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SUMMARY 

Plants have the amazing ability to rapidly adapt their growth and development in order to 

cope with continuously changing environments. Their plasticity can be to a large extent 

attributed to the action of phytohormones. Auxin is a prominent phytohormone regulating a 

wide range of developmental processes and tropisms, and mediating resistance to (a)biotic 

stresses (Section I - Chapter 1). Each of these auxin-regulated processes is characterized by a 

specific auxin distribution pattern. One of the determinants for establishment of these 

distribution patterns is directional intercellular auxin transport, also referred to as polar auxin 

transport. Key players in polar auxin transport are the auxin efflux carriers PINs. The PINs show 

a polar localization in the apical, basal, or lateral plasma membrane domain thereby mediating 

auxin efflux from the cell upward, downward, or sideward respectively. PIN proteins are highly 

dynamic proteins that can be rapidly relocalized to a distinct plasma membrane domain via 

the endosomal trafficking pathway to modulate auxin flow according to developmental or 

environmental cues. Alternatively, the direction of auxin flow can also be reinforced by a 

feedback mechanism by which auxin itself inhibits PIN internalization and consequently also 

PIN relocalization. This is for example important for forming the leaf pavement cells into 

puzzle piece-shaped cells. Identifying the underlying mechanism has been a topic of interest 

for many research groups. Auxin and Ca2+ signaling previously have been interconnected in 

regulation of root gravitropism. Furthermore, Ca2+ is also known for its involvement in 

regulation of cell polarity (Section I - Chapter 2), and for its contribution to proper protein 

sorting throughout the endomembrane system (Section I - Chapter 3). Here, we have also 

identified a role for Ca2+ as a second messenger in auxin-inhibited PIN internalization (Section 

II – Chapter 2). Not only is Ca2+ required for inhibition of PIN endocytosis by auxin, Ca2+ is also 

sufficient to block PIN internalization. The role of Ca2+ most likely relies on early endocytic 

trafficking steps and might also regulate PIN levels by affecting late endosomal trafficking 

events towards the vacuole. Furthermore, we have indications that auxin-inhibited PIN 

endocytosis could be initiated by auxin-induced cytosolic Ca2+ dynamics that occur rapidly 

upon auxin treatment (Section II - Chapter 1). However, genetic evidence for the involved Ca2+ 

signaling components still remains to be found.      
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SAMENVATTING 

Planten hebben het indrukwekkende vermogen om hun groei en ontwikkeling snel aan te 

passen aan hun continu veranderende omgeving. Hun plasticiteit is grotendeels te wijten aan 

de werking van fytohormonen. Auxine is een belangrijk fytohormoon dat een brede waaier 

aan ontwikkelingsprocessen en tropismen reguleert, en de planten helpt om weerstand te 

bieden aan (a)biotische stress (Sectie I – Hoofdstuk 1). Elk van deze auxine-gereguleerde 

processen wordt gekenmerkt door een specifiek auxine verdelingspatroon. Eén van de 

factoren die bijdraagt aan het tot stand brengen van deze verdelingspatronen is directioneel 

intercellulair auxine transport, ook wel polair auxine transport genaamd. Essentiële eiwitten 

voor polair auxine transport zijn de auxine efflux carriers PINs. De PINs hebben een polaire 

lokalisatie in apicale, basale, of laterale plasmamembraan domeinen waardoor ze auxine 

respectievelijk opwaarts, neerwaarts, en zijwaarts uit de cel kunnen transporteren. PINs zijn 

zeer dynamische eiwitten die snel kunnen herlokaliseren naar een ander plasmamembraan 

domein via de endosomale transport route om de richting van auxine transport aan te passen 

naargelang ontwikkeling-gerelateerde signalen of signalen vanuit de omgeving. Bovendien 

beschikt de plant over verschillende mechanismen waarmee auxine de richting van zijn 

transport zelf kan beïnvloeden zoals het inhiberen van PIN endocytose. Dit is bijvoorbeeld van 

belang om de epidermale cellen van het blad hun puzzelstuk-achtige vorm te geven. Er werd 

reeds intensief onderzoek verricht naar het onderliggende mechanisme, maar tot nu toe is 

onze kennis hieromtrent beperkt. 

Het secundaire boodschapper ion Ca2+ is een welgekend signaal betrokken in het reguleren 

van cel polariteit (Sectie I – Hoofdstuk 2) en endomembraan transport (Sectie I – Hoofdstuk 

3). Interessant is dat auxine Ca2+ signalen kan induceren (Sectie II – Hoofdstuk 1) en dat Ca2+ 

noodzakelijk is voor auxine transport. Dit doet vermoeden dat Ca2+ onderdeel zou kunnen 

uitmaken van de auxine signalisatie cascade via dewelke auxine zijn eigen transport reguleert. 

Hier tonen we aan dat Ca2+ als secundair boodschapper ion zou kunnen optreden in de 

inhibitie van PIN endocytose door auxine (Sectie II – Hoofdstuk 2). Ca2+ is niet alleen 

noodzakelijk voor auxine-gereguleerde inhibitie van PIN endocytose, Ca2+ is ook voldoende 

om PIN internalisatie te blokkeren. Het effect van Ca2+ is hoogstwaarschijnlijk afhankelijk van 
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initiële endosomale transport stappen, en Ca2+ zou PIN niveaus mogelijks ook kunnen 

reguleren door de latere endosmale transport stappen richting vacuole te beïnvloeden. 

Bovendien hebben we aanwijzingen dat auxine-geïnhibeerde PIN endocytose geïnitieerd zou 

kunnen worden door de cytosolische auxine-geïnduceerde Ca2+ signalen die gevormd worden 

onmiddellijk na auxine behandeling (Sectie II – Hoofdstuk 1). Analyse van een uitgebreide set 

van mutanten en transgene lijnen doet vermoeden dat auxine een subgroep van Ca2+ -

afhankelijke kinasen activeert om endocytose te inhiberen. Deze bevindingen moeten echter 

nog bevestigd worden via analyse van de corresponderende drie- en viervoudige mutanten.  
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SCOPE OF THE RESEARCH PROJECT 

Auxin is a prominent plant hormone that regulates multiple developmental processes and is 

involved in adjustment of plant growth in response to changing environmental conditions. In 

many mutants with defects in auxin-regulated processes, their phenotypes can be attributed 

to distorted directional intercellular auxin transport. Polar auxin transport is established by 

polarly localized auxin efflux carriers in the plasma membrane, called PINs. These PIN proteins 

can be relocated via trafficking through the endomembrane system to distinct sides of the cell 

in order to readjust the direction of auxin flow in response to developmental or environmental 

signals. Interestingly, auxin itself can feedback regulate the directionality of its own transport 

by inhibiting clathrin-mediated endocytosis of PIN proteins thereby reinforcing PIN 

localization at the plasma membrane and sustain auxin efflux in a specific direction.  

Over the past years, many research has been conducted to unravel the underlying mechanism 

by which auxin can inhibit PIN endocytosis. Typically NAA was used for experimental 

treatments as it is more stable than the natural auxin IAA. Data from roots and leaves have 

pinpointed a role for intracellular activation of ROP/RIC signaling and downstream 

modifications of the cytoskeleton. However, more insight on how NAA activates this 

intracellular signaling cascade is still missing.  

In my PhD project we wanted to address what could be the role of the second messenger Ca2+. 

Ca2+ was already shown to operate as a second messenger in auxin-regulated root 

gravistropism, and many reports had shown that different auxins could induce a cytosolic Ca2+ 

increase in distinct tissues. Most of these reports had focused on the effect of the natural 

auxin IAA, and to lesser extent on the synthetic auxin NAA. Therefore, our first goal was to 

establish a clear picture of the NAA-induced Ca2+ dynamics in Arabidopsis thaliana root 

epidermal cells. It had been shown that auxin-induced Ca2+ influx occurred rapidly which made 

it technically challenging to capture this rapid response. A first step was to obtain an imaging 

set-up which would allow us to record Ca2+ dynamics while applying the NAA treatment. For 

this purpose, a collaboration with the Schumacher lab (University of Heidelberg, Germany) 

and the Costa lab (University of Milan, Italy) was initiated. A second step would be to obtain 

sufficient amount of data using this set-up for image analysis and interpretation. A second 



xxii 
 

goal was to address the impact of pharmacological and genetic manipulation of Ca2+ signaling 

on NAA-regulated PIN endocytosis to verify the importance of Ca2+ and possibly identify Ca2+ 

signaling components involved. Thirdly, we wanted to more specifically pinpoint at which step 

in the endosomal (PIN) trafficking pathway Ca2+ would be impacting by evaluating NAA-

inhibited PIN endocytosis upon Ca2+ manipulation in distinct endosomal trafficking mutants. 

Finally, a fourth goal was to link the NAA-induced Ca2+ dynamics to NAA its effect on PIN 

endocytosis by verifying how interfering with the NAA-induced cytosolic Ca2+ increase affected 

inhibition of PIN internalization by NAA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

 

 

 

 

 

SECTION I. INTRODUCTION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

PREFACE 
 

Section I. Introduction is subdivided in three smaller introductory chapters. In Chapter 1, I aim 

to give a general introduction on auxin, endosomal protein trafficking, and Ca2+ signaling in 

plants; the three main topics that come together in my PhD project. I will address the 

importance of auxin for plant development, polar auxin transport mediated by the PIN auxin 

efflux carriers, and the distinct steps of endosomal (PIN) trafficking and their regulation. 

Furthermore, I will introduce Ca2+ signaling in plants and our current knowledge on the 

involvement of Ca2+ as a second messenger in auxin signaling. In Chapters 2 and 3 I will go into 

more detail on the role of Ca2+ in cell polarity and endosomal trafficking respectively. Cell 

polarity is mainly controlled by activity of small GTPases, balanced exo- and endocytosis 

controlling membrane tension, and cytoskeletal rearrangements. In Chapter 2, the 

established interconnections between Ca2+ and these cell polarity determinants are discusses 

in more detail. Besides Ca2+ signaling, a central topic in my PhD project is PIN-mediated auxin 

transport and more specifically intracellular endomembrane trafficking of PINs. Therefore, 

Chapter 3 is devoted to summarizing our current knowledge on the role of Ca2+ in regulation 

of endomembrane trafficking and membrane integrity in plants.  

Together, these chapters will give you a brief introduction to the concepts and experimental 

data presented in Section II. Results. 
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Auxin 

Auxin, the phytohormone 

In case of animals, the body plan is fully established at birth, and further development into an 

adult organism mainly consists of further growth of the existing body parts. In plants however, 

the young seedling formed upon seed germination consist of a single primary root, a hypocotyl 

and two cotyledons. Many features such as an extensive root system, multiple leaves and 

other organs such as flowers, remain to be developed. This is orchestrated by phytohormones. 

Not only does the seedling still have to continue development, it has to do this in a 

continuously changing environment being exposed to different environmental stresses such 

as drought, low nutrient availability, osmotic stress, pathogens,… Whereas animals can 

migrate away from hostile environments, plants are immobile and had to evolve alternative 

solutions to cope with harsh environmental conditions. Besides regulating plant development, 

phytohormones also play vital roles in environmental adaptation of plants. An important 

phytohormone that is capable of integrating both endogenous and exogenous signals is auxin.  

 

Auxin discovery 

Auxin was first discovered as the growth promoting phytohormone regulating phototropism 

(Darwin, 1881). The phototropic response, allowing plants to grow towards the light, had 

already been observed long before our time (B.C.). However, then it was still considered that 

phototropism was caused by the removal of fluids by sun light at the illuminated side, and that 

there were no activators in the plant itself involved. It was Darwin who discovered that 

phototropism involved a mobile signal produced in the shoot that was transported to the 

hypocotyl where it induced bending (Darwin, 1881; Whippo and Hangarter, 2006). The mobile 

signal was later on identified as the auxin indole-3-acetic acid (IAA) (Kogl, 1931). Cholodny and 

Went proposed a model in which auxin accumulates asymmetrically, at the non-illuminated 

side of the hypocotyl, resulting in increased growth on the shaded side and a simultaneous 

decrease in growth rates on the illuminated side, leading to bending of the shoot towards the 

light (Went, 1926; Cholodny, 1927; Went, 1928). This model has been challenged by 

alternative theories. Boysen-Jensen disputed the principle of differential growth rates 
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between the illuminated and shaded side by stating the growth rate at the shaded side 

increased while growth rates on the illuminated side were not affected (Boysen-Jensen, 1928). 

Alternatively, Blaauw and Paal suggested that cell elongation in general decreased with a more 

pronounced decrease on the illuminated side (Blaauw, 1918; Paal, 1919). Additionally, they 

hypothesized that phototropic bending can be attributed to light- rather than hormone-

regulated growth (photomorphogenesis). Overbeek suggested a combination of the Blaauw 

and Cholodny-Went models stating that phototropism involves both auxin-regulated growth 

and photomorphogenesis, and also considered that a differential sensitivity to auxin between 

both sides contributes to phototropic bending (Overbeek, 1932). Despite these alternative 

explanations, the Cholodny-Went model has remained the most widely accepted (Whippo and 

Hangarter, 2006).  

Besides IAA, plants synthetize other ‘endogenous’ auxins, namely phenylacetic acid (PAA), and 

4-chloroindole-3-acetic acid (4-Cl-IAA) (Skoog and Miller, 1957). For research purposes the 

synthetic auxins 2,4-dichlorophenoxy acetic acid (2,4-D) and 1-naphthaleneacetic acid (NAA) 

are frequently used. The observation that these auxins perform similar but not necessarily 

identical functions as IAA, and are structurally diverse, has complicated their structure-

function analysis and the search for a possible common mode of action (Ferro et al., 2010). 

Up till now IAA has been the most extensively described auxin in terms of hormone perception 

and signaling.  

 

Auxin-regulated developmental processes and environmental adaptation 

From early embryogenesis to a full-grown plant, auxin is indispensable during several key 

developmental steps. Already after the first asymmetric division of the zygote auxin is crucial 

for establishing the apical-basal axis determining which cell will give rise to the shoot, and 

which cell will be a precursor for the root (Jürgens, 2001). Later on during root development, 

auxin mediates the organization of the root apical meristem, primary root growth, lateral root 

development, and root hair growth contributing to the development of an extensive root 

network crucial for plant stability and nutrient uptake (Pitts et al., 1998; Rahman et al., 2002; 

Jiang and Feldman, 2005; Ishida et al., 2008; Péret et al., 2009; Overvoorde et al., 2010). Also 
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shoot development involving shoot apical meristem patterning and leaf and floral primordia 

initiation rely on auxin signaling (Vernoux et al., 2010; Gallavotti, 2013).  

A textbook example of auxin-regulated environmental adaption is root- and shoot 

gravitropism allowing plants to reorient their growth direction parallel to the gravity vector 

(Su et al.; Masson et al., 2002; Sato et al., 2015). Another auxin-regulated tropism, already 

mentioned in the previous section, is phototropism (Fankhauser and Christie, 2015). This 

feature is crucial for plants during seed germination or when growing in dense populations to 

grow towards the light and optimize light exposure to facilitate photosynthesis. Auxin 

signaling is also crucial during (a)biotic stress such as drought, cold, salt stress, and pathogen 

attack (Kazan and Manners, 2009; Fu and Wang, 2011; Kazan, 2013; Rahman, 2013). 

The extent and diversity of auxin-regulated processes clearly demonstrates the prominent 

role of this phytohormone for plant development and adaptive plant growth. 

 

Auxin distribution patterns 

The different auxin-regulated processes described above rely on distinct auxin distribution 

patterns. Some auxin responses are triggered by high auxin accumulation in a group of cells 

(morphogenetic trigger), while others require a graded auxin distribution (morphogen). 

During embryogenesis, the apical-basal polarity after the first division of the zygote is 

established by an auxin maximum in the basal cell defining the future root apical meristem 

(Fig. 1, A-C) (Friml et al., 2003). In developed root apices, auxin accumulates in the quiescent 

center with a more graded distribution in the columella cells (Fig. 1, E), and across the primary 

root meristem (Sabatini et al., 1999; Friml et al., 2002; Petersson et al., 2009). Upon root 

gravistimulation, the steady-state auxin distribution is perturbed, and auxin is redistributed to 

the new lower side of the root tip. This asymmetric auxin distribution results in differential 

growth and thus bending of the root (Fig. 1, F) (Friml and Palme, 2002). In the shoot, auxin 

accumulation at leaf initiation sites triggers the development of leaf primordia which in turn 

form an auxin sink (Reinhardt et al., 2003). The graded depletion of auxin in the near vicinity 

of the primordium prevents formation of a novel primordium within a certain distance and is 

crucial for proper spacing of the leaf primordia in the shoot apical meristem (Heisler et al., 
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2010). Also initiation of floral primordia relies on local auxin accumulation (Fig. 1, D) (Benková 

et al., 2003).  

Figure 1: Auxin distribution patterns during plant development and environmental adaptation. Auxin 

distribution is visualized by means of the auxin reporter DR5rev::GFP. (A-C) An auxin maximum in the apical cell 

(ac) lineage of a developing embryo after division of the zygote (A), and during the single-cell (B) and eight-cell 

(C) stage. (D) Auxin accumulation at emerging floral primordia. (E) An auxin maximum in the quiescent center 

and a more graded auxin distribution in the columella cells of the root meristem. (F) Asymmetric auxin 

distribution in gravistimulated roots. The arrow represents the direction of the gravity vector. Images were 

modified from (Friml et al., 2003) (A-C), (Benková et al., 2003) (D), (Moubayidin et al., 2013) (E), (Michniewicz et 

al., 2007a) (F, Arabidopsis drawing). 

 

These characteristic auxin distribution patterns are the outcome of local auxin biosynthesis, 

regulated auxin conjugation and degradation, and directional auxin transport (Ljung, 2013). 

IAA biosynthesis pathways are classically subdivided in tryptophan (Trp)-dependent and –

independent pathways (Woodward and Bartel, 2005; Korasick et al., 2013; Brumos et al., 
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2014; Tivendale et al., 2014). Thus far, only the indole-3-pyruvate (IPA) Trp-dependent 

pathway has been resolved completely (Zhao, 2014). IPA refers to the intermediate that is 

formed during a two-step biosynthesis process. First, Trp is transaminated by TRYPTOPHAN 

AMINOTRANSFERASEs OF ARABIDOPSIS (TAAs) into IPA, which forms the substrate for 

subsequent oxidative decarboxylation by YUCCAs (YUCs) into IAA (Won et al., 2011). Mutant 

analysis of yuc and taa has demonstrated the importance of this IAA biosynthesis pathway 

during embryogenesis, vascularization, flower development, seedling response to ethylene 

and NPA, and shade avoidance (Cheng et al., 2006, 2007; Won et al., 2011). Recently, it was 

shown that the biosynthesis pathway of the endogenous auxin PAA is similar to that of IAA. 

Even though PAA is synthetized based on phenylalanine instead of Trp, and a phenylpyruvate 

intermediate is formed, the conversion is also catalyzed by YUC and TAA (Sugawara et al., 

2015; Cook et al., 2016). There is also evidence that the YUCs are involved in the Trp-

dependent tryptamine (TAM) pathway (Zhao et al., 2001), however, current knowledge on the 

biochemical mechanisms of alternative IAA synthesis pathways is still fragmented. IAA is 

considered to be a free active molecule, though, it can also occur in inactive state in the form 

of indole-3-butyric acid (IBA) or conjugates. Besides de novo biosynthesis, IAA can be 

generated by conversion of the precursor IBA in peroxisomes (Zolman et al., 2000; Zolman et 

al., 2007). Common IAA conjugates consist of ester-linked simple and complex carbohydrate 

conjugates, amide-linked amino acid conjugates, and amide-linked peptide and protein 

conjugates, and the occurrence and amounts can differ among plant species (Ludwig-Müller, 

2011; Korasick et al., 2013). Conjugation is reversible and IAA can be released by hydrolysis 

e.g. during seed germination (Davies et al., 1999; Rampey et al., 2004). Alternatively, auxin 

degradation can affect local IAA levels. For example, previous work has shown that IAA 

overproduction triggered IAA catabolism by irreversible IAA oxidation catalyzed by 

DIOXYGENASE FOR AUXIN OXIDATION1 (DAO1) to 2-oxindole-3-acetic acid in roots (Pěnčík et 

al., 2013; Porco et al., 2016). Fourthly, auxin distribution is in part also regulated by directional 

intercellular auxin transport. Since polar auxin transport forms an important subject in my PhD 

project, this will be discussed in more detail in the paragraph below.  
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Auxin transport 

Generally, two distinct auxin transport pathways are distinguished. One transport route 

accounts for rapid, long distance, non-polar transport of auxin away from the main auxin 

source (the shoot) via the phloem (Morris and Thomas, 1978). Upon unloading of the phloem 

at the level of the sinks (the root), a second slower transport pathway mediates further short 

distance, directional intercellular transport (Goldsmith, 1977). This polar auxin transport 

results from the asymmetric distribution of auxin efflux carriers as postulated by the 

chemiosmotic model (Rubery and Sheldrake, 1974; Raven, 1975). In this model, the weak acid 

IAA occurs in its protonated lipophilic form when localized in the slightly acidic apoplast (pH 

5.5) and can diffuse freely across the plasma membrane into the cytosol where the more 

alkaline environment (pH 7) results in deprotonation of IAA. Later experiments showed that 

IAA can also enter the cell via proton-driven influx carriers of the AUXIN1/LIKE-AUX1 

(AUX/LAX) family (Bennett et al., 1996; Swarup et al., 2008). In order to facilitate efflux of the 

lipophobic IAA- anion from the cytosol, active plasma membrane-localized efflux carriers are 

required. The chemiosmotic model proposes the asymmetric distribution of auxin efflux 

carriers mediating directional transport of auxin out of the cell thereby establishing polar cell-

to-cell auxin transport. This model mainly applies to IAA, as the endogenous auxin PAA was 

suggested to not be actively transported in a polar fashion (Sugawara et al., 2015).  

The best known auxin efflux carriers are the PIN-formed (PIN) proteins. PINs are 

transmembrane proteins with multiple hydrophobic membrane-spanning domains at their 

amino- and carboxy-terminus, and a central hydrophilic loop facing the cytosol (Křeček et al., 

2009; Nodzyński et al., 2016). In Arabidopsis, the PIN family counts 8 members, which are 

typically subdivided in two groups, the “long” and “short” PINs, based on the length of the 

central hydrophilic loop (Křeček et al., 2009; Ganguly et al., 2012). Additionally, the “long” and 

“short” PINs differ in their subcellular localization. The “long” PINS PIN1, PIN2, PIN3, PIN4, and 

PIN7 are found in the plasma membrane restricted to specific polar domains, whereas the 

“short” PINs PIN5, PIN6 and PIN8 localize to the membrane of the endoplasmic reticulum (ER) 

(Vieten et al., 2007; Zažímalová et al., 2007; Mravec et al., 2009; Zažímalová et al., 2010; Bosco 

et al., 2012; Ding et al., 2012; Simon et al., 2016b). Given their localization, the “long” PINs 

account for the directional cell-to-cell transportation of auxin, also referred to as polar auxin 

transport (PAT), while it is speculated that the “short” PINs are involved in regulating auxin 
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homeostasis and metabolism by mediating ER-cytosol auxin transport. The “short” PIN6 is 

more atypical given its dual localization at both the plasma membrane and ER (Simon et al., 

2016b). Since plasma membrane-localized PIN6 shows a polar distribution, it can contribute 

to directional intercellular auxin transport besides regulation of intracellular auxin 

homeostasis. Besides the “short” PINs, the putative auxin carriers PIN-LIKES (PILS) localize to 

the ER where they mediate auxin compartmentalization and conjugation thereby reducing 

free auxin and nuclear auxin signaling (Barbez et al., 2012; Feraru et al., 2012; Béziat et al., 

2017). Genetic interference with PINs results in defective auxin-regulated processes, and 

similar phenotypes can be observed by treatment with auxin efflux inhibitors (Okada et al., 

1991). The pin1 mutant forms a pin-shaped inflorescence (to which the PINs owe their name), 

has abnormal cotyledon positioning in the seedling stage, and shows defects in vein branching 

resulting in fused leaves (Gälweiler et al., 1998). Other pin mutants have abnormal photo- and 

gravitropic responses, defective embryo development, and aberrant organogenesis (Luschnig 

et al., 1998; Benková et al., 2003; Friml et al., 2003; Reinhardt et al., 2003). Together, these 

observations illustrate the importance of PAT by PINs for different environmental and 

developmental processes. 

Alternatively, auxin efflux from the cell can be mediated by P-glycoproteins of the ABCB 

transporter family (ABCB/PGP). Several ABCBs are targeted by the auxin efflux inhibitor 1-N-

naphthylphthalamic acid (NPA) which prevents association with the ABCB-positive regulator 

TWISTED DWARF 1 (TWD1) (Bailly et al., 2008). In contrast to the PINs, these efflux carriers 

show no polar localization and therefor do not contribute to PAT. Mutant analyses showed 

the involvement of ABCBs in multiple developmental processes (Noh et al., 2001), however, 

since mutant phenotypes mostly differ from those observed in pin mutants it could be that 

they have additional roles in processes not related to auxin transport. Interestingly, some 

ABCB proteins can switch between mediating auxin efflux or influx depending on the 

cytoplasmic auxin concentration (Kamimoto et al., 2012; Kubeš et al., 2012). 

The PIN- and PGP-dependent auxin efflux mechanisms have been shown to operate both 

synergistically and antagonistically in specific developmental processes like embryogenesis 

and lateral root development, but overall both pathways contribute to the establishment and 

maintenance of proper auxin distribution patterns (Mravec et al., 2008).  
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PAT via PIN 

The polarity of PIN localization is primarily determined by the PIN phosphorylation status. 

PINOID (PID), a member of the plant specific family of AGCVIII protein kinases, was shown to 

directly phosphorylate PINs (Michniewicz et al., 2007b). Loss of PID function resulted in plants 

with pin1-like phenotypes while PID overexpression generated plants with agravitropic 

hypocotyl and root growth, and defective primary root meristems (Bennett et al., 1995; 

Christensen et al., 2000; Benjamins et al., 2001). Knock-out mutants for the PROTEIN 

PHOSPHATASE 2A (PP2A) showed similar phenotypes as the PID overexpression plants 

(Garbers et al., 1996; Rashotte et al., 2001). These observations demonstrated the importance 

of PID and PP2A function for PIN-dependent PAT. Further research revealed that kinases 

WAVY ROOT GROWTH1 (WAG1) and WAG2 redundantly regulate PIN phosphorylation 

together with PID (Dhonukshe et al., 2010), and that PP2A is part of a heterotrimeric 

phosphatase complex PP6 mediating PIN dephosphorylation (Dai et al., 2012). Interestingly, 

at the subcellular level, a shift in PIN polarity from the apical side of the cell to the basal side 

was observed in pid mutants (Friml et al., 2004). Conversely, both PID overexpression and 

PP2A knock-out induced a basal-to-apical shift. This lead to the development of a model in 

which PIN polarity depends on its phosphorylation status; PID/WAG1/WAG2-dependent PIN 

phosphorylation recruits PINs in the trafficking pathway to the apical side of the cell, while 

PP6-dephosphorylated PIN is trafficked to the basal plasma membrane domain (Fig. 2) 

(Michniewicz et al., 2007b; Kleine-Vehn et al., 2009; Dai et al., 2012).  
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Figure 2: Schematic representation of polar auxin transport (PAT) via PINs. Newly synthetised or endocytosed 

PINs are targeted to the plasma membrane in a polar fashion depending on the PIN phosphorylation status. 

Phosphorylated PINs are trafficked to the apical side of the cell, while non-phosphorylated PINs are transported 

to the basal side. PINs are phosphorylated and dephosphorylated by PINOID(PID)/WAVY ROOT GROWTH1 

(WAG1)/WAG2 and the PROTEIN PHOSPHATASE 6 (PP6) complex respectively. PIN phosporylation can also be 

indirectly regulated by Ca2+ via Ca2+ binding proteins TOUCH3 (TCH3) and PID BINDING PROTEIN1 (PBP1) and the 

Ca2+/ CALMODULIN-DEPENDENT KINASE-RELATED KINASES 5 (CRK5). No organelles besides the endoplasmic 

reticulum (ER), Golgi Apparatus, and trans-Golgi network (TGN)/early endosome (EE) are depicted for 

simplification. 

 

PIN phosphorylation not only affects PIN polarity, it is also important to activate PIN-mediated 

auxin transport. The D6 PROTEIN KINASE (D6PK) can phosphorylate PINs in vitro and in vivo, 

and d6pk mutants showed reduced PIN phosphorylation and auxin transport without affecting 

PIN polarity (Zourelidou et al., 2009; Willige et al., 2013; Barbosa et al., 2014). These 

observations demonstrate the importance of D6PK-mediated PIN phosphorylation for 

regulating auxin transport but not PIN polarity. Although both PID and D6PK can 

phosphorylate the same phosphosites in PIN1, their differential effects can only partially be 

explained by distinct phosphosite preferences suggesting a more complex mechanism 

determining PIN polarity (Zourelidou et al., 2014; Weller et al., 2017).  
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PIN phosphorylation status, and therefor also PIN polarity, can also be regulated more 

indirectly by modulation of PID activity by second messengers such as Ca2+ (Fig. 2) (Benjamins 

et al., 2003; Zhang et al., 2011). The Ca2+ binding proteins TOUCH3 (TCH3) and PID-BINDING 

PROTEIN1 (PBP1) were found to function upstream of PID enhancing PID activity in a Ca2+-

dependent manner (Benjamins et al., 2003). Furthermore, loss-of-function of the Ca2+/ 

CALMODULIN-DEPENDENT KINASE-RELATED KINASES 5 (CRK5) resulted in defects in apical, 

PID-dependent, targeting of PIN2 (Rigó et al., 2013) providing additional evidence for the 

importance of Ca2+ for regulation of PIN polarity. 

Given the reversible character of PIN phosphorylation, PIN polarity can easily be adjusted to 

redirect auxin flow depending on developmental or environmental stimuli. For example, 

during lateral root development PIN1 relocation will take place as the lateral root emerges to 

redirect the auxin flow towards the future lateral root tip (Benková et al., 2003). Upon 

unidirectional photostimulation of dark grown hypocotyls, apolarly distributed PIN3 in 

endodermis cells becomes restricted to the inner later domain of cells localized at the 

illuminated side of the hypocotyl (Ding et al., 2011). This results in redirection of the auxin 

flow towards the non-illuminated side where auxin will stimulate cell elongation resulting in 

hypocotyl bending towards the light.  Importantly, the differential removal of PIN3 from the 

outer lateral domain was dependent on PID/WAG1/WAG2 activity, consistent with a model in 

which PIN polarity is determined by its phosphorylation status that is under control of 

environmental and developmental cues. 

 

The endomembrane system and PIN trafficking  

Before going into more detail on PIN trafficking I would shortly like to introduce the structure 

of the endomembrane system and trafficking between the different endomembrane 

compartments. A plant cell, as well as any other eukaryotic cell, contains a network of 

intracellular membranes to facilitate protein transport. The so-called endomembrane system 

consists of the plasma membrane, the ER, trans-Golgi network/early endosomes (TGN/EEs), 

the Golgi Apparatus, the multivesicular body/prevacuolar compartment/late endosomes 

(MVB/PVC/LEs), and the lytic and storage vacuole (Fig. 3). Trafficking between the different 

compartments is mediated by membrane-derived vesicles, generally called endosomes, which 
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bud off from the source compartment and fuse with the membrane of the target 

compartment to release its cargoes. The proteins that are transported can be either luminal 

cargoes or transmembrane proteins, e.g. PINs. Inter-compartment transport has a directional 

character (Fig. 3). For example, plasma membrane localized proteins, can be endocytosed 

(internalized) and transported to the TGN/EE, and conversely, can be recycled back to the 

plasma membrane. Newly synthetized proteins can be transported back and forth between 

the site of synthesis, the ER, and the Golgi. In case of protein degradation, the internalized 

proteins are targeted from the TGN/EE to MVBs/LEs and are from there onward trafficked 

unidirectionally to the lytic vacuole (Murphy et al., 2005; Jürgens and Geldner, 2007; 

Schellmann and Pimpl, 2009; Žárský and Potocký, 2010; Reyes et al., 2011; Robinson and 

Pimpl, 2014). Key regulators of endosome trafficking between distinct endomembrane 

compartments are small GTPases and their regulators GEFs and GAPs (Žárský and Potocký, 

2010; Kania et al., 2014). Small GTPase proteins are often considered as molecular switches 

as they can cycle between a guanosine-5'-triphosphate  (GTP)-bound form, the ‘on’ state, and 

a guanosine diphosphate (GDP)-bound form, the ‘off’ state. Switching between both forms 

relies on GTP hydrolysis, mediated by negative regulators named GTPase-ACTIVATING 

PROTEINs (GAPs), and exchange of GDP for GTP mediated by the positive regulators called 

GUANINE NUCLEOTIDE EXCHANGE FACTORs (GEFs). There are two main groups of small 

GTPases involved in regulation of distinct steps during endomembrane trafficking; the ADP-

RIBOSYLATION FACTORs (ARFs) and RAS GENES FROM RAT BRAIN (RABs). ARFs are involved in 

recruitment of coat proteins to sites of vesicle budding thereby forming an important 

regulator of retrograde and anterograde ER-Golgi transport, and are also involved in 

mediating endocytosis and recycling as will be discussed in more detail later on (Nielsen et al., 

2008; Yorimitsu et al., 2014). The RAB GTPases also operate at distinct steps of 

endomembrane trafficking coordinating ER-Golgi transport, endocytosis, recycling of cell wall 

components. Furthermore, they are important for cell polarization and regulation of 

membrane fusion together with SNAREs (Vernoud et al., 2003; Nielsen et al., 2008; Kania et 

al., 2014). They also have been shown to be crucial for successful cytokinesis (Davis et al., 

2016). 

In the following paragraphs I will discuss the different steps in the endosomal trafficking 

pathway in more detail (Fig. 3). 
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As can already be deduced from the ability of PINs to relocate, PINs are highly dynamic 

proteins that can swiftly translocate through the endomembrane system. Plasma membrane-

localized PINs are continuously internalized by clathrin-mediated endocytosis (Dhonukshe et 

al., 2007), and recycled back to the plasma membrane via exocytosis (Geldner et al., 2001). 

Recycling can occur to the original polarity domain, or to a different side of the cell (Kleine-

Vehn et al., 2008b).  

Clathrin-mediated endocytosis (CME) is a common endocytic mechanism in plants mediating 

internalization of a wide range of plasma membrane-localized proteins such as PINs (Kitakura 

et al., 2011), BRASSINOSTEROID INSENSITIVE1 (BRI1) (Di Rubbo et al., 2013), and the flagellin 

receptor FLAGELLIN SENSING2 (FLS2) (Mbengue et al., 2016). Early stages of CME are 

hallmarked by the arrival of the plant-specific TPLATE adaptor complex and ADAPTOR 

PROTEIN complex 2 (AP2) at the plasma membrane (Gadeyne et al., 2014a). These proteins 

are crucial for subsequent recruitment of clathrin and other components required for 

formation of clathrin-coated vesicles (CCVs). In a last step, small GTPases DYNAMIN-RELATED 

PROTEINs (DRPs) will mediate scission of the CCV from the plasma membrane. After the CCVs 

are released from the plasma membrane, they will lose their clathrin coat by the action of a.o. 

the clathrin coat disassembly chaperone AUXILIN (AX) (Lam et al., 2001). The importance of 

CME for proper PIN trafficking, and consequently auxin transport, is illustrated by the wide 

range of defective auxin-regulated processes upon interference the CME machinery. For 

example loss-of-function of DRP1 resulted in PIN2 mislocalization and associated agravitropic 

root growth (Mravec et al., 2011). Also, interference with clathrin coat assembly and function 

prevented PIN endocytosis, and caused defective (post)embryonic development and 

agravitropic root growth (Kitakura et al., 2011). Alternatively, plants can mediate endocytosis 

via clathrin-independent pathways, however, currently little is known about these 

mechanisms. In animals, clathrin-independent caveolae- and flotillin-dependent pathways 

have been described (Kurzchalia and Partan, 1999; Otto and Nichols, 2011). Although the 

former is not found in plants there is evidence for flotillin-mediated endocytosis. Flotillin1 

(Flot1) was found to be present in membrane microdomains distinct from CCVs, mediating 

formation of membrane-derived endocytic vesicles during symbiotic infection and salt stress 

(Haney and Long, 2010; Baral et al., 2015). However, the molecular mechanism and 

components involved remain to be resolved. 
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Upon scission of CCVs from the plasma membrane, the vesicle loses its clathrin coat and enters 

the endosomal trafficking pathway at the TGN/EE from where proteins can be recycled back 

to the plasma membrane, or become targeted to the vacuole for degradation. Early 

endosomal trafficking is mediated by the ARF-GEF BFA-VISUALIZED ENDOCYTIC TRAFFICKING 

DEFECTIVE1 (BEN1)/BFA-INHIBITED GEF5 (BIG5)/ HOPM INTERACTOR7 (MIN7) and 

BEN2/VACUOLAR PROTEIN SORTING45 (VPS45) that are both localized at the TGN/EE (Tanaka 

et al., 2009; Tanaka et al., 2013). A well-known regulator of PIN recycling is the ARF-GEF GNOM 

(Geldner et al., 2003). GNOM-mediated recycling is sensitive to the fungal toxin brefeldin A 

(BFA; Geldner et al., 2001). Besides interfering with GNOM function, BFA also inhibits a subset 

of other large ARF-GEFs in mammals, yeast, and plants (Peyroche et al., 1996). The basis for 

BFA sensitivity is defined by the presence of a few key amino acids in the ARF-GEF catalytic 

Sec domain (Peyroche et al., 1999; Sata et al., 1999; Steinmann et al., 1999). Inhibition of ARF-

GEF by BFA consequently prevents ARF activation (Peyroche et al., 1999; Robineau et al., 

2000). Given that ARF(-GEFs) mediate multiple endomembrane trafficking steps, BFA can 

affect the endomembrane system at distinct levels. Interestingly, the impact of BFA treatment 

was shown to be concentration-dependent. Lower BFA concentrations were reported to block 

anterograde ER-to-Golgi transport, secretion/recycling, and cause formation of so called BFA 

bodies, a fusion of TGN, Golgi, and ER, accumulating internalized proteins (Donaldson and 

Jackson, 2000; Geldner et al., 2001; Nebenfuhr et al., 2002). Higher BFA concentrations 

additionally block vacuolar trafficking (Tse et al., 2007; Kleine-Vehn et al., 2008b). These 

features have made BFA a valuable tool to study PIN trafficking. Further investigation showed 

that recycling of PINs to the apical or basal side of the cell involves distinct ARF-GEFs. BFA-

sensitive GNOM primarily regulates basal PIN recycling as sustained BFA treatment resulted 

in transcytosis from basal PINs to the apical domain (Kleine-Vehn et al., 2008b). This also 

implicates that the apical targeting pathway is GNOM-independent. The closest GNOM 

homologue in Arabidopsis is the ARF-GEF GNOM-LIKE1 (GNL1) that localizes at the Golgi 

apparatus where it mediates ER-Golgi transport (Richter et al., 2007). Interestingly, GNOM can 

take over GNL1 function, but not the other way around. Besides GNOM, also the BFA-

INHIBITED GEF (BIG) family of ARF-GEFs is characterized by sensitivity to the fungal toxin BFA. 

As for GNOM, the BIGs have been shown to be important for regulation of recycling, and are 

additionally involved in protein secretion during cell division (Shin et al., 2004; Richter et al., 

2014; Kitakura et al., 2017). Besides GNOM, also the ARF-GAP VASCULAR NETWORK3 (VAN3), 
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the RABA1b GTPase BFA-VISUALIZED EXOCYTIC TRAFFICKING DEFECTIVE5 (BEX5), and RAB-

GEF VASCULAR NETWORK DEFECTIVE4 (VAN4) operate as regulators of PIN recycling (Koizumi 

et al., 2005; Sieburth et al., 2006; Feraru et al., 2012; Naramoto et al., 2014). Intriguingly, 

GNOM, GNL1 and VAN3 also turned out to be involved in regulation of PIN endocytosis 

indicating their functional versatility (Teh and Moore, 2007; Naramoto et al., 2010). Upon 

targeting of recycling endosomes to the plasma membrane, endosome-plasma membrane 

fusion is mediated by the vesicle tethering complex exocyst. This octameric complex is 

evolutionary conserved mediating a similar function in yeast, animals and plants (Hála et al., 

2008; Ory and Gasman, 2011; Liu and Guo, 2012). The importance of exocyst for PIN trafficking 

is illustrated by delayed PIN recycling and aberrant polar auxin transport in a mutant defective 

in subunit EXO70A1 (Drdová et al., 2013). Even though the recycling endosomes don’t have 

any characteristic coating like the CCVs, the presence of specific proteins in the endosome 

compartments might be a determinant for proper protein sorting. The retromer complex 

consists of multiple proteins that can fulfill this function mediating distinct steps of 

intracellular trafficking in plants. There has been some debate about the localization and 

function of retromer subunits (Oliviusson et al., 2006; Niemes et al., 2010). Nevertheless, it 

seems that the retromer complex is involved in both recycling proteins to the plasma 

membrane as well as in retrieving proteins from the vacuolar degradation pathway. For 

example, the retromer subunit SORTING NEXIN1 (SNX1) is known to mark PIN2 endosomes 

destined for recycling to the plasma membrane (Jaillais et al., 2006). Furthermore, VACUOLAR 

SORTING RECEPTORs (VSRs) localize to the TGN and MVBs where they mediate vacuolar cargo 

sorting (Sanderfoot et al., 1998). Upon delivery of their cargo, they are recycled by retrograde 

transport for subsequent rounds of vacuolar sorting (daSilva et al., 2005; Oliviusson et al., 

2006; Niemes et al., 2010). Retrieval of VSR1 to the TGN was shown to be mediated by 

retromer subunit VACUOLAR PROTEIN SORTING 29 (VPS29) (Kang et al., 2012). Besides a role 

in retrograde trafficking from MVB to TGN, VPS29, together with retromer subunit VPS35a, 

where shown to be essential for proper MVB morphology (Nodzyński et al., 2013). 
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Figure 3: The endomembrane system and endosomal (PIN) trafficking. The endomembrane system consists of 

the trans-Golgi network/early endosomes (TGN/EEs), the Golgi Apparatus, the endoplasmic reticulum (ER), the 

multivesicular bodies/prevacuolar compartments/late endosomes (MVBs/PVCs/LEs), and the vacuole (lytic and 

storage). Transport between the different endosomal compartments is mediated by ARF-GEFs (green) and –GAPs 

(purple), RAB (dark blue), RAB-GEFs (red) and -GAPs, the retromer complex (RM, orange), the exocyst (EC), and 

Endosomal Sorting Complex Required for Transport (ESCRT). The players that have been identified so far are 

marked in the figure in the corresponding colors. As an example basally localized PIN1 is shown. Low brefeldin A 

(BFA) concentrations inhibit protein recycling, while high BFA concentrations additionally block vacuolar 

trafficking. Vacuolar degradation would involve protein ubiquitylation, however more insight on the players 

involved is still missing. PIN proteins are internalized via clathrin-mediated endocytosis (CME). Initial stages of 

CME rely on the TPLATE adaptor complex, and ADAPTOR PROTEIN complex 2 (AP2). DYNAMIN-RELATED 

PROTEINs (DRPs) are required for pinching off the clathrin-coated vesicles from the plasma membrane. AUXILIN2 

(AX2) is involved in clathrin coat disassembly from the vesicles after internalization. The synthetic auxin 1-

naphthaleneacetic acid (1-NAA) inhibits CME of PINs via activation of ROP/RIC signaling. BEN1, 2: BFA-

VISUALIZED ENDOCYTIC TRAFFICKING DEFECTIVE1, 2; BEX5: BFA-VISUALIZED EXOCYTIC TRAFFICKING 

DEFECTIVE5; GN: GNOM; GNL1: GNOM-LIKE1; SNX1: SORTING NEXIN1; Ub: ubiquitin; VAN3: VASCULAR 

NETWORK3; VAN4: VASCULAR NETWORK DEFECTIVE4, VPS29, 35a: VACUOLAR PROTEIN SORTING29, 35a. 
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As mentioned earlier, the TGN/EE also functions as a sorting point to target internalized 

proteins to the lytic vacuole for degradation. First, proteins will be integrated in intraluminal 

vesicles residing in the MVBs, and subsequently the MVBs will release these intraluminal 

vesicles into the vacuole lumen by MVB – vacuole fusion. Current knowledge on the molecular 

players involved is still rather fragmented. It has been established that protein ubiquitylation 

is an important determinant. PIN2 degradation might be mediated by ubiquitylation by RING-

DOMAIN LIGASE (RGLG) E3 ubiquitin ligases at the plasma membrane (Yin et al., 2007; Leitner 

et al., 2012). Ubiquitinylated proteins are recognized by the Endosomal Sorting Complex 

Required for Transport (ESCRT) mediating the uptake into the intraluminal vesicles of the 

MVBs (Schellmann and Pimpl, 2009). Furthermore, it has been suggested that PIN2 vacuolar 

trafficking relies on activity of an ARF-GEF, different from GNOM (Kleine-Vehn et al., 2008b). 

Interestingly, while low BFA concentrations inhibit PIN recycling, high BFA concentrations 

additionally interfere with vacuolar trafficking suggesting the ARF-GEF involved is BFA-

sensitive (Kleine-Vehn et al., 2008a). More recent work has shown that at least three vacuolar 

trafficking pathways can be distinguished in plants, each transporting specific cargo (Ebine et 

al., 2014). A first pathway involves subsequent action of small GTPases RAB5 and RAB7, 

regulated by the RAB-GEF SAND-CCZ1, and was shown to be a vacuolar transport route for 

12S globulin (Cui et al., 2014; Ebine et al., 2014; Singh et al., 2014). Alternatively, vacuolar 

proteins such as the tonoplast-localized SYNTAXIN OF PLANTS 22 (SYP22) and V-TYPE PROTON 

ATPASE SUBUNIT a3 (VHA-a3), can be targeted through a RAB5-dependent, RAB7-

independent pathway (Ebine et al., 2014; Feng et al., 2017). Thirdly, a RAB5/7- independent 

ADAPTOR PROTEIN-3 (AP-3)-dependent pathway has been proposed. AP-3 is a tetrameric 

adaptor complex regulating vacuolar trafficking as shown by the vacuolar defects that can be 

observed when interfering with AP-3 subunit function (Feraru et al., 2010; Zwiewka et al., 

2011). Interestingly, it is suggested that this pathway mediates direct targeting to the vacuole 

thereby bypassing endosome maturation via the MVBs (Feraru et al., 2010), which 

corresponds to AP-3-mediated lysosome trafficking in yeast, flies, and animals (Cowles et al., 

1997; Stepp et al., 1997; Dell’Angelica et al., 1999; Feng et al., 1999; Kretzschmar et al., 2000). 

Vacuolar PIN degradation can be stimulated by different triggers that modulate PAT. During 

root gravistimulation, asymmetric auxin distribution at the root tip is partially established by 

auxin-induced vacuolar degradation of PIN2 in epidermal cells at the lower side of the root 
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(Baster et al., 2013). Also dark treatment induces PIN2 targeting to the vacuole for degradation 

(Laxmi et al., 2008). 

Altogether, our knowledge from literature shows us the highly dynamic nature of the PINs and 

the ability of plants to modify PIN localization, and thereby redirect auxin flow, through a 

complex tightly regulated endosomal trafficking network.  

 

Auxin-regulated PIN trafficking 

The dynamic nature of PINs and their ability to translocate between plasma membrane 

domains allows for rapid PIN relocation as demonstrated by previous examples. Besides 

developmental cues and environmental signals, also auxin itself can feedback regulate PIN 

localization, and thereby the directionality of its own flow (Benjamins and Scheres, 2008). This 

can be achieved by auxin-regulated PIN transcription and -turnover (Sieberer et al., 2000; 

Vieten et al., 2005). Alternatively, auxin can regulate its direction of transport by affecting PIN 

trafficking. It has been documented that auxin inhibits CME of PINs thereby reinforcing PIN 

localization at the plasma membrane (Paciorek et al., 2005). 

The molecular mechanism underlying auxin-inhibited PIN endocytosis has been further 

unraveled over the years with leaf pavement cells and root epidermal cells as a model. For 

both models the involvement of intracellular RHO-LIKE GTPASE FOR PLANTS (ROPs) and their 

ROP INTERACTIVE CRIB MOTIF-CONTAINING PROTEINS (RIC) effectors and downstream 

modulation of the actin cytoskeleton has been demonstrated (Chen et al., 2012; Lin et al., 

2012; Nagawa et al., 2012). Upstream of this pathway, auxin was proposed to be perceived by 

an AUXIN BINDING PROTEIN1 (ABP1) receptor complex (Xu et al., 2014). However, the finding 

that abp1 full knock-out alleles have no obvious phenotypes (see below), suggests that the 

ABP1 function in this model needs to be reassessed and corrected. Therefore, the main 

questions which remain to be addressed are which auxin receptor is involved in mediation of 

this rapid auxin response, and how auxin perception results in intracellular activation of 

ROP/RIC signaling. 
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Auxin perception and signaling in brief 

Until recently, two main auxin perception and signaling mechanisms have been distinguished: 

the SCFTIR1/AFB-Aux/IAA-dependent mechanism, and the ABP1-dependent pathway.  

SCFTIR1/AFB-Aux/IAA-dependent auxin perception and -signaling takes place in the nucleus and 

mediates transcriptionally-regulated auxin responses (Wang and Estelle, 2014; Salehin et al., 

2015). The main components of the pathway are TRANSPORT INHIBITOR RESPONSE 1/AUXIN 

SIGNALING F-BOX PROTEINS (TIR1/AFB), Auxin/INDOLE ACETIC ACID (Aux/IAA) transcriptional 

repressors, and transcription factors AUXIN RESPONSE FACTORs (ARFs). At low auxin levels, 

ARF transcription factors bound to Auxin RESPONSE ELEMENTs (AuxREs) (Ulmasov et al., 1995; 

Ulmasov et al., 1997a; Ulmasov et al., 1997b) in promoters of auxin responsive genes are kept 

inactive by association with the Aux/IAA transcriptional suppressors and the cosuppressor 

TOPLESS (TPL) (Szemenyei et al., 2008). Upon high auxin concentrations, auxin perception by 

the TIR1 auxin receptor (Dharmasiri et al., 2005; Kepinski and Leyser, 2005) results in targeting 

of the Aux/IAAs to the ubiquitin protein ligase SCFTIR1/AFB mediating proteolysis of these 

transcriptional repressors (Gray et al., 1999; Gray et al., 2001; Ramos et al., 2001; Tan et al., 

2007) allowing the ARFs to activate transcription. In Arabidopsis, TIR1/AFBs, Aux/IAAs, and 

ARFs are represented by small to large gene families counting 6, 29, and 22 members 

respectively in Arabidopsis (Enders et al., 2015; Li et al., 2016). Specific combinations of ARFs 

and Aux/IAAs account for the wide range of diverse auxin-mediated responses (Weijers et al., 

2005), and different combinations of TIR1 and Aux/IAAs show distinct auxin-binding affinity 

(Calderón Villalobos et al., 2012). 

Since this signaling pathway relies on transcriptional regulation, it is mediating rather slow 

auxin responses such as auxin-induced lateral root formation (Gray et al., 2001), root 

gravitropism (Baster et al., 2013), and hypocotyl growth (Fendrych et al., 2016). However, 

some cellular auxin responses occur rapidly. For example, exogenous auxin treatment can 

trigger a cytosolic Ca2+ increase within seconds (Sabatini et al., 1999; Shishova and Lindberg, 

2004). Also, inhibition of clathrin-mediated PIN endocytosis by auxin was shown to be TIR1-

independent (Paciorek et al., 2005b), suggesting that some (rapid) auxin responses might be 

regulated by an alternative perception and signaling mechanism, independent of 

transcriptional regulation. For some time, it was believed that such responses are mediated 

by the auxin receptor ABP1. It was found that ABP1 can bind auxin with high affinity (Hertel 
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et al., 1972), and is a regulator of different auxin-regulated processes such as cell expansion 

(Jones et al., 1998), embryogenesis (Chen et al., 2001), postembryonic shoot development 

(Braun et al., 2008), root growth (Tromas et al., 2009), hypocotyl elongation (Effendi et al., 

2013) and auxin-regulated PIN trafficking in leaves and roots (Robert et al., 2010; Xu et al., 

2010; Chen et al., 2012). These observations were largely based on analysis of conditional 

ABP1 knock-down mutants, immunological inactivation of ABP1 function, and ABP1 lines 

mutated in the auxin-binding pocket (abp1-5) as a T-DNA insertion null mutant was shown to 

be embryo lethal (Chen et al., 2001). However, the technical advancements in molecular 

biology had more recently enabled the generation of an abp1 null mutant by means of the 

CRISPR/Cas9-technology (Gao et al., 2015). Gao and coworkers also picked up a viable T-DNA 

insertion null mutant. Surprisingly, analysis of these mutants showed no defects in auxin-

dependent developmental processes nor abnormal auxin-regulated gene expression. Later 

work had shown that the auxin-related phenotypes observed in the conditional knock-down 

lines and abp1-5 where caused by off-target effects and background mutations (Enders et al., 

2015; Michalko et al., 2016). These recent insights in ABP1 function have brought into 

question the role of ABP1 as a mediator of auxin signaling, and further research will be 

indispensable to get a better insight in possible alternative auxin perception mechanisms. 

Interestingly, recently, more and more alternative auxin perception mechanisms are being 

uncovered. Similarly to TIR1, the F-box protein S-PHASE KINASE-ASSOCIATED PROTEIN 2A 

(SKP2A) was reported to specifically bind to auxin, and interconnect auxin perception with 

regulation of cell division (Jurado et al., 2010). In addition, the ARF3/ETTIN was found to sense 

auxin directly to regulate its transcriptional activity (Simonini et al., 2016; Simonini et al., 

2017). Therefore, it will be interesting to follow the further developments in identifying auxin 

sensing proteins and how they control cellular auxin responses.  

 

Ca2+ signaling 

Ca2+ as a second messenger during plant development 

It is well-established that Ca2+ is indispensable for proper plant growth and development. Even 

though Ca2+ is among the most abundant cations in the soil, Ca2+ deficiency can occur on acidic 

and sandy soils, or locally within the plant due to aberrant Ca2+ distribution. Ca2+ deprivation 
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causes severe defects in roots, stems, leaves and fruits depending on the plant species 

(Bussler, 1962; Hewitt, 1963), stressing the importance of this cation for healthy plant growth. 

Ca2+ is known for its structural function contributing to plant cell rigidity by crosslinking 

pectates in the cell wall and regulating membrane integrity (Wyn Jones, 1967; Burstrom, 1968; 

Marschner, 1995).  

Besides this structural role, Ca2+ also operates as a second messenger in a wide range of 

signaling pathways related to coping with biotic and abiotic stress, and plant development 

(Dodd et al., 2010; Kudla et al., 2010). It is well documented that pathogen attack and 

herbivory trigger a cytosolic Ca2+ burst during the early stages of plant immunity and defense 

(Arimura and Maffei, 2010; Ma et al., 2012; Ma et al., 2013; Keinath et al., 2015). Besides biotic 

stress, also beneficial biotic interactions such as symbiosis of root hairs with rhizobia is known 

to require a Nod factor-induced Ca2+ influx followed by specific perinuclear Ca2+ oscillations 

(Shaw and Long, 2003). Multiple abiotic stress factors such as drought and cold induce Ca2+-

mediated stomata closure which is essential to maintain the water balance in the plant 

(McAinsh, 1990; Kudla et al., 2010). Mediating nitrate signaling and triggering protection 

mechanisms to osmotic stress, touch, and oxidative stress is also initiated by stimulus-specific 

Ca2+ signatures (Knight et al., 1991; Rentel and Knight, 2004; Riveras et al., 2015; Huang et al., 

2017). In case of pollen tube and root hair development, Ca2+ operates as a key mediator of 

polarized tip growth (Himschoot et al., 2015a) (see also Section I - Chapter 2). These are only 

a few examples out of a wide range of Ca2+-mediated signaling pathways illustrating the 

importance of this second messenger for plant development and environmental adaptation. 

 

Ca2+ as a second messenger in auxin-regulated processes 

Previous work has demonstrated an interconnection between auxin- and Ca2+ signaling. 

Analysis of cytosolic Ca2+ concentrations and surface pH of gravistimulated roots showed an 

increase in cytosolic Ca2+ levels of epidermal cells and elevated surface pH at the lower, but 

not the upper, side of the root (Monshausen et al., 2011). This pattern coincides with the 

asymmetric auxin distribution at the root tip, with increased auxin levels at the lower side of 

the root (Ottenschläger et al., 2003; Swarup et al., 2005). Furthermore, exogenous application 

of auxin was shown to induce a rapid and transient cytosolic Ca2+ increase in different tissues 
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and plant species (Felle, 1988; Gehring et al., 1990; Shishova and Lindberg, 1999, 2004; 

Shishova et al., 2007). In Chapter 1 of the Results section (Section II - Chapter 1), NAA-induced 

Ca2+ dynamics in Arabidopsis roots will be discussed in more detail. Auxin-induced Ca2+ 

dynamics have been shown to occur rapidly within seconds to minutes, which is too rapid to 

be mediated by TIR1-dependent transcriptional regulation. Indeed, the Ca2+ signals and the 

Ca2+-dependent surface pH dynamics accompanying root gravitropism are not affected in the 

tir1 mutant, nor in the abp1 null mutant (Monshausen et al., 2011; Shih et al., 2015), indicating 

that the auxin receptor involved in this pathway remains to be identified. 

 

Ca2+ signaling in plants 

Ca2+ uptake takes place at the extensive root system from where it is mainly distributed 

towards the shoot by xylem-mediated transport (White, 2001). At the cellular level, Ca2+ is 

stored in the apoplast, ER, and vacuole (Stael et al., 2012). A strong Ca2+ concentration 

gradient is kept between the cytosol (100-200 nM) and the Ca2+ storages (mM range) allowing 

rapid Ca2+ influx into the cytosol upon stimulation (Fig. 4).  
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Figure 4: Ca2+ distribution in plant cell organelles. The organellar Ca2+ concentrations were derived from 

(Johnson et al., 1995; Nomura et al., 2012; Logan and Knight, 2003; Medvedev, 2005; Ordenes et al., 2012). The 

ER, vacuole and apoplast operate as Ca2+ stores. Note that the depicted Ca2+ concentrations are for free Ca2+. Ca2+ 

can also be bound to e.g. Ca2+ chelators. 

 

As described above, Ca2+ operates in a wide range of signaling pathways, and plants have 

evolved an extensive toolkit of Ca2+ channels, Ca2+ pumps, Ca2+ sensors, and Ca2+-dependent 

protein kinases responsible for generating/encoding, amplifying and translating/decoding 

stimulus-specific Ca2+ signatures and mediating recovery to Ca2+ resting levels (Fig. 5). Each of 

these Ca2+ signaling components are represented by large gene families making genetics 

challenging.  
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Figure 5: A schematic representation of the different levels of Ca2+ signaling in plants. Upon stimulation, the 

Ca2+ influx pathway (brown), consisting of Ca2+ channels in the plasma membrane and membranes of intracellular 

stores, generates a specific cytosolic Ca2+ signatures. Sensing this Ca2+ signature relies on sensor relays (e.g. CaM) 

and sensor responders (e.g. Ca2+-dependent protein kinases) (yellow). They in turn can associate with or activate 

a downstream target to evoke a stimulus-specific response. Finally, the Ca2+ efflux pathway (red) mediated by 

Ca2+ pumps and transporters in the plasma membrane and intracellular store membranes, assures the Ca2+ 

resting levels in the cytosol are reestablished. 

 

In plants, Ca2+ channels are classified according to their activation mechanism. One can 

distinguish voltage-activated and voltage-independent Ca2+ channels, ligand-gated Ca2+ 

channels, and mechano-stimulated Ca2+ channels (Kudla et al., 2010; Swarbreck et al., 2013).  

The ANNEXINs are more difficult to classify in one of these groups as they can be activated by 

distinct signals. Since a few years a new class of Ca2+ channels can be added to the list. The 

OSCAs are a family of osmosensing Ca2+ channels mediating Ca2+ influx in high osmolality 

environments (Yuan et al., 2014). Note that the term Ca2+ channels not necessarily means that 

these channels exclusively transport Ca2+. Most channels are non-selective cation channels 

that in many cases have a preference for e.g. K+ over Ca2+ (Véry and Davies, 2000; Demidchik 

and Maathuis, 2007). For convenience the term Ca2+ channels will be used throughout the ong 

the voltage-activated Ca2+ channels, the HYPERPOLARIZATION-ACTIVATED Ca2+ CHANNELs 
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(HACC) have been most extensively studied and are known for mediating Ca2+ influx in guard 

cells triggered by voltage but also abscisic acid (ABA) (Hamilton et al., 2000), and in root hairs 

where they coexist with DEPOLARIZATION-ACTIVATED Ca2+ CHANNEL (DACC) (Demidchik et 

al., 2002; Miedema et al., 2008). The ligand-gated Ca2+ channels are subdivided in GLUTAMATE 

RECEPTOR-LIKE Ca2+ channels (GLRs) and CYCLIC NUCLEOTIDE-GATED Ca2+ CHANNELs 

(CNGCs).  Both groups of Ca2+ channels are represented by 20 members in Arabidopsis (Mäser 

et al., 2001; Davenport, 2002). In contrast to what the name suggests, GLR are not exclusively 

activated by glutamate but can be triggered by broad range of amino acids (Forde and Roberts, 

2014). Although the biological role of most of the GLRs remains to be identified, a subset of 

GLRs is known for their function in the plant defense response. For example, the AtGLR3.3 was 

shown to be required for induction of defense genes upon infection with the biotrophic 

pathogens Pseudomonas syringae and Hyaloperonospora arabidopsidis (Li et al., 2013; 

Manzoor et al., 2013), and in response to mechanical wounding which reassembles herbivory 

(Mousavi et al., 2013). Recently, Physcomitrella GLRs were shown to be involved in sperm 

chemotaxis (Ortiz-Ramírez et al., 2017). 

CNGCs can be activated by cyclic nucleotides cyclic adenosine monophosphate (cAMP), cyclic 

guanosine monophosphate (cGMP) and are inhibited by CaM (McAinsh and Pittman, 2009). 

They have been more extensively studied compared to GLRs, and CNGC-mediated Ca2+ influx 

has been shown to be important in guard cells (Wang et al., 2013), seed germination (Gobert 

et al., 2006), pollen tube and root hair tip growth (Frietsch et al., 2007; Zhang et al., 2017), 

pathogen defense (Yoshioka et al., 2006; Ma and Berkowitz, 2011), and auxin responses (Shih 

et al., 2015). 

The mechano-stimulated Ca2+ channels, also known as membrane-tension-activated Ca2+ 

channels, respond to mechanical stimuli such as touch, chewing during herbivory, gravity, and 

membrane tension changes associated with outgrowth of lateral roots, pollen tube growth, 

and cell wall damage (Nakagawa et al., 2007; Lucas et al., 2013; Monshausen and Haswell, 

2013; Toyota and Gilroy, 2013; Appel and Cocroft, 2014). Also a hypo-osmotic challenge can 

cause membrane stretching and thereby activation of mechanosensitive channels (Qi et al., 

2004; Veley et al., 2012). 

Another family of Ca2+ channels which is activated by changes in osmolarity are the REDUCED 

HYPEROSMOLALITY-INDUCED [Ca(2+)]i INCREASEs (OSCAs) (Yuan et al., 2014). Study of osca1 
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has shown a role for this OSCA in mediating Ca2+ signaling in guard and root cells under osmotic 

stress in order to regulate water transpiration. OSCA4 was identified in a screen for regulators 

of vacuolar protein sorting (Fuji et al., 2007a).  

The ANNEXINs (ANNs), which are represented by 8 members in Arabidopsis (Clark et al., 2012), 

are more atypical Ca2+ channels. ANNs are soluble proteins that can associate with membranes 

in a Ca2+-dependent or –independent manner (Breton et al., 2000; Hofmann et al., 2000; 

Gorecka et al., 2007; Hu et al., 2008; Laohavisit et al., 2009). They are often classified as 

voltage-gated channels, however, they can also be activated by different reactive oxygen 

species (ROS) and adenosine triphosphate (ATP) (Shang et al., 2009; Kudla et al., 2010; 

Laohavisit et al., 2012; Richards et al., 2014). Furthermore, while conventional Ca2+ channels 

mostly localize to specific membranes, ANNs can occur at multiple sites simultaneously, even 

extracellularly. AtANN1 for example was reported to be found in the plasma membrane, at 

the ER, mitochondria, chloroplast, vacuole, and in the cell wall (Laohