. Indeed, ample examples of gene diversification following 

duplication have been described and ‘gene duplicability’, by which we mean the ability of genes to be 
preserved in a population following duplication, has been extensively studied [95-101]. Studies published on 

a large array of species seem to converge on the idea that some duplicated genes are more likely to be 
preserved in a population, and as such to potentially contribute to functional innovation, than other genes. 

One factor that seems to influence gene duplicability is the mode of duplication, as in several organisms that 
have undergone ancient WGD it has been shown that different sets of genes were retained following WGD 

and SSD events [29, 102-106].  

Both SSD and WGD have occurred frequently in the flowering plant lineage, and in particular WGDs have 
happened at a much higher rate than in, for instance, fungi or animals [107, 108]. Studying the Arabidopsis 

genome, it has been observed that certain sets of genes have almost exclusively duplicated through WGDs 
[29, 105, 106]. These genes have distinctive functional features, as they primarily encode TFs and 

components of multi-protein complexes, and are involved in development and in signalling pathways [29, 
104-106]. A potential explanation for this phenomenon is given by the ‘gene dosage balance theory’, which 
states that for many genes that participate in essential complex cellular networks or protein complexes, it is 

crucial that the stoichiometry between the gene products is maintained [102, 103, 109-112]. While WGD 
preserves the relative dosage between genes, the stoichiometry is disrupted when only one or few 

interaction partners are duplicated. In other plant species, vertebrate and unicellular organisms that have 
also undergone ancient WGDs, similar observations were made [102, 113-116]. Hence, while gene loss 

following SSD is generally a relatively fast process, with average duplicate half-life estimates being in the 
range of a few million years [28], after WGD, a substantial set of genes is often retained in duplicate for a 

much longer time [29]. For instance, it is estimated that about 16% of the genes for A. thaliana are still 
present in duplicate following the most recent WGD that occurred about 49 Mya [108], while 75% of the 

genes are still present in duplicate in soybean, which underwent a WGD approximately 13 Mya [117]. 
Whether these genes will be retained indefinitely is still an unresolved question [118-120], although the 

lower numbers of retained genes reported for more ancient WGD events seems to suggest that, at least for 
a subset of genes, dosage constraints eventually get relaxed, leading to functional diversification or loss of 

these genes.  

In stark contrast to observations of prolonged retention of a set of ‘dosage-sensitive’ genes are recent 
observations that a substantial fraction of ‘core angiosperm genes’, i.e. genes that are present in all 

angiosperm genomes, occur as singletons throughout, suggesting that their duplication might be detrimental 
[33, 112, 121-124]. While these observations are not necessarily in contradiction with each other, as they 

likely concern different gene sets, an overarching picture that unifies the different observations regarding 
‘gene duplicability’ is currently still missing. Specifically, the fact that most studies concerning ‘gene 
duplicability’ report species-specific patterns adds to the confusion, as genetic context, species biology, 

ecological requirements at the time of duplication and the timing of the WGD event might greatly influence 
the observed duplicate retention patterns [125-128].  
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Here we undertake a large-scale comparative approach to determine whether patterns of gene duplicability 
can be generalized across diverse lineages. In particular, we investigate the duplicability of 9,178 core 
angiosperm genes identified across 37 different angiosperm genomes and covering 20 putative WGD events. 

For most gene families, our analyses reveal a striking non-random picture of gene duplicability, with the 
majority of the core genes occurring as single copies in almost all of the angiosperm genomes and a more 

restricted set of genes occurring in duplicate throughout. This pattern is supported by a strong functional 
dichotomy between both classes of gene families, with single-copy genes being involved in the maintenance 

of genome integrity and organelle function, and multi-copy genes being biased towards signalling, transport 
and metabolism. Next to these two extremes, we also identified an intermediate class of gene families that 

show a pattern of prolonged duplicate retention spanning several tens of millions of years following WGD 
but appear to eventually also mostly return to singleton status. We hypothesize that dosage-balance 

constraints prolong duplicate retention in these particular gene families. Overall, we advocate that, at least 
for genes present in all angiosperms, the so-called core genes, selection plays an important role in the long-

term preservation or non-preservation of duplicated genes, considering the highly non-random pattern that 
arises in this cross-species and cross-duplication event analysis. 

22.4 RESULTS 

2.4.1 Core angiosperm gene families show a strong preference towards the single-copy 

state 
We collected the protein coding sequences for 37 sequenced angiosperm genomes (Figure 2.1) and 

constructed gene families using OrthoMCL (see Materials and Methods). To ensure that each of these gene 
families traced back to a single angiosperm ancestral gene we further processed these gene families using 
phylogenetic tree construction followed by reconciliation of the gene trees and the species tree (see 

Materials and Methods). Of the 69,133 gene families that were obtained using OrthoMCL and verified by 
phylogenetic analysis, 9,178 belong to the angiosperm core genome, defined as that part of the genome 

containing genes present in all angiosperms, including the angiosperm ancestor. To accommodate for errors 
in genome annotation, the presence of partial genome sequences and errors in gene family construction 

and/or phylogenetic analysis, we allowed for gene families in this core set to be missing in up to five genomes 
(see Figure S2.1 for a justification of this threshold). This set of genes was used in this study for all subsequent 

analyses. For each gene family, we calculated the fraction of species for which the gene family contains 
exactly one copy, further referred to as ‘Single-Copy Percentage’ (SCP). For instance, a value of 0.7 means 

that for that particular gene family, 70% of the species examined have exactly one copy while 30% of the 
species have more than one copy. The distribution of the SCPs for all core gene families is depicted in Figure 

2.2. As can be observed, the distribution is highly skewed towards high SCPs, with the mean of the 
distribution lying at 66.8% and the mode of the distribution at 87.5%. Furthermore, if we remove genomes 

that still have a high number of retained duplicates due to a recent (< 20 mya) WGD event (such as soybean, 
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flax, maize and Brassica rapa, Figure 2.1), we observe an even stronger shift towards the single-copy state 
with the mode of the distribution being at 92.5% (Figure S2.2). 

 

Figure 2.1: Angiosperm species tree. Phylogenetic tree depicting the relationships amongst the 37 angiosperm genomes 
used in this paper. The tree topology was inferred from a concatenated alignment based on 107 almost single-copy gene 
families (see Materials and Methods). Numbers on the branches represent bootstrap supports, internode certainty (IC) 
and internode certainty all (ICA), respectively. Whole-genome duplication (WGD) events were inferred from literature 
[108, 129] and are depicted by stars. Only WGD duplications were considered that are more recent than the angiosperm 
common ancestor. 

Since the most likely outcome following gene duplication is duplicate loss, with average duplicate half-lives 

estimated at a few million years for SSDs [28], we have assessed whether our observations could be explained 
by simple stochastic gene duplication and loss dynamics. Therefore, we simulated gene family copy-number 
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evolution along the 37 species tree, using a probabilistic model in which SSD is modelled as a random birth-
death (BD) process [130] and that takes into account known WGD events by assuming an instantaneous 
doubling (or triplication) of all genes, as in Rabier, Ta [131] (see Materials and Methods). Using this model as 

a null hypothesis and using realistic rates of SSD and loss, λ, sampled from a normal distribution with mean 
μ = 0.53 and standard deviation σ = 0.156 duplications/losses per evolutionary time unit (see Materials and 

Methods), we generated gene counts at the leaves of the species tree for 9,178 x 1,000 = 9,178,000 simulated 
gene families. We observe that the SCP distribution under the null model has a mode of 22.5% on average, 

compared to 87.5% for the core angiosperm gene families and that both distributions are significantly 
different (p < 2.2e-16, Wilcoxon rank-sum test) (Figure 2.2). Hence, under the neutral scenario of stochastic 

gene birth and death, there is no bias towards the single-copy state. We have repeated this analysis for 
different sampling distributions of λ-values and observed that the general trend of the distribution of SCPs 

for the simulated families remains similar, indicating that rejection of the null hypothesis is robust with 
respect to changes in the distribution of λ-values. Therefore, our observations suggest that gene families 

belonging to the so-called angiosperm core genome (i.e. gene families present in all angiosperm genomes) 
are skewed towards the single-copy state more strongly than expected under a random gene duplication-

loss process and hence appear to be under (strong) selection to be single-copy.  

 

Figure 2.2 Overall distribution of single-copy percentage for all angiosperm core gene families. The distribution depicts 
the degree to which the 9,178 core gene families are single-copy in the 37 angiosperm species investigated. The x-axis 
represents, for each gene family, the percentage of species with exactly one gene copy with respect to the total number 
of species in the family. The distribution illustrates a very strong tendency of angiosperm core gene families towards the 
single-copy state. The mode (87.5%) and the mean (66.8%) of the distribution are indicated by green and red lines, 
respectively. The observed distribution strongly deviates from the expected distribution under a stochastic duplicate 
birth-death model (depicted by dashed lines). 
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22.4.2 Homeologs are quickly lost following WGD 
The observation that many core gene families are single-copy, in spite of the large number of both recent 
and ancient genome duplication events, seems to suggest that gene loss occurs relatively fast following WGD. 

The large number of WGD events in this study and their different ages (Figure 2.1) provide an excellent case 
to study duplicate retention following WGD [132].  

To study the dynamics of duplicate gene retention in the core gene families, we first assessed the 

contribution of WGDs as compared to SSDs to duplicate retention in the core gene families. Specifically, we 
applied gene tree - species tree reconciliation to obtain predictions of duplication events and their associated 

timing for all gene families (see Materials and Methods). To this end, we classified each node in the species 
tree (Figure 2.1) as either being associated with WGD or SSD, based on whether WGD events have been 

predicted on the branch leading to the specific node (Figure S2.3). Then we compared the predicted numbers 
of duplication events at WGD nodes versus SSD nodes for both core and non-core gene families, the latter 
referring to gene families that arose more recently than the angiosperm common ancestor or that underwent 

massive gene loss in some species since speciation from the angiosperm common ancestor. For the core gene 
families, we estimated that in total 69.8% (65,531 out of 93,942 predicted duplication events) of the 

duplications could be attributed to WGDs, whereas for the non-core gene families this was 
only 34.6% (48,778 out of 140,786 predicted duplication events) (Figure S2.4). Hence, for core families, as 

compared to non-core gene families, the presence of duplicates seems to be biased towards WGD-associated 
gene duplication (p < 2.2e-16, Fisher's exact test). In further support of the hypothesis that core gene families 

were more heavily impacted by WGD than non-core gene families, we observed that KS (number of 
synonymous substitutions per synonymous site)-based age distributions of duplicated gene pairs in the 

different species show clear peaks for the predicted WGD events if only duplicates from the core gene 
families are considered, while these peaks seemed to be absent for age distributions constructed for 

duplicates of non-core gene families (Figure S2.5). Hence, core gene families appear to be particularly suited 
to study duplicate preservation patterns following WGD. 

We took advantage of the large number of WGD events and their different ages to study the dynamics of 

gene duplicate loss following WGDs. To this end, we assigned retained duplicates in the core gene families 
to the different WGD events or as being created by SSD based on a Gaussian Mixture Modelling (GMM) 

approach (see Materials and Methods). This way, for each species we obtained predictions of the timing 
(expressed in KS-values) of the WGD events they experienced and the number of gene families with retained 

duplicates for each of the WGD events [133-135] (see Materials and Methods). We used these data to assess 
the relationship between the number of gene families with retained duplicates and the estimated timing of 

the WGD events. As can be seen in Figure 2.3, duplicate retention subsequent to WGD follows an L-shaped 
curve that can be approximated by a power-law function (see Materials and Methods), confirming common 
expectations that gene loss subsequent to WGD is initially fast and then slows down. A similar power-law 

pattern was recently also observed in a genome-wide analysis of duplicate retention following WGD for a 
more restricted set of genomes [132]. For ease of interpretation, we grouped the WGD events into three 

different sets according to the overall time frame during which the WGD event occurred. ‘Ancient’ refers to 
the WGD events that have been predicted to have occurred at least 75 million years ago (Figure 2.1). This 

includes the ancient WGD event that is shared by all dicots and the WGD event that is shared by the Poaceae. 
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Using the mixture modelling approach, we could not find support for the predicted ancient WGD event that 
is shared by all monocots [129]. ‘K-Pg boundary’ refers to WGD events situated at approximately the K-Pg 
(Cretaceous-Paleogene) boundary, which reflects a clustering of WGD events at approximately 50-70 mya 

[108]. Finally, the ‘recent WGD’ set includes the duplication events that are more recent than the K-Pg 
boundary (< 50 mya). In Figure 2.3, duplicate retention patterns associated with the ‘recent WGD’ events 

show a steep decline as a function of WGD age. Whereas on average 41.64% (s.d. 21.74%) of the core gene 
families retain duplicates for the recent WGD events, for the ‘K-Pg boundary’ WGDs the number of core gene 

families with retained duplicates has dropped to on average 16.04% (s.d. 7.48%), and for the ‘Ancient set’ 
this number further reduces to 8.37% on average (s.d. 2.24%). 

The distinction between SSD and WGD duplicates in this paper are approximate and SSD numbers are likely 

underestimated by both strategies (GMM and reconciliation method), because some SSDs might be located 
on a WGD branch (gene tree – species tree reconciliation) or might be hidden under a WGD peak (GMM 

analysis). However, we do not expect this to have a large influence on the observations that core gene 
families in contrast to non-core gene families are mainly duplicated by WGD nor on observed differences in 

gene duplicability patterns for different gene family groups (see further), as this underestimation likely 
affects all gene families equally.  

 

Figure 2.3: Duplicate gene retention in function of time since WGD. Each dot represents the fraction of core gene 
families with retained duplicates following a specific WGD (y-axis), as a function of WGD age, expressed in KS-units (x-
axis). The timing of the WGD events and the particular gene families that retained duplicates following a specific WGD 
event were inferred by fitting Gaussian mixture models to KS-age distributions for all 37 species separately (see Materials 
and Methods). As such, each point represents a species-specific estimate for a WGD and WGD events shared by multiple 
descendant species will be represented by multiple data points that cannot be regarded as being independent. SSD-
related peaks and dubious WGD peak callings were omitted. Additional information on all the peaks can be found in 
Table S1 and Figure S7. A power-law function was fitted to the data (Chi-squared goodness-of-fit = 0.77, p = 1). 
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22.4.3 Core gene families belong to different groups that reflect major differences in 

gene duplicability 
Our global analyses on duplicate retention following WGD show that the majority of the angiosperm core 
gene families revert quickly to the single-copy state following WGD. Yet, the distribution in Figure 2.2 

suggests that certain gene families revert faster to single-copy status than others. Therefore, we explored 
gene family specific differences in duplicate retention by constructing a copy-number profile matrix, which 

for each gene family lists the number of genes for a given species. We classified gene families into different 
groups based on an unbiased clustering of their copy-number profiles. By using a sub-sampling strategy in 

combination with clustering [136] (see Materials and Methods) we found that the data are best described by 
three stable clusters (Figure 2.4A, Figure S2.6, Figure S2.7): Group 1 contains 5,097 gene families and covers 

5,473 A. thaliana genes, Group 2 contains 2,832 gene families and covers 4,312 A. thaliana genes and Group 
3 contains 1,249 gene families and covers 3,255 A. thaliana genes. The heatmap in Figure 2.4A clearly shows 

the overall tendency of gene families in Group 1 to occur as single copies. If duplicates are present these are 
mainly biased towards species with recent WGDs. Gene families within Group 2 show mainly duplicate 
retention for species that are associated with ‘Recent’ and ‘K-Pg Boundary’ WGDs, while being largely single-

copy for species that only underwent ‘Ancient’ WGDs. The latter suggests that while duplicates for these 
gene families are in general preserved for prolonged times, they eventually largely return to single-copy 

status. Finally, gene families in Group 3 have retained duplicates for all species, also for the ones that only 
underwent ‘Ancient’ WGDs. We also observe that the outgroup species Amborella trichopoda, which has no 

evidence of WGDs postdating angiosperm diversification [137], seems to be singleton for most of the core 
gene families, further substantiating the above observations that core gene families mainly duplicate through 

WGDs. Investigating the SCPs for the gene families in the three groups confirms that gene families in the first 
group show a strong preference towards the single-copy state, whereas gene families in the third group 

represent gene families with a strong tendency to be multi-copy in the majority of the species. The SCP 
distributions for each of the three groups are significantly different (p < 2.2e-16 for all comparisons, Kruskal-

Wallis test followed by Dunn’s test with Benjamini-Hochberg multiple testing correction) and there is almost 
no overlap in SCPs for Group 1 and Group 3 (Figure 2.4B). We will further refer to the gene families in Group 

1 as ‘Single-copy’, those in Group 2 as ‘Intermediate’ and those in Group 3 as ‘Multi-copy’. 



Gene duplicability of core genes is highly consistent across all angiosperms 

54 

 

Figure 2.4: Core gene families partition into three groups based on clustering of the copy-number profile data. (A) 
Heatmap of the clustered copy-number profile matrix. Rows represent species and columns represent the core gene 
families. Gene families (columns) are sorted according to the three different groups obtained by k-means clustering. 
Symbols indicate for each species whether WGD events that might have contributed to duplicates in the species fall into 
the ‘recent’ (rectangle), ‘K-Pg boundary’ (circle) or ‘Ancient’ (triangle) category. (B) Single-Copy Percentage distributions 
for the gene families in each of the three different groups. The ‘Cumulative’ distribution shows the SCP distribution of all 
core gene families together (cfr. Figure 2.2). 

Whereas the analyses described above clearly show differences in duplicate retention patterns for the 
different gene families, it does not provide direct information on the origin of the retained duplicates: e.g. 
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are duplicates in the Multi-copy group also more ancient than those in the other two groups or is the 
increased number of species with duplicates in the Multi-copy group mainly due to recent lineage-specific 
expansions? Therefore, we investigated whether the copy-number patterns observed in Figure 2.4 are 

related to different ages of retained duplicates in the three groups by using duplication age predictions 
obtained by GMM of KS-based age distributions and gene tree - species tree reconciliation (see Materials and 

Methods). The former approach (GMM modelling) provides us with species-specific estimates of duplication 
ages expressed on continuous time scales (KS -values), whereas the latter approach (reconciliation) gives 

estimates of the absolute counts of duplication events on a gene family base. Hence, the GMM approach 
provides multiple estimates of duplicate retention per WGD for events with multiple descendant species, 

since the modelling is performed in a species-specific manner and as such predictions for the same event are 
obtained for the species separately. These predictions are not necessarily independent since gene losses 

following duplication might have predated speciation. However, since KS-values and also their distributions 
are not always comparable between species [138], the multiple estimates obtained for the same event in 

different species could not be collapsed. We used the GMM approach to study duplicate retention dynamics 
over time for gene families in the three different groups, similarly as we did above for the full set of core 

gene families (Figure 2.3). Overall, when comparing numbers of retained duplicates for the core gene families 
in function of the WGD ages we observe that gene families in the three different groups differ markedly in 
their duplicate retention dynamics over time (p < 9.2e-06 for all comparisons, Kruskall-Wallis test followed 

by Dunn’s test with Benjamini-Hochberg multiple testing correction) (Figure 2.5A). In particular, we observe 
higher duplicate retention for all WGD event classes (i.e. for ‘Recent’, ‘K-Pg Boundary’ and for ‘Ancient’ WGD 

events) for the core gene families in the Multi-copy group, whereas the proportion of core gene families in 
the Single-copy group with retained duplicates is consistently lower (Figure 2.5A). Next, we used the gene 

tree – species tree reconciliation approach to obtain absolute counts of predicted duplications and their 
corresponding ages for all core gene families and used this data to identify group-specific differences in 

duplicate retention for specific duplication age classes as compared to the full set of core gene families 
(Figure 2.5B). This shows that gene families in the Single-copy group seem to be specifically biased towards 

duplicates from the ‘Recent’ WGDs (p = p < 2.2e-16, Fisher’s exact test with Bonferroni multiple-testing 
correction), while duplicates from the ‘K-Pg boundary’ (p = p < 2.2e-16, Fisher’s exact test with Bonferroni 

multiple-testing correction) and ‘Ancient’ (p = p < 2.2e-16, Fisher’s exact test with Bonferroni multiple-testing 
correction) events are underrepresented. Duplicate retention for gene families in the Intermediate group is 

biased towards the ‘K-Pg boundary’ events (p = p < 2.2e-16, Fisher’s exact test with Bonferroni multiple-
testing correction). Multi-copy gene families are enriched for duplicates from the ‘Ancient’ events (p = p < 
2.2e-16, Fisher’s exact test with Bonferroni multiple-testing correction), while showing a deficit in 

duplications from the ‘Recent’ events (p = p < 2.2e-16, Fisher’s exact test with Bonferroni multiple-testing 
correction). SSDs are underrepresented in the Intermediate group (p = p < 2.2e-16, Fisher’s exact test with 

Bonferroni multiple-testing correction), while being overrepresented in the Multi-copy group (p = p < 2.2e-
16, Fisher’s exact test with Bonferroni multiple-testing correction). A comparison of the relative number of 

duplications obtained for each duplication age class based on gene tree – species tree reconciliation and 
GMM of KS-based age distributions provide consistent results (Figure S2.8). Despite these differences in 

duplicate retention for the three groups, all groups have retained more duplicates from the ‘Recent’ events, 
followed by the ‘K-Pg boundary’ and the ‘Ancient’ events (Figure 2.5A, B).  
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Figure 2.5: Analyses of duplication events of the three groups. (A) For each of the clusters in Figure 2.4, power-law 
functions were fitted to the corresponding data points representing the fraction of core gene families with retained 
duplicates following a particular WGD (y-axis) as a function of WGD age (x-axis), as in Figure 2.3 (Chi-squared goodness-
of-fit Single-copy group = 0.52, p = 1; Chi-squared goodness-of-fit Intermediate group = 1.38, p = 1; Chi-squared 
goodness-of-fit Multi-copy group = 1.83, p = 1). The 'Full Set' curve corresponds to the curve represented in Figure 2.3. 
(B) Polar diagram depicting the fraction of duplication events in each gene family group belonging to either ‘Recent’, ‘K-
Pg boundary’, ‘Ancient’ WGDs or ‘SSD’ events. Here, predicted duplication events were inferred based on gene tree-
species tree reconciliation. Green and red asterisks denote statistically significant over- and underrepresentation, 
respectively, of duplicates of a certain class for a specific group, comparing each time the number of associated 
duplications for each group with that of the full set (grey bar) by Fisher’s exact test. Similar results were obtained by 
using predicted duplication events inferred using Gaussian mixture modelling of KS-distributions (Figure S2.8). 

22.4.4 The partitioning in different groups is mirrored by gene function  
We conducted a GOSlim enrichment analysis of the A. thaliana genes in the three different groups, revealing 

that the three different groups have a remarkably different functional composition (Figure 2.6A). The 'Single-
copy' group is enriched for genes that function in organelles (e.g. ‘mitochondrion’, ’thylakoid’ and 

‘photosynthesis’) and that have to do with the maintenance of DNA repair and integrity (e.g. ’DNA metabolic 
process’ and ‘nucleobase-containing compound metabolic process’). An independent analysis of 2,090 

nuclear-encoded chloroplast-targeted genes taken from The Chloroplast Function Database [139] supported 
the overrepresentation of genes with chloroplast-associated functions in this particular group (p = p < 2.2e-

16, Fisher’s exact test with Bonferroni multiple-testing correction). No such overrepresentation was found 
for the ‘Intermediate’ and ‘Multi-copy’ groups. The 'Intermediate' group is enriched for genes that are 
involved in development (‘multicellular organism development’) and growth and regulation of transcription 

(‘transcription factor activity’ and ‘chromatin binding’). This last observation was confirmed by an 
independent analysis of 1,795 putative TFs in Arabidopsis thaliana [140], which showed that these genes 

were clearly overrepresented in the ‘Intermediate’ group (p = p < 2.2e-16, Fisher’s exact test with Bonferroni 
multiple testing correction) while not being enriched for the ‘Multi-copy’ group and being underrepresented 

in the ‘Single-copy’ group. The overrepresentation of regulatory genes in this group, together with the longer 
retention times for these gene families, suggests that this group mainly consists of dosage-balance sensitive 

genes [29, 109, 112, 141]. We further investigated this hypothesis by assessing the extent to which genes 
within this group are involved in protein interactions [103] and the contribution of WGD to duplicate 

retention for this specific group [29, 103, 105], which represent two characteristics, other than functional 
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overrepresentation, associated with dosage-balance constraints. First, we observed that A. thaliana 
interacting protein pairs (see Materials and Methods) are indeed most overrepresented in the 'Intermediate' 
group, yet these results are only borderline significant following multiple testing correction (p = 0.01, 

randomization test with Bonferroni multiple testing corrections) (Table S2). Second, while all core gene 
families duplicate preferentially by WGD, the 'Intermediate' group has a higher fraction of WGD-associated 

duplicates versus SSD-associated duplicates as compared to the ‘Single-copy’ group (p = p < 2.2e-16, Fisher’s 
exact test with Bonferroni multiple-testing correction) or ‘Multi-copy’ group (p = p < 2.2e-16, Fisher’s exact 

test with Bonferroni multiple-testing correction), as derived from the gene tree – species tree reconciliation 
predictions, strengthening our belief that the 'Intermediate' group contains dosage balance-sensitive gene 

families. Finally, 'Multi-copy' gene families are enriched for genes that appear to be involved in the 
interaction with the environment (‘signal transduction’, ’transport’ and ‘cell wall’), translation, and different 

metabolic processes (‘carbohydrate and protein metabolic process’, ‘biosynthetic process’ and ‘catalytic 
activity’). 

We also analysed a dataset that describes loss-of-function phenotypes for 2,400 A. thaliana genes [142] of 

which 1,521 are present in the core gene set. Genes within this dataset are placed in four different groups 
according to their knock-out phenotype. We find that the three core angiosperm groups show markedly 

different signatures with regards to their classification into LOF phenotype groups (Figure 2.6B). In particular, 
genes in the ‘Single-copy’ group are enriched for the ‘Essential’ category (p = p < 2.2e-16, Fisher’s exact test 

with Bonferroni multiple-testing correction), consisting of genes that are essential for early development and 
survival. On the other hand, essential genes are underrepresented in the ‘Multi-copy’ group. This is 

agreement with recent observations that lethal genes in Arabidopsis thaliana usually lack duplicates in this 
particular genome [143]. Noteworthy, overrepresentation of essential genes in the 'Single-copy' group is not 
specifically due to the genes involved in DNA integrity within the single-copy set, but also organelle genes 

are associated with essentiality [142]. The ‘Intermediate’ set is enriched for genes of the ‘Morphological’ 
class (p = 6.96e-05, Fisher’s exact test with Bonferroni multiple-testing correction), which contains genes 

associated with clear morphological phenotypes, involved in reproduction and timing (e.g. flowering time, 
senescence), in agreement with the strong overrepresentation of developmental genes in this particular 

group. Finally, the ‘Multi-copy’ class is overrepresented for genes in the ‘Cellular and Biochemical’ group (i.e. 
genes functioning in metabolism, or other biochemical pathways or showing phenotypic effects at the cellular 

level) (p = 1.14e-06, Fisher’s exact test with Bonferroni multiple-testing correction) and ‘Conditional’ class (p 
= 6.84e-04, Fisher’s exact test with Bonferroni multiple-testing correction) (i.e. genes that respond to biotic 

and abiotic stress), consistent with GOSlim enrichment results. In summary, both the GOSlim enrichment 
analysis and the analysis of LOF phenotype data indicate that the separation of core gene families into three 

different groups according to gene duplicability is mirrored by a separation of the gene families in the space 
of gene functions. 
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Figure 2.6: Functional analyses of the three different groups. (A) GOSlim enrichments and underrepresentation’s 
calculated for the A. thaliana genes in each of the three gene family groups in Figure 4. Dot sizes are representative for 
the statistical significance of over- (green) or underrepresentation (red). (B) Enrichment analysis of the three gene family 
groups for knock-out mutant phenotype annotations [52]. Bars represent overrepresentation (positive values) or 
underrepresentation (negative values) of knock-out phenotypes belonging to any of four functional categories (bar 
colours). Asterisks denote significance levels as calculated by Fisher’s exact test (***: p < 0.001, **: p < 0.05). 
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22.5 DISCUSSION 
We assessed duplicate retention patterns for 9,178 core angiosperm gene families (i.e. gene families shared 
by all angiosperm species) in 37 angiosperm genomes, covering 20 putative WGD events. Assessing the 

retention of duplicated genes across such a large number of genomes and duplication events allows for 
replicated tests of gene duplicability, mitigating potential biases due to differences between individual 

species and WGDs [125-127, 144]. In addition, because of the varied age range of the WGD events in our 
dataset and the observed large contribution of WGD to the expansion of core gene families, we were able to 

compare duplicate retention patterns across WGD events of different ages. 

We observe that gene duplicability is highly consistent across angiosperm genomes, with over 50% of the 
core angiosperm genes reverting quickly to single-copy status following duplication, whereas a much smaller 

set seems to occur in multiple copies throughout. An intermediate group is formed by putative dosage-
balance sensitive genes that are maintained in duplicate for prolonged periods of time, but eventually mostly 

return to single-copy status. By showing that there is a clear distinction between genes that generally occur 
as a single-copy throughout and genes that show prolonged duplicate retention in the genome or that are 

retained 'indefinitely' following WGD, we reconcile previous observations on high numbers of single-copy 
genes shared across multiple angiosperm genomes, despite the many, often nested, WGD events they 
experienced [33, 121, 123, 124], with observations that duplicates can be retained for long periods following 

WGD [29, 105]. Previous, smaller-scale comparisons of duplicate retention following WGD in multiple plant 
species have observed strong differences between species [126, 127]. These differences do most probably 

exist, yet, by focusing on a large number of species and a large number of WGD events we were able to 
retrieve dominant and striking patterns of gene duplicability that have remained concealed in smaller-scale 

comparisons. As our study only focused on core gene families, it is possible that important differences 
between species result from duplicate retention patterns in gene families that were not considered in this 

analysis. In addition, while here we showed that the overall duplicate retention tendency seems to be highly 
consistent across a large number of species and duplication events for the angiosperm core gene families, 

further detailed cross-species exploration of duplications in both core and non-core angiosperm gene families 
might reveal other parallelisms in duplicate retention that have remained concealed in this work. For 

instance, other works have shown that the mode of SSD (primarily tandem versus transposition-duplication) 
is also preserved cross-taxon for certain gene families [145-147]. 

We found that gene duplicability is highly associated with gene function, with single-copy genes being biased 

towards essential genes, functioning in genome integrity pathways and organelles, and multi-copy genes 
being biased towards functions involved in interactions with the environment. An evaluation of duplicate 

gene loss and retention patterns following the three successive WGDs in A. thaliana uncovered similar 
correlations between duplicate retention pattern and gene function as the ones observed here [29]. Here, 

we show that these function-retention patterns can be generalized across a large number of angiosperm 
genomes and WGD events. In addition, these patterns appear not to be limited to the plant kingdom: in a 
study focusing on the duplication history of genes across 17 ascomycete genomes, a similar functional 

separation was observed between genes that generally occur in duplicate and those that are single-copy in 
most ascomycetes [148]. Likewise, a large-scale analysis of prokaryotic genomes suggested that the number 

of genes functioning in DNA repair and replication remains relatively constant irrespective of genome size, 
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whereas the number of TFs, genes involved in signalling and transporter genes, seems to increase with 
increasing genome size [149, 150]. Consequently, patterns of duplicate retention and loss for core genes in 
angiosperms and other organisms appear to abide by general function-based rules.  

The question remains what causes these specific duplication patterns to occur. Given the overall short half-
lives of duplicate genes [28], one could speculate that the observed high fraction of single-copy gene families 

and a more limited number of multi-copy gene families are caused by a stochastic gene duplication and loss 
process. We tested this hypothesis and found that stochastic birth-death processes cannot reproduce the 
observed duplicability distribution, which is heavily skewed towards single-copy gene families. In addition, 

the observed overall consistency of patterns across genomes and across large-scale duplication events and 
the functional enrichments observed for the various duplicability classes of gene families argue against such 

a random scenario. Considering the strong association with gene function, a possibility is that gene function 
directly or indirectly constrains gene duplicability. The observed patterns of gene duplicability are indeed 

consistent with the idea of the existence of a conserved core, that needs to remain untouched ('Single-copy' 
group), and the existence of processes that are more amenable to modifications and that might be 

responsible for adaptations to new environments and the evolution of distinct morphological features 
('Multi-copy' group) [151]. Gene duplication in itself can indeed modulate gene function in a negative way 

and as such impact core gene function, by for instance increasing absolute gene dosage of genes with strict 
gene expression constraints [152], through the accumulation of mutations in duplicate copies with potential 

pleiotropic negative effects on wild-type fitness [33, 153-155] or potential cytotoxic effects (e.g. protein 
misfolding) [156]. As a result, duplicates of genes sensitive to these processes might be eradicated quickly, 

also after WGD. On the other hand, repeated biased retention of certain duplicates for long periods of time 
('Intermediate' group) or indefinitely ('Multi-copy' group) suggests a mechanism of duplicate retention other 
than sub-/neofunctionalization, which are in general assumed to be slow processes [157] and would not be 

expected to lead to repeated biased retention. Considering the primary role of WGD in duplicate retention 
of the core genes and the specific association of gene functions enriched in the ‘Intermediate’ and ‘Multi-

copy’ group with previously defined putative dosage-balance sensitive genes [29, 134], we hypothesize that 
dosage-balance constraints may have contributed to the prolonged retention of duplicate genes in these 

sets. Prolonged retention of duplicate genes, accompanied by gradual circumvention of dosage balance 
constraints, may increase the possibility that duplicate genes diversify and get permanently preserved [111, 

144]. Alternatively, duplicate genes could also be permanently retained through absolute dosage constraints 
replacing over time the relative dosage-balance constraints responsible for initial duplicate retention [128, 

158]. In our results, the ‘Intermediate’ group of gene families exhibits the hallmarks of dosage-balance 
constraints that wear off over time, leading to prolonged preservation and ultimately loss of duplicates. A 

subset of genes in the ‘Multi-copy’ group may also have been retained initially because of dosage-balance 
constraints and, in this instance, preserved indefinitely through other mechanisms; in particular transporters, 

signalling transducers and cell communication genes have been reported earlier as potentially dosage 
balance-sensitive [29, 105]. On the other hand, the ‘Multi-copy’ set of gene families is also enriched in 

‘environmentally responsive’ genes. Consequently, their repeated and biased retention following WGD might 
be a consequence of an increased adaptive advantage of polyploidy under environmental stress. Indeed, 
increasing evidence suggests that polyploids show wider environmental tolerance and higher levels of 

phenotypic plasticity than diploids [22, 159-165]. In particular transporters and metabolic genes, enriched in 
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the ‘Multi-copy’ class, have been identified before as putative driver genes explaining the increased tolerance 
of polyploids for environmental stress [160, 162, 166-169]. Despite the strong correlation between gene 
duplicability and gene function observed here, it remains to be further investigated which evolutionary 

mechanisms are responsible for the observed strong bias in duplicate retention patterns, and it remains to 
be established whether gene function directly influences gene duplicability or whether biased gene retention 

could be a by-product of other evolutionary phenomena instead, such as for instance the preservation of 
intermolecular interactions (dosage balance) or sequence constraints related to high levels of gene 

expression [96, 170]. In particular, since network structure is often believed to constrain protein evolution 
and to underlie complex phenotypic traits, future work into this direction might benefit from investigating 

gene duplicability in a network context (e.g. [128, 158, 171-173]). 

22.6 MATERIALS AND METHODS 

2.6.1 Genome Data 
We employed protein-coding genes from 37 fully sequenced angiosperm genomes, 35 of which were used in 
[108]. Protein-coding sequences for Amborella trichopoda [137] and Capsella rubella [174] were retrieved 

from the Amborella Genome Database (http://www.amborella.org/) and Phytozome V10, respectively. 

2.6.2 Gene Family Prediction 

OrthoMCL 

We identified gene families based on protein sequence similarities by OrthoMCL [175]. After all-against-all 
BLASTP searches, OrthoMCL was used to group proteins with high sequence similarity into gene families. An 

important parameter of OrthoMCL is the inflation parameter, which controls cluster tightness. We calculated 
gene families for different inflation parameter values (i.e. 1.5, 2.0, 2.5, and 3.0) to assess its influence, and 

observed large variations in the number of gene families detected and their overall size. We decided to use 
the inflation parameter that gives on average the largest gene families (i.e. 1.5), since the gene families are 

further processed by phylogenetic tree construction (and split up if necessary, see below). As such we 
obtained 69,133 multi-gene families. 

Species tree construction 

A species tree was constructed from a concatenated multiple sequence alignment inferred from 107 gene 
families that are present in all of the 37 angiosperm species and contain no more than 40 genes in total. The 
genes within these 107 gene families are on average longer than 150 amino acid residues. If a species had 

paralogs in a gene family, we only kept the paralog with the most orthologous hits in the gene family in the 
intermediate OrthoMCL results file. We used MUSCLE (3.8.31) [176] with default parameters to perform 

multiple sequence alignments for each gene family based on the amino acid sequences. We then used trimal 
(1.4) to remove low quality regions of the alignments based on an automatically selected threshold (-

strictplus), which depends on a distribution of residue similarity inferred from multiple sequence alignment 
for each gene family [177]. Multiple sequence alignments of amino acid sequences were back-translated into 

alignments of codon sequences and were concatenated one by one into an integrated alignment. In the end, 
we obtained an alignment of 36,631 codons with 109,893 nucleotide sites.  
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To construct the species tree, we used CodonPhyML (1.0) [178] under three different codon models that 
differ in their instantaneous substitution rates between codons, being the Muse and Gaut (MG) model [179], 
the Goldman and Yang (GY) model [180] and the YAP model [181]. The stationary frequency of codons and 

the transition-transversion ratio were estimated by maximum likelihood. The different ratios of 
nonsynonymous to synonymous substitution rate over the sequence alignment were drawn from a discrete 

gamma distribution with three, four, or five classes. The parameters α and β of the gamma distribution were 
optimized by maximum likelihood. An initial tree was built using the BioNJ algorithm, based on the empirical 

model ECMK07. CodonPhyML then employs Nearest Neighbour Interchange (NNI) and Subtree Pruning and 
Regrafting (SPR) to optimize the tree topology. Branch lengths and model parameters are also fully optimized 

during this process. 

Based on the different codon models and parameters described above, we obtained nine phylogenetic trees 
with identical topology but with slightly different branch lengths. The branch lengths of the different trees 

have no effects on the phylogenetic placement of WGDs. We used the Akaike Information Criterion (AIC) to 
compare likelihoods for the different trees and selected the tree with the lowest AIC tree as the species tree 

in this study. This tree corresponds to the tree inferred under the MG model with five classes for ω.  

We calculated bootstrap support values for all branches of the species tree by obtaining 100 bootstrap 
samples for the concatenated multiple sequence alignment and running CodonPhyML on each bootstrapped 

alignment using the same model and parameter settings as chosen for the species tree. The bootstrap values 
were added on each branch of the species tree by RAxML [182]. As an alternative support measure to the 

bootstrap we assessed the degree of congruence between the species tree topology and the topology of the 
107 gene trees, also obtained using CodonPhyML with the same parameter settings, for the gene families 

used for species tree construction. Specifically, using RAxML, we calculated two measures: (1) internode 
certainty (IC) and (2) IC All (ICA) that evaluate the support for an internode in the species tree by considering 

its frequency in the set of 107 gene trees [183, 184]. An Internode Certainty value of one means that none 
of the gene tree topologies conflict with the species tree topology, whereas a value close to zero for 

internodes suggests that there is another possible bipartition that occurs with almost equal frequency to the 
inferred one. In the end, the species tree was rooted on the branch of the basal angiosperm species 
Amborella trichopoda and was visualized by FigTree (http://tree.bio.ed.ac.uk/software/figtree/). This 

obtained species tree is largely consistent with the APGIII tree [185]. 

GGene tree construction and reconciliation 

Next, we implemented a pipeline to automatically construct phylogenetic trees for all 69,133 gene families 

and to test whether these trees could be traced back to a single angiosperm ancestral gene. We first removed 
253 gene families with more than 200 genes because of the enormous computational resources required by 

large gene families. Then we built maximum likelihood phylogenetic trees for each of the remaining gene 
families with more than two genes. Multiple sequence alignments based on protein sequences were 

produced using MUSCLE with default settings [176] and were further trimmed by trimal in a heuristic 
automated approach (-automated1) [177]. The processed multiple sequence alignments were fed into 

PhyML 3.0 [186] using the LG model with the equilibrium frequencies defined in the substitution model. The 
best trees produced from either Nearest Neighbor Interchange or Subtree Pruning and Regrafting were 
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retained as maximum likelihood gene trees. To obtain branch support values for the gene trees, we used the 
SH-like approximate Likelihood-Ratio Test [187] instead of traditional bootstrap values because of its speed. 

For 28,946 gene families with at least four genes from at least two different species we used gene tree-

species tree reconciliation [188] to root the gene trees and to obtain estimates of duplication and speciation 
events along the gene tree. For the remaining 39,934 gene trees, prediction of duplication and speciation 

events is trivial (see below). Since the reconciliation process is error prone [189-191] and depends on the 
quality of the gene tree, species tree and the parameter settings of the reconciliation method we 
implemented a pipeline to mitigate these problems as much as possible: (1) Since PhyML does not explore 

the entire search space of possible tree topologies, we investigated whether alternative tree topologies with 
improved reconciliation duplication/loss costs, obtained by branch rearrangements of the original gene trees 

in the reconciliation strep (see below), had an increased likelihood under the multiple sequence alignment 
than the gene tree produced by PhyML. As such we obtained a reconciled gene tree that is maximally 

supported by both the reconciliation criterion (in this instance duplication/loss cost) and the multiple 
sequence alignment as described in Wu, Rasmussen [190]; (2) To deal with the problem of reconciliation 

solutions being dependent on the parameter settings we performed the reconciliation with a range of 
different parameter settings and we also considered multiple possible optimal reconciliations under the same 

parameter settings, if available. Since duplication/speciation events that were predicted for multiple 
parameter settings are assumed to be more reliable [191], we built a majority-rule consensus reconciliation 

in which we only retained duplication/speciation events supported by at least 50% of the reconciliations.  

If a duplication event was predicted at the Angiosperm-associated node, we split the phylogenetic tree into 
two subtrees (and hence also two associated gene families), ensuring that each subtree traced back to a 

single ancestral Angiosperm gene. With this procedure, we obtained 11,131 gene families with gene trees 
tracing back to an angiosperm ancestral gene. From this set we removed the gene families that did not have 

gene copies for at least 32 out of 37 species (Figure S2.1), ending up with a final set of 9,178 core gene 
families.  

For the remaining 39,934 gene families (i.e. gene families with at least two species but no more than three 

genes or gene families that are only present in one species), we inferred duplication events by simply applying 
the following rules (see Figure S 2.9). For gene families with only one species, after mid-point rerooting of 

the gene tree, each node in the tree represents a duplication node. For gene families with two genes, after 
mid-point rerooting of the gene tree, nodes were annotated as duplication nodes if the two genes were from 

the same species. For gene families with three genes we used the topology of the gene tree to infer the 
duplication events.  

22.6.3  KS-based age distributions 

KS-based estimation of timing of duplication 

Estimates of KS-values were obtained for all paralogous pairs associated with the predicted duplication 

events inferred by the gene tree/species tree reconciliation process. For cases where there are multiple 
possible pairs for a predicted duplication event, we calculated KS-values for all possible gene pairs and 

selected the gene pair with the smallest KS-value to represent the timing of the duplication event. For each 
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paralogous gene pair we aligned the protein coding sequences using ClustalW [192] using parameter 
recommendations from [193]. PAL2NAL [194] was used to back-translate the aligned amino acids into 
corresponding codons without gaps. Then codeml [180] from PAML [195, 196] was used to obtain KS-values 

for each gene pair using the GY model with stationary codon frequencies empirically estimated by the F3x4 
model.  

GGaussian Mixture Modelling of KS-based age distributions 

For each species in our dataset we fitted Gaussian mixtures to age distributions inferred from KS-values [133-
135], using the R-package ‘mixtools’. We ignored KS-values that exceeded 5.0. First, we determined for each 

age distribution the number of components (k) using the ‘boot.comp’ function. Specifically, we performed 
parametric bootstraps with 1000 bootstrap realizations of the likelihood ratio statistic for testing the null 

hypothesis of a k-component fit versus the alternative hypothesis of a (k+1)-component fit. For this test, a 
significance level of 0.01 was used. For each age distribution, we tested the presence of one to 6 components. 
The number of components determined in this first step was used to fit a mixture of Gaussian models to the 

KS distribution, using the ‘normalmixEM’ function with the following parameters: k=k, maxit = 1e30, 
maxrestarts = 1e3, epsilon = 1e-50. We manually curated the obtained peaks, only further focusing on solid 

WGD peaks (Figure S 2.10). Dispersed background peaks with mean μ >3 and model peaks with obvious 
misfits to the data were ignored for the purpose of duplication assignment. We assume that each remaining 

peak corresponds to a WGD event, except for the first peak, which likely consists of recent SSDs [29]. A 
duplication was assigned to the peak that showed the highest probability density at the KS value obtained 

for its representative paralog pair [29]. For each WGD, we obtain an associated estimate of the number of 
gene families with retained duplicates as the ratio of the number of core gene families with duplicates for 

that event to the total number of core gene families. Each peak was characterized by an age (expressed in KS 
-values) that corresponded to the mean (μ) of the Gaussian mixture component (see Table S1 for detailed 

peak information). To assess duplicate retention in function of time since duplication we plotted duplicate 
retention associated with a certain WGD (y) in function of the predicted age of that event (x). We then fitted 

exponential and power-law functions to these data. Both functions have previously been used to describe 
the relationship between duplicate retention and time since duplication [28, 29]. In all instances, the power-
law fit was preferred over the exponential fit based on the Chi-squared goodness-of-fit measure (Figure 

S2.11, Table S3).  

2.6.4 Evolution of gene families under a stochastic birth-death null model 

The null model 

The null hypothesis describes the evolution of gene families along the phylogeny as a random birth-death 

(BD) process with equal rates of SSD gene duplication and loss per evolutionary time unit (unit branch length), 
λ, as proposed by Bailey [130]. Since WGDs violate the assumption of independency of duplication events in 

Bailey's BD model [130], we have placed these events as separate nodes on the branches of the species tree, 
similar to the strategy employed by Rabier, Ta [131]. At WGD nodes, all gene family members are 

instantaneously duplicated (or triplicated, depending on the nature of the polyploidy event). As in the model 
of Rabier, Ta [131], we assume that a given fraction of duplicates is lost very quickly after WGD, represented 
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by an immediate loss rate parameter q in our model. The remaining WGD duplicates are lost over time at a 
loss rate λ, the same as for SSD duplicates. A full description of the model will be published elsewhere. 

Our purpose is to use this BD model to generate gene counts at the leaves of the species tree for a number 

of simulated gene families and compare the Single Copy Percentage (SCP) distribution of these simulated 
families to the SCP distribution observed for the core gene families. In each run, we simulated gene counts 

under the random BD model for 9,178 gene families, corresponding to the number of families in the core set. 
We performed 1,000 such runs and estimated the SCP null distribution as a kernel density function over the 
9,178 x 1000 simulations. 

For each simulated gene family, we sample a value for λ and q from predefined distributions (see below), and 
we assume that the root size - the gene count at the root of the species tree - is equal to 1. We start at the 

root and generate a gene count for each of the child nodes of the root through an MCMC process that 
samples a child node size from the node size probability distribution function described in the BD model 
[130]; 5000 MCMC steps were used as burn-in to guarantee MCMC convergence to the stationary BD 

probability distribution. The same procedure is used for any further progeny node up to the leaf nodes, each 
time starting from the previously generated gene count at its parent node. At WGD nodes, the node size is 

multiplied after node size sampling with 1+ d.(1-q) to mimic the WGD effect, with d=1 for duplications and 
d=2 for triplications. In our simulations, we imposed the limitation of generating at least 32 non-zero gene 

counts at the leaves of the species tree, to be consistent with the fact that the core gene families studied 
were required to be present in at least 32 out of 37 species. 

The q value to be used for a given duplicate birth-death simulation is uniformly sampled from the range [0-

1], with 0 being complete retention and 1 complete loss of duplicates immediately after WGD (q is assumed 
to be the same for all WGDs across the tree, i.e. it is assumed to be a property of the gene family). The λ-

value to be used for a given simulation is sampled from a normal distribution with mean ��� = 0.53 and 
standard deviation σ = 0.156. The rationale for sampling birth rates from this specific distribution is the 

following. We assume that the average duplication rate per gene, ���, is approximately equal to the average 
synonymous substitution rate per synonymous site [135], i.e.:  

��� =
�����	� #
����������/	���

� ���� ����
≈

�����	� #���������� �������������/���.����

� ���� ����
=

�����	� ��

� ���� ����
 (1) 

where 't time unit' stands for the evolutionary time unit used in the species tree (where branch lengths are 
expressed in terms of the number of substitutions per codon t), i.e. the evolutionary time needed to obtain 

one substitution per codon on average (unit branch length t=1). To assess approximately how many 
synonymous substitutions per synonymous site (KS) are expected to occur per t time unit in an average plant 

DNA sequence, we inferred an average relationship between t and KS from the following formula for the 
number of substitutions per codon t in a given sequence [197]:  

� =
(�� ×�) � (�� ×!)

�"�

$

 (2) 

with S and N, the number of synonymous and non-synonymous sites in the sequence and %� and %! the 

number of synonymous and non-synonymous substitutions per (non)-synonymous site, respectively. 
Equation (2) can be rewritten as: 
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� = 3 %� ×  (1 +  
&'*
�

�
�*

) (3) 

with , = %! %�⁄  the ratio of non-synonymous substitutions per non-synonymous site to synonymous 
substitutions per synonymous site, and -/0 the ratio of synonymous sites to non-synonymous sites in a 

sequence. For both , and -/0, we substitute genome-wide average estimates to obtain an approximate 
relationship between t and KS for an average sequence evolving under average selective pressure. Taking 

-/0  = 0.345 for the average codon [198], and taking an ,  value of 0.5 on average (as observed for 
Arabidopsis duplicates in the %� range [0,1] [133]), the following estimate of t as a function of %� is obtained 

for the average plant DNA sequence: 

� ≈ 1.884 %� (4) 

In other words, in one t time unit, 1/1.884 ≈  0.53  synonymous substitutions are estimated to have 

accumulated per synonymous site on average. We use this estimate in equation (1) to obtain an estimate of 
the average duplication rate per gene ��� = 0.53/gene/(� time unit). To assess how this ���  estimate 
compares to literature estimates of duplication rates expressed per gene per million years, we used the 

average duplicate %� and absolute age estimates for fairly recent WGDs (0 < %� < 1, in the range where %� 
estimates are reliable) reported by Vanneste, Baele [108] to convert the resulting estimate ��� =

0.53/gene/(� time unit)  =  1/gene/(%� time unit) to an estimate of the duplication rate expressed per 
million years (here, one %� time unit is the evolutionary time it takes to obtain %� = 1 on average, which 

corresponds to 1/0.53 ≈  1.884  t time units according to equation (4)). By dividing the average WGD 
duplicate pair %�  estimates by twice the absolute WGD age estimates reported in [108] (note that the 

evolutionary time elapsed between WGD duplicates in My is twice the age of the WGD), and averaging over 
all WGDs, we get a %� /My conversion factor of 0.00585, giving ��� = 0.00585/gene/My , which is 

reasonably comparable to earlier estimates of duplications/gene/My across species [135, 199]. With the 
average duplication rate ��� in our tree estimated at 0.53/gene/(t time unit), we defined a �-distribution 

around this value with standard deviation 0.156, so that more than 99% of the probability mass lies within 
the �  interval [0-1]. Qualitatively similar results were obtained with other ���  values and � -distribution 

shapes (results not shown). 

DDating WGDs 

To run the simulations described above, WGD events need to be added to the phylogenetic tree as new nodes 
with known branch lengths in terms of t, the number of substitutions per codon. To this end, for each of the 

WGDs, we averaged the t estimates for all (predicted) homeologs for which the %� estimates fall within the 
WGD %� range described in Vanneste, Baele [108]. t and %� estimates for all homeolog pairs were obtained 

using codeml [180] as described in [108]. As we repeated this procedure for each species separately (except 
for Capsella rubella and Amborella trichopoda, which were not analysed in Vanneste, Baele [108]), multiple 

t estimates were obtained for shared WGDs. In this case, we used the average species-specific t-estimates to 
position a given shared WGD on the tree.  

All of the resulting WGD estimates were positioned on the species phylogeny in a manner consistent with 

their taxonomic positioning reported earlier [108, 129], except for the most recent WGDs in Gossypium 
raimondi and Zea mays, which were inferred by our t-estimation protocol to be positioned on older branches 
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than the accepted ones, likely because of t and %� estimation and averaging inaccuracies. In these cases, we 
positioned the WGD in the beginning of the branch reported in literature.  

22.6.5 Clustering of the copy-number profile matrix 
To determine gene family-specific differences in duplicate retention, the gene family data was transformed 
into a count matrix, in which elements represent the number of gene copies for a certain gene family 

(columns) in a certain species (rows). To reduce the influence of outliers (families with lots of genes), we only 
used gene families with maximum three gene copies per species. We clustered this matrix in the direction of 
the gene families using ConsensusClusterPlus, which incorporates a subsampling approach to infer cluster 

number and cluster confidence [136, 200]. This R implemented package was run using the following options: 
maxK = 8, reps=100, pItem=0.8, pFeature=1, K-means, inner linkage=average, final linkage=average, 

distance=Pearson. A solution with three clusters was found to be optimal according to the built-in cluster 
stability criterion (Figure S2.6) [136] 

2.6.6 Functional data 

PPI data A. thaliana 

A compendium of protein-protein interactions in A. thaliana was constructed combining the following 
sources, BioGRID 3.2.110 [201], CORNET (only experimentally validated interactions) [202], STRINGv9.1 (only 

category Binding) [203], EVEX (only category binding) [204] and a TAP dataset assembled from literature 
[205-219]. After removing redundancy and self-interactions this lead to a set with a total of 46,113 

interactions between 9,813 proteins. 

Enrichment of PPI, LOF, Chloroplast genes and Transcription factors 

The Fisher's exact test was used to calculate if a class is overrepresented in a given set of genes. In order to 
test whether there are more protein interactions within a group than between a group, 1000 randomized 

interaction networks with the same degree distribution were constructed. For each group of genes, a z-score 
was obtained by comparing the number of protein interactions within the group based on the extant PPI 

network with the distribution of within-group interaction counts observed in the randomized networks. Z-
scores were then converted into one-tailed p-values. 

Functional enrichment analysis  

The BINGO 2.44 Cytoscape plugin [220] was used to calculate functional enrichment values for the set of A. 
thaliana genes. We used a p-value threshold of 0.05 and p-values were corrected for multiple testing using 
the Benjamini and Hochberg method [221]. 

2.7 SUPPLEMENTARY INFORMATION 
This section contains selected segments of supplementary methods, figures and tables most relevant to this 

dissertation. The full supplemental information can be found on  

• Supplemental Figures and Tables 
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http://www.plantcell.org/content/plantcell/suppl/2016/01/07/tpc.15.00877.DC1/TPC2015-00877-
LSBR1_Supplemental_Data_pdf.pdf 

• Supplemental Dataset 1 

http://www.plantcell.org/highwire/filestream/4486/field_highwire_adjunct_files/0/TPC2015-00877-
LSBR1_Supplemental_Data_Set_1.txt 

• Supplemental Dataset 2 

http://www.plantcell.org/highwire/filestream/4486/field_highwire_adjunct_files/1/TPC2015-00877-
LSBR1_Supplemental_Data_Set_2.xlsx 

22.7.1 Supplementary figures 

 
Figure S2.1: Motivation for the 32 out of 37 species cut-off to define core gene families. To distinguish core from non-
core gene families we assessed the distribution of the number of species in each gene family based on all 69,542 gene 
families obtained by reconciliation. This distribution is U-shaped, suggesting a large number of gene families that are 
species- or lineage-specific (left side of the distribution) and also an excess of gene families present in the large majority 
of angiosperm species (right side of the distribution). Based on this distribution we decided to consider all gene families 
containing genes from at least 32 species as being ‘core gene families’. As such we account for a limited number of 
putative missing orthologs from core gene families due to for instance errors in genome annotation, gene family 
construction errors or the presence of incomplete genomes. 

 

Figure S2.2: The distribution of Single-Copy Percentages (SCPs) for all core gene families, with SCPs calculated upon 
removing the highly duplicated genomes of Glycine max, Linum usitatissimum, Brassica rapa, and Zea mays. This 
distribution has a mode of 92% and a mean of 70.8%. 
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Figure S2.3: Classification of species tree nodes as SSD or WGD. On the species tree, nodes with WGDs on their parent 
branches were considered as WGD nodes (orange dots), while the rest of the nodes were considered as SSD nodes. Next 
to each node are the number of duplication events predicted by gene tree-species tree reconciliation for both core and 
non-core gene families (core/non-core). There are in total 93,942 predicted duplication events in core gene families and 
140,786 duplication events in non-core gene families. 

 
Figure S2.4: Core gene families mainly duplicate through WGD. Bar plots represent the fraction of duplication events, 
summed over all gene families, attributed to WGD or SSD in core and non-core gene families. Panel (A) represents results 
obtained from all nodes in the species tree in (Figure S2) and shows that for core genes families, as compared to non-
core gene families, the presence of duplicates seems to be biased towards WGD-associated gene duplication (p < 2.2e-
16, Fisher's exact test). In panel (B) we assessed the possibility that these observations might be caused by an 
overrepresentation of WGD-associated nodes in the species tree for core gene families as opposed to non-core gene 
families: since core gene families cover by definition a larger number of species, some of the more ancient WGD events 
that are shared by many species will only be represented by core gene families. Hence, we repeated this analysis by only 
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considering nodes from the species tree that are also ubiquitously present in non-core gene families (top 10 of the nodes) 
and came to the same conclusion (p < 2.2e-16, Fisher’s exact test). 

 
Figure S2.5: Duplicate gene retention in function of time since WGD. Each dot represents the fraction of core gene 
families with retained duplicates following a specific WGD (y-axis), as a function of WGD age, expressed in KS-units (x-
axis). The timing of the WGD events and the particular gene families that retained duplicates following a specific WGD 
event were inferred by fitting Gaussian mixture models to KS-age distributions for all 37 species separately (see Materials 
and Methods). This figure is related to Figure 3, but here all WGD peak callings were included. Since the Dicot and 
Brassicaceae-Beta peaks cannot be distinguished from each other they are denoted by the same colour. Additional 
information on all the peaks is provided in the full supplemental data. 

 

Figure S2.6: Criteria that we used to choose the optimal number of clusters for k-means clustering of the copy-number 
matrix. (A) We used the Delta Area Plot from the ConsensusClusterPlus R-package to select the optimal number of 
clusters. The results of 1000 clustering runs, each time on subsampled matrices, are summarized into a consensus matrix, 
whose values represent the proportion of clustering runs in which two items (i.e. gene families) are grouped together. 
Hence, values in this matrix are between 0 and 1 (1 = always clustered together). The Delta Area Plot assesses the 
‘cleanness’ of this consensus matrix: if all clustering runs agree on the same solution than this matrix only consists of 0’s 
and 1’s (bimodal distribution). To determine the optimal numbers of clusters the largest changes in these consensus 
values are detected by calculating the change in the area under the Cumulative Distribution of consensus values for 
increasing cluster number (Monti et al. 2003). The ‘Delta area’ represents this change, with k corresponding to cluster 
number. (B) Corresponding multidimensional scaling plot of the copy-number matrix, with data points coloured 
according to cluster membership. 
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Figure S2.7: Consensus matrices obtained for different number of clusters k. The consensus matrix represents the 
number of times that two gene families belonged to the same cluster over 1,000 clustering runs of the subsampled copy-
number matrix. The values within this matrix range from 0 (gene families were never grouped into the same cluster; 
white in this figure) to 1 (gene families were always grouped into the same cluster; blue in this figure). Here results are 
shown for k = 2-5 clusters. Colour bars on top of the visualized consensus matrix indicate cluster assignments. 

 

Figure S2.8: Polar diagrams depicting the fraction of duplication events in each gene family group belonging to either 
the ‘Recent’, ‘K-Pg Boundary’, ‘Ancient’ or ‘SSD’ duplication classes. (A) Represents predictions of duplication timing 
for all core gene families, obtained by using gene tree – species tree reconciliation. This Figure is the same as Figure 5B. 
In contrast to GMM (see panel B), which provides estimates of the ages of the duplication events for each species 
separately, here estimates of the duplication age is based on a gene family basis and hence no averaging over species is 
necessary. To obtain the bar plots we normalised the absolute counts of duplication events for each node in the species 
tree with the number of nodes in the species tree of that duplication class, correcting for the fact that there are for 
instance more nodes associated to the ‘SSD’ duplication class. Significance values are indicated by asterisks (green = 
overrepresentation, red = underrepresentation) and were calculated based on the absolute counts of predicted 
duplications of each class, using the Fisher’s exact test with Bonferroni multiple-testing correction. (B) Represents 
predictions of duplication timing for all core gene families based on GMM of KS-based species-specific age distributions. 
We classified each duplicate pair to a certain duplication class depending on the KS-peak it belonged to (see Table S1). 
The bars in the Figures represent averages, obtained from averaging over the number of duplications assigned to a 
certain class for all species. Statistical significant over- and underrepresentation’s were calculated based on the 
Wilcoxon-rank-sum test and are denoted by asterisks.  
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Figure S 2.9: Explanation of how duplications were inferred for gene families with at least two species but no more 
than three genes or gene families that are only present in one species. For gene families with two genes in two species 
(10,740 gene families), the node connecting both genes is assumed to be a speciation node. For gene families with three 
genes (6,171 gene families), we mid-point rerooted the gene tree and distinguished between three possible scenarios. If 
the three genes come from two species, the duplication occurred either in one species or in the common ancestor of the 
two species, depending on the topology of the gene tree. If the three genes come from three species, we assume that no 
duplications have occurred in the history of the gene family (most parsimonious scenario). For gene families that only 
cover one species (23,023) but with two genes or more, e.g. five genes in the figure, we mid-point rerooted the gene tree 
and considered all nodes in the tree to be duplication nodes. For the remaining 28,946 gene families with at least four 
genes (including all core gene families) duplications were inferred using the reconciliation pipelines as described in 
Supplemental Methods.  

 

Figure S 2.10: Gaussian mixture models were fit to the KS-distribution of each species. Peaks were considered solid if 
they had a good visual fit with the density line (dashed purple line) and the KS-histogram and had a lower than 3. Flat 
peaks, e.g. peaks which span the whole KS - distribution, where also removed. The annotation of the peaks was done 
using known literature [108]. The figure shows the KS -distribution for Sorghum bicolor. The red and green peaks have a 
good fit to the density line whereas the flat blue peak shows no correspondence to density line and spans the whole KS -
distribution. 



SUPPLEMENTARY INFORMATION  

73 

 

Figure S2.11: Comparison of (A) power-law fit and (B) exponential fit to the data obtained from the Gaussian Mixture 
Modelling of KS-based age distributions. The power-law shows consistently a better fit than the exponential, as 
assessed by Chi-squared Goodness-Of-Fit test (see Table S3).  

2.7.2 Supplemental tables 
Table S2.1: Comparison of the numbers of interacting protein pairs in each group to those obtained from randomized 
networks. 

 

Number of 

PPIs within 

group 

Average 

number of 

PPIs within 

group for 

1000 

randomized 

networks 

Z-score 

P-value 

enrichment 

of PPI vs 

random 

(one-sided 

test) 

P-value with 

multiple-

testing 

correction 

(Bonferroni) 

Full 15949 15949    

Single-copy 2550 2813.012 -1.005 0.84 1 

Intermediate 2277 1740.331 2.710 0.0034 0.010 

Multi-copy 1034 990.558 0.322 0.374 1 

 

Table S2.2: Comparison of the power-law and the exponential fit. 

   Chi square goodness-of-fit (p-value) 

 Power-law Exponential 

Full 0.76795 (p =1) 5.072 (p=1) 

Single-copy 0.52465 (p = 1) 477.6 (p < 2.2e-16) 

Intermediate 1.3838 (p = 1) 2.0733 (p = 1) 

Multi-copy 1.8271 (p = 1) 2.1274 (p = 1) 
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“Not until we recognize what is holding us back, we can move forward”
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33 IMPACT OF PPI ON THE DIVERGENCE OF GENE DUPLICATES 

This chapter is a manuscript ready for submission to genome biology and evolution. 

Jonas Defoort1,2,3, Riet De Smet1,2,3, Michiel Van Bel 1,2,3, Yves Van de Peer1,2,3,4, and Lorenzo Carretero-
Paulet1,2,3 

 

1Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium 

2VIB Center for Plant Systems Biology, 9052 Ghent, Belgium 

3Bioinformatics Institute Ghent, Ghent University, 9052 Ghent, Belgium 

4Genomics Research Institute, University of Pretoria, Pretoria 0028, South Africa 

  



Impact of PPI on the divergence of gene duplicates 

78 

33.1 ABSTRACT 
Gene duplicates, either generated through WGD or SSD, are prominent in angiosperms and are believed to 
play an important role in generating evolutionary novelty and adaptation. Previous studies have reported 

differences in the evolutionary and functional fate of duplicates depending on the mechanism of duplication. 
For example, certain biological functions tend to be preferentially duplicated through WGD, while other 

functions are enriched among SSD duplicates, a pattern referred to as reciprocal retention. However, the 
mechanisms influencing loss and retention of gene duplicates over evolutionary time are not yet fully 

elucidated. Here, we investigated the impact of protein-protein interactions (PPI) in the evolutionary and 
functional fate of WGD and SSD duplicates in Arabidopsis thaliana (Arabidopsis), Solanum lycopersicum 

(tomato) and Zea mays (maize). Using a robust classification of gene duplicates based on phylogenetic trees 
and synteny analyses, a large RNAseq expression compendium, and an extensive protein interaction network 
from Arabidopsis, significant divergence at the level of sequence, expression pattern and protein interaction 

partners could be observed between tandem (SSD) and block (WGD) duplicates. Furthermore, duplicates 
involved in PPIs i) tend to be more evolutionary constrained in terms of expression and sequence divergence 

than their counterparts without interactions, and ii) are enriched in gene families predicted to be dosage 
balance sensitive. Our results highlight the complexity in the evolutionary dynamics and functional 

specialization of duplicated genes, pointing to a dominant role for the mechanism of duplication and PPIs, 
rather than biological functions themselves, in determining the loss and retention patterns of gene families 

across angiosperms. 

3.2 CONTRIBUTION 
� Performing the research  
� Designing and performing analyses  
� All Figures and tables 
� Writing the manuscript 
� Riet De Smet and Lorenzo Carretero-Paulet assisted in writing the manuscript 
� Michiel Van Bel helped with technical analysis of genome and gene family data 
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33.3 INTRODUCTION 
Duplicated genes are very abundant in plants and constitute a major source of evolutionary novelty and 
adaptation, likely playing a key role in generating phenotypic diversity and speciation [5, 222]. Duplicates can 

be broadly classified into two groups based on the size of the genomic region affected by the duplication. 
Either they are the result of a WGD, also known as polyploidizations, involving the entire genome and thus 

affecting all genes in the genome, or they originate form SSD, restricted to small genomic regions and mostly 
involving one to a few genes. Although most WGDs are followed by intense fractionation or genomic 

rearrangements removing from the genome most of the duplicated features, successful WGDs can be traced 
back at the base of the main plant lineages [222], while additional more recent events of WGD occurred 

independently in many lineages [21, 129, 223-225]. For example, in the widely used plant model species 
Arabidopsis thaliana, four WGD events have been detected throughout its evolution [19, 20]. The most 
recent ones, namely α and β events, are specific to the Brassicaceae family to which Arabidopsis belong, 

while the older ones, designated as γ and ε WGD events, are specific to the eudicot and angiosperm lineages, 

respectively. Likewise, the asterid Solanum lycopersicum (tomato), a model fruit-bearing crop, shares the � 

and ε duplication events with Arabidopsis, and has undergone a more recent whole genome triplication 
estimated to have occurred 63.66 mya [21]. Finally, the monocot Zea mays (maize) has five detected WGD 

events, the shared pre-angiosperm WGD one (ε), three additional WGD events shared by all grasses, and a 
more recent one dated around 20.40 mya [21]. SSD events can have different origins, including tandem gene 

duplication, TE-based mechanisms or retroduplication, the most common one being tandem duplication 
originating from unequal crossing-over. Together with WGD duplicates, tandem duplicates represent the vast 

majority of the duplicates [5]. 

Previous studies have reported notable differences in the evolutionary and functional fate of duplicates 
depending on the duplication mode. Certain biological function categories tend to be preferentially 

duplicated through WGD, while other functions are enriched among SSD duplicates [29, 49]. WGD duplicates 
are found to be more conserved in terms of expression patterns, maintain more protein interaction partners 

and are retained for longer evolutionary times than SSD ones [226-228]. Furthermore, the pattern of loss and 
retention of duplicates within a certain gene family is consistent across angiosperms [229]. Interestingly, the 

role of the mechanism of duplication in the retention patterns may also be extended to other taxonomic 
groups such as yeasts or vertebrates [230, 231]. For example, a survey of the genomes of experimentally 

evolved yeast strains, reported that SSD duplicates are more functionally divergent from one another and 
diverge in their sub-cellular locations more than WGD duplicates [232]. Next to duplication mode, the 
network context has also been proposed to influence the evolutionary rate and duplicability [233, 234]. When 

a duplicated gene involved in network interactions is lost, it is more likely that the second member of the 
interacting pair gets lost too, hence restoring the copy number balance [48]. Several studies also have linked 

duplicate retention to the conservation of protein interaction partners [63, 232, 235] and greater difference 
in protein-protein interactions tends to be linked with lower expression similarity and conservation of protein 

domains [235].  

Several theories have been proposed to explain the differential patterns of loss and retention of WGD and 
SSD duplicates. For example, the dosage balance hypothesis states that genomes evolve in such a way that 

the encoded proteins that are forming complexes or are involved in multiple steps of biological or regulatory 



Impact of PPI on the divergence of gene duplicates 

80 

pathways, must remain in optimal balance [236, 237]. It is assumed that WGD duplicates do not upset 
stoichiometric balance of proteins in the cell because all genes in the genome are duplicated [236, 237], and 
are therefore preferentially retained, as their loss is expected to lead to a dosage imbalance [103]. 

Conversely, SSD results in one, or several, additional gene copies that are again likely to upset dosage balance 
and result in fitness defects, which can be resolved by either functional specialization of the duplicates, or by 

non-functionalization, by means of which gene copies are gradually inactivated and transformed into a 
pseudogene through the stochastic accumulation of mutations, being eventually removed from the genome 

[28]. A recently published modelling approach shows that dosage balance sensitive genes exhibit preferential 
duplication through WGD in angiosperms [238].  

Next to dosage balance, other mechanisms for duplicate retention over longer periods of time have been put 

forward, including paralog interference [43], absolute dosage (higher flux) [42], dosage sub-functionalization 
[35], and sub-/neo-functionalization [239]. The retention forces are not indefinitely active and the function 

of the genes might change, leading to an escape from conservation forces and making the duplicate 
susceptible to loss [52, 229, 240]. It has been speculated that longer retention times set the stage for 

functional specialization in later time periods where they can give rise to novel functions [48, 162, 241].  

However, despite intense research, the mechanisms influencing loss and retention of gene duplicates over 
evolutionary time are not yet fully elucidated. In this paper, we study the effect of protein-protein 

interactions (PPI) on duplicate gene retention and subsequent sequence and expression pattern divergence 
in Arabidopsis, tomato and maize. For this purpose, we generated a dataset of gene duplicates based on 

phylogenetic trees and synteny analyses, an extensive protein interaction network, and a large RNAseq 
expression compendium with uniquely mapped reads. We compare our results to two recent papers on the 

molecular mechanisms driving the evolutionary and functional fate of gene duplicates across 37 species of 
angiosperms [229, 238]. Altogether, our results support a dominant role for duplication mode and PPIs rather 

than biological functions themselves, in determining the loss and retention patterns of gene families across 
angiosperms. 
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33.4  RESULTS 

3.4.1 Classification of gene duplicates, expression data mapping and protein-protein 

interactions in Arabidopsis, tomato and maize 
Duplicated genes were identified using a classification of gene families across 37 angiosperm plant species 

[229]. Duplicates were further classified as WGD or SSD based on whether they were located in collinear 
regions of the genomes (block duplicates) or were found as tandems, respectively, according to i-ADHoRe 
[242]. The duplicates that are marked to be both tandem and block duplicates and the ones which could not 

be assigned to any duplication mode were grouped together and labelled ‘unclassified’. This group contains 
a mixture of tandem, block and other duplicates and shows peaks in the Ks distribution that overlap with the 

WGD peaks (Figure S3.1). Phylogenetic tree based prediction shows that 66% of the unclassified Arabidopsis 
duplicates can be associated with WGD events (13% eudicot, 53% Brassicaceae), while only a small fraction 

(10%) were predicted to be recent duplications (Table S3.4) [229]. 

For every pair of duplicate sequences, we computed the synonymous and non-synonymous substitutions 
rates (Ks and Kn, respectively). As synonymous substitutions are not supposed to impact the function and/or 

structure of the resulting encoded protein, they stochastically accumulate throughout evolution in a neutral 
manner, and are thus commonly used as a proxy of evolutionary time [27]. In order to reduce the bias of 

synonymous substitutions saturation in old duplicates [27], only duplicates with a Ks value lower than 4 were 
considered for further study (Figure S3.1). In turn, the rates of non-synonymous substitutions, resulting in 

amino acid changes, can be used as estimates of sequence divergence (SD) between duplicates. 

We used an expression dataset consisting of a compendium of RNAseq experiments comprising 56 conditions 
for Arabidopsis, 86 conditions for tomato, and 77 conditions for maize. Conditions include a mixture of stress 

conditions, tissue samples and developmental stages (Table S3.1, Table S3.2, Table S3.3). The reads were 
uniquely mapped and low expression filtering was applied to ensure data quality. Unlike previous studies, 

where mostly microarray expression data, displaying a low detection rate of duplicates, were used [226, 227], 
RNAseq expression data with unique mappings allow us to individually detect most of the duplicated genes 

in a pair (e.g. ATH1 A. thaliana microarrays misses probes to detect both genes in 38% of the duplicates; 
Table S3.5). After unique mapping of the reads, expression values were found for both duplicated genes in 

63% of Arabidopsis pairs, 52% of tomato, and 48% of the maize ones. We observed significantly more block 
duplicates in which both genes in the pair were detected (Arabidopsis: 84%; tomato: 78%; maize 83%) than 

tandem duplicates (Arabidopsis: 33%; tomato 32%; maize 27%) (hypergeometric test p value; Arabidopsis: p 
< 2.2e-16; tomato: p < 2.2e-16; maize: p < 2.2e-16). This is likely due to the large number of young tandem 

duplicates without unique mapping caused by the little or no sequence divergence among them (Figure S3.2) 

We assembled a compendium of experimental Arabidopsis PPIs based on small- and large-scale experiments. 
The compendium consists out of 52,613 interactions for 10,266 proteins. In the Arabidopsis duplicate set, 

136 duplicates interact with each other, in 1186 duplicates both proteins have interaction partners, in 1581 
only one of the duplicates has interaction partners and 2329 duplicates are without interaction partners. The 

set without interactions still contains a high number of false negatives due to the lack of experimental studies. 
To investigate the influence of PPI on tomato and maize duplicates, we projected the experimental 
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Arabidopsis PPIs onto their corresponding orthologous genes. If an Arabidopsis gene has at least one PPI, all 
tomato and maize genes within the same gene family are assigned to the category with PPI. For tomato, this 
results in 2492 duplicate pairs with and 3182 duplicate pairs without PPIs and for maize there are 3670 

duplicate pairs with and 6984 duplicate pairs without PPI. 

33.4.2 WGD duplicates show stronger conservation in terms of expression and 

interaction partners than SSD duplicates  
To assess differences in functional conservation between duplicates, we used expression divergence (ED) and 
protein interaction divergence (ID) as proxies [235]. For each of the duplicate pairs, the ED was calculated as 

the relative number of conditions in which only one of the duplicates is detected. ID, in turn, was calculated 
as 1 minus the retention rate, defined as the number of interaction partners that are shared between two 

duplicates divided by the sum of unique interaction partners of both duplicates. In order to reduce the noise 
due to the fact that not all proteins have been experimentally investigated, ID was only calculated for 

duplicates in which one of the duplicates has at least four PPI and the other duplicate at least one PPI. 788 
pairs were found to be above this cut-off.  

Arabidopsis, tomato and maize block duplicates show significant lower ED than tandem duplicates (Figure 

3.1), which is in agreement with previous observations in Arabidopsis and rice [226, 227]. Similarly, ID rates 
are lower among block duplicates than among tandem ones (Figure 3.2A). There are more block duplicates 

(23%) with more than half of the interaction partners conserved, compared to only 6% for tandem duplicates 
(Fisher exact test; p=1.2e-8). We also found more tandem duplicates without any shared interaction partners 
(48%) than block duplicates (30%) (Fisher exact test; p=2.3e-2). Finally, although ID likely represents an 

underestimation of the number of shared interaction partners, our analyses were replicated using different 
cut-offs (from at least one up to 14 interaction partners in one the duplicates), always resulting in significant 

differences between tandem and block duplicates (Figure S3.3).  

 
Figure 3.1: Expression divergence (ED) between Arabidopsis, tomato and maize duplicates per duplication mode. Violin 
plots and embedded boxplots for each duplication mode and species are shown. P-values resulting from Wilcoxon’s rank 
sum tests of the differences between block and tandem duplicates are shown. Number of duplicates are shown above 
each plot. 

To get insights into the evolution of ED and ID over time, we plotted both estimates for Arabidopsis pairs of 

duplicated genes as a function of Ks, used here as a proxy of evolutionary time since duplication. With 
increasing Ks, both ID (Figure 3.2B) and ED (Figure 3.2C) increase faster in tandem than in block duplicates. 
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Statistical analysis revealed a significant correlation between ED and ID (Pearson correlation test; correlation: 
0.13, p value: 6.49e-5), which hints that duplicates with larger expression divergence tend to lose their 
interaction partners. Tandem duplicates show stronger correlation than block duplicates (Figure S3.4; 

Pearson correlation test; correlation block: 0.13, p value: 1.1e-3; correlation tandem: 0.27, p value: 3.8e-2). 
These results, taken together, strongly suggest that tandem duplicates tend to be more functionally diverged 

both in expression and in interaction partners than block duplicates. 

 

Figure 3.2: Evolution of interaction and expression divergence in Arabidopsis. A) Violin plots of ID between duplicates 
per duplication mode. The corresponding boxplots are embedded. The number of duplicates is shown on top of each 
boxplot. ID was only calculated for duplicates with both interactions and one copy having at least 4 interaction partners. 
B) ID plotted as a function of Ks. C) ED plotted as a function of Ks. In order to reduce the effect of nonsynonymous 
substitution saturation, a Michaelis-Menten-type saturation curve was fit to each group independently with 95% 
confidence regions indicated as grey areas. 

33.4.3 PPIs constrain expression and sequence divergence of tandem and block 

duplicates 
To further explore the influence of PPIs on sequence and expression divergence of pairs of duplicated genes, 

we compared duplicates with and without PPI in all three species. PPIs were found to be overrepresented 
among block duplicate genes (Arabidopsis p < 2.2e-16, Tomato p < 2.2e-16; maize p= p < 2.2e-16), while 

underrepresented among tandem duplicate ones (Arabidopsis p=5.25e-11, Tomato p=6.68e-8; maize p= p < 
2.2e-16) (Fisher exact test on count data with Benjamini-Hochberg multiple testing correction). Furthermore, 

Arabidopsis duplicates without PPIs exhibit significantly higher ED than duplicates with interactions in both 
block and tandem duplicates (Figure 3.3A, Wilcoxon rank sum test; block p=4.60e-13, tandem p=1.63e-3), 

although there is also a significant difference between the duplication modes (Wilcoxon rank sum test; p < 
2.2e-16). After projecting Arabidopsis PPIs data onto the corresponding orthologs in tomato and maize 

proteomes, we detect the same significant results for duplicates with and without PPI, both within and 
between duplication modes (Figure 3.3B&C, Wilcoxon rank sum test, Tomato: block p=7.91e-5, tandem 

p=5.6e-3, block vs. tandem p < 2.2e-16; Maize: block p < 2.2e-16, tandem p=0.92e-3, block vs. tandem p < 
2.2e-16). To get additional insights into this observation, we further split Arabidopsis duplicates into four 
categories; self interacting duplicates, i.e., homodimers, duplicates in which both genes have detected PPI, 

duplicates in which only one copy has detected PPIs and duplicates without any detected PPI. Self-interacting 
duplicates showed the lowest ED followed by duplicates in which both copies showed interaction partners 

(Figure S3.5). Pairs in which only one of the duplicates bears interactions resulted in significantly higher ED 
than pairs in which both copies showed interaction partners. Finally, duplicates without PPI showed 

significantly higher ED than all other three categories.  
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Next, we examine the GO functional terms annotating Arabidopsis genes belonging to each of the duplication 
modes partitioned by those showing PPIs or not. A reciprocal pattern of enrichment in GO molecular 
functions could be observed (Figure 3.3D). Block duplicates with PPI are enriched for binding (protein, DNA 

and RNA), enzymatic activity (kinase, transferase, catalytic) and signal transducing activity. Tandem 
duplicates with PPI are also enriched for carbohydrate binding, which is in turn underrepresented in block 

duplicates with PPI. Block duplicates without PPI are enriched for catalytic activity and hydrolase, which are 
also overrepresented among tandems without PPI. Tandem duplicates are enriched in transporter activity. 

Both tandem and block duplicates without PPIs are overrepresented in categories linked to enzymatic 
activity. The GO enrichment analysis for tomato and maize duplicates showed similar results, likely because 

PPI data were originally obtained from their corresponding Arabidopsis orthologs (data not shown). 

 
Figure 3.3: Expression divergence and GO functional enrichment analysis of duplicates with and without PPI. Violin 
plots of expression divergence for Arabidopsis A), tomato B) and maize C) duplicates with and without PPIs. The 
corresponding boxplots are embedded. D) Enrichmemt analysis of GO molecular functions belonging to the plant GO 
slim category for Arabidopsis block and tandem duplicates with and without PPI. Only experimentally validated GO 
annotations were considered. GO terms significantly under- and over-represented (p-value < 0.05 hypergeometric test + 
BH multiple testing correction) are plotted.  

In order to further examine the impact of PPIs in differences of ED and SD between duplicates over 
evolutionary time, the later expressed as estimates of non-synonymous substitution rates (Kn), we plotted 

ES and SD as a function of Ks. In all three species, we observe larger ED both for tandem and block duplicates 
without PPI with respect to those with PPIs (Figure 3.4). However, results were less clear in tomato and maize, 

likely due to the sparser distribution of duplicates with Ks higher than 1. This, together with the high error 
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rate of false negatives and positives to be expected from the projection of PPI data from Arabidopsis, make 
more difficult to unambiguously interpret the results. However, when we plotted the average ED per Ks bins 
(Figure S3.6), differences we observe even clearer differences between duplicates with and without PPI both 

in tandem and block duplicates. In terms of SD, we observed higher Kn in duplicates without PPI compared 
to those with PPI, for both duplication modes and for all three species (Figure 3.4). The observations in 

Arabidopsis for SD and ED, together with the similar trends found in tomato and maize, highlight the slower 
divergence rates of duplicates with PPI compared to the ones without PPI, a trend that can be observed both 

between block and tandem duplicates.  

Finally, in order to assess whether the actual number of PPI partners of duplicates was linked to their 
divergence in terms of expression or sequence, we plotted ED and SD of Arabidopsis versus the unique 

number of interaction partners for both modes of duplication combined (Figure S3.7). A small, although 
significant, downward trend in ED and SD in parallel to the increase in the number of interaction partners 

could be observed (ED; Spearman correlation = -0.078, p value 2.9e-5) (SD; Spearman correlation = -0.084, 
p=2.267e-8). This suggests that the actual number of PPIs has only a minor, although significant, influence on 

the ED and SD between duplicates. 

 
Figure 3.4: Evolution of sequence and expression divergence of block and tandem duplicates with and without PPI. ED 
and SD are plotted as a function of Ks. In order to reduce the effect of nonsynonymous substitution saturation, a 
Michaelis-Menten-type saturation curve was fit to each group independently with 95% confidence regions indicated as 
grey areas. 
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33.4.4 PPI and duplication mode may help to explain the duplicate retention patterns 

observed across angiosperms  
A recent study revealed strikingly similar retention and loss patterns in gene families across 37 angiosperm 
species with fully sequenced genomes [229]. Genes within a certain gene family seem to have a preferential 

copy number to which they return if sufficient time passes. Using a clustering approach, gene families 
including representatives from at least 32 out of the 37 species (i.e., core gene families), were further 

subdivided into three groups according to their retention patterns: “single copy” gene families, which return 
“quickly” after duplication back to the single copy status; “intermediate” gene families, in which duplicated 

genes are maintained for longer periods, but eventually get lost; and “multi-copy” gene families, in which 
duplicates are maintained for much longer periods. Gene duplication modes are unequally distributed among 

groups. Block duplicates are mostly found within the intermediate and multi-copy gene families. 41% and 
34% of all Arabidopsis block duplicates, 35% and 39% of all tomato block duplicates, and 37% and 26% of all 

maize block duplicates, respectively, were found among those groups of gene families. In contrast, tandem 
duplicates are mostly found within the multi-copy and non-core gene families. 20% and 62% of all Arabidopsis 
tandem duplicates, 18% and 68% of all tomato tandem duplicates, and 8% and 72% of all maize tandem 

duplicates, respectively, were found among those groups of gene families. Comparison of the duplication 
mode of Arabidopsis duplicates to the duplication mode of genes in other angiosperms belonging to the same 

gene family reveals that block duplicates from Arabidopsis, tomato and maize also duplicate mostly through 
WGD in other species, while tandem duplicates also duplicate mostly through tandem duplication (Figure 

3.5). Arabidopsis block and tandem duplicates with PPI show a higher percentage of block duplicates 
compared to the duplicates without PPI in the other species (Figure 3.5), suggesting a role for PPI. The 

percentages show that no straight cut can be made between gene families that either duplicate through 
tandem or WGD duplication. Tandem duplicates do appear in the preferential WGD families and vice versa.  

 

Figure 3.5: Duplication modes are conserved across angiosperm gene families: The bars represent the total percentage 
of Arabidopsis, tomato and maize duplicates, partitioned by mode of duplication and occurrence of PPIs, which duplicate 
through tandem or WGD within the same gene family in other 36 other angiosperm species. 

We next used this classification of gene families in order to assess whether the effect of PPIs on the loss and 

retention patterns of duplicates observed in Arabidopsis could also be extended to other angiosperms. We 
observe that PPI are overrepresented among duplicates belonging to intermediate (Arabidopsis p=4.06e-15; 
Tomato p < 2.2e-16; maize p < 2.2e-16) and multi-copy groups (Arabidopsis p=4.53e-16; Tomato p < 2.2e-16; 

maize p < 2.2e-16) (Fisher exact test + BH correction), in agreement with previous observations [229]. From 
single to multi-copy group, i.e., with increasing duplicate retention, ID and ED decrease (Figure S3.8). When 
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we examine the evolution of ED versus Ks in the different retention groups, we observe a general trend 
among both tandem and block duplicates without PPI to diverge faster than the ones with PPI (Figure 3.6). 
Only the block duplicates in the intermediate group seem to diverge from this pattern. The difference 

between tandem and block duplicates is also observed in each group (Figure 3.6). 

 
Figure 3.6: Evolution of expression divergence per retention group. Gene families were classified according to their 
respective retention patterns as single, intermediate or multi-copy as reported in Li, 2016. A fourth group of gene families 
(i.e., non-core) comprised gene families without representatives in at least 32 out of the 37 species examined. ED of 
duplicates within gene families belonging to each retention group is plotted as a function of Ks. In order to reduce the 
effect of nonsynonymous substitution saturation, a Michaelis-Menten-type saturation curve was fit to each group 
independently with 95% confidence regions indicated as grey areas. In some groups no function could be fit to tandem 
duplicates due to lack of data points. 

33.4.5 Duplicates with PPI are enriched among reciprocally retained angiosperm 

duplicates 
In order to further substantiate these observations, we compared our results to the ones recently reported 

in [238], where a modelling approach was used to rank angiosperm genes families resulting from the 37 
species classification based on their preferential retention after WGD. This pattern, referred to as reciprocal 

retention, is hypothesized to stem from constraints on the dosage balance of the genes concerned with their 
interaction context. According to this rank, gene families were classified as top or bottom depending on 

whether they showed preferential retention after WGD or not, respectively. We examined these families for 
their modes of duplication, PPIs, ED and SD. As expected, Arabidopsis block duplicates are predominantly 

found among top gene families, while tandem duplicates are mostly found among bottom gene families 
(Figure 3.7). Duplicates within top ranked genes families are enriched for PPIs (hypergeometric test; p=1.78e-

15). Both tandem (p=1.23e-06) and block (p=4.46e-02) duplicates belonging to gene families in the top 
ranked group are enriched for PPI. Likewise, the number of duplicates with PPI gradually decreases from the 

top to the bottom gene families (Figure 3.7). This suggests that the influence of PPIs in the reciprocal 
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retention patterns of duplicates is similar for both duplication modes. Moreover, the tandem duplicates in 
the top ranked gene families, so gene families which preferentially duplicate trough WGD, show significant 
less expression divergence than tandem duplicates in the bottom categories which preferentially duplicate 

though SSD (Wilcoxon rank sum test, Arabidopsis p=1.325e-06; tomato p=7.596e-07; maize p=7.93e-3) 
(Figure 3.8). This suggests that the ED of tandem duplicates is dependent on the gene family to which they 

belong. 

 
Figure 3.7: Distribution of duplication modes, with and without PPI, and reciprocal retention rank [238]. The stacked 
histogram shows the percentage of duplicates from each category plotted as a function of the reciprocal retention rank. 

 

Figure 3.8: Expression and sequence divergence of duplicates belonging to top and bottom gene families partitioned 
by duplication mode. Box plots of ED (A) and SD (B) between duplicates, with the corresponding boxplots embedded. 
The number of duplicates is shown on top of each plot. 

33.5 DISCUSSION 
Despite intense research, the molecular mechanisms underlying the evolutionary and functional fate of 

genes after duplications are not yet fully elucidated. Specific properties of genes and, in a broader context, 
of gene families, have already been reported to influence the divergence patterns of duplicates, prominently 

the duplication mode, the biological function encoded, as well as the species [29, 49, 228, 229, 232]. In this 
paper, we studied the interplay between PPIs and the mechanism of duplication on subsequent sequence 
and expression pattern divergence in three angiosperm plants with different histories of SSD and WGD. By 

using a uniquely mapped RNAseq compendium from multiple species with a variety of samples, we were able 
to detect the majority of the duplicates in a more robust and reliable way compared to previous studies using 

microarray data (Table S3.5) [226, 227], although there is still some room for improvement to detect 
duplicates in the lower Ks regions (Figure S3.2). Furthermore, we tried to overcome the lack of experimental 
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PPI data in plants by projecting the Arabidopsis PPI network onto the corresponding orthologs in tomato and 
maize. Because of this transfer through orthology, it is impossible to estimate the ID in tomato and maize 
and also the resolution in duplicates with a higher Ks values and tandem duplicates is lower.  

Despite these limitations, our analysis revealed similar evolutionary dynamics for Arabidopsis, tomato and 
maize duplicates. Tandem duplicates tend to diverge faster than block duplicates at the sequence, expression 

and shared PPI divergence levels, which may be linked with their timeframe of contribution to adaptation. It 
is generally accepted that the cost associated with the maintenance of additional gene copies results in the 
loss of most duplicated genes by means of non-functionalization or pseudogenization, while only a minor 

fraction of duplicates expected to be maintained through the acquisition of novel or specialized functions 
[222]. The faster evolutionary rates observed for tandem duplicates limits their potential in evolution, which 

might explain why tandem duplications are often found in categories related to stress where they can have 
an immediate effect [243]. In contrast, block duplicates will be diverging at slower rates, which leads to longer 

retention times and increased potential for evolutionary innovation and adaptation [162, 244]. This might 
explain why successful WGD events can be often found associated with periods of increased environmental 

stress and/or fluctuations, such as the one around the Cretaceous-Paleogene (K-Pg) extinction event about 
66 million years ago [21, 23, 24, 107]. Furthermore, allopolyploidy (polyploidization resulting from 

interspecies hybridization of the same genome) events in grasses seem to have led to the dominance of C4 
grasses over C3 ones and their subsequent territorial expansion [245]. However, the contribution of tandem 

duplication might have been underestimated due to miss-annotation/assembly of tandems as a single gene 
[246], a problem that would be specially affecting genomes of draft/poor quality (Panchy, et al. 2016).  

 A second characteristic that it is accepted to have an important impact in the evolution of duplicates is the 

encoded biological function. The link between duplicability and functional categories has been described in 
multiple studies [29, 49, 228, 229, 247]. Some studies claim a link between duplication mode and functional 

retention, while others rather suggest their independence. Transcription factors, genes involve in signalling 
and interacting genes were found to be enriched among retained duplicates and genes involved in 

maintenance of DNA repair and integrity, and organellar function were found to lose the duplicate copies 
[229]. A similar retention pattern has been observed across 17 fungi genomes [230] and also large-scale 
analysis of prokaryotic genomes revealed that the same functional categories seemed to be linked with the 

size of the genome [149, 150]. This suggests that the function-biased retention of duplicated genes might be 
present across all species. This pattern, referred to as reciprocal retention, has been linked to the differential 

dosage balance sensitivity of WGD and SSD duplicates (Tasdighian, et al. 2017). It remains to be established 
whether gene function directly influences gene duplicability or whether biased gene retention is the by-

product of other evolutionary phenomena instead. These phenomena could be the molecular and/or 
network properties of proteins which are plaining an important role in retention according to the theories 

such as dosage balance.  

Our results also support PPI as a third characteristic of duplicated genes that may result in longer retention 
times independently of the duplication mode. First, duplicates with PPIs show a lower SD compared to those 

without PPI. Differences in non-synonymous substitutions are, however, small, since only a small fraction of 
the amino acids (mostly at the surface) are supposed to have an effect on interaction and structural 

properties of proteins [248]. Second, PPIs were found to be overrepresented among block duplicate genes 
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and in gene families that preferentially duplicate though WGD. Similarly, PPI were found to be 
overrepresented among genes retained for longer times (intermediate and multi-copy group) in a thorough 
classification of gene families across 37 angiosperm genomes [229]. In general, duplicates with PPI show 

lower expression divergence than those without PPI. Only in the intermediate group a different pattern is 
observed (Figure 3.6). This group was suggested to be dosage balance sensitive and maintains the duplicate 

genes for a longer time, but eventually most of them get lost [229]. The curve of the intermediate duplicates 
without PPI follows the curve of those with PPI almost exactly. This could be explained by either the 

duplicates without PPI are in the wrong category due to the lack of study or other mechanisms are acting 
upon them. Third, PPI may be constraining the divergence of both tandem and block duplicates, an 

observation that may be linked to the gene family to which they belong to. Tandem duplicates in a gene 
family that preferentially duplicate through WGD were found to be less diverged then tandem duplicates 

found within families that preferentially duplicate through SSD (Figure 3.8). Based on their reciprocal 
retention pattern these duplicates are thought to be dosage sensitive [238]. Potentially, this could be the 

result of a loss of the WGD duplicate in a dosage sensitive gene family, which is buffered by a tandem 
duplication of that gene. 

The GO enrichment analysis revealed that categories that are often associated with dosage balance 

sensitivity (binding of proteins, DNA and RNA) [110] are overrepresented among block duplicates with PPI 
and underrepresented among duplicates without PPI. These categories had been previously shown to be 

retained after WGD [29, 49, 229]. Both tandem duplicates (with and without PPI) and block duplicates 
without PPI are overrepresented in categories linked to enzymatic activity and transport activity. The 

retention of these groups can be linked to absolute dosage constraints [42, 52]. In contrast to the relative 
dosage as stated by the dosage balance hypothesis, duplication retention may also result from selection on 
the absolute dosage of certain gene products, i.e., the concentration of a protein in a cell. A higher 

concentration could generate a higher throughput of the corresponding pathway, referred to as metabolic 
flux. For most pathways in which a single enzyme increase has no influence on the flux, WGD could provide 

an increase by duplicating all components (e.g. catalytic activity) [52]. Enzymes that are working 
independently or that provide a bottleneck in the pathway could take advantage of a SSD (e.g. hexose 

transport in yeast [249]) [250]. 

Despite their independent histories of WGD and SSD, the similarities found in terms of gene loss and 
retention patterns across 37 angiosperm species [229], suggest that the evolutionary forces guiding duplicate 

divergence are widespread. In summary, we report here, that, i) PPIs constrain sequence and expression 
divergence of duplicates in both tandem and block duplicates in Arabidopsis, tomato, and maize. ii) PPIs 

influence the loss and retention patterns observed across all angiosperm and iii) the reciprocal retention 
pattern of duplicates with PPI shows signs of dosage sensitivity. In addition, we provide further support for 

the difference in expression and protein interaction partner divergence between block and tandem 
duplicates and the correlation between expression/sequence divergence and interaction partner loss. 

Altogether, our results highlight the complexity in the evolutionary dynamics and functional specialization of 
duplicated genes, pointing to a dominant role for the mechanism of duplication and PPIs (considered as 

properties of gene families), rather than biological functions themselves, in determining the loss and 
retention patterns of gene families across angiosperms.  
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33.6 MATERIALS AND METHODS 

3.6.1 Classification of block and tandem duplicates 
Block duplicates, putatively arising from WGD events, and tandem duplicates, conforming the majority of 
SSD duplicates, were detected using the PLAZA framework [251]. A new PLAZA instance was built for the 

gene families reported in [229] using the default workflow as described for PLAZA 3.0 [242]: 1) gene 
homology was determined by applying MCL clustering to the all-vs-all BLASTP results; 2) tandem duplicates 

were defined as any homologous genes located within a 30 genes window distance of the same chromosome; 
3) block duplicates were detected on the basis of their syntenic arrangements in the genome by means of 

the IADHoRe program [252]. 

3.6.2 Estimates of synonymous and non-synonymous substitution rates 
Estimates of synonymous substitution rate (Ks) and non-synonymous substitution rate values (Kn) were 

obtained for each pair of paralogous genes on the basis of the ClustalW alignment of the protein coding 
sequences [192] using parameter recommendations from [253]. PAL2NAL [254] was used to back-translate 

the aligned amino acids into the corresponding codons without gaps. Then, codeml [180] from PAML [255] 
was used to obtain Ks and Kn values for each gene pair using the GY model [180], with stationary codon 

frequencies empirically estimated by the F3x4 model. Within this study we use the Kn value as a sequence 
divergence (SD). Estimates of values were obtained for all paralogous pairs associated with the predicted 

duplication events inferred by the gene tree/species tree reconciliation process. For cases where there are 
multiple possible pairs for a predicted duplication event, we calculated KS-values for all possible gene pairs 

and selected the gene pair with the smallest KS-value to represent the timing of the duplication event [229]. 

3.6.3 RNAseq compendium and expression measures 
The Arabidopsis RNAseq expression compendium consists out of 56 conditions downloaded from Cornet 3.0 

(Table S3.1) [256]. In contrast, the tomato and the maize RNAseq expression compendia were taken from the 
NCBI’s Sequence read archive, and consists out of 84 and 77 conditions, respectively (Table S3.2 & Table 

S3.3). All three datasets were analysed using the same pipeline. Trimmomatic [257] was used to perform 
quality filtering and adaptor removal. The reads were mapped using GSNAP [258], only the uniquely mapped 

reads where retained. Gene counting was done with Htseq-count [259] after which a transformation to CPM 
was done with EdgeR [260]. To ensure data quality, low expression filtering was performed. Genes with a 
sum expression count over all conditions lower than 2 times the number of conditions were removed. In 

total, 19318 Arabidopsis, 19495 tomato, and 23164 maize genes were mapped. 63% of the Arabidopsis, 52% 
of the tomato, and 48% of the maize duplicates have expression detected for both duplicates. The expression 

divergence (ED) was defined as the relative number of conditions in which only one of the duplicates is 
detected (C1 and C2), divided by the total number of conditions in which they are detected (C). 

67 =
9* + 9:

9
 

This measure takes into account the number of conditions in which the duplicates are expressed and reduces 
differences due to the combination of the different experiments. A measure of 0 means that both duplicates 
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are always expressed in the same conditions. A measure of one means that the duplicates were never 
detected together. 

33.6.4 Protein-protein interaction network and measures 
A compendium of protein-protein interactions in Arabidopsis was constructed combining the following 
sources: BioGRID 3.4 [261], Arabidopsis Interactome [63], MIND [262] CORNET [263] (only experimentally 

validated interactions), STRINGv9.1 (only category Binding) [62], EVEX [264] (only category binding) and a 
TAP data set assembled from literature [205-208, 210-212, 214, 215, 217-219, 265, 266]. After removing 
redundancy and self-interactions, we obtained a set of 52613 interactions for 10266 proteins. The 

Arabidopsis PPIs were transferred to the corresponding orthologous genes in tomato and maize based on 
gene family membership. If at least one interaction was present in one of the Arabidopsis genes, all tomato 

and maize genes were assigned to the category with PPI. The Interaction divergence (ID) between 2 
duplicates is calculated as one minus the retention rate, which in turn is defined as two times the number of 

interaction partners shared between two duplicates (;*,:) divided by the sum of interactions in each of the 

duplicates (;*, ;:).  

;7 = 1 −
2;*,:

;* + ;:

 

The ID was only calculated for duplicates with at least one PPI partner in a copy and at least four in the second 

copy (Figure S3.3). 

3.6.5 Computational resources 
All data processing and data analysis was done using a combination of Python and R scripts. The read mapping 

and counting pipeline was run for all samples in parallel on a computing cluster with Linux computing nodes 
(2.4GHz, Intel). All samples were run individually on 4 nodes with each 4GB (Arabidopsis and tomato) or 6GB 

(Maize) of memory. The running time per sample ranged between 1 and 8 hours depending on the library 
size. 
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33.7 SUPPLEMENTAL DATA 

3.7.1 Supplemental figures 

 
Figure S3.1: synonymous substitution rate (Ks) distribution of the duplicates for each Duplication mode in A. thaliana. 
Left: full set of duplicates. Right: Filtered set with a Ks value higher than 0.1 and lower than 4 values in order to reduce 
the bias towards young/non-diverged duplicates and the influence of synonymous substitutions saturation in old 
duplicates.  

 
A. thaliana Not 

detected 
One 

detected 
Both 

detected Total % Both 
detected 

Block duplicates 77 230 1612 1919 84% 
Tandem duplications 486 274 370 1130 33% 
Unclassified 379 508 1296 2183 59% 
Total 942 1012 3278 5232 63% 

 
S. lycopersicum Not 

detected 
One 

detected 
Both 

detected Total % Both 
detected 

Block duplicates 75 237 1074 1386 78% 
Tandem duplications 779 340 529 1648 32% 
Unclassified 943 385 1312 2640 50% 
Total 1797 962 2915 5674 52% 
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Z. mays 
Not 

detected 

One 

detected 

Both 

detected 
Total 

% Both 

detected 

Block duplicates 237 337 2826 3400 83% 

Tandem duplications 1024 218 450 1692 27% 

Unclassified 2811 933 1818 5562 33% 

Total 4072 1488 5094 10654 48% 

Figure S3.2: Detection of the Duplication modes in function of the Ks value within Arabidopsis, tomato and maize. Below 
the plots a table with the exact numbers is show. 

  
Figure S3.3: Significance of the interaction divergence rate comparison between tandem and block duplicates for 
increasing number of PPI cut-off (x-axis). Table shows the number of block and tandem duplicates with are retained after 
the cut-off and the significance of the comparison. This shows that the comparison is significant independent of the cut-
off. We selected min 4 PPI cut-off based on the first valley. 

 
Figure S3.4: Expression divergence (ED) versus interaction divergence (ID) in Arabidopsis split up between block 
duplicates and tandem duplicates. 

IRR cut-off # block # tandem PVtest
1 657 49 8.34E-04
2 577 44 1.40E-03
3 501 38 1.77E-03
4 430 32 2.63E-04
5 386 27 2.13E-03
6 337 22 1.51E-03
7 312 20 4.76E-03
8 286 19 7.76E-03
9 261 18 3.55E-04
10 234 16 3.65E-06
11 223 15 1.55E-05
12 211 14 1.00E-04
13 196 14 2.09E-04
14 177 14 1.75E-04
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Figure S3.5: Expression divergence for Arabidopsis duplicates. Self: self-interacting duplicates; Both: both duplicates 
have detected PPI; One: only one duplicate has detected PPI; Without: none of the duplicates has detected PPI. The 
number of duplicates is depicted above the boxplot.  

 

 
Figure S3.6: Expression divergence versus synonymous substitution rate bins. Each dot represents the average expression 
divergence of all duplicates within that bin (Binsize = 0.1) 



Impact of PPI on the divergence of gene duplicates 

96 

 
Figure S3.7: Boxplots of expression divergence (ED) and non-synonymous substitutions rate (Kn) per number of unique 
protein interaction partners for both duplicates in Arabidopsis.  

 
Figure S3.8: Comparison of expression divergence (A) and interaction divergence (B) for the different retention groups. 
First three are block duplicates, next three are tandem duplicates. 

33.7.2 Supplemental tables 
Table S3.1: List with RNAseq experiments in the expression compendia for A. thaliana.  

Table S3.2: List with RNAseq experiments in the expression compendia for Tomato. 

Table S3.3: List with RNAseq experiments in the expression compendia for Maize. 

Table S3.4: Number of duplicates in each Duplication mode. Eudicot/Brassicaceae/Recent= age category based upon 
tree prediction. 
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Table S3.5: Comparison of duplicate detection in A. thaliana between ATH1 microarray and RNAseq compendium. First 
table represents the number and percentage of duplicates detected in the RNAseq compendium after filtering. Second 
table represent the presence of probes for the duplicates on the ATH1 microarray. The third table shows the comparison 
between the detected set and the presence on the microarray. This show that 17% of the duplicates are undetectable 
and for 21% of our duplicates only one gene can be detected using microarrays. 
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44.1 ABSTRACT 
High-throughput RNA sequencing has proven invaluable not only to explore gene expression, but also for 
both gene prediction and genome annotation. However, RNA sequencing, carried out on tens or even 

hundreds of samples, requires easy and cost-effective sample preparation methods using minute RNA 
amounts. Here, we present TranSeq, a high-throughput 3’-end sequencing procedure that requires 10- to 20-

fold fewer sequence reads than the current transcriptomics procedures. TranSeq significantly reduces costs 
and allows a great increase in size of sample sets analysed in a single experiment. Moreover, in comparison 

to other 3’ end sequencing methods reported to date, we demonstrate the reliability and immediate 
applicability of TranSeq and show that it not only provides accurate transcriptome profiles but produces the 

potential to detect expression of specific gene family members possessing high sequence similarity. 
Furthermore, mapping TranSeq reads to the reference tomato genome facilitated the annotation of new 
transcripts improving > 45% of the existing gene models. Hence, TranSeq is anticipated to boost large-scale 

transcriptome assays and impact the spatial and temporal resolution of gene expression data and their 
visualization, in both model and non-model plant species. Moreover, as already done for tomato (ITAG3.0; 

www.solgenomics.net), we strongly advocate its integration into current and future genome annotations. 

4.2 CONTRIBUTION 
� Analysis of expression data and gene family data  
� Comparison between TruSeq and TranSeq for duplicate detection 
� Figures: 4.4 & 4.5 
� Supplementary Figures: S4.4 & S4.5 
� Supplementary Tables: S4.3 
� Assisting in writing the manuscript 
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44.3 INTRODUCTION 
The revolution in whole genome and transcriptome sequencing added a new dimension to molecular biology. 
Specifically, in the case of RNA (i.e. RNA-seq), the capacity to rapidly obtain high-quality transcriptome data 

even from minute amounts of sample broadened its use from model to numerous other organisms with very 
limited or no molecular data [89]. Moreover, novel variants of RNA-seq, e.g. for exome and single cell 

sequencing, are still being developed and optimized [267]. While differential gene expression remains the 
main application of RNA-seq analysis, the same pool of sequence reads can be mapped onto the genome to 

identify transcribed genomic regions [268]. Hence, they are invaluable for gene prediction and genome 
annotation and can provide information with respect to the position of coding genes and their exon/intron 

structure, which is the first and most crucial step in understanding the organization of a newly sequenced 
genome. Yet, in terms of throughput, experimental set-ups reaching the hundreds and thousands of samples 
scale are still considered laborious and extremely expensive for most research laboratories. Besides, 

established RNA-seq methods covering the entire length of transcripts frequently fail to accurately assign 
reads to gene family members that are the products of recent duplication events and share high sequence 

similarity [269]. 

“High throughput 3’ end sequencing” is an emerging RNA-seq method in which only the 3’ end of genes in a 
sample are converted into cDNA and sequenced (Figure 4.1 and Figure 4.2A-B; [88, 270, 271]. In this 

approach, early barcoding and multiplexing allows the preparation and sequencing of an extensive number 
of samples at once, hereby strongly reducing the sequencing cost per sample. Briefly, fragmented poly-

adenylated RNA molecules are used as a template for reverse transcription, resulting in a library that contains 
the 3’ end of all poly-adenylated RNA molecules, including mRNA transcripts as well as micro-RNAs (miRNA) 

and other noncoding-RNAs [272]; Figure 4.1 and Figure 4.2A-B; Supplementary Method). Consequently, this 
method is able to reveal the location of 3’ ends of all poly-adenylated transcripts in each sample. 

Furthermore, to precisely estimate the level of gene expression, oligonucleotides used in this method take 
advantage of unique molecular identifiers (UMIs, consisting of random nucleotides) to count the absolute 

numbers of RNA molecules [273]. Furthermore, as only a short region at the 3’ end of genes is sequenced 
(Figure 4.2C-G), as little as ~1 million reads per sample are required to cover the whole transcriptome of 

higher eukaryotes [270]; Figure S4.1]. 
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Figure 4.1: Workflow of the TranSeq library preparation method. In the TranSeq method, RNA is fragmented into small 
pieces using divalent cations under elevated temperature and purified using oligo-d(T) magnetic beads. RNA is 
subsequently used as a template for cDNA synthesis using long barcoded oligonucleotides. Following RNase H treatment, 
cDNAs are pooled together and ligated to a double stranded adapter followed by PCR amplification to complete the 
library preparation and examine its quality. 

Few methods for 3’ end sequencing of mRNA transcripts have been developed in the past years (e.g. MPSS-
DGE and SBS-DGE [274]. These methods could efficiently detect gene expression and revealed that most 

Arabidopsis and rice genes hold alternative poly-adenylation sites, ∼49%–66% which occur upstream of the 
annotated stop codons. Yet, despite its potential, they were never employed to improve plant genome 

annotation and better define gene models. Besides, the experimental complexity of these methods, 
employing restriction enzymes and biotin beads purification, most likely prevented easy and rapid 

preparation of large amounts of libraries simultaneously. Notably, laborious and lengthy library preparation 
protocols create more heterogeneity among libraries and often increase the cost of library preparation. One 
of these methods, termed BrAD-Seq [275], resembles the method presented here. However, in our method, 

template switching PCR [276] is utilized for the synthesis of the second DNA strand, rather than breathing of 
cDNA-RNA duplex. The efficiency of BrAD-seq to detect gene expression was at no time compared to that of 

the “regular” RNA-seq method (i.e. the Illumina RNA-seq procedure) and hence its competence at 
characterizing gene expression was not assessed. Furthermore, data produced by BrAD-seq was not 
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employed thus far to better define the genes models at their 3’ ends. Additionally, novel methods, 
particularly for RNA-seq, may often be restricted for use through commercial kits, and this dramatically 
increases costs and consequently reduces the quantity of users. For these reasons, the use of 3’ end RNA-seq 

methods remained limited, especially in plant research, and have not become a routine in transcriptome and 
genome analysis. 

In this study, we applied both TranSeq, a high-throughput 3’ end sequencing method [270], and the 
established full-length transcript sequencing method (i.e. the Illumina RNA-seq procedure) termed here 
TruSeq, to characterize the transcriptome of tomato fruit during development. We show that both methods 

could detect gene expression in a similar manner. We further applied computational analyses to map TranSeq 
reads to the reference tomato genome and examined if this could significantly improve genome annotation. 

Our results showed that using TranSeq facilitated the annotation of new transcripts and re-assignment of 
existing gene models new 3’ Untranslated Region (UTR), exon, and intron annotations in the tomato genome. 

Overall, the datasets generated in this study allowed the improvement of > 45% of the existing tomato gene 
model predictions and facilitated a new interpretation of the tomato transcriptome. Altogether, TranSeq 

establishes a new level in throughput for transcriptome sample sets by strongly reducing experiment costs, 
and thereby shifting experimental set-ups from the current dozens of samples to the hundreds and even 

thousands in a single experiment. At the same time, TranSeq data provides accurate expression 
measurements and the potential to detect specific gene family members possessing high sequence similarity 

and means for significantly improving gene model annotation in the numerous reported ‘draft’ genomes. 

44.4 RESULTS 

4.4.1 Sequencing and mapping of TranSeq reads to reference plant genomes 
The relatively inaccurate structural annotation of most plant genomes, as well as the limited throughput of 

samples processed in the standard pipelines for transcriptome analysis, prompted us to assess the use of 
TranSeq, a high-throughput 3’ end sequencing method, in plant transcriptomics assays [270]. TranSeq-based 

cDNA libraries were prepared from Arabidopsis and tomato fruit tissues. In Arabidopsis, we used seedlings 
(two weeks old), fully developed siliques, seeds at five development stages, and whole open-flower tissues, 

while whole fruit at the mature green (MG), breaker (Br), and red ripe (RR) stages were analysed in tomato. 
In tomato, the same tissues were used to generate TruSeq libraries and to perform full-length transcript 

sequencing (the standard Illumina method). We then mapped the resulting reads onto the genomes of the 
corresponding plants. The numbers of sequenced reads generated for each of the libraries are given in Table 

S4.1. For the TruSeq library, we generated 111,000,000 reads which were filtered for quality to yield 
105,000,000 reads (94% of the reads passed the trimming).  

Normally, 48 RNA samples were used to prepare one TranSeq library, sequenced in a single lane of an Illumina 

HiSeq system. This yielded ~35,000,000 reads of which 31,000,000 typically passed the Fastq filter (89.1% 
reads passed trimming). The reads were then filtered by UMI, i.e. identical reads were not counted unless 

they harboured a different UMI [273]. Unlike the reads obtained from TruSeq analysis, which are mapped all 
along the transcripts, the TranSeq reads originate solely from the 3’ ends of transcripts (Figure 4.1 and Figure 
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4.2A-G). Thus, as little as ~2 million reads are sufficient to cover the transcriptome of a higher eukaryote 
(Table 1 and Figure S4.1). 

Table 4.1 Comparison between TruSeq and TranSeq throughput and cost performances: 

Parameters TruSeq TranSeq 
Sample to library preparation 2-4 days 1 day 
Throughput per experiment 10 - few tens of samples > 1000 samples 
Cost of library preparation per sample $200-$300 ~$8 
# of reads for full coverage ~20,000,000 ~2,000,000 

 

 

Figure 4.2: Mapping of TranSeq reads to the tomato reference genome (ITAG2.4). (A-B) Scheme representing the reads 
obtained from TruSeq (A) and TranSeq (B) methods, mapped on a typical gene model. (C-D) Examples of expected 
alignments of reads to the 3’ UTR of typical genes. (E) Example of ‘orphan reads’, which were mapped to a genomic 
region where there is no gene predicted. (F-G) Example of reads, which were mapped to unexpected locations in gene 
models (i.e. to exons or introns, rather than to the 3’ UTR). 

In an optimally annotated version of a given genome, TranSeq reads would map merely to the 3’ UTR of the 
predicted gene models. We first mapped the corresponding TranSeq reads to the Arabidopsis genome, which 

is the most advanced annotated plant genome to date. Unexpectedly, only 75% of TranSeq reads were 
mapped to the 3’ UTR of the existing gene models (TAIR10 version), while the remaining 25% were localized 
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to regions currently annotated as introns, exons, and intergenic regions. Next, we mapped the corresponding 
TranSeq reads to the reference genome of tomato (ITAG2.4). Likewise, we found that only 54% of the TranSeq 
reads were mapped to the 3’ UTR of the existing gene models, while the rest were localized elsewhere in the 

genome (Figure 4.2, Table S4.1, and Figure S4.2). Reads mapped to regions where no genes were predicted 
were referred to as ‘orphan reads’. Such low percentages of 3’ UTR reads mapping correctly to the 3’ end of 

gene models imply that the genome annotation of these plants can still be considerably improved.  

The results described above prompted us to use TranSeq for re-annotating the genome of tomato. To this 
end, we used a combination of TruSeq and TranSeq datasets (Supplementary Data 1 and Supplementary Data 

2), prepared from the same tomato fruit tissues at three developmental stages for de novo gene prediction. 
Our results suggest an elongation of the 3’ UTR of >45% of tomato genes (Figure 4.3, inner track - grey bars). 

Moreover, the reannotation output not only yielded extended 3’ UTR regions, but also refined intron/exon 
predicted models. In some cases, a ‘new exon’ was identified (Supplementary Data 1). Lastly, we collected 

all orphan reads and used them to predict yet unidentified poly-adenylated transcripts (Figure 4.2G). The 
refined gene models assigned have recently been incorporated into the present version of the tomato 

genome (www.solgenomics.net). 

 

Figure 4.3: Original and re-annotated gene models in the tomato genome using TranSeq and TruSeq. The Circos plot 
represents the tomato genome (ITAG2.4) divided to 12 chromosomes (outer black lines) and shows gene density (outer 
track; red and yellow bars represent low and high gene density, respectively) and revised genes (inner track; grey bars), 
based on TranSeq re-annotated or newly annotated 3’ UTR regions. The six most inner tracks outline the expression 
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patterns of the shared genes detected by TranSeq and TruSeq methods, at mature green (green track), breaker (orange 
track) and red ripe (red track) stages. Each chromosome was divided and plotted into 20kb bins. 

44.4.2 TranSeq and TruSeq gene expression show similar expression pattern 
To determine whether 3’ end sequencing is as powerful as the more widely used RNA-seq methods, we 

compared the TranSeq and TruSeq methods with respect to tomato gene expression (total 9 samples; 3 fruit 

stages in 3 biological replicates). After filtering for genes with ‘above basal level’ of expression (sum of counts 

in all stages is at least 10), 23349 and 17854 genes were detected by the TruSeq and TranSeq, respectively. 

Among these, 17642 genes were shared by both methods and 72% displayed higher expression correlation 

with each other than random, as demonstrated by a spearman correlation plot (Figure 4.4) and the pattern 

of expression in the inner lanes of the circos plot (Figure 4.3, green, orange and red tracks). The differential 

expression analysis revealed that TruSeq is still more powerful in detection of differentially expressed genes 

(supplemental table 3), which can be allocated to the difference in library size. Furthermore, Principal 

Component Analysis (PCA) showed that 36.8% of the variance in expression could be explained by the first 

component PC1 (Figure S4.4A), which separates between the TranSeq and TruSeq results, and was largely 

due to the large difference in the averaged level of counts between the two methods. The other components, 

PC2 (18.9%; Figure S4.4B), PC3 (13.8%; Figure S4.4C) and PC4 (4.9%; not shown) captured the variance 

between the sampled tissues (i.e. the three developmental stages), and showed a similar trend between the 

two methods. 

 

Figure 4.4: Co-expression correlation for each gene, between the TranSeq and TruSeq methods. Distribution plot of the 
correlations (Spearman) of each gene with its counter self in TranSeq vs. TruSeq (blue line). Random distribution of 
correlations is based on 1000 random samples from the same set (red line). 

4.4.3 TranSeq analysis of gene expression efficiently discriminates between gene family 

members  
Neo-functionalization or sub-functionalization is often the fate of members of a gene family that occurs via 
accumulation of mutations after duplication [277-279]. Gene family members may therefore share high 

sequence similarity. Since reads obtained in standard RNA-seq procedures (e.g. TruSeq) can be mapped 
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equally well to all highly similar regions, these methods often fail to discriminate between recently duplicated 
(or very similar) gene family members. Due to the typically higher sequence variation in UTR regions, we 
anticipated that 3’ end sequencing methods, such as TranSeq, would facilitate discriminating between gene 

family members and may even detect differences in their expression. To test this hypothesis, we analysed 
the TranSeq and TruSeq libraries that originated from the same RNA samples by mapping the reads to the 

reference tomato genome (ITAG2.4). Gene expression levels were stored in two matrices of nine conditions 
each. Expression values for either one of the duplicated genes in a specific gene family were extracted [229]. 

Mean normalized counts were calculated per gene and library separately. We then applied the negative 
binomial distribution model, using the glimmix procedure in SAS for normalizing each column in the matrices 

against library size.  

We found that the TranSeq method could differentiate between gene duplicates that display low expression 
level and little sequence divergence (Figure 4.5). Furthermore, we categorized 11,551 genes into 4136 gene 

families [229], which contained at least two gene members. Using both TruSeq and TranSeq, expression 
values could be assigned to 3484 gene families, which were further subjected to statistical analysis. Mean 

normalized counts (i.e. divided by library size) were calculated for each gene for each library separately. In 
1418 ortho groups out of 3484, the highest mean over all conditions was found to be a gene from the TranSeq 

library.  

 

Figure 4.5: Sensitivity of gene duplicate detection. Absolute number of duplicates detected either with TranSeq and/or 
TruSeq, as function of the number of synonymous substitutions (Ks) between the duplicates. The grey background 
indicates the total number of duplicates in each Ks bin. The green and red histograms depict genes whose expression 
could be detected either only in the TranSeq or the TruSeq libraries, respectively. The black histogram depicts number of 
genes detected both in TranSeq and TruSeq libraries. Duplicates for which Ks >2, were discarded. 

To further corroborate the findings above for both TruSeq and TranSeq, we classified the genes of each gene 
family to two classes, namely ‘highly expressed’ (to which the gene with highest mean expression levels in 

each gene family was assigned), and ‘lowly expressed’ (to which all other genes in the same gene families 
were assigned). The analysis is done for each ortho group separately. We then used a t-test to measure the 

significance of gene expression differences between the ‘low’ and ‘high’ classes of gene expression for each 
developmental stage. We found that in 269 gene families, there was a significant difference between the 

high and low classes of gene expression (P<0.05, across all three fruit developmental stages; Table S4.2). 
After multiple testing using the Sidak step-down adjusted p-values, the difference between ‘high’ and ‘low’ 
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classes of gene expression were significant in 141 gene families (P<0.05 family-wise significance level in each 
of the three fruit developmental stages; Supplementary_Plots.pdf). 

Furthermore, we found that the duplicates from the 141 gene families, which have a significant differential 

expression between duplicates, also displayed a significantly lower synonymous substitution rate than 
expected randomly (Ks; P <0.001; Figure S4.5). The Ks distributions for the 653 gene families (having 

significant gene expression differences between the ‘low’ and ‘high’ classes) was next compared with the 
complete set of S. lycopersicum duplicates (the entire tomato paranome). Notably, we observed that the Ks 
range of the 141 gene families set largely overlaps with the one associated with the Solanum WGD set (Ks: 

0,4-1,0) [21]. Furthermore, block synteny analysis was run for the 653 gene families, using the Chi-square 
test + multiple testing correction and p-value [229, 242], and revealed the enrichment of these gene families 

(p-value =1.2e-3; Table S4.2) for duplicated genes originating from the Solanum WGD/hexaploidy event 
[229]. These findings showed that TranSeq can outcompete TruSeq in the discrimination between gene 

duplicates and their expression. It also allowed us to demonstrate the significant divergence in gene 
duplicates originating from a WGD. 

44.5 DISCUSSION 
In recent years, numerous transcriptome studies performed at the cell-type and single-cell level 
demonstrated overwhelmingly, in organisms from diverse kingdoms, a vast heterogeneity in the gene 

expression profiles of seemingly similar cells [280, 281]. Hence, novel methodologies to study this gene 
expression diversity are invaluable. Nevertheless, they should deal with much larger sample sets as compared 

to the current norm as well as require a relatively minute amount of RNA per sample [282-286]. The present 
study demonstrated the power of TranSeq, a high-throughput 3’ end sequencing method originally 

developed for studies in mammalian systems, and its application in transcriptome assays and genome 
annotation in plants. While current RNA-seq experiments in plants, e.g. using the TruSeq procedure (Illumina, 

Inc.), will typically comprise a few up to several dozens of samples, the use of TranSeq is expected to increase 
the sample set per experiment to the hundreds and thousands scale, while keeping the experiment cost 

reasonably low. Notably, when performing a TruSeq experiment, the transcriptome size of tomato will 
require a minimum of 20 million reads to allow comprehensive gene expression analysis [287, 288]. The study 

here demonstrated that as little as 1 to 2 million reads per sample are enough to cover most of the tomato 
transcriptome when performing a TranSeq experiment. Typically, this allows to analyse up to 48 samples in 

a single lane of HiSeq (Illumina), which yields about 250M reads, and therefore greatly reduces the cost of 
sequencing per sample. We expect that the development of more advanced sequencing technologies will 
allow the analysis of even larger sample sets and further reduce the sequencing costs. In addition, 

significantly increasing the throughput of transcriptome analysis is expected to require new data processing, 
quantification and certainly visualization algorithms to allow the extraction of meaningful biological 

knowledge. Moreover, it is even likely to stimulate breakthroughs in developing advanced technologies to 
carry out single cell isolation and sampling in plants, which are currently a major limiting factor for executing 

such experiments [289].  

One noteworthy weakness of “standard” RNA-seq methods in which sequence reads cover the entire 
transcript, is the erroneous assignment of reads in between highly related sequences such as members of 
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the same gene family [269]. Plant genomes are exceedingly enriched in large gene families that often include 
very similar genes in tandem gene clusters, that could be part of a duplicated genomic region or spread out 
across the genome [290]. In such cases (as well as in many polyploid plant species), using the standard full 

transcript coverage RNA-seq methods to discriminate between expression of genes having substantial 
sequence similarity, is a major issue of concern. We found that TranSeq, merely generating reads matching 

the 3’ UTRs of transcripts (which are significantly variable even among closely related gene family members), 
is most effective in determining the expression level of individual, related gene family members. By 

comparing TruSeq to TranSeq we showed that 75% of the tomato genes displayed a similar pattern of 
expression in both sequencing methods. Typically, with TranSeq, when examining 151 gene families in 

tomato, only one gene was expressed to a significant level while the others possessing significant sequence 
similarity displayed much lower expression.  

While the original aim of this study was to increase the throughput of transcriptomics experiments, we also 

realized the immense potential of the TranSeq approach for whole-genome sequence annotation. To date, 
more than a 100 de novo-sequenced plant genomes have been publicly released. However, many of them 

suffer from extensive fragmentation and poorly defined gene models [291]. Following this work, we propose 
a complementary approach that takes advantage of two RNA-seq methods for the (re)evaluation of gene 

models. The currently standard RNA-seq procedure to obtain complete transcript sequences was combined 
with a 3’ end sequencing method to re-annotate the tomato genome. It appeared that a large portion of the 

tomato genome gene models was miss-annotated at its 3’ end. Our approach allowed the correction of more 
than 45% of the tomato gene models (version ITAG2.4), by assigning them either a longer 3’ UTR, or an 

additional exon at their 3’ end, or various extensions of their 3’ UTR. Notably, TranSeq could also discriminate 
between transcripts that display multiple polyadenylation sites while TruSeq was not able to differentiate 
between those. Notably, proper annotation of 3’ UTRs is of great importance to understand gene control, 

e.g. the selection of polyadenylation sites and 3’ UTR length may result in different intrinsic stabilities of a 
given transcript [292]. 

Despite the multiple strengths of using the TranSeq method portrayed above, it is important to note the 
restricted use of this method to organisms having a minimal quality of whole-genome sequence annotation. 
Consequently, its use in settings such as gene expression in a natural diversity sets including transcript 

profiling of entire Genome Wide Association Studies (GWAS) population will likely be reserved to those 
species with de novo sequenced genomes. Apart from the projected impact of the TranSeq method on the 

resolution of transcriptome studies, we anticipate that this method will be integrated into gene space 
annotation strategies of newly sequenced plant genomes. 

44.6 MATERIALS AND METHODS 

4.6.1 Plant material and sequencing libraries preparation 
Two weeks old Arabidopsis Col-0 seedlings, whole open flowers, seeds at five development stages (12, 14, 

16, 18, and 21 days after pollination), fully developed siliques, and entire tomato fruit at the mature green, 
breaker and red ripe stages (cv. MicroTom) were frozen in liquid nitrogen prior to RNA extraction and grinded 

for RNA extraction using the TRI-reagents method [293]. A detailed protocol for the preparation of TranSeq 
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libraries (single end 60 bp reads) is provided in the Supplementary Method and the overall workflow of the 
method is presented in Figure 4.1. The protocol for the preparation of TruSeq libraries (single end 60 bp 
reads), was described in [294].  

44.6.2 Mapping of sequenced TruSeq and TranSeq reads to the reference genomes 
For TruSeq and TranSeq data was mapped using Bowtie2 v2.2.5 [295] and TopHat v2.0.13 [296] to the tomato 

(ITAG 2.4) and Arabidopsis (TAIR 10) reference genomes. Once mapped, reads were visualized with the 
GenomeView tool [297]. For TruSeq HTseqcount was used and for TranSeq an in-house UNIX shell script that 
invokes other PERL and Java scripts, was used for counting and quantifying gene expression (see 

Supplementary Method).  

4.6.3 Genome (re)annotation 
The new annotation was generated using a combination of extrinsic evidence and the Eugene software able 
to include extrinsic information while building gene models. This approach is a slightly modified version of 

the pipeline used for the original ITAG annotation. As a final step we also included EvidenceModeler (EVM; 
[298], which checks Eugene predictions for support and is able to apply changes to gene models to augment 
the general support for gene-models using the provided alignments. As extrinsic protein data, we used data 

from ITAG annotations from both S. lycopersicum as S. tuberosum (www.solgenomics.net), after being 
cleaned from genes with a transposable element related functional description or short (<300nt) 

hypothetical genes. Additionally, we run the pipeline a few times, each time including the ‘best’ predicted 
tomato proteins from the previous run in a way that will provide enough evidence to properly predict a 

member of a gene-family, and this predicted gene will serve as the best homologue available to assist with 
the prediction of the other members of the same gene-family. The ‘best’ predicted genes are those that are 

(+/- 10%) of comparable length with the best-blast-hit against a reference protein set (therefore we 
compared the gene models to Arabidopsis TAIR10, since it is the best annotated plant species). Besides the 

protein support, we also included transcript data including ESTs collected from NCBI, RNA-seq (TruSeq) 
junctions (reads spanning introns) and transcript contigs (from assembled TruSeq RNA-seq) cut back in 

contigs of maximum 500nt. Cutting back the RNA-seq contigs to 500nt allowed reducing the chimeric contigs 
with misleading mappings. The TranSeq RNA-seq was independently assembled into contigs, and the contigs 

used as full length. The aim of this last set was to extend the gene-model’s UTRs in a most reliable way. All 
the above data was mapped on the SL2.5 assembly, that was masked using Rebase20.1 added with a custom 
repeat library (RepeatModeler, default parameters), and used to produce gene-models using Eugene. The 

extrinsic evidence was then converted into GFF format appropriate for including in EVM for further possibility 
of local improvements. 

4.6.4 Gene expression profiles of gene families in tomato. 
We analysed libraries of TranSeq and TruSeq reads that originated from the same RNA samples (3 stages in 
3 replicates) and stored in two matrices (of nine conditions each). The expression matrix was transformed 

using rlog transformation [299]. The PCA was performed using the prcomp function in R. Spearman 
expression correlation of the genes expressed in both TranSeq vs. TruSeq were compared to random 
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distribution was based on 1000 random samples from the same set. Since total library size was much higher 
in TruSeq than in TranSeq, we normalized the read counts by library size (to inflate the read counts in 
TranSeq). The negative binomial distribution was used to model the count data with the library size as offset 

variable using the glimmix procedure in SAS. Fixed effects were expression and condition and their 
interaction. Simple test of effects was calculated between the low and high expression level for each 

condition. Multiple testing to obtain adjusted p-values (p-value < 0.05), for testing for significant difference 
between ‘high’ and ‘low’ expression family-wise significance level in each of the three conditions was done 

with the Sidak stepdown function in SAS. Gene families/gene and the corresponding S. lycopersicum 
duplicates with Ks values were taken from [229]. Correlation analysis and plotting of the frequency 

distributions of the correlation coefficient (r) values of each pairs of duplicated genes (compared to the r-
value obtained from random pairs of genes), was performed in R (version 3.1.1). 

44.6.5 Computational resources 
All data processing and data analysis was done using a combination of Python and R scripts. The read mapping 
and counting pipeline was run for all samples in parallel on a computing cluster with Linux computing nodes 

(2.4GHz, Intel). All samples were run individually on 4 nodes with each 4GB of memory. The running time for 
TranSeq samples was between one and two hours. For TruSeq the running time was between 2 and 5 hours. 

4.7 SUPPLEMENTAL DATA 
All supplemental files can be found on: 

https://floppy.psb.ugent.be/public.php?service=files&t=2cc513eced261bef2ebdd8b4c3b042d6 

4.7.1 Supplemental figures 
Figure S4.1: Filtering TranSeq library reads in tomato. Number of sequence reads that passed each filter during TranSeq 
data analysis for all 9 tomato fruit samples analysed in this study at the mature green (MG), breaker (Br), and red ripe 
(RR) stage. 

Figure S4.2: TranSeq and TruSeq reads map to different genomic features. 

Figure S4.3: Examples of TranSeq (green) and TruSeq (blue) based re-annotation, extends and modifies tomato gene 
models in ITAG2.4 (the “prediction” track). (A) Mapping of TranSeq and TruSeq reads on the extended UTR gene model. 
(B) The SL2.4_UTR is the extended gene model of Solyc05g012040 (showing a new intron gained). 

Figure S4.4: Principal Component Analysis (PCA) of reads obtained from tomato TranSeq and TruSeq data. Mature 
green stage (green track), breaker stage (red track) and red ripe stage (blue track). The first component 36.8%(PC1; 
panel A) separates TranSeq and TruSeq due to the inherit variance in averaged level of counts between the two methods. 
The other components PC2 (18.9%; panel B), PC3 (13.8%; panel C) capture the variance between the sampled tissues.  

Figure S4.5: Density plot of the synonymous substitution rate. This density plot shows the Ks distribution for the 
duplicate genes from the gene families which have a significant difference between high and low expression (red) and 
all the other duplicates (grey) in S. lycopersicum. The median Ks for both sets is indicated with a dashed line. Duplicates 
for which Ks >2, were discarded. The purple background indicates the Solanaceae WGD peak area (based on [21]). 

4.7.2 Supplemental tables 
Table S4.1: TranSeq and TruSeq read mapping to the tomato reference genome. Reads where mapped twice (once to 
the original tomato genome named- ITAG2.4_gene_models; and once to our extended gene models named – 
SL2.5extUTR_intergenic – column B), and categorized into five different genomic features: CDS, 5’ UTR, 3’ UTR, 
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intergenic regions, and introns (column C). In columns D-G we summarize the number of expressed genes with at >0, >5, 
>10 and >20 counts for each reference genome and sequencing method. 

Table S4.2: List of genes that displayed high expression levels across all samples, comparing to other members of their 
gene family measured from TranSeq libraries. Expression levels, of the rest of the genes in the families, measured from 
TruSeq libraries were constantly low. 

Table S4.3: Comparison of expression and differentially expressed genes in TranSeq and TruSeq. The first part contains 
the number of detected genes in the different conditions with the overlap between them, followed by the number of 
differentially expressed genes (P<0.001). The tables on the bottom show the number of duplicates which are either, both, 
only one or are not detected using both techniques. 

44.7.3 Supplemental data 
Supplementary Data 1. TruSeq gene expression tomato dataset (FPKM).  

Supplementary Data 2. TranSeq gene expression dataset (counts). 
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“...Data itself... was tolerable. It was the constant nerve-web-expanding
pain of context that would kill him.” 
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55.1 ABSTRACT 
Gene regulatory networks (GRNs) consist out of different molecular interactions that closely work together 
to establish proper gene expression in time and space. Especially in higher eukaryotes, many questions 

remain on how these interactions collectively coordinate gene regulation. We study high quality integrated 
GRNs consisting of undirected protein-protein, genetic and homologous interactions, and directed protein-

DNA, regulatory and miRNA-mRNA interactions in the worm Caenorhabditis elegans and the plant 
Arabidopsis thaliana. Our data-integration framework integrates interactions in composite network motifs, 

clusters these in biologically relevant, higher-order topological network motif modules, overlays these with 
gene expression profiles and discovers novel connections between modules and regulators. Similar modules 

exist in the integrated GRNs of worm and plant. We show how experimental or computational methodologies 
underlying a certain data type impact network topology. Through phylogenetic decomposition, we found 
that proteins of worm and plant tend to functionally interact with proteins of a similar age, while at the 

regulatory level TFs favour same age, but also older target genes. Despite some influence of the duplication 
mode difference, we also observe at the motif and module level for both species a preference for age 

homogeneity for undirected and age heterogeneity for directed interactions. This leads to a model where 
novel genes are added together to the GRNs in a specific biological functional context, regulated by one or 

more TFs that also target older genes in the GRNs. Overall, we detected topological, functional and 
evolutionary properties of GRNs that are potentially universal in all species. 

5.2 CONTRIBUTION 
� Performing the research together with Vanessa Vermeirssen 
� Designing and performing analyses together with Vanessa Vermeirssen 
� All Figures and tables 
� Writing the manuscript together with Vanessa Vermeirssen  
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55.3 INTRODUCTION 
In eukaryotic organisms, differential gene expression is a tightly controlled process that governs 
developmental, physiological and disease processes. At the level of transcription, specific transcription 

factors (TFs) bind DNA in order to activate or repress the expression of a gene. MiRNAs repress gene 
expression post-transcriptionally by interacting with complementary sequences located in the 3’UTR of their 

target mRNAs. Many molecular interactions, in which TFs and miRNAs are key players, closely work together 
in order to establish proper gene expression in space and time [300, 301]. In addition to binding DNA at 

specific regulatory sites in the genome, several TFs influence transcription through protein-protein 
interactions, either because they bind DNA as homo- or heterodimers, or because they require interaction 

with cofactors, chromatin modifying factors or the basal transcription machinery [302]. In addition to these 
direct physical interactions, other molecular interactions have an indirect impact on gene regulation. Genetic 
interactions, in which two mutations have a combined phenotypic effect not exhibited by either mutation 

alone, reveal functional linkages in gene regulatory circuits [303]. Together with paralogous interactions, 
which occur frequently between TFs and miRNAs, since duplication events significantly contributed to their 

evolutionary expansion [304, 305], they can also pinpoint redundancy in gene regulation. Regulatory 
interactions between TFs and target genes are identified by expression profiling in organisms with perturbed 

TFs and describe both direct and indirect influences of these TFs on gene expression. 

While we understand the biological consequences of single data types, we are just beginning to explore how 
different interaction types together influence gene regulation. E.g. co-expressed genes and genes encoding 

interacting proteins tend to be regulated by common TFs [306, 307]. Synthetic genetic interactions are more 
likely to occur between homologous genes, although large gene families complicate the identification of 

digenic interactions [308]. Genes encoding TFs that control miRNA expression have a higher chance to be 
post-transcriptionally repressed by the miRNA [309]. Furthermore, genes coregulated by miRNAs are less 

functionally linked than genes coregulated by TFs [310]. Therefore, different types of molecular interactions 
provide complementary insights into gene regulation and cell function, expressing the need for data 

integration [311].  

Gene regulation can be studied in gene regulatory networks (GRNs), which map the interactions between 
TFs and their target genes at a systems level [312]. Taking into account different types of molecular 

interactions that specify regulatory inputs, generates integrated GRNs. Network motifs, which are defined as 
patterns of interconnections occurring significantly more often than in randomized networks, have been 

regarded as the basic building blocks of complex networks [313]. More specifically, the feed forward loop 
(FFL), which with positive regulations acts as a signal persistence detector, is the most prominent motif in 

GRNs of Escherichia coli and Saccharomyces cerevisiae [314-316], and also in higher eukaryotes like human 
[317, 318]. Similarly, integrated GRNs can be characterized by composite network motifs, which are 

subgraphs of which the edges can represent different interaction types, e.g. TF complexes regulating a 
common target gene and the transcriptional coregulation of interacting proteins [78]; miRNA-TF feedback 
loop and miRNA-mediated FFL [309, 319-321]; TF-regulated kinate motifs and interacting kinates motifs 

[322], and CoRePPI motifs considering coregulation of protein-protein interactions by TFs and miRNAs [323]. 
Hence, studying composite network motifs in integrated GRNs has already revealed novel topological 

structures with biological implications that cannot be deduced from single interaction type networks. 
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The relation between motif type and biological function has been debated [324-326]. Detailed information 
about a motif’s signal integration logic, i.e. binding site affinities and molecular interactions of the regulatory 
TFs, is necessary for a complete understanding of the motif’s function. In addition, not only network motifs, 

but the higher topological patterns into which they cluster, determine biological function. In GRNs of E. coli 
and S. cerevisiae, networks motifs such as the FFL aggregate into homogeneous motif clusters, mostly multi-

output FFL generalizations, that largely overlap with known biological functions [327, 328]. Also, in integrated 
GRNs of S. cerevisiae, composite network motifs cluster together in recurring interconnecting patterns that 

could be tied to specific biological phenomena such as for instance in the regulonic complex theme wherein 
a TF regulates multiple members of a protein complex, both TF and protein complex tend to be involved in 

the same biological process and complexes of related function are often connected to the same TF [326, 329, 
330]. A single composite network motif can aggregate into topologically distinct motif clusters e.g. a motif 

composed of a transcription regulatory interaction where regulator and target both physically interact with 
the same protein, can cluster either into a “regulonic star”, where multiple targets of a TF interact with the 

same feedback mediator, or a “regulatory interacting double-star”, consisting of a regulator-target pair that 
share a common set of partners in the protein interaction network, which usually belong to a regulatory 

protein complex [330]. Diverse complex networks exhibit rich higher-order organizational structures that are 
exposed by clustering based on higher-order connectivity patterns and hence provide biological 
contextualization [331]. 

The current GRNs are the result of evolution during millions of years. Interaction rewiring and integration of 
novel genes is an important step in this process. Novel genes originate through partial or full duplication of 

existing genes followed by divergence, incorporation of mobile elements, gene fission and fusion, and de 
novo gene creation from non-coding sequence [332]. Through phylogenetic analysis, the age of genes can be 
assigned based on the oldest common species with an ortholog [333]. Studies focusing only on protein-

protein interaction and coexpression networks in different eukaryotic species revealed that the majority of 
young genes are incorporated in the periphery and slowly acquire more interactions and functions [334-337]. 

Novel genes gain interactions and functions faster than duplicated genes [338]. In addition, genes tend to 
interact more with proteins of the same age in protein-protein interaction networks of yeast [338, 339] and 

human [334] and in coexpression networks of A. thaliana [337]. In yeast it has been shown that proteins with 
the same age tend to clusters into motifs, while proteins from different age groups tend to avoid motif 

formation [339]. Based on the observations in yeast protein-protein interaction networks, modelling 
approaches have tried to mimic network evolution [340, 341]. The best results were obtained with the 

network motif model where network motifs or protein clusters instead of single proteins are incorporated 
into pre-existing networks over evolutionary time [341]. Overall, studies on GRN evolution have mainly been 

limited to protein-protein interaction networks in unicellular organisms. 

In eukaryote organisms, the main sources of duplicates are SSD and WGD. In C. elegans there is a high rate 
of SSD, mostly single gene duplications. These SSDs are frequently partial or do not have all regulatory 

sequences from their original sequences [342]. In plants, next to SSD, there are also WGDs. These can either 
be the result of interspecific or intraspecific hybridizations which lead to multiple genomic copies 

(polyploidy). WGDs are very abundant and an important source of duplicates in a wide range of plant species 
[16]. In A. thaliana, there are four or five ancient WGD events described [19, 20], two of which are located 
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between the Brassicales and the Brassicaceae age groups, one between the flowering plants and the split 
between eudicots and monocots, and one or two between the origin of seed and flowering plants. After 
duplication, most of the duplicates get lost [229]. However, many WGD-duplicates evolve slower than SSD-

duplicates in terms of divergences of sequence [227], expression [226], protein interaction partners [63] and 
regulatory connections [343]. 

Here, we developed a data-integration framework starting from different types of interaction networks, over 
composite network motifs, to network motif modules, which could be dynamically investigated through 
integration of expression profiles and topologically interpreted in a ‘superview’ analysis (Overview pipeline 

in Figure 5.1). We studied two model organisms that are different from a structural, physiological and 
evolutionary point of view, i.e. the multicellular worm C. elegans and the flowering plant A. thaliana, for 

which many data are available. We learned that different molecular interactions interrelate in biologically 
relevant network motif modules to generate a coordinated response in gene regulation. Our approach 

enabled us to show the advantages and pitfalls of data integration of multiple data types and different 
experimental methodologies on the motif and motif network module level. Next, using phylogenetic 

decomposition, we investigated how novel genes are incorporated in these networks. We also found that 
worm and plant proteins prefer to interact with proteins of a similar age. For protein-DNA interactions on 

the other hand, we found in both species that regulatory TFs favoured to bind to older or of similar age target 
genes. In network motifs, undirected interactions preferentially took place between age homogeneous 

proteins, while directed interactions were inclined to be age heterogeneous. These preferred age patterns in 
the motifs were favourably incorporated in the network motif modules. Modules were mostly composed out 

of genes from the evolutionary age groups containing the most genes i.e. Eukaryota, Eumetazoa and 
Caenorhabditis in worm, and Green and Land plants in plant. Hence, especially in A. thaliana, younger genes 
were more inclined to attach to modules mostly composed out of older genes instead of forming modules 

on their own. Modules with directed interactions were only age homogeneous in the oldest evolutionary age 
groups or there were none. This leads to a model where novel genes are added together to the GRNs in a 

specific biological functional context, regulated by one or more TFs that also target older genes in the GRNs. 
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55.4 RESULTS 

5.4.1 High quality integrated GRNs in worm and plant feature hubs and modularity 
Given that gene regulation is influenced by different physical and functional molecular interactions, we 
integrated high quality directed protein-DNA (D), regulatory (R) and miRNA-mRNA (M), and undirected 

protein-protein (P), genetic (G) and homologous (H) interactions to obtain a holistic view on gene regulation 
(Figure 5.1). The data contained only experimentally validated interactions, except for miRNA-mRNA 

interactions, where computational predictions complemented experimental interactions. Homologous 
relationships were also inferred through computational analysis (Methods). The integrated GRNs of C. 

elegans (Cele) and A. thaliana (Atha) contained respectively 43,943 and 89,679 molecular interactions, 
distributed over the different molecular interaction types as depicted in Figure 5.2. There is limited overlap 

between the different types of interactions in both GRNs (Suppl. Fig. 1). In the A. thaliana GRN, protein-DNA 
interactions and transcription regulatory interactions are merged in the same D data type due to 

indistinctness in experimental origin or overlap between the two types of interactions: at least 4236 
interactions are both physical protein-DNA and transcription regulatory interactions. Like most biological 

networks, these networks are scale-free and feature hubs, highly connected proteins in the undirected 
networks and regulators with many targets in the directed networks (Supplementary Data, Suppl. Table 1, 
Suppl. Fig. 2) [344, 345]. Many medium-degree nodes have a higher clustering coefficient than expected from 

the power-law fit (Supplementary Data, Suppl. Fig. 3). Hence, they differ from hierarchical scale-free 
networks and exhibit an extra modularity than the one centred on hubs [330]. The overall clustering 

coefficients of the protein-DNA and protein-protein interaction networks of C. elegans are 2 to 10 times 
higher than those of A. thaliana. Hence, the worm integrated GRNs are smaller (edge to node ratio Cele 3.4 

versus Atha 4.3) and more likely to form clusters. 
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Figure 5.1: The data integration framework to study 
integrated GRNs. In the first step, molecular 
interaction data were gathered from multiple 
sources: protein-protein (P), genetic (G), homologous 
(H), protein-DNA (D), regulatory (R) and miRNA-
mRNA interactions. In the motif step, all possible 2-
node and 3-node motifs were searched with ISMA, 
the Index-based Subgraph Matching Algorithm that 
conducts a fast and efficient motif search through 
carefully selecting the order in which the nodes of a 
query motif are investigated. We grouped the motifs 
in 8 categories (complex motif (COM), feed forward 
loop (FFL), co-pointing motif (COP), co-regulated 
motif (COR), circular feedback motif (CIR), feedback 
undirected motif (FBU), feedback 2 undirected motif 
(FB2U) and two-node feedback motif (2FB)) and 
named them ABC according to the interactions A 
between node 1 and 2, B between node 1 and 3, and 
C between node 2 and 3. For directed edges, if the 
direction is reversed e.g. interaction A between node 
2 and node 1, a small case letter is used e.g. motif 
aBC. In the module step, motifs were clustered with 
SCHype, which is a spectral hyper-edge clustering 
algorithm maximizing the hyper-edge (i.e. motif) to 
node ratio. In the dynamic module step, for each 
module, coexpression was evaluated by the average 
Pearson Correlation Coefficient (nPCC) and for A. 
thaliana dynamicity was assessed by the Expression 
Correlation Differential Score (ECD). In the superview 
step, modules were integrated with other modules 
and regulating transcription factors and microRNAs. 
This integration was based on statistical enrichment 
by comparing the observed versus expected 
interactions through comparison with random 
modules of the same sizes (Methods). 
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Figure 5.2: Proportions of the different types of molecular interactions within the integrated GRNs of C. elegans and 
A. thaliana: P – protein-protein, H – homologous, G – genetic, D – protein-DNA (and/or transcription regulatory in the 
case of A. thaliana), M – miRNA-mRNA and R – transcription regulatory interactions. The worm integrated GRNs 
contained 43943 interactions between 845 TFs (92% of all), 172 miRNAs (67% of all) and 12095 protein-coding genes 
(67% of all). The plant integrated GRNs encompassed 89679 interactions between 1519 TFs (88% of all), 174 miRNAs 
(41% of all) and 19001 protein-coding genes (69% of all). 

55.4.2 Different composite network motifs form the basic building blocks of integrated 

GRNs 
As a first step of our data integration framework (Figure 5.1), we searched for possible 2-node motifs using 
a customized Perl script and 3-node composite network motifs using ISMA (Index-based Subgraph Matching 

Algorithm) [346]. These 2- and 3-node motifs are the elementary building blocks of many higher-order motifs. 
We detected respectively 40 and 14 different 2- and 3-node network motifs that occurred 50 times or more 

in the GRNs of worm and plant (Figure 5.4, Suppl. Table 2, Suppl. Fig. 4). The composite network motifs were 
grouped in 8 motif types, all of which were present in both species (Figure 5.4): complex motifs (COM), which 

represent combinations of all undirected interactions; co-pointing motifs (COP), where two interacting 
regulators (e.g. dimers or homologs) regulate the same gene; co-regulated motifs (COR), where one regulator 

controls two interacting genes; feed forward loops (FFL), where a regulator regulates a target gene directly 
and indirectly through another regulator; circular feedback motifs (CIR), where regulators act upon each 
other through a feedback loop; feedback undirected motifs (FBU), where two directed interactions in a 

cascade are connected by one undirected interaction; feedback 2 undirected motifs (FB2U), which combine 
two undirected interactions and one directed interaction; and two-node feedback motifs (2FB), which couple 

a directed edge with an undirected edge [77]. The name of the motifs, e.g. RPD, determines the motif: the 
first letter refers to the left edge from the top node, the second letter refers to the right edge of the top node 

and the third letter refers to the basal edge in the motif from left to right. A lowercase letter indicates reversal 
of the directed edge direction. 

The higher presence of some motifs in one species as compared to the other can be attributed to the 

characteristics of the underlying data and methodologies (Figure 5.3, Suppl. Fig. 4). The respective fivefold 
and twofold higher abundance of P and D data in plant compared to worm generally resulted in higher 

numbers of P and D containing motifs in plant e.g. PPP (10x), DDD (2x), PDD (3x), DDP (4x), DDM (4x). HHH-
motifs are only found in worm, since homologs in C. elegans are composed of direct BLAST results, while 

homologs in A. thaliana are based upon gene trees of gene families (Methods). In C. elegans, extensive yeast 
one-hybrid (Y1H) and yeast two-hybrid (Y2H) mapping between TFs led to more widespread TF-TF 

interactions [347] and hence higher motif counts for the motifs DdD (30x), DmD, DD (19x) and DP (6x). The 
threefold higher abundance of M data in worm, as well as the large fraction of experimental data in there, 
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compared to plant, mostly produced higher numbers of M containing motifs in worm e.g. MMD (7x), HMM 
(32x), MMP (3x) and DM. The higher numbers of MMH (8x), as well as HDD (5x) and DDH (3x) in plant are 
also possibly caused by the WGD events in A. thaliana, where upon duplication of a target gene or TF, also 

the regulatory edge is duplicated. In both species, specific motifs largely overlap due to overlaying P and D, 
intersecting P, G and H, and bidirectional D interactions (Supplementary Data, Suppl. Fig. 5): within COP and 

FB2U, between FBU/FFL, COP/FFL, F2BU/FBU, FBU/COR, FB2U/COR and FFL/CIR. The overlap between FFL 
and CIR motifs (DDD/DdD) indicate that in FFLs containing only TFs, the final targeted TF transcriptionally 

feedbacks on the top regulatory TF. A particular difference between plant and worm integrated GRNs is that 
homologous plant TFs targeting the same genes tend to physically interact more both through protein-

protein and protein-DNA interactions. 

Typically, the presence of network motifs is evaluated by network motif enrichment. Network motif 
enrichment was calculated compared to 1000 randomized networks with preserved degree distributions, as 

is usual done (Methods) [320]. All motif types had at least one network motif enriched in the GRNs (Suppl. 
Table 2, Suppl. Fig. 4). We found network motif enrichment to be biased towards network topology, which is 

inherently connected to the experimental methodology (Supplementary Data). As a predominant example, 
since we integrated chromatin immunoprecipitation (ChIP) and Y1H for D type physical protein-DNA 

interactions, we observed an enrichment of FFL (DDD) only in the ChIP data and not in the Y1H data for both 
species (Figure 5.4, Suppl. Table 3). Overall, the net result is a lack of enrichment of the FFL in the integrated 

GRNs of worm and plant (Figure 5.4, Suppl. Fig. 4). Accordingly, enrichment of the FFL was reported in several 
studies with a similar randomization methodology, most of them using ChIP data or genome-wide target 

gene prediction based on conserved TF binding sites for the directed edges [78, 313, 320, 348]. The latter are 
TF-centred GRN approaches, which result in genome-wide networks at the target gene level with low 
interconnectivity and few TF hubs. Y1H, on the contrary, is a gene-centred approach, leading to smaller 

networks with a higher interconnectivity distributed over more TFs and many target gene hubs [349]. 
Therefore, these data are complementary in the construction of GRNs. This differential network motif 

enrichment can be mainly attributed to the randomization strategy that preserves the degree distribution, 
but at the same time limits the randomization in a network topology created by Y1H (Suppl. Table 4). In 

addition, we also observed that network motifs can be created by the integration of different experimental 
methodologies for a certain data type. As an example, extra circular feedback motifs DdD originated from 

the integration of ChIP and Y1H protein-DNA interaction data (Suppl. Table 3). Also, preferential interaction 
patterns between TF hubs in ChIP and target gene hubs in Y1H emerged in the randomized networks upon 

data integration, further disturbing the network motif enrichment (Suppl. Table 5).  

 

Figure 5.3: Differential FFL enrichment between ChIP and Y1H data: the FFL motif is only enriched in the ChIP data of 
both C. elegans and A. thaliana. Number of FFL motifs (DDD) in ChIP, Y1H and the combined D data of C. elegans and 
A. thaliana. Significant over- or underrepresentation as compared to 1000 randomized networks (p-value = 0.05) is 
indicated by green or red arrow respectively. 
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Hence, the experimental or computational methodology that generates a certain data type can exert an 
impact on the network topology, and more specifically on network motif enrichment. The presence of specific 
network motifs and their aggregation might therefore be a better indicator of biological functionality of a 

network than network motif enrichment. Moreover, network motif aggregation is independent of the 
overrepresentation of network motifs in the network [330]. On top of that, the integration of different data 

methodologies creates network motifs that would be absent in a single data source network, further 
indicating that different methodologies are complementary for a given data type to obtain a systems view 

on gene regulation. 

55.4.3 Network motifs aggregate into functional network motif modules 
Through a general data-integration framework based on spectral clustering of hypergraphs [350], we 

investigated the aggregation of motifs into higher order topological structures in the integrated GRNs that 
represent biological and/or regulatory entities (Figure 5.2). The clustered structures, from now on referred 

to as network motif modules, can be composed of one type of motif or a combination of different motifs. 
We classified the modules in 7 different cluster types, depending on which 3-node motifs were clustered 

together (Methods) (Figure 5.4). In addition, we also clustered all 2- and 3-node motifs together. We 
functionally annotated the modules with GO Biological Process and investigated dynamic modules by 

integrating expression profiles from respectively a developmental and abiotic stress expression profile 
compendium for C. elegans and A. thaliana [351-353] (Suppl. Tables 7, 8 and 9). Here, we calculated two 

measures: the average Pearson Correlation Coefficient (nPCC) as a measure of coexpression and, for A. 
thaliana, the Expression Correlation Differential Score (ECD), which highlights modules specific for a stress 

condition as compared to control conditions (Methods). The number of different network motif modules 
obtained can be found in Suppl. Table 6. 

The first cluster type is the complex module (COMc), generated by clustering the COM motif type (Figure 

5.4). Complexes are built out of functionally associated genes, linked through physical protein-protein 
interactions or/and functional genetic or homologous interactions (cfr. protein complex theme [329]). 

Proteins in these modules usually show coherent coexpression patterns across conditions. In addition to 
clusters consisting of only one interaction type, we found clusters composed of members of a protein 

complex genetically interacting with the same set of proteins (Cele COMc 104 e.g.), since members of a given 
protein complex or biological process often have common synthetic genetic interaction partners [354]. 
Furthermore, we observed network motif modules consisting of homologs physically interacting with the 

same proteins. This is in agreement with the fact that gene duplicates initially have the same interaction 
partners, before divergence or loss. For instance, in Cele COMc 70, functioning in ubiquitin-dependent 

protein catabolism, we observed a star-like configuration of protein interaction partners around the 
homologs cdc-48.1 and cdc-48.2. Both paralogs are also linked by genetic and protein-protein interactions 

and show a similar expression pattern. Their human homologs suppress the aggregate formation of a 
Huntington polyQ repeat [355] (See also Supplementary Data for further examples).  

The second cluster type is the co-regulated module (CORc), consisting of clusters of the COR motif type, and 

represents co-regulated functionally associated proteins (cfr. regulonic complex theme [329]). This cluster 
type adds a transcriptional (e.g. Cele CORc 8) or posttranscriptional (e.g. Atha CORc 14) regulatory layer to a 



RESULTS  

127 

complex module (Figure 5.4). Here, we also observed star-like configured co-regulated heterodimers 
(Supplementary Data).  

The third type, the co-pointing module (COPc), represents interacting regulators that share a group of targets 

(cfr. co-pointing theme [329]). We found homologs, heterodimers and protein complexes regulating a set of 
genes. In the HMM module Cele COPc 61, we observed strongly co-expressed genes involved in axon 

extension. We also observed interacting protein complexes that combine two groups of functionally 
associated proteins with regulatory interactions between them. In Atha ALLc 70, a module that combines 
COP, COR, and COM motifs and changes dynamically upon oxidative stress, the heterodimer PIF3-HY5 targets 

a number of physically interacting anthocyanin biosynthetic enzymes (Figure 5.4). Finally, we detected 
homologous signalling pathways like in Cele COP 193 (Supplementary Data). 

The fourth type, the feed forward loop module (FFLc), consists only of regulatory links and enables universal 
information processing and hierarchical regulation [330]. We found the feed-forward theme, where one TF 
regulates another one and both of them regulate a common set of target genes [329] (e.g. Atha FFLc 30), and 

extensions to this theme with more regulatory layers or combinations of transcriptional and 
posttranscriptional regulation (e.g. Atha FFLc 48) (Figure 5.4).  

The fifth type, the circular feedback module (CIRc), has not been described before [329, 330]. Here, 
transcription and/or posttranscriptional regulatory links feed back into one another generating intrinsically 
clustered patterns (e.g., Cele CIRc 25, Atha CIRc 0 - see further) (Figure 5.4). Often, P interactions between 

the TFs are also present, as already indicated by the FBU/FFL/CIR motif overlap. In addition to feed forward 
loop modules, circular feedback modules form the core of integrated GRNs and integrate signalling between 

regulators, often coordinating developmental transitions.  

In C. elegans, we also observed intrinsically clustered patterns of feed forward loops as well as circular 
feedback motifs, likely due to the higher clustering coefficients in the C. elegans data (Supplementary Data). 

The sixth type, the feedback 2 undirected module (FB2Uc), is formed by clusters of protein-interaction 
mediated transcriptional regulatory loops, a motif that mediates undirected feedback between a TF and its 

target, through a common partner in the protein interaction network [78]. A first cluster generalization of 
this motif is the regulonic star, where multiple targets of a regulator interact with the same feedback protein, 
including the regulator itself [330]. In Cele FB2Uc 13 for instance, the transcriptional co-activator EYA-1 

functions as feedback mediator in the development of various tissues [356]. A second cluster generalization 
is the regulatory interacting double-star, where one or a few regulator-target pairs share a common set of 

partners in the protein interaction network [330]. For example, in Cele FB2Uc 39, DAF-3 is a central protein 
interaction partner for a number of proteins, as well as a transcriptional regulator to DAF-7 and DAF-8 that 

both in return genetically interact with the protein interaction partners of DAF-3 (Figure 5.4). This extreme 
example combines these two types in a protein complex, where some members transcriptionally regulate 

other members (e.g. Atha FB2Uc 1 (Supplementary Data), Atha CIRc 0). 

The seventh type, the feedback undirected module (FBUc), is similar to the feedback 2 undirected module, 
but now contains clusters of motifs consisting of two coherent regulatory edges and one undirected 

interacting edge. Here, we also detected the regulonic star, where now the feedback protein is another 
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regulator that targets the first regulator. In Atha FBUc 2, for instance, PIL5 and PIF4 target back to SEP3. 
Hence, a member of a protein complex also actively regulates its regulating TF. Due to the FBU/FFL and 
FBU/COR motif overlap, this module is also FFLc and CORc to some extent. Analogously, the regulatory 

interacting double star now consist of a regulator with a set of protein interaction partners that targets 
another regulator that transcriptionally regulates those protein interaction partners. In ATHA FBUc 3, MYB33 

physically interacts with all the targets of LFY3 that is a direct target itself of MYB33 (Figure 5.4).  
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Figure 5.4: Overview of the different network motif types (left) and modules for each motif type clustered (right). The 
number of specific motifs that were found at least 50 times in the GRNs of C. elegans and A. thaliana is indicated per 
motif type on the left. Specific examples of the clustering of motifs per motif type in modules is depicted on the right by 
a network figure and a Module Viewer figure of their expression profiles in developmental (C. elegans) or abiotic stress 
conditions (A. thaliana) (Methods). For the abiotic stress compendium Module Viewer figure, only the top 10 conditions 
with most up- and down-regulated expression are shown. The average Pearson Correlation Coefficient (nPCC) and if 
available, the abiotic stress condition with significant Expression Correlation Differential score (ECD) are shown as 
measures of coexpression and expression dynamicity of the modules, respectively. Complex motifs (COM) and modules 
(COMc): Cele COMc 104 (GGG/GPP/PPP/GGP motifs) involved in dosage compensation and sex determination and Cele 
COMc 70 (PPP/GPP/HPP motifs) functioning in ubiquitin-dependent protein catabolism. Co-regulated motifs (COR) and 
modules (CORc): Atha CORc 14 (MMP/PPP motifs) involved in leaf and flower development [357], upregulated upon cold 
stress and downregulated upon oxidative stress, and Cele CORc 8 (RPP/PPP motifs) involved in the endoplasmic reticulum 
unfolded protein response. Co-pointing motifs (COP) and modules (COPc): Cele COPc 61 (HMM motifs) involved in axon 
extension and Atha ALLc 70 (DDP/PDD/PPP motifs) involved in flavonoid biosynthesis, upregulated upon radiation stress 
and dynamic upon oxidative stress. Feed-forward motifs (FFL) and modules (FFLc): Atha FFLc 30 (DDD motifs) involved 
in response to water deprivation, upregulated upon cold and salt stress and dynamic upon cold stress, and Atha FFLc 48 
(DDD/DMD motifs) upregulated upon cold and salt stress, downregulated upon heat stress. Circular feedback motifs 
(CIR) and modules (CIRc): Atha CIRc 0 (DdD/DDD/DPD/PPP/DPP motifs) involved in flower development and Cele CIRc 
25 (DmD/DdD/DDD/DPP/DPD/RPD/RDD/DMM/DDG/DDH/DDP/DMD/GHH/HMM/GMM motifs) involved in the 
regulation of larval development. Feed-back 2 undirected motifs (FB2U) and modules (FB2Uc): Cele FB2Uc 13 (DPP 
motifs) involved in embryonic and larval development and Cele FB2Uc 39 (RPG /RGP/GGG/GPP motifs) involved in Dauer 
larval development. Feed-back undirected motifs (FBU) and modules (FBUc): Atha FBUc 2 (DPD/DDD/PPP/PDD/DDP 
motifs) involved in the cellular response to red or far red light and upregulated upon heat and cold stress and Atha FBUc 
3 (DPD motifs) functioning in flower development.  

 

In the ALL modules, all motif types were clustered together. Here, we typically found integration of different 

motifs and combinations of different modules. As an example, in a merged module, which consists of COP, 
COR, and FFL motifs, and functions in flower development, the homologous miRNAs miR156/157 post-

transcriptionally regulate members of the squamosa-promoter binding protein-like (SPL) gene family (Figure 
5.5A, Suppl. Fig. 6). This miR156/157-SPL module is a regulatory hub important for the transition from 

vegetative phase into flowering. It is closely linked with environmental signals like temperature, salt and light 
[358]. On top of that, SEPALLATA3 (SEP3) targets both miRNAs and SPLs, creating TF-mediated miRNA FFLs. 

From literature, it is known that SEP3 is a responsive gene of SPL3 in the ambient temperature-responsive 
flowering [359]. Here, we observed that SEP3 also functions as an upstream regulator by binding other SPL 

TFs that are upregulated upon abiotic stress. 

In the partially overlapping modules of Atha ALLc 93, ALLc 147, COMc 14, COPc 11, COPc 47 and COPc 14, 
which combine COP, COR, COM, and FFL motifs, a gene family of eleven zinc finger homeodomains interact 

through P and H interactions, while several of them are targeted by the flowering regulator AGL15 and/or 
transcriptionally regulate genes involved in secondary cell wall and glucosinolate biosynthesis (Figure 5.5B). 

In Arabidopsis, zinc finger homeodomains are known to homo- and heterodimerize and play overlapping 
regulatory roles in floral development [360]. We found that the HB-genes in the protein cluster COMc 14, 
COPc 14 and ALLc 93 are significantly co-expressed (Suppl. Fig. 7). We also observed that the highly similar 

homologs hb30/hb34 are expressed under the same abiotic stress conditions and that they are dynamically 
expressed in osmotic stress conditions in roots together with zfhd1 of which the upregulation by high salinity 

was already reported [361] (Figure 5.5B, Suppl. Fig. 7). Furthermore, we perceived in the abiotic stress 
expression compendium different expression preferences for the different zinc finger homeodomains upon 

osmotic, salt, heat and cold stress: most of them are preferentially expressed in root tissues, only hb23 also 
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shows expression in shoot tissues (Figure 5.5B). Together this leads to the assumption that they, despite the 
large functional overlap between the hb-genes, have diverged to regulate development under specific abiotic 
stresses. Differential expression of zinc finger homeodomains under abiotic stress conditions has already 

been shown in Brassica rapa and Vitis vinifera [362, 363]. Therefore, it is interesting to study the evolutionary 
diversification of these zinc finger homeodomains in the abiotic stress response.  

 

Figure 5.5: ALL modules formed by clustering different motif types together. Expression profiles are depicted for the 10 
abiotic stress conditions with maximal up- and downregulation. A) Merged FFLc, COPc and CORc module from ALLc 50 
largely overlapping with COPc 10 and CORc 5. Here, the homologous miRNAs miR156/157 post-transcriptionally regulate 
members of the squamosa-promoter binding protein-like (SPL) gene family. Both miRNAs and SPLs are targeted by SEP3. 
The functional diversification of the different spl-genes is illustrated by the mixture of different stresses in the conditions 
with maximal up- and downregulation for the abiotic stress compendium. B) Overview of the different modules with zinc 
finger homeodomains: ALLc 147, COMc 14, COPc 11, COPc 47 and COPc 14. Experiments with specific tissues, root (R) 
and shoot (S), are marked below the expression profile matrix. Genes are sorted based on the gene family tree [360]. 

The advantage of our data-integration methodology, which captures different experimental methodologies 

and resources, is, for example, shown in the integrated complex modules of Arabidopsis SWI/SNF chromatin 
remodelling complexes (Suppl. Fig. 8) and the C. elegans coregulated module Cele CORc 26 (Suppl. Fig. 9). 

The SWI/SNF chromatin remodelling modules are formed by complexes that interact with each other and 
consist of protein-protein interactions gathered by Y2H, tandem-affinity purification (TAP), protein-fragment 

complementation assay (PCA) and other techniques [219, 364, 365]. According to their experimental 
methodology, TAP detected the SWI/SNF complex around the central ATPases BRM or SYD [219], while Y2H 

identified binary interactions between the SWI/SNF subunits and several TFs and cofactors (Suppl. Fig. 8). In 
C. elegans coregulated module Cele CORc 26 with data-integration of ChIP and Y1H, Y1H has the highest 

incoming degree, while ChIP has the highest outgoing degree in the module, as can be expected from their 
experimental methodology (Suppl. Fig. 9). 
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Overall, we found similar network motif modules in the integrated GRNs of C. elegans and A. thaliana, 
suggesting these topological patterns are universal in networks of gene regulation. A dynamic visualization 
of all modules can be found on http://bioinformatics.psb.ugent.be/supplementary_data/jofoo/networks/. 

This interactive visualization groups all modules per type with links to the expression matrices. Through the 
search bar it is possible to look for genes of interest in both species. 

55.4.4 A superview analysis of network motif modules  
The network motif modules are part of integrated GRNs, where they influence one another and might be 
active under different conditions. We developed a method to investigate modules in the network context, 

where we studied interactions between the modules and regulators through statistical analysis to find 
enrichment for functional and regulatory important edges (Methods) (Figure 5.1). Linking the modules 

through homologous interactions and/or shared genes results in groups of modules involved in similar 
processes. For example, in A. thaliana we found six alternative splicing modules connected through 

homology edges and controlled by abiotic stress (Suppl. Fig. 10). In addition, we looked for TF and miRNA 
regulators specifically targeting one or more modules (Suppl. Fig. 11). In a first example we confirmed the 

regulation of the cellulose synthase complex (CSC) COMc 36 by MYB46 in A. thaliana [366] (Figure 5.6A).  

In a second example, we illustrated that the superview framework is able to highlight unexplored module-
regulator connections. Here, the homeodomain TF CEH-30, which functions in neuronal cell fate and sex-

specific apoptosis, targets a homolog group of heat shock proteins in worm (Cele COMc 35) (Figure 5.6B). 
Finally, we also found novel targets for known regulators. We link CBF4, a regulator of the ABA dependent 

drought response [367], and ZML2, a critical TF in the cry1-mediated photoprotective response [368], to 
aliphatic and indolic glucosinolate biosynthesis in Atha COMc 48 (Figure 5.6C). This module has a significant 

ECD in drought and salt stress. 

These examples show how the network motif modules can be integrated into a larger context beyond 
individual modules and how general topological patterns can enable the study of stress related mechanisms. 

Through usage of different expression compendia or additional regulatory data, other processes can be 
explored as well.  

 



RESULTS  

133 

 



Network motif modules in integrated gene regulatory networks of worm and plant 

134 

Figure 5.6: Through the superview analysis framework, we discovered previously known (A) and unknown (B) 
regulators for specific modules, as well as (C) novel edges for known regulators. A) Cellulose synthase complexes (CSC) 
in COMc 36 are upregulated by MYB46. While MYB46 binds 4 module genes, the other regulators bind only one gene in 
the module. The module consists out of the primary cell wall CSC (CESA3, CESA1 and CESA6), the secondary cell wall CSC 
(CESA4, CESA7, and CESA8) and KOR1, a membrane-bound 1,4-beta-D-glucanase [369, 370]. This module is tightly co-
expressed in the abiotic stress compendium and upregulated upon brassinosteroid treatment [371] and salt stress 
conditions. COMc 36 has a significant ECD score under genotoxic, heat, oxidative, and salt stress. In birch, overexpression 
mutants of MYB46 show thicker secondary cell walls and a higher tolerance to salt and osmotic stress [372]. Cellulose 
synthases bind microtubules, hence stabilizing cellulose synthase localization at the plasma membrane and rendering 
plants less sensitive to salt stress [373]. The relation between MYB46 and CSC is therefore important for the stress 
tolerance of crops. This example highlights the potential of integrating regulators with network motif modules. B) The 
homeodomain TF CEH-30, which functions in neuronal cell fate and sex-specific apoptosis, was found to target a homolog 
group of heat shock proteins in worm. C) CBF4 and ZML2 transcriptionally regulated the MYB/MYC module Atha COMc 
48. The TFs MYB28, MYB29 and MYB76 control aliphatic glucosinolate biosynthesis [374], while MYB51 and MYB34 
regulate indole glucosinolate biosynthesis [375]. The JAZ-interacting TFs MYC2, MYC3 and MYC4 form together with the 
MYB TFs dimeric TF complexes to regulate the different glucosinolate biosynthesis pathways [376]. Glucosinolates, a 
class of secondary metabolites mainly found in Brassicaceae, are part of a complex response to a variety of abiotic 
stresses. A decrease in aliphatic glucosinolates modifies the abundance of aquaporins and hence the water uptake in 
roots, thereby increasing drought and salt tolerance [377]. Only the aliphatic glucosinolate biosynthesis TFs are directly 
bound by CBF4. In our abiotic stress compendium, we observed an upregulation of aliphatic glucosinolate biosynthesis 
(MYB26 & MYB76), indolic glucosinolate biosynthesis (MYB51), MYC2, and also of CBF4 upon salt stress; for MYB51 and 
CBF4 this is mostly in roots. It has been observed that CBF4 significantly alters the accumulation of at least five 
glucosinolates but the direct regulatory mechanism between CBF4 and glucosinolate synthesis has not been described 
[378]. Here we showed that the drought responsive gene cbf4 is an upstream regulator of the aliphatic glucosinolate 
biosynthesis which increases the tolerance to drought and salt stress. The function of zml2 in this context is still to be 
determined. 

55.4.5 Phylogenetic decomposition of the networks 
Through phylogenetic decomposition of these integrated GRNs, we investigated how novel genes are 
integrated in GRNs. Therefore, genes were arranged in age groups or phylostrata based on the oldest lineage 
that still contained an ortholog (Suppl. Fig. 12, Methods). This resulted in respectively 7 and 10 age groups 

for C. elegans and A. thaliana (Suppl. Tables 10 and 11). 61% of C. elegans and 99% of A. thaliana protein-
coding genes in the GRNs could be given an age label. In the worm integrated GRNs, the groups Eukaryota 

and Caenorhabditis each contain more than 25% of all age-labelled genes, the groups Eumetazoa and Cellular 
organisms each have around 15% of these genes, while the other age groups each take 5% or less. In the 

plant integrated GRNs, nearly half of all age-labelled genes reside in the oldest age group Green plants, 
followed by 27% in Land plants, 7% each in Seed and Flowering plants and less than 5% in the other age 

groups. We restricted ourselves to P, G, D and R interactions in the networks: 44% and 99% of C. elegans and 
A. thaliana interactions respectively, have associated age labels. For worm, the age groups with most 

interactions were Eumetazoa (36%), Eukaryota (30%) and Caenorhabditis (15%) (Figure 5.7). For Arabidopsis, 
interactions are concentrated in Green plants (46%), Land plants (30%) and Flowering plants (10%) (Figure 

5.7, Suppl. Table 12). Hence, the interactions are mainly distributed over the age groups containing the most 
genes. Among these age groups are the oldest ones like Eukaryota in worm and Green and Land plants in 

plant. Another reason for the interaction distribution is the fact that older genes are better studied than 
young genes and therefore more represented in the networks for both species (Supplementary Data, Suppl. 
Tables 10 and 11, [337, 338]). The average degree is mostly confirming these observations (Suppl. Table 13). 

For worm, the highest average undirected, incoming and outgoing degree are observed for the Eumetazoa. 
The further away from this age group, the lower the degrees become. For plant, the highest average 

undirected degrees are seen in the Land and Flowering plants, although with the exception of Rosids and A. 
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thaliana, other age groups have only slightly lower average undirected degrees. Although average incoming 
degrees are similar for all plant age groups, the average outgoing degree of the Flowering plants towers. 

 

Figure 5.7: Total number of directed and undirected interactions between age groups of A. thaliana (left) and C. 
elegans (right). The nodes are scaled according to the number of genes in the age group and coloured according to age 
(darker = older). Red edges are within the age groups, blue edges are between the age groups. The thickness of the edge 
is scaled to the number of interactions, which is also mentioned in the edge label for the interactions within age groups. 

55.4.6 Protein-protein interactions preferentially occur between proteins of similar age, 

while for protein-DNA interactions, regulatory TFs favour older or same-age 

target genes 
To investigate the general interaction preference of the different types of molecular interactions in our 
integrated GRNs, for each interaction type we analysed whether they preferred to interact within or between 

age groups. In both species, we found that P interactions are preferentially age homogeneous. In A. thaliana 
and C. elegans, respectively 40% and 34% of the interaction partners are of the same age. This is significantly 

more than expected by random (Atha p < 2.2e-16; Cele p < 2.2e-16, Z-test, 1000 random network 
permutations with preserved age and degree distribution). The interaction partners of protein-DNA 

interactions were less frequently of the same age, but still significantly more than expected by random (Atha 
age homogeneous only ChIP and Y1H: 31%, p-value = 0.0034; Cele age homogeneous D: 30% p-value = 0.036, 
Z-test). The full D set of A. thaliana, which includes the regulatory interactions, did not prefer to interact with 

genes of similar evolutionary age (Atha age homogeneous 25.2%, p-value = 0.50, Z-test), as well as the 
regulatory (Cele age homogeneous: 25.8% p-value = 0.36, Z-test) and genetic interactions (Cele age 

homogeneous: 33.4% p-value = 0.073, Z-test) in C. elegans. This is understandable, since the latter 
interactions are not necessarily direct interactions that might involve intermediate nodes in the networks. 

To investigate the interaction preference in relation to evolutionary age in the integrated GRNs, for both 

species we compared the number of observed interactions within and pairwise between the different age 
groups versus the expected number of interactions based on randomized networks with the same age 

distribution as the real networks. Due to the differences in age homogeneity for the different interaction 
types (see above), we here show the results of the physical protein-protein and protein-DNA interactions, 

while the results of the whole set of undirected and directed interactions can be found in the Supplementary 
Data. This analysis indicated that some age groups attracted many more interactions than expected by 

random. In both C. elegans and A. thaliana protein-protein interaction networks, we observed an interaction 



Network motif modules in integrated gene regulatory networks of worm and plant 

136 

age preference towards the own age group or to the next age groups i.e. the highest Z-scores are found on 
or near the main diagonal of the age group matrix (Figure 5.8). These results are confirmed for the undirected 
networks data (Suppl. Fig. 13) and through the calculation of the interaction density (Supplementary Data). 

Hence, proteins prefer to functionally interact with proteins of similar evolutionary age. Since the overlap 
between the homologous interactions and the other type of interactions is small (Suppl. Fig. 1), we can 

exclude that the interaction preference of genes in the same age group originates from interactions between 
homologs.  

Considering the protein-DNA interaction networks in worm, we noted strong preferences of Ecdysozoan TFs 

for target genes from Cellular Organisms and Eukaryota, of Eukaryotic TFs for Eukaryotic target genes, and 
of Caenorhabditis TFs for Eumetazoan target genes (Figure 5.8). For plant physical protein-DNA data, 

regulatory TFs from Eudicots or older age groups preferred to bind target genes from the Green or Land 
plants (Figure 5.8). We found similar results for the directed networks (Suppl. Fig. 13) and through the 

interaction density analysis (Supplementary Data). Hence, for the protein-DNA interaction networks in worm 
and plant, the highest Z-scores are found on or above the main diagonal in the age group regulatory TF-target 

gene matrix, indicating that regulatory TFs tend to bind target genes of similar or older evolutionary age. 

 

Figure 5.8: Interaction age preference for physical protein-protein and protein-DNA interactions in C. elegans (left) 
and A. thaliana (right). Enrichment (Z-score and associated p-value corrected for multiple hypothesis testing) of the 
comparison of the observed number of interactions within and between age groups in the real networks versus the 
expected number in 1000 randomized networks with the same age distribution. In the protein-DNA networks, the 
regulatory TFs are on the vertical and the target genes are on the horizontal axis. 
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55.4.7 Interaction age preference of motifs and modules  
Since motifs are considered to be small building blocks of networks, we investigated how novel genes are 
incorporated in integrated GRNs at the motif level. Therefore, motifs were divided into 13 motif age types 

based on the age pattern of the different node positions: either all nodes are of the same phylostratum (SSS, 
S=Same), there are two age groups in the motif (Y=Young and O=Old) or they are all from a different 

phylostratum (Y=Young, M=Middle and O=Old). Motifs with internal symmetry were sorted according to 
decreasing age to remove overlap between the motif age types. We calculated motif age preference by 
comparison of the observed motif age patterns to the expected patterns by permuting each of the three 

node positions with preserved age distribution per node (Methods, Suppl. Table 16). For the complex motifs, 
we observed a strong preference to be age homogeneous in both species, especially in A. thaliana (Figure 

5.9A). Also, in C. elegans, at least one edge in the complex motifs is between proteins of similar age. Similarly, 
the co-regulated motifs (COR) tended to be completely age homogeneous (SSS-type) or of the OYY/YOO-

type, where the targeted nodes are of similar age and interact undirectedly. In addition to the preferentially 
age homogeneous type (SSS-type), both the plant and worm co-pointing motifs (COP) were composed of the 

YYO age type, where two younger TFs of the same age interact and target a gene of a different phylostratum. 
In addition, we observed a strong enrichment for the OYM age type in plant COP motifs, where a physical 

bound between an old and young TF regulates a middle-aged target gene. The feed-forward loops (FFL) 
showed the strongest preference to be age heterogeneous: OYM was the strongest age motif type enriched 

in both species, followed by YOO and MOY in plant, and by SSS, MOY and YYO in worm. Hence, novel genes 
are incorporated at every position in the FFL. CIR motifs were preferential age homogeneous in C. elegans or 

of the heterogeneous OMY-type in both species. The FB2U motifs followed mostly the same trends as the 
complex motifs while the FBU motifs were similar to the FFL motifs. This can be explained by the overlap 
between these motif types (Suppl. Fig. 5). In C. elegans, almost all motifs displayed enrichment in the 

homogeneous motif age type due to the dominance of the Eumetazoa interactions, e.g. the DDD motif 
consists out of 23% Eumetazoa SSS type and only 0.67% other SSS-type motifs. Overall, we observed that 

undirected interactions in motifs tended to be age homogeneous, while directed interactions in motifs 
preferred to be age heterogeneous. 

Several of the observed motif age types can originate from gene duplication. To investigate the contribution 
of duplicates to motif formation, we first looked at the number of motifs consisting out of at least one pair 
of homologs. We observed that homologous genes only appeared in at most 2% and 1% of motifs excluding 

H interactions in C. elegans and A. thaliana, respectively (Suppl. Table 17 and Suppl. Table 18). They appeared 
together in up to 6% of all DdD, DDD, DDP, DPD, DPP, PDD and PPP motifs in both species. Secondly, we 

compared the number of genes with H interactions in the complete interaction set versus in the motifs 
(Suppl. Table 19). For protein-protein, regulatory and genetic interactions, we found no preferential motif 

formation of genes with homologous interactions in both species. For protein-DNA interactions, we found 
that genes with homologous interactions contribute more to motif formation in A. thaliana than expected.  

Different network motifs have specific evolutionary age types associated. To investigate whether the 

preferred age patterns in the motifs are also preferentially incorporated into the modules upon motif 
clustering, we compared the set of clustered motifs to the full set of motifs (Figure 5.9C). In both species, we 

found in the COMc, COPc, CORc, and FFLc modules a strong correspondence between the overrepresented 
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motif age types in their underlying network motifs and those that are clustered in their modules. In the CIRc 
and A. thaliana FBUc modules, we observed no real preference of clustering because almost all motifs are 
clustered within the modules. In FB2Uc and C. elegans FBUc modules, age heterogeneous motif types are 

preferentially incorporated. The age homogeneous motif types SSS in C. elegans are less clustered than 
expected in almost all modules. This might be explained by the overrepresentation of age homogeneous 

motif types from the Eukaryota and Eumetazoa. Overall, we observed that the overrepresented age motif 
types clustered more than the other types in the modules i.e. we observed similar patterns in Figure 5.9C as 

compared to Figure 5.9B. 

 

Figure 5.9: A) The different motif age types B) Motif age preference. Statistical significance (empirical Z-score) of the 
observed age patterns in motifs compared to the patterns expected by random. Due to symmetry, not every pattern is 
present in all motifs (blank squares). The symmetric motif age types where sorted form old to young age. Only motifs 
with at least one significant after multiple hypothesis correction (Benjamini & Hochberg, p value < 0.05) observation are 
shown in the picture, the full Table can be found in Suppl. Table 15. C) Module age preference. Preferential age patterns 
of the motifs clustered in network motif modules. The value represents the percentage of motifs with each age pattern 
that are clustered subtracted by the percentage of a certain age pattern in all the motifs belonging to that module type. 
The squares are coloured according to the significance of this value (hypergeometric test with multiple hypothesis 
correction according to Benjamini & Hochberg). Due to symmetry, not every pattern is present in all motifs (blank 
squares). The symmetric motif age types where sorted form old to young age. 
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The evolutionary age groups contributed differently to the modules. Modules were mostly composed of 
genes from the evolutionary age groups containing the most genes i.e. Eukaryota, Eumetazoa and 
Caenorhabditis in worm, and Green and Land plants in plant (Suppl. Fig. 14AB). Hence, especially in A. 

thaliana, younger genes were more inclined to attach to modules mostly composed out of older genes 
instead of forming modules on their own. Looking at the individual module types we noted that there are 

COMc modules that are age homogeneous in the older groups, Green and Land plants in A. thaliana and 
Eukaryota and Eumetazoa in C. elegans (Suppl. Fig. 14CD). In the other modules, there is little contribution 

of the other younger age groups. Age homogeneous modules with directed interactions are less abundant 
and appeared within the oldest group of A. thaliana i.e. Green and Land plants and within the Eumetazoa in 

C. elegans. This is in agreement with the preferential clustering of more age heterogeneous motifs in these 
regulatory modules (Figure 5.9C).  

Atha COMc 48, already discussed above, is a prime example of how innovation is introduced in gene 

regulatory networks (Fig 10). Indolic glucosinolate biosynthesis originated in the Land plants, and therefore 
the indolic glucosinolate biosynthesis TFs (MYB51 and MYB34) belong to the Land plants phylostratum. 

Together with the JAZ-interacting basic helix-loop-helix TFs MYC2, MYC3 and MYC4, they form heterodimer 
TFs that transcriptionally activate glucosinolate biosynthesis genes. From Brassicales on, not only indolic, but 

also aliphatic glucosinolates appeared as secondary metabolites [379]. Therefore, the aliphatic glucosinolate 
biosynthesis TFs (MYB28, MYB29, and MYB76), which belong to the Brassicales phylostratum, were 

introduced in the GRNs through interactions with the MYC TFs. 

 

Figure 5.10: Atha COMc 48 coloured according to evolutionary age with older genes being more transparent. 
(Functional interpretation and superview of module can be found in Figure 5.6C). The aliphatic glucosinolate biosynthesis 
TFs (MYB28, MYB29, and MYB76) find their origin in the Brassicales age group (R2D3-MYB subgroup 12), while the indolic 
glucosinolate biosynthesis TFs (MYB51 and MYB34) and MYC TFs (MYC2, MYC3 and MYC4) have their origin in the Land 
plants. They are split off from the rest of myb gene family which originate at the base of the Land plants. This is consistent 
with the observation that aliphatic glucosinolates are only found within the Brassicales plant lineage. 
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55.5 DISCUSSION 

5.5.1 Data integration through network motif modules 
Since different molecular interaction types influence gene regulation, we developed a general data 
integration framework to study integrated GRNs of directed protein-DNA, transcription regulatory, miRNA-

mRNA interactions and undirected protein-protein, genetic and homologous interactions. Our data 
integration framework of composite network motif modules is unbiased, since it does not favour any 

interaction type or experimental methodology over the other, and preserves the identity of the interaction 
type as compared to other data integration methodologies that benchmark using true positive data sets, 

Gene Ontology or KEGG [380-382]. The integration of complementary data types through 2- and 3-node 
motifs provides useful insights in the study of gene regulation and in GRN evolution. Motifs, like the well-

described feed-forward loop, connect the regulatory levels (transcriptional and posttranscriptional) and 
integrate the directed and undirected interactions into easy interpretable patterns of gene regulation. Also, 

the incorporation of homologous interactions in motifs provides insights in how motifs and networks are 
formed by evolution. Next to the already integrated interactions, the network could still be expanded with 

epigenetic regulation and post-translational modifications, which are also known to affect gene regulation 
[322, 383]. 

Contrary to previous data integration studies [320], we also highlighted the effects of combining different 

experimental methodologies in the protein-protein interaction networks (Suppl. Fig. 8) and in the protein-
DNA interaction networks (Suppl. Fig. 9, Suppl. Table 3 & Supplementary Data). One advantage is that 

different methodologies are complementary for a given data type and provide a more holistic view on gene 
regulation. For example, the integration of Y1H and ChIP data created extra CIR motifs (DdD, DmD) in the 
worm networks, indicating that there is possibly condition-dependent feedback regulation at the 

transcriptional and posttranscriptional level. Although we barely detected the 2-node miRNA-TF feedback 
loop in the networks, which is contrasting to other studies that used lower computational cut-offs [309], we 

found the 3-node miRNA-TF feedback DmD in the Y1H and in the combined Y1H and ChIP networks of worm. 
Hence, an intermediate regulatory TF confers the feedback of a TF to the miRNA it is regulated by. The joining 

together of different experimental methodologies also poses some challenges, as demonstrated by the 
biases introduced in network randomization, and hence network motif enrichment. The best-known motif in 

GRNs, the feed forward loop (FFL/DDD) [77], despite its abundance in both species and its important 
regulatory characteristics, is not found to be enriched in the integrated GRNs of both species, and only in the 

ChIP data of both species, as has been observed previously [320]. We also noted other differences in network 
motif enrichment between Y1H, ChIP and the combined data (Supplementary Data). We hypothesize that 

this different network motif enrichment can be mainly attributed to the edge swapping randomization of the 
networks, which has drawn criticism before [384-386]. Edge swapping randomization while preserving the 

degree distribution limits the randomization options for hubs and this affects the experimental 
methodologies differently. Since Y1H and ChIP data generate a different network topology with respectively 
1-3 times more regulators than targets in Y1H and 5-20 times more targets than regulators in ChIP; more 

target gene versus regulator hubs, a higher clustering coefficient and a higher overall centrality for Y1H as 
compared to ChIP, this results in different randomized networks and therefore different network motif 

enrichment (see Supplementary Data). As network motif enrichment is highly sensitive to experimental 
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methodology, network topology and randomization, we recommend to study network motif presence and 
aggregation into modules.  

Overall, we found the same 3-node motif types in both species. COM, COP, COR, FFL, and FB2U motifs were 

already detected previously [78, 314, 320, 329], additionally we detected the CIR motif where three 
regulators act upon each other through a feedback loop and the FBU motif where feedback to a linear path 

of directed edges is provided by an undirected interaction (Figure 5.4). In both species, both network motifs 
at the transcriptional level largely overlapped with the FFL DDD (Suppl. Fig. 5), indicating that intricate 
regulation between TFs occurs through feedback loops consisting of both transcription regulatory and 

physical protein-protein interactions. As we also incorporated miRNA-mRNA interactions, we also found the 
miRNA-mediated FFL (MMD) and the TF-mediated miRNA FFL (DDM) at the posttranscriptional level [309, 

319-321].  

 Although network motifs are basic building blocks of GRNs, several studies have pointed out that aggregation 
of motifs into larger modules occurs naturally and might be more important to consider, not only from a 

topologically point of view, but also functionally and evolutionary [326, 327, 330, 331]. The module level is 
also claimed to be the most conserved one across species [387]. Therefore, our data integration framework 

focused on network motif modules. We were able to detect topological organizations of integrated GRNS 
which are similar in C. elegans and A. thaliana. The network motif modules, COMc, COPc, CORc, FFLc and 

FB2Uc have been described in yeast and were previously detected either based on visual inspection [329], or 
by statistical analysis [330]. Here we confirmed these network motif modules in worm and plant and 

expanded them with the CIRc and FBUc modules (Figure 5.4). In addition, we also extended the interaction 
set by integrating miRNA-mRNA, regulatory and homologous interactions. Next to this, we showed that the 

aggregation of different composite network motifs (ALLc) can provide useful functional insights (Figure 5.5). 
The fact that these network motif modules are detected in two unrelated species, and comparable patterns 

have been detected in yeast, suggests that these topological patterns might be universal throughout GRNs 
in all species. The network motif modules can be linked to specific functions in GRNs and by integrating gene 

expression data, we revealed the dynamics of these network motif modules during development or upon 
stress. Through the superview analysis, in which we connected the different network motif modules with one 
another and with regulators, we discovered novel functional and regulatory relations between modules in 

the integrated GRNs context. This really demonstrated the power of our data-integration framework, since 
genes and regulators were found to be interacting in novel, previously unstudied, biological contexts. Higher-

order organization like these network motif modules has also been observed in non-molecular and non-
biological networks [331]. Here, we have provided a framework to study integrated GRNs in higher 

eukaryotes through network motif modules. 

55.5.2 Evolution of integrated GRNs 
In this study we used phylogenetic decomposition to study the evolution of integrated GRNs and the 

incorporation of novel genes [333]. The resolution of the age group split is dependent on the availability of 
genome information of the different taxa. For A. thaliana we are able to get a refined classification supported 

by multiple species in most age groups starting off from the Green Plants for almost all protein-coding genes 
in the integrated GRNs (Suppl. Fig. 12) [1]. However, some gaps in the taxonomy still need to be filled e.g. 
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ferns. For C. elegans, the availability of genomes in ‘older’ taxonomic groups is much sparser, which results 
in larger gaps between the different age groups (Suppl. Fig. 12). However, for C. elegans the phylogenetic 
composition goes all the way down to Cellular Organisms I.e. Bacteria. Furthermore, only 61% of all protein-

coding genes in the integrated GRNs of C. elegans could be classified in evolutionary age groups. Hence, the 
study of the evolution of the worm integrated GRNs is on only part of the networks. We found the 

interactions to be mainly distributed over the age groups containing the most genes, which included the 
oldest age groups in both species. 

Several methods have been used to investigate interaction age preference in biological networks. One of the 

first studies characterized the age-dependent evolution of yeast protein-protein interaction networks based 
on the interaction density of the networks, which measures the numbers of observed over expected edges 

between nodes of paired age groups, normalized for the size of the network [340] (Supplementary Data). 
The interaction density is an intrinsic property of biological networks, but in order to infer preference 

patterns a comparison to randomized networks with conserved degree distribution and conserved age 
distribution, is needed [334]. Other studies compared the observed number of interactions in the actual 

networks to the expected number to occur by chance in random networks that preserve the degree 
distribution of each age group [336, 338]. An intuitive view on interaction age preference is obtained by 

counting the edges between nodes of paired age groups and comparing these numbers to the ones obtained 
by permutation analysis of the gene-evolutionary age group assignments [337]. In order to accurately 

investigate interaction age preference, we applied several of the above described computational approaches 
and we largely obtained similar results using different measures (count analysis in Results and interaction 

density analysis in Supplementary Data), as has been observed previously for undirected interactions. In this 
respect, the preferential interaction between proteins of similar age was demonstrated in protein-protein 
interaction networks in yeast [338] and human [334] and for coexpression networks in A. thaliana [337]. 

However, these studies mostly used a limited number of age groups and only one type of interaction network. 
Using detailed phylogenetic decomposition, we showed that for undirected protein-protein interactions in 

C. elegans and A. thaliana, while the majority of interactions is between older and younger genes (Figure 
5.7), genes preferentially interact with genes of a similar age (Figure 5.8). Similar results are obtained for all 

undirected interactions in C. elegans, hence including genetic interactions. Interactions between paralogs 
can only partially account for the age-dependency in the undirected networks. Overall, we can conclude that 

functional interactions tend to occur between proteins of similar evolutionary age. This indicates that 
introduction of a novel biological function involved the integration of a set of interacting genes in the GRNs. 

We expanded the interaction age preference to directed interactions (protein-DNA and regulatory) in both 
species. However, we have to take the distribution of TFs over the different age groups into account upon 

interpreting the results. In C. elegans, the TFs distribution over the age groups is shifted towards the 
Eumetazoa, which has more than half of the studied TFs (Suppl. Table 14). Younger TFs in A. thaliana are 

scarce and lack interaction data; in the Rosids and A. thaliana age group even no TFs were studied (Suppl. 
Table 15). With these limitations in mind, we found that regulatory TFs favoured older or same age target 

genes. Contrary to undirected interactions, directed interactions seem to cross the age groups as is also 
observed on the motif and module level. We also found that interactions with experimental binding data 
(physical protein-protein and protein-DNA interactions) are generally age homogeneous, while interaction 

types that can also be indirect (genetic and regulatory) do not show any preferential age homogeneity. Our 
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findings correspond to the observation that in the course of evolution of a GRN regulatory interactions are 
acquired much faster than protein-protein and genetic interactions [388]. 

Different mechanistic models have been introduced to explain the evolution of biological networks, 

especially protein-protein interaction networks. In the “preferential attachment” model, new proteins 
preferentially attach to highly connected nodes [389]. The “duplication and divergence” model states that 

new proteins originated through duplication, initially connect to all the neighbours of the node that has been 
duplicated and that connections diverge over time [390]. However, these models are not able to mimic the 
high modularity and the homogeneous age preference of protein interactions. In the “crystal growth” model, 

the network grows by anchoring and extension, where a node increases its degree either by becoming a new 
module (anchoring) or by extending an existing module [340]. This model incorporates the tendency of 

protein-protein interactions to interact within the same age group, the central aggregation of older subunits 
and the peripheral scattering of younger subunits and hence corresponds with our findings at the interaction 

level. The most recent model for protein-protein interaction evolution that mimics real protein-protein 
interaction networks the best, is the “network motif” model, which is based upon the fact that network 

motifs or protein clusters are incorporated into the network instead of single proteins [341]. It was confirmed 
in a yeast protein-protein interaction network that proteins of the same age class tend to form motifs, are 

densely interconnected, co-evolve, share the same biological function and tend to be within protein 
complexes [339]. Similar to the network motif model, motifs were also used as building blocks to model 

transcriptional networks in bacteria [391]. In accordance with these models, we looked into age patterns in 
the network motifs and network motif modules to get insight in the evolutionary mechanisms for GRN 

formation (Figure 5.9). Our age preference analysis at the motif and module levels indicated a strong age 
homogeneity preference for COM motifs and COMc modules and a strong age heterogeneity preference for 
FFL motifs and FFLc modules, especially in A. thaliana, which is in agreement with our results on interaction 

age preference of undirected and directed interactions, respectively. In C. elegans this is only partially true, 
since here we found COM motifs with at least one age homogeneous interaction more in COMc modules, 

while age homogeneous COM motifs are less clustered, and we did find an overrepresentation of age 
homogeneous FFL motifs as well. This can be explained by the dominance of the Eumetazoa and Eukaryota 

age groups in the C. elegans interactions, motifs and modules. Overall, we found the overrepresented age 
types in de motifs to be more incorporated in the modules. Compared to the other module types, the COMc 

modules were more inclined to comprise a single age group in both species (Suppl. Fig. 14). However, 
modules were mostly composed out of genes from the evolutionary age groups containing the most genes 

i.e. Eukaryota, Eumetazoa and Caenorhabditis in worm, and Green and Land plants in plant. Hence, they 
mostly consisted of older genes and only had a smaller fraction of younger genes. This hints to the fact that 

the younger genes likely attach to the older core of the network during GRN evolution. Taking into account 
our results at interaction, motif and module level, we postulate that novel genes attach together to the GRNs 

in a specific biological functional context, regulated by one or more TFs that also target older genes in the 
GRNs. Hence, for the undirected interactions, this is in accordance with the “network motif” model [341], 

although single genes might accompany the addition of network motifs and modules in GRN formation over 
evolutionary time, as low-connected genes are missed through data-integration based on network motifs or 
network motif modules. 
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55.5.3 Influence of gene duplication on network evolution 
In C. elegans, small scale duplications (SSD) make up the biggest portion of the duplicates. These are 
frequently partial or lack the original regulatory sequences [342]. In A. thaliana, WGDs are the source of 

many duplicates, next to SSDs [16]. A particular difference between integrated GRNs in A. thaliana and C. 
elegans is that homologous plant TFs targeting the same genes tend to physically interact more both through 

protein-protein and protein-DNA interactions, but homologous interactions between TFs occur more than 7 
times more in plant than worm. The faster divergence of genes after SSD in terms of divergences of sequence 
[227], expression [226], protein interaction partners [63] and regulatory connections [343] makes that 

homologous relations between TFs in C. elegans are no longer detected.  

The differences in divergence between SSD and WGD also have an influence on the age groups classification 

of genes since they are categorised on the oldest occurring species in the gene family or with a shared 
ortholog. WGD-duplicates tend to stay within the same gene families, further expanding them, while the 
faster divergence of SSD-duplicates allows them to create novel gene families. This potentially explains why 

there is a much higher number of older genes in A. thaliana and why there are also more genes in the younger 
groups of C. elegans than in A. thaliana: 14% of the A. thaliana genes originated after the Brassicales split off 

(estimated 68 MYA ago) compared to 29%, after C. elegans diverged from other Caenorhabditis worms 
(estimated 60 MYA ago). This is reflected in the numbers of TFs in both species’ age groups: 14% of worm 

TFs belong to Caenorhabditis or younger age groups, while only 2% of plant TFs are associated to Brassicales 
or younger age groups (Suppl. Table 14 & Suppl. Table 15). TFs expand through duplication, often WGD, and 

are retained for long periods after duplication [29, 229, 392]. In C. elegans, the TF age distribution is diverse, 
which links with the fast evolution in sequence and function, and often loss probably because of dosage 

balance reasons, after SSD [29, 393]. Still despite these differences it leads to an interaction pattern with no 
single preferential age group but its own in the undirected networks of both species. 

Motifs can originate from duplication of genes. In both species we see an overlap between HPP/PPP motifs, 

which hints to the contribution of duplication on complex motif formation. Since this overlap is only for a 
very small fraction of the total amount of PPP motifs, we exclude that duplication is a major creator of motifs 

but still on the cluster level this overlap gives rise to star like modules around a homolog pair (e.g. Cele COMc 
70, Figure 5.4). The influence of duplication on network motif formation is visible within the motifs with 

directed interactions in A. thaliana. Similar results were obtained for genes after WGD in yeast[394]. For 
motifs containing protein-DNA interactions, we found that homologs contribute more to motif formation in 

A. thaliana than expected. Likewise, we found a large overlap between HDD/DDD and HDD/PDD motifs in 
Arabidopsis and not in C. elegans. Homologous interactions between TFs and the overlap between motifs 

can explain the overrepresentation of certain age patterns in motifs. In A. thaliana the COP motifs are 
preferential of the YYO/OYM-type, where two younger TFs of the same age or an old and young TF interact 
and target a gene of a different age group. In the context of duplication, this could be seen as a homodimer 

(YYO) which becomes a heterodimer after divergence (OYM). This explains the overlap between both motif 
types HDD/PDD. The FFL motif DDD turned out to be preferential age heterogeneous, OYM in both species, 

followed by YOO and MOY in plant, and by SSS, MOY and YYO in worm. This shows that novel genes are 
incorporated at every position in the FFL, but also that additional regulatory layers could be generated by the 

doubling of one of the TFs and the gain of a regulatory interaction. The gain of regulatory layers shows that 
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evolution increases the complexity of GRNs, which allows adaptation and more specific regulation of 
downstream processes [388]. This is in correspondence with the fact that novel TFs show a higher target 
binding specificity in A. thaliana as compared to TFs of ancient families [395]. In C. elegans, we detected 

overlap between HMM/GMM, which shows that miRNAs of the same family often are genetically linked and 
overlap between DDH/DDP/DDG motifs, which represents interacting duplicate targets through either 

genetic or protein-protein interactions. 

In summary, we report the presence and biological relevance of network motif and network motif modules 
in the integrated GRNs of C. elegans and A. thaliana. These topological patterns are potentially universal in 

networks of gene regulation. Depending on the interaction type being functional or regulatory, we find 
different interaction age preferences in GRN evolution, which are similar in both species. 
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55.6 MATERIALS AND METHODS 

5.6.1 Source of interaction data 
An overview of the molecular interaction data of the integrated GRNs can be found in Table 1. For C. elegans, 
the undirected molecular interaction data were compiled from the following resources: 9739 protein-protein 

interactions (P) from Wormbase WS234 [396], Worm Interactome version 8 [397], BioGRID 3.2.97 [398], and 
literature [347, 399-402]; 3830 genetic interactions (G) from Wormbase WS234 [396], BioGRID 3.2.97 [398] 

and selected publications [403-406]; 6502 homologous interactions (H), which consisted on the one hand of 
6348 paralogous protein-coding genes determined by an all-against-all BLASTP of the C. elegans proteome 

WS220 (E-value < 1e-25, percent alignment > 60%) and on the other hand of 154 paralogous miRNAs with 
identical seed sequence identified through BLASTN. For the regulators in the directed molecular interactions, 

TFs were defined as in WormBook [407], while miRNAs were retrieved from miRBase [408]. The 13,747 
protein-DNA binding interactions (D) consist of two types of experimental data, Y1H and ChIP. The Y1H 

dataset contains both large and small-scale data sets [309, 347, 349, 409-415]. The ChIP dataset was taken 
from modENCODE, where TF-protein-coding target gene interactions predicted from ChIP-seq data by the 

TIP algorithm were used with a quality score of 1 [416]. The 3948 regulatory interactions (R) comprise genes 
with a two-fold log2 change in gene expression upon knock-out or knock-down of the regulator [401, 417-
424], supplemented with regulation associated interactions from the text-mining database EVEX [61]. The 

6177 miRNA-mRNA interactions (M) entail experimental confirmed interactions from miRTarBase (49%) 
[425] and PicTar predictions conserved in five species (51%) [426, 427]. Gene identifiers of all protein-coding 

genes and miRNAs were converted to Wormbase WS245 using WormBase Converter [428] and a Perl script, 
only keeping the genes (and their interactions) with unchanged WS identifier or that merged/split to a new 

WS identifier. Finally, the worm integrated GRNs contained 43943 interactions between 845 TFs (92% of all 
TFs), 172 miRNAs (67% of all miRNAs) and 12,095 protein-coding genes (67% of all protein-coding genes 

[429]). 

For A. thaliana, the undirected molecular interaction data were collected from the following resources: 
52,613 protein-protein interactions (P) from CORNET 3.0 (experimentally validated interactions only) [263], 

BioGRID 3.2.97 [398], MIND (high confidence) [262] and the Arabidopsis Interactome [63]; and 5254 
homologous interactions (H), which consisted on the one hand of 5226 paralogous protein-coding genes 

established from phylogenetic tree-based gene families [229] and on the other hand of 28 paralogous 
miRNAs with identical seed sequence identified through BLASTN. For the regulators in the directed molecular 

interactions, TFs were named by PlantTFDB 3.0 [430], while miRNAs were found in miRBase [408]. The 29690 
protein-DNA and transcription regulatory interactions (D) include ChIP data from a meta-analysis of publicly 

available data [431] and a high confidence reference set that combines ChIP binding and expression upon TF 
perturbation [353], Y1H data from literature [378] [432, 433], protein-DNA binding and/or transcription 

regulatory interactions from AtRegNet [434] and differential expression analysis upon TF perturbation [353]. 
For Arabidopsis, both protein-DNA binding and transcription regulatory interactions are combined in D, since 
AtRegNet does not specify the type of molecular interaction or experimental method and several interactions 

from AtRegNet and literature involve both DNA binding and differential expression upon TF perturbation. 
The 2122 miRNA-RNA interactions (M) contain experimental confirmed interactions from miRTarBase (5%) 

[425] and psRNATarget predictions using standard parameters on the TAIR 10 transcripts (95%) [435]. In all 
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Arabidopsis interactions, only protein coding genes and miRNAs with a TAIR 10 gene identifier were kept. 
Interactions involving mitochondrial and chloroplast genes were removed. As symbolic gene names, we used 
the primary symbol name from TAIR. Finally, the plant integrated GRNs encompassed 89679 interactions 

between 1519 TFs (88% of all TFs), 174 miRNAs (41% of all miRNAs) and 19001 protein-coding genes (69% of 
all protein-coding genes) [436]. Self-interactions were removed in all the networks. 

Table 5.1: Overview of the different types of molecular interactions in the integrated GRNs of C. elegans and A. 
thaliana respectively. P = protein-protein, G = genetic, H = homologous, D = protein-DNA*, R = transcription regulatory, 
M = miRNA-mRNA interactions. *In the case of A. thaliana, protein-DNA and transcription regulatory interactions are 
combined in D, since the AtRegNet source does not specify the type of molecular interaction or experimental method i.e. 
protein-DNA binding or transcription regulatory interaction and several interactions from AtRegNet and literature 
involve both DNA binding and differential expression upon TF perturbation. Regulators indicate TFs or miRNAs. 

 

55.6.2 Topology of the networks 
The topology of the networks was analysed in R using the igraph package [437]. 

5.6.3 Network motif detection and enrichment 
Three-node motifs were detected by ISMA (Index-based Subgraph Matching Algorithm) [346]. Two-node 
motifs were detected by a Perl script (https://gitlab.psb.ugent.be/jofoo/NetworkMotifModules.git). To 

calculate motif enrichment, 1000 random networks with the same degree distributions as the real networks 
for each interaction type were constructed through an edge swapping algorithm in the Matlab Motif 

Clustering Toolbox [330]. The enrichment of each detected motif compared to random networks was 
calculated using the Z-score Z= (N-μ)/σ, in which N is the number of motifs in the real networks, μ the average 

and σ the standard deviation of the number of motifs in the random networks.  

5.6.4 Network motif clustering 
Network motif clustering was performed by the hypergraph-based spectral clustering algorithm SCHype with 

standard settings [350]. The different 3-node motifs were clustered into seven different types. Next to these 
groups all motifs were clustered together and separately. We filtered out modules smaller than 5 nodes and 

bigger than 100 nodes, and modules consisting only of homologs, because they are less informative or not 
interpretable. 

 C. elegans A. thaliana 

Number 

of 
edges nodes regulators targets  edges nodes regulators targets 

P 9739 4287 / / 52613 10266 / / 

G 3830 1823 / / / / / / 

H 6502 4807 / / 5254 8896 / / 

D 13747 3989 603 3733 
29690 12721 399 12632 

R 3948 3283 70 3235 

M 6177 1499 144 1355 2122 1623 171 1452 

Total 43943 13112 611 6486 89679 20694 570 13373 
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55.6.5 Functional analysis on the integrated networks 
All modules where visualized together with functional data in Cytoscape. For each module, GO Biological 
Process enrichment values (p < 0.05) were calculated by the BINGO 2.44 Cytoscape plugin using the Benjamini 

and Hochberg multiple testing correction [29]. We used the core GO ontology release 2015-01-09 together 
with gene annotations files for A. thaliana GOC: 08/01/2016 and C. elegans GOC: 07/17/2016. 

5.6.6 Integration of expression profile data 
For the C. elegans microarray data, we derived expression ratios for embryonic development by dividing the 
expression matrix by the overall average [351] and for embryonic and postembryonic development by 

dividing tissue-specific expression by its whole animal reference set at a specific developmental stage [352] 
(Suppl. Table 7 and 8). The Arabidopsis abiotic stress-dedicated microarray expression profiles consisted of 

expression ratios in 199 experiment over control conditions [353] (Suppl. Table 9). Coexpression within 
modules was calculated by the average Pearson Correlation Coefficient of all the genes in a module (nPCC) 

and the p-value from the Z-score upon comparison to 1000 random modules of the same size picked from all 
clustered genes (Atha: 20695 genes, Cele: 13112 genes). For A. thaliana, dynamicity of the modules was 
analysed by the Expression Correlation Differential Score (ECD), which sums up the differences between the 

Pearson Correlation Coefficient (PCC) in abiotic stress and control conditions for all the edges in the module, 
a measure that was originally developed for motifs [438]. Therefore, stress conditions were grouped per 

abiotic stress type (Suppl. Table 9). Since the calculation of the PCC requires multiple replicates for a specific 
experimental condition, we were only able to calculate the ECD for plant, and not for worm. The PCC of every 

module gene was calculated in the environmental stress, as well as in the control conditions. The ECD was 
then calculated by the following formula: 697 =  ∑ ABC(D99E�FGEE/HG�GIJKLGN��II LJHOIG GHPGE −

D99QJN�FJI).Finally, the significance of the ECD was analysed by comparing the ECD in the real module versus 
the ECD of 1000 modules with the same number of genes through permutation. 

5.6.7 Superview 
The super view representations of the networks were created using all modules of size 5 to 50 nodes. 
Modules sharing 50% or more of their genes were merged under the name of the biggest module. We 

counted the number of interactions going from a gene in one module to a gene in another module for each 
interaction type separately. This results in the total number of interactions between two modules. This 

observed number of interactions between modules was compared to the number of interactions between 
1000 random modules with the same sizes as the original modules. The random modules were obtained by 

randomly selecting genes from all genes present in the modules of the integrated GRNs. A Z-score and p-
value were calculated to compare the observed versus the expected value. To assign regulators to modules 

we integrated sets of regulatory interactions (D/R/M) with the modules. For this we counted the number of 
genes in a module regulated by a certain regulator. Regulators that were already in the module were not 

counted. We compared this count with the number of regulatory interactions going to the random modules 
with the same size. A Z-score and p-value were calculated to compare the observed versus the expected 
value. 
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55.6.8 Visualization 
All network figures where made using Cytoscape. For the interactive web visualization, a custom version of 
CyNetShare was used (http://idekerlab.github.io/cy-net-share/). A standalone Java tool called ModuleViewer 

visualized the expression ratios together with other relevant biological data into customized heatmaps [353].  

5.6.9 Phylogenetic decomposition 
We applied phylostratigraphy to derive the evolutionary origin of the genes [333]. Specifically, A. thaliana 

gene families were assigned phylogenetic ages based on the oldest lineage that still contains an ortholog of 
the gene family i.e. the earliest common ancestor of the gene family. As an example, if a gene family contains 

4 genes from species in the Brassicaceae lineage and one gene from Physcomitrella patens, it is classified as 
Land plants/Embryophyta. Orthologous gene families were downloaded from PLAZA 4.0 dicots 

(http://bioinformatics.psb.ugent.be/plaza/versions/plaza_v4_dicots/) [1]. They are constructed out of 55 
fully sequenced species with a wide distribution over the different lineages. This resulted in 10 age groups: 

Green plants, Land plants, Vascular plants, Seed plants, Flowering plants, eudicots, Rosids, Brassicales, 
Brassicaceae, A. thaliana (Suppl. Fig. 12). For C. elegans genes, phylogenetic ages were assigned according to 
consensus gene-age labels that are based on 13 orthology inference algorithms [439], as well as 

Caenorhabditis genus-specific and Caenorhabditis elegans species-specific gene labels [440]. Where both 
methods differed, we used the oldest classification. This resulted in seven age groups: Cellular organisms, 

Eukaryota, Opisthokonta, Eumetazoa, Ecdysozoa, Caenorhabditis and C. elegans (Suppl. Fig. 12). For both 
species, all genes with their phylogenetic classification are listed in Suppl. Table 19. 

5.6.10  Interaction homogeneity and age preference 
For the age homogeneity analysis, we compared the observed number of interactions between the genes in 
same age groups to the expected number of interactions based on 1000 randomized networks with the same 

age and degree distribution. Based on this comparison, a Z-score and p-value was calculated with multiple 
hypothesis testing correction (Benjamini-Hochberg). For the count analysis, the observed number of 

interactions between the genes in the age groups was compared to the expected number of interactions 
based on 1000 randomized networks with the same age and degree distribution. Based on this comparison, 

a Z-score and p-value was calculated with multiple hypothesis testing correction (Benjamini-Hochberg).  

5.6.11  Age pattern analysis in network motifs and modules 
Each motif was assigned to one of 13 motif age types (Figure 5.9A). Redundancy through internal symmetry 

within these types was removed by selecting only the motif where the nodes are in decreasing age order e.g. 
for COP motifs, the motif age type OYO is the same as YOO, but OYO is chosen over YOO because there the 

nodes are ordered from old to young. We calculated the motif age preference by computing a Z-score and 
associated p-value with multiple hypothesis testing correction (Benjamini-Hochberg) of observed motif age 

patterns compared to expected by 1000 permutations, where nodes are shuffled for each of the three node 
positions separately, so the age distribution per node position is preserved. For the module age preference 

in each module type, we subtracted the percentage of motif age type motifs belonging to a certain motif 
type from the percentage of motif age type that was clustered in the corresponding module type. Formula: 

(relative fraction of clustered motifs) - (relative fraction of motifs in total of a certain motif age type per 
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module type). For example, within the COM motifs of A. thaliana 21% is age homogeneous (SSS) while in the 
clustered motifs in the module set COMc 42% is age homogeneous. This results in a relative difference of 
+21%, which means that age homogeneous COM motifs are preferentially clustered. To test significance, a 

hypergeometric test was performed with multiple hypothesis testing correction (Benjamini-Hochberg). 

55.6.12  Computational resources 
All data processing and data analysis was done using a combination of Perl, Python and R scripts. All scripts 
can be found on (https://gitlab.psb.ugent.be/jofoo/NetworkMotifModules.git). The complete search for all 
possible motifs in the real networks with ISMA was run on a single Linux computing node (2.4GHz, Intel) and 

took 3 minutes and 52 seconds and used at maximum 250Mb of memory (Script: runISMA.pl). The ISMA 
running time for individual motifs was between 19 and 506ms, depending on the size of the network. The 

same script was run in parallel for the detection of motifs in the 1000 random networks and gave a similar 
performance. The clustering of motifs with SCHype was run on one computing node. The running time and 

memory usage is shown in Table 5.2. 

Table 5.2: Running time and memory usage of the SCHype clustering for Arabidopsis clusters. 

Atha clusters Running time (mm:ss) Memory peak 
FFLc 02:28 596.625Mb 

COMc 05:28 2.174Gb 
COPc 00:23 464.066Mb 
CORc 01:12 599.223Mb 
FB2Uc 00:05 149.879Mb 
ALLc 21:29 3.744Gb 

5.7 SUPPLEMENTARY INFORMATION 

5.7.1 Availability online 
A dynamic visualization of all modules can be found on 
(http://bioinformatics.psb.ugent.be/supplementary_data/jofoo/networks/). The source code of the 

computational data-integration framework can be found on  
https://gitlab.psb.ugent.be/jofoo/NetworkMotifModules.git. 

5.7.2 Supplementary data, figures and tables 
https://floppy.psb.ugent.be/public.php?service=files&t=f5be16e99f3c3f7a0e9dddc6868db29b 
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DISCUSSION & FUTURE 
PROSPECTS 

“In order to attain the impossible, one must attempt the absurd.” 

Miguel de Cervantes



Surfing the data wave in the omics era  

153 

66 DISCUSSION & FUTURE PROSPECTS 

6.1 SURFING THE DATA WAVE IN THE OMICS ERA 
The data tsunami of the -Omics era is hitting the shores and makes an overload of data available which calls 

for new data integration, data analysis and data interpretation methods. We need to rethink how we make 
use of this overwhelming amount of data and explore novel research opportunities. 

In the first research chapter, we made use of 37 angiosperm plants for which a good assembly and annotation 

was available to study gene loss and retention patterns (chapter 2). This group had a good taxonomic clade 
distribution which allowed us to discover general patterns in the evolution of gene families after duplication. 

In the meantime, the number of available plant genomes has more than quadrupled and assemblies and 
annotations have improved for numerous amount of species [1]. After detecting these consistent retention 

patterns across angiosperms, we explored genome, transcriptome, proteome, and interactome data form A. 
thaliana, S. lycopersicum and Z. mays to find out why these patterns are found. We mainly studied the 

relationship between the conservation of PPI and the evolutionary and functional fates of gene duplicates 
within different plants (chapter 3). 

In Chapter 4 we presented, a novel fast and easy transcriptomics approach using 3’ UTR sequencing, TranSeq. 

The method allows to detect the expression of the whole transcriptome using a much smaller library size, 
which allows to load more samples on the same line. This makes it cheaper to explore a wide range of 

conditions. The depth of sequencing makes it also possible to use these reads for annotation improvement.  

Apart from gene loss and retention we also studied the structure and evolution of interaction networks in 
the model organisms A. thaliana and C. elegans (Chapter 5). There we made use of the emerging 

interactomics data quantity available through large scale experiments, consortia and databases (e.g. [62, 63, 
256, 426, 434, 441]). For the evolutionary analysis we used a phylogenetic decomposition method which 

splits the genes up into age groups based on the occurrence of orthologous genes within species of older 
taxonomic clades. As such, this method depends on the availability of whole genome sequences. For plants 

a broad taxonomic range of genomes is available with gene families covering most clades thanks to the PLAZA 
database [1]. Still some taxonomic clades aren’t covered (e.g. fern) and the more extant lineages are thinly 

sampled (e.g. gymnosperms). For C. elegans, the availability of genomes in distant taxonomic groups is much 
sparser, which results in larger gaps between the different age groups. While analysing the C. elegans and A. 
thaliana datasets more interaction data, novel methodologies and new data types became available. Our 

method using network motifs and network motif modules can be used as an integration method to study 
structure and evolution of biological networks as well as for other networks. 

Overall, the emergence of large publicly available biological datasets has allowed us to study evolution of 
gene duplicates and networks. These are just the first waves, coming before the big tsunami. We need to be 
careful that data quality is being maintained within public databases. A lot of ‘draft’ genomes are being 

published which are of poor quality with lacking annotation, meanwhile, interaction databases contain 
increasingly large numbers of false positives. With the transfer of data across species, errors are also 

transferred. This could lead to erroneous analyses and false positive discoveries. 



DISCUSSION & FUTURE PROSPECTS 

154 

66.2 DUPLICATE LOSS AND RETENTION 

6.2.1 Gene loss and retention patterns in core gene families. 

In chapter 2, we described the similar gene loss and retention patterns in core gene families across 

angiosperms based on 37 angiosperm genomes which harbour a large number of shared and independent 
WGDs events with varying age. Three groups of gene families were identified based on their tendency to 

maintain duplicates: single, intermediate, and multi-copy. We observed that most core gene families revert 
quickly to single-copy status following duplication, which could be linked to negative effects of gene 

duplication such as strict expression constraints associated with increasing the absolute gene dosage [152], 
pleiotropic negative effects on fitness due to accumulation of mutations in duplicates [33, 43, 153, 154] or 

cytotoxic effects (e.g. protein misfolding) [156]. The intermediate group is composed out of putative dosage-
balance sensitive genes [29, 134]. Dosage balance is thought to constrain gene divergence and contributes 

to the prolonged retention of genes [48, 52, 442]. Over time the constraints soften, leading finally to the loss 
of the duplicates. In the multi-copy group genes are maintained ‘indefinitely’: initially dosage balance might 

play a role, but the indefinite retention is through other mechanisms, for example sub-/neofunctionalization 
which is thought to be a slow process [157]. 

Non-core gene families 

As we focused only on core gene families in the search for duplicate retention patterns, it is possible that we 

missed differences between species. Detailed cross species comparisons could reveal lineage or species-
specific expansions after SSD and WGD. For example, comparisons of a species subset showed different 

duplication retention patterns between species following WGD [48, 125, 126, 228]. The pattern of loss and 
retention we discovered is biased towards WGD duplicates. In parallel, non-core gene families which are 

preferentially duplicated through SSD are also preserved cross-taxon [146, 147, 227, 238]. A more recent 
study showed that both duplication modes contribute to the biased gene retention patterns in plants [247]. 

This shows retention is dependent on the duplication mode. 

6.2.2 Differences between duplication mode might be linked to their evolutionary 

contribution 

Functional and divergence differences between duplication modes  

In A. thaliana, WGD and tandem duplicates make up the largest fraction of duplicates [5]. Next to these, 

retroduplication and duplication through transposable element make up for a significant number of 
duplicates. For 30% of the duplicates the duplication mechanism is still unknown, due to the lack of signatures 
like synteny, proximity, and repeats [5]. In the context of divergence of duplicates, we looked at tandem 

(SSD) and block (WGD) duplicates. We confirmed the observations that tandem duplicates diverge faster 
than block duplicates in terms of sequence, expression and interaction partners (Chapter 3) [228]. Other SSDs 

than tandems, diverge faster in terms of sequence and expression compared to tandem duplicates within A. 
thaliana and rice [227]. The differences between SSD and WGD have next to plants been observed in other 
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species including human [443] and yeast [232]. From this it seems that these observations can be seen as 
general features of the duplication modes. 

The difference in conservation of duplication modes is linked to their contribution to genomic novelty and 

adaptation. The faster evolution and loss of the tandem duplicates limits their evolutionary potential. 
Tandem duplicates need to be quickly of use, otherwise they just get lost. This might explain why tandem 

duplications are often found in categories related to stress where they can have an immediate effect [243]. 
The slower divergence of WGD duplicates might explain their higher abundance. Block duplicates are created 
with conserved stochiometric balance between the duplicates [110, 244, 442]. Their longer retention creates 

potential for evolutionary innovation and adaption [162]. This is supported by the divergence of expression 
between duplicates in A. thaliana by [444]. They reported that gene categories enriched for SSD (extracellular 

transport, signal transduction, stress response and transcription) have the highest expression divergence and 
the WGD enriched categories (cellular and developmental processes such as energy pathway, protein 

metabolism, intracellular transport, DNA and RNA metabolism, and cell organization and biogenesis) have 
the lowest divergence [444]. Putting these observations together potentially shows that SSD duplicates make 

adaptions in a short timeframe where WGD duplicates make adaptations on the long run possible. The extra 
genetic material provides a buffer which possibly helps to deal with changes in environmental conditions. It 

has to be noted that the contribution of tandem duplicates might be underestimated due to annotation 
errors [5]. Tandem duplications can be seen as a repeat in the genome assembly and therefore be annotated 

as a single gene (e.g. SEC10 in A. thaliana [246]). This can especially be a problem for draft quality genomes. 

WWGD are of major evolutionary importance in plants 

Flowering plants are the ideal model organisms to study the effect of WGD-events. They underwent at least 
two WGD events and a lot of them have additional lineage or species specific WGD events. Many plant 

species also comprise mixed populations of diploid and polyploid individuals [107]. 

The longer retention of WGD duplicates might create time for evolutionary innovation and adaption and 
might explain the evolutionary importance allocated to WGD-events [16, 24, 445]. WGD/polyploidy events 

are associated with mayor evolutionary adaptations. For example, allopolyploidy events in grasses seem to 
have led to the dominance of C4 grasses over C3 grasses and the worldwide expansion of them [245]. 

Polypoid species are reported to have a higher tolerance to stress conditions (e.g. salt: [163], cold: [446], 
drought: [447]). WGD events have also been associated with mass-extinction events [16, 21, 22, 24, 448, 449] 

(figure 2.5).  

Observations from plants might be used to study a wide range of human diseases  

Within this thesis we studied duplication within plants, but observations made here can also be used in other 
species, including human, in which two WGD events have been detected that have taken place during early 

vertebrate evolution [18]. The link between duplicability/function and the difference between SSD/WGD (see 
6.2.1 and 6.2.2) are also observed in human. WGD duplicates in humans are enriched for essential and 

pathogenesis related functions when compared to the whole genome, also showing signatures of dosage 
balance and resistance to copy number variations [237, 443, 450]. Within the same set of pathogenic genes 

SSD duplicates are underrepresented [451]. Variations in duplications and copy number have been linked to 
a wide range of disorders (e.g. cancer, ADHD, …) [451-454]. Polyploid animal cells and fungi are also reported 
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to have a higher tolerance to stress conditions in [162, 241]. It seems that despite the numerous differences 
between humans and plants, the research on angiosperm gene loss and retention of duplicates and related 
dosage issues might help us to understand human diseases. 

66.2.3 Duplicability is linked with function within and outside the plant kingdom. 

Gene duplicability is highly associated with gene function, as shown by the different GO enrichment in three 
retention groups (figure 3.6). The single-copy genes are biased towards essential genes, functioning in 

genome integrity pathways and organelles while multi-copy genes are biased towards functions involved in 
interactions with the environment in particular transporters, signalling transducers and cell communication 
[29, 49]. The duplicability patterns do not appear to be limited to the plant kingdom: in a study focusing on 

the duplication history of genes across 17 fungi genomes, a similar functional separation was observed [230]. 
Likewise, a large-scale analysis of prokaryotic genomes suggested that the number of genes functioning in 

DNA repair and replication remains relatively constant irrespective of genome size, whereas the number of 
TFs, genes involved in signalling and transporter genes, seems to increase with bigger genome size [149, 150]. 

Consequently, patterns of duplicate retention and loss for core genes in angiosperms and other organisms 
appear to abide by these general function-based rules.  

Despite the strong correlation between gene duplicability and gene function, it remains to be further 

investigated which evolutionary mechanisms are responsible for the observed strong bias in duplicate 
retention patterns. It remains to be established whether gene function directly influences gene duplicability 

or whether biased gene retention could be a by-product of other evolutionary phenomena instead, for 
example the preservation of intermolecular interactions (dosage balance) or sequence constraints related to 

high levels of gene expression [96, 170]. In chapter 3, we made the first steps to investigate the influence of 
interactions in a cross-species comparison. The data from this chapter could be also be used to study the link 

between interactions involved in certain processes and duplicate retention/divergence. The first results show 
that the retention is biased towards the interaction properties rather than towards the function. 

6.2.4 Influence of protein-protein interactions on duplicate retention and the role of 

dosage balance sensitivity 

The dosage balance theory has been put forward to explain the differential retention of genes after 
duplication. This theory explains why duplicates are thought to be maintained after WGD, but not after SSD 

[38, 442]. The connections in the gene interaction network are essential to this. We observed that longer 
retained duplicates (intermediate and multi-copy) are enriched for PPI (Chapter 2 & 3), and investigation of 

the influence of protein-protein interactions on duplicate retention revealed that PPI restrain sequence and 
expression divergence in block and tandem duplicates with similar patterns between A. thaliana, S. 

lycopersicum and Z. mays (Chapter 3). Comparison with the modelling results of Tasdighian et al. showed 
that genes with PPI are overrepresented in genes which are thought to be dosage sensitive based on their 

reciprocal retention pattern [238].  

We investigated multiple species by transferring the PPI from Arabidopsis through gene families to other 
species. This allowed us to show similar trends for S. lycopersicum and Z. mays as for A. thaliana. Due to the 
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transfer the resolution of the PPI network is lowered. False negatives occur because of the lack of 
experiments or because of divergence (genes are located within separate gene families) and false positive 
occur due to the transfer to all genes in the same gene family. This results in an overestimation of duplicates 

which both have PPI. Similarly, carefulness needs to be applied when using interactions form databases, large 
scale experiments often have a high false positive rate [455] and interactions are transferred through 

orthology with removal of the differences between duplicates [456]. To overcome this further study is 
needed to characterize the interactions, preferentially with multiple experimental techniques. For regulatory 

interactions a similar approach as for PPI was attempted in order to see if there is a link between 
experimental protein-DNA interactions and duplicate retention (results not shown). Due to the lack of 

experimentally validated interactions no conclusions could be made. 

All the results provide indirect evidence that dosage sensitivity due to interactions is playing a role in the 
retention of duplicates, but experimental validation is still needed. A first step in this might be improvement 

of the interactome, by expanding the network to all genes both for protein-protein interactions and protein-
DNA interactions and by filtering out the false positives. In an ideal situation we would know the whole 

interactome for multiple angiosperm plants with a diverse timing in WGD events, which would allow us to 
investigate the influence of interactions in an evolutionary context. This could help in answering remaining 

questions like: “How is gene retention linked to the network context?”, “Is there a difference between 
transient and stable interactions?”, “Do specific protein domains influence dosage balance sensitivity?” and 

“What is the influence of protein complexes?”.  

In angiosperm plants the involvement of complexes in dosage balance is not studied in detail due to the lack 
of well-defined plant protein complexes. Most of the complexes are transferred from other species like yeast 

and human. In those species several studies have focussed on the link between duplication and protein 
complexes, especially the topology of complexes was found to be important and could be linked to expression 

differences between duplicates [457-460]. In plants a similar approach as [457] could be used. They used TAP 
to study the composition and evolution of a wide set of yeast complexes.  

To study actual dosage balance between genes, proteomic quantification could be used to show if the actual 

dosage of genes is linked to a phenotypic effect. This could be achieved by characterizing knock-out mutants 
of one copy of the duplicated gene pair for each of the different retention groups (single, intermediate or 

multi-copy group). Similarly, a duplicate copy could be inserted for a gene in the single copy group. Within 
populations a lot of natural polyploids are occurring [446, 461, 462], comparison of the gene dosage in both 

of them could show how the dosage in plants responds to a WGD-event. It would also be interesting to study 
the involvement of copy number variations. In Arabidopsis and rice for example a lot of sequenced accessions 
are already available [2, 3]. Apart from experimental approaches, modelling approaches could be used to 

answer the questions. Up till now, models still fail to realistically model transcriptional regulatory 
interactions, gene duplication, and duplicate divergence [463]. To make statistical thermodynamics 

modelling accurate a large set of thermodynamically well-defined interactions would be needed. 

Dosage balance is not the only theory for longer retention: it is only part of the complex puzzle of gene and 

genome evolution [240]. Apart from looking at the protein level, we could look for clues of gene loss and 
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retention on the DNA level by studying remnants of lost genes (see 6.2.7), and on the RNA level the 
transcriptional silencing of genes could be studied (see 6.2.6). 

66.2.5 Molecular characteristics of gene families determine fate of duplicates across 

species 

We have shown strikingly similar loss and retention patterns across angiosperms, differences in duplication 
mode retention, influence of interactions and the link between function and retention (chapter 2 & 3). None 

of these observations are independent of each other: duplication mode shows a link with function and 
interaction preference, and interactions are linked with the function of genes. Most of these observations 

can be seen as characteristics of gene families and are also found within a wide range of other species. All of 
these factors contribute to the patterns found across species, but they can’t explain the full mechanism 

behind this. They all work together in a complex system shaped by evolution. Further study is needed to find 
out why and how certain families are retained and others are lost. Due to the broad species ranges in which 
we detect the same results, we might start thinking there is a universal mechanism shaping the genomes of 

all species. 

The results suggest that duplicates within the same gene family evolve at a similar rate and potentially point 

out that the loss and retention mechanisms are dependent on the molecular characteristics of the gene 
family. For this it would be interesting to study the loss of genes cross species. The genomic, transcriptomic 
and interaction data from chapter 2 and 3 could be used to study a diverse range of hypothesis. For example, 

it is possible to test if duplicated genes which are lost in one species have a higher sequence/expression 
divergence or one copy is transcriptionally silenced in species in which they still are present in duplicate. It is 

also possible to test, if one of the interacting duplicates is lost, the other interaction partner also gets lost. 
The latter is similar to observations made in yeast [48]. Finally, the data also allows to study how the 

duplicates from the shared WGD events (e.g. eudicot WGD) evolved and potentially resulted in different 
functions.  

Within this thesis we only studied a limited number of factors influencing duplicate loss and retention in gene 

families. For example, the link between regulation and the dosage of genes is not fully understood. It is easy 
to think that instead of removing or altering the function of the gene itself, it is much easier to alter the 

regulation of a gene. A concrete example of this can be changes in the cis-regulatory elements that cause 
non/sub/neo-functionalisation of one copy. Detailed study of regulatory differences between duplicates 

could answer how they are influenced by changes in regulation [343, 464-469]. 

Another example is the epigenetic involvement, which has been shown to influence retention and silencing 
of genes [54, 470]. Epigenetic marks could help the resolve dosage issues, by silencing duplicates which are 

prone to paralog interference or by inducing condition specificity of duplicates. The influence of epigenetics 
has mostly been observed between the different subgenomes in allopolyploids [145, 471, 472]. Studying this 

at the gene family level might reveal the biases towards a specific set of them. Next to that it might be 
interesting to study how epigenetics evolves over time in autopolyploids [473]. 
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Alternative splicing produces multiple isoforms of a gene which increases the protein diversity [474]. This is 
similar to  gene duplication as they can be seen as inparalogs [475]. The link between duplication and 
alternative splicing is not fully elucidated. For example, after duplication isoforms can be divided among 

duplicates creating sub-functionalisation [476]. In human and mouse duplicated genes were found to 
undergo less frequently alternative splicing [477], while in rice the opposite was observed [478]. Potentially 

studying alternative splicing patterns across angiosperms could show a link between alternative splicing and 
duplicate loss and retention patterns in the gene families. Also copy number variants could be an interesting 

factor to study at the gene family level (see 6.2.2).  

66.2.6 Duplicate detection on the RNA level 

The loss and retention patterns show a still ongoing loss of gene duplicates. In order to test hypothesises like 
dosage sub-functionalisation [35] and reciprocal silencing [466], the transcribed set of genes within different 

angiosperms was investigated. This research was started with microarray expression data, because of the 
wide range of experimental conditions and species available and the easy accessibility through online tools 

such as CORNET [202] and MORPH [479]. Microarrays have problematic detection of duplicates, due to low 
detection rate, cross hybridisation between close homologs and a limited set of genes for which there are 

probes [480, 481]. Within this set of missing/not-detected genes often recent duplicates are found. Still 
microarrays have proven to be useful for duplication research [226, 227], 

In chapter 3 we used RNAseq experimental data with unique read mapping, in order to abbreviate some of 

these issues. RNAseq is not limited to a probe set, which theoretically allows for the detection of all expressed 
transcripts. We collected large RNAseq compendia for A. thaliana, S. lycopersicum and Z. mays. This allowed 

us to uniquely detect all copies for the majority of the duplicates (Chapter 3). Still there was a big difference 
in detection between the duplication modes. Of the slower diverging WGD duplicates more than 80% was 

detected, while only 30-40% of tandem duplicates was detected. This is either due to silenced expression or 
due to non-unique mapping because of little sequence divergence. 

In chapter 4 we presented a novel 3’end sequencing approach, TranSeq, which has cheap and fast library 

preparation. By sequencing only the non-coding 3’ end, the method enables detection of all gene within the 
genome using a smaller library size (Figure 6.1). This smaller library size allows to sample more conditions or 

sample more in depth for a lower price. Refinement of the technique is still needed to make it completely 
comparable to classical RNAseq in terms of differential expression. Next to expression detection rate TranSeq 

is also improving genome annotation by allowing better determination of the end of genes, which should 
also improve the mapping of classical RNAseq reads. 

Despite the better detection rate of duplicates, a large portion of duplicates with low Ks values were still not 

detected (uniquely) in tomato using classical RNAseq. The possibility to detect genes in depth and the broad 
sampling with TranSeq, combined with the higher variability of the 3’ UTR, should enable to discriminate 

effectively between genes within a gene family. This could help to detect if duplicate copies are silenced or 
active under conditions specific. Detection of the duplicate genes is especially challenging in plant species 

with high ploidy level which are interesting in agriculture (e.g. hexaploidy wheat and octoploid strawberry). 
It is important to detect if there is a dominant copy within a gene family, if some copies are expressed in rare 
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conditions or if gene duplicates lost their ability to transcribe (e.g. pseudogenes). The discrimination between 
genes in a gene family can help to detect sub-functionalisation between duplicates and can potentially be 
linked to certain traits.  

 
Figure 6.1: Structure of Pre-mRNA and Mature RNA. Figure adapted from [482]. 

66.2.7 Pseudogenes: Archaeology and future of the genome 

Most duplicate genes are thought to be lost through pseudogenization. These pseudogenes lose their original 

function and their ability to be transcribed or translated. This doesn’t mean they are without function. 
Pseudogenes have been studied within human and mouse genomes, where they are sometimes found to 
take up a regulatory role. This is often associated with the emergence of RNA structures like non-coding RNAs 

and are linked with diseases in human (e.g. cancer) [483-486]. Within plants genomes pseudogenes have 
been explored in only a few species without looking into detail whether or not they are still functional [487-

490]. Current methods are inaccurate and lack sensitivity in plant pseudogene detection [488, 491-493] 
(reviewed in: [490]). 

Studying pseudogenes systematically as remnants of gene duplicates could be useful for finding the gene loss 

mechanisms of duplicate genes. More specific, it is possible to look within aligned co-linear genomic regions 
for pseudogenes on the homeologous chromosome regions (Figure 6.2). This could be done by using the 

multiplicon regions found within PLAZA [251]. Since these regions originate from WGD, remnants within 
these regions can be linked to it and could tell more about the ongoing loss of duplicates that originated 

during these events. Studying these remnants might also reveal functions for them, for example they can 
give rise to micro RNAs or non-coding RNAs which can take up novel regulatory functions [483]. They can go 

through a cryptic phase where they are allowed to gather a lot of mutations which enables them to perform 
novel functions if they are switched on again [483]. These genes could appear as novel genes in the network. 

The detection of whether duplicates are still expressed is also challenging as discussed in section 6.2.6.  

 
Figure 6.2: Detection of remnants/pseudogenes derived from WGD. Two collinear regions (Y and X) with corresponding 
block duplicates (blue). Pseudogene in the X region can be detected by Blasting the gene in the other region (red) against 
the homeologous region where the gene has been lost (grey). 

The genomic information which is available now, enables a systematic approach for a wide range of 
sequenced angiosperms. It would be possible to detect the different loss mechanisms and their contribution 

(e.g. immediate knock out by transposon insertion, gradual decay by mutational load, promotor degradation 
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or possible other mechanisms). This can show how the gene families return to their preferential copy number 
state, the speed of duplicate loss rate in different angiosperms, how novel functions emerge, how WGD are 
resolved over time, how the similar retention patterns found in angiosperms emerge. It can also help to 

improve genome annotation, by detecting previously unknown genes of functional components. To 
summarize: by digging up remnants from evolutionary events, we can possibly predict what the future will 

bring.  

66.3 GENE REGULATORY NETWORK STRUCTURE AND EVOLUTION 
Chapter 5 proposed a framework to study integrated GRNs in higher eukaryotes through network motif 
modules. The unbiased method does not favour any interaction type or experimental methodology over the 

other, and preserves the identity of the interaction type as compared to other data integration 
methodologies that perform benchmarks using true positive data sets, GO or KEGG [380-382]. The 
integration of complementary data types through 2- and 3-node motifs offered advantages and provided 

useful insights in the study of gene regulation and in GRN evolution. Motifs, such as the well-described feed-
forward loop, connect the regulatory levels (transcriptional and posttranscriptional) and integrated the 

directed and undirected interactions into easily interpretable patterns of gene regulation. Motifs aggregate 
into network motif modules that can be linked to specific functions in GRNs by integrating functional and 

gene expression data. Through the superview analysis, in which we connected the different network motif 
modules with one another and to regulators, we discovered novel functional and regulatory relations 

between modules in the integrated GRNs context. This demonstrated the power of our data-integration 
framework, since genes and regulators were found to be interacting in novel, previously unstudied, biological 

contexts. The network motif modules expand the ‘themes’ discovered previously in yeast [329, 330]. The fact 
that we found them in two unrelated species, C. elegans and A. thaliana, might hint that these structures are 

universal for biological interaction networks. Higher-order organization like these network motif modules 
have also been observed in non-molecular and non-biological networks illustrating its broad applicability 

[331]. 

The success of the integration method is dependent on the availability and quality of interaction data. Large-
scale Y2H screens are known to have a high false positive rate [455] and only a fraction of the binding events 

detected by ChIP has a regulatory effect [494]. The quality of the interaction data can be improved through 
confirmation by multiple experimental techniques. For example, protein-DNA interactions can be improved 

by combining the binding experiments with analyses of the transcriptomic effect of knocking out the TF [494]. 
Also, by integrating interactions through network motifs and aggregating those, the influence of false positive 
interactions is reduced, yet this also removes the lowly connected genes. We studied the plant A. thaliana 

and the worm C. elegans which have sufficiently available data, although a lot of genes remain unstudied. 
The dependency on data availability makes it hard to study non-model organisms. While interactions are 

poorly conserved between species, the module level is claimed to be the most conserved level across species 
[387]. Using modules for translational research makes it possible to transfer the knowledge from the 

integration method to other species. 

Apart from the data quality and availability, the cellular context and condition specificity is also important. 
As we started from static networks and integrated the expression data in the end of the process, it is difficult 
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to identify condition specific modules. Ideally conditional or temporal interaction networks should be used 
to generate motifs and network motif modules. These networks can be approximated using single cell 
transcriptomics or proteomics data [90-92]. 

66.4 EVOLUTION OF INTEGRATED GRNS 
We made use of the structural network components and phylogenetic decomposition to study the evolution 

of integrated GRNs, the incorporation of novel genes [333] and the influence of duplication on this. We 
concluded that functional interactions tend to occur between proteins of similar evolutionary age and that 

interactions between paralogs can only partially account for the age-dependency in the undirected networks. 
Contrary to undirected interactions, directed interactions seem to cross the age groups. Taking into account 

our results at interaction, motif and module level, we postulate that novel genes attach together to the GRNs 
in a specific biological functional context, regulated by one or more TFs that also target older genes in the 
GRNs. Hence, for the undirected interactions, this is in accordance with the “network motif” model [341]. 

Although single genes might accompany the addition of network motifs and modules in GRN formation over 
evolutionary time, as low-connected genes are missed through data-integration based on network motifs or 

network motif modules. 

The currently available data for A. thaliana, C. elegans and other species allows to cover a much wider range 
of processes and conditions and should provide a more detailed analysis. Especially the directed interactions 

would profit from an expansion. An update of the expression compendium to a RNAseq compendium could 
help to get a better view on duplicate divergence in the GRN context (see 6.2.6 Duplicate detection on the 

RNA level). Combining this with a more detailed sampling of the phylogenetic tree should allow the 
determination of contribution of novel genes at specific timepoints in evolution. Networks from multiple 

species with a shared history could be compared to show how the same genes are incorporated in the 
network of different species. We observed that genes in interactions with experimental binding evidence are 

preferentially age homogenous (protein-DNA and protein-protein), while interactions without experimental 
binding are age heterogenous (regulatory and genetic). From this we can deduce that co-expressing and 

computational predicted networks should not be used as a proxy for network evolution in interaction 
networks.  

The topological components of GRNs (network motifs and network motif modules) could be combined 

together with the observations in undirected and directed network evolution in a model to simulate the 
evolution of integrated GRNs. This type of modules could also be useful to study gene loss and retention in a 

network context (see 6.2.4). 
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66.5 THE NEXT STEP AND GENERAL CONCLUSION 
In the first part of this thesis we used genomics, transcriptomic and interactomics data to reveal uniform 
retention patterns across the flowering plants and studied different factors that may be influencing this 

pattern like gene function, duplication mode and protein-protein interactions. In the second part, we 
presented a cheaper and faster RNA sequencing procedure based on 3’UTR sequencing. In the last part we 

showed topological organisations and evolutionary patterns in A. thaliana and C. elegans gene regulatory 
networks. Combining the gathered knowledge, opens opportunities to study the loss and retention patterns 

in more detail. 

Therefore, as a follow up on this work, I think it is interesting to study the expression divergence between 
duplicates in different species. Ideally this could be done by compiling a TranSeq compendium for a 

representative in different angiosperm subgroups (e.g. Asterids, Fabids, Malvids and Monocots). For this, 
TranSeq should first be further optimised to determine the ideal library size for the detection of gene 

duplicates and the optimal read mapping algorithm should be determined. This set of compendia would allow 
to perform cross species comparison of expression divergence and answer questions like. Do duplicates 

which are lost/diverged in one species also diverge faster in other species? Is this linked to the observed loss 
and retention groups in the other angiosperms? Do duplicates from a given gene family evolve at similar 
rates in different species? Is there a dominant copy and is that copy always the same in different species that 

share a WGD? Do we observe dosage sub-functionalization in certain functional groups or specific protein 
classes [35]? Next to these questions the TranSeq dataset could also be used for the improvement of gene 

models and to study the link between splice variants and duplicates in the selected species.  

In a second phase it would be interesting to study the regulatory divergence of duplicates in this species set 
and link this to the divergence and/or loss of duplicates. This could be realized using public ChIP experiment 

data, conserved non-coding elements across species [495] or predicted cis-regulatory elements [496]. In 
parallel with the expression and regulatory evolution it would be interesting to study the pseudogenes and 

remnants of duplicates, which give insights in the genes which are recently lost (see 6.2.7). The combination 
of transcriptomic, regulatory and pseudogene data should give a detailed view on how gene loss is happening 

today long after the WGD event. 

Once enough knowledge is gathered it would be possible to accurately model the loss and retention of 
duplicates and determine the influence of the loss and retention theories. How duplicates are leading to 

novel functions and how this can be used to explore functions of polyploids in the search of interesting 
properties. Studying the evolution of genes, genomes and networks can provide valuable knowledge on how 

species coped with drastic changes through history. This knowledge could help to ensure food production 
for the increasing population and help to combat the effects of climate change. 
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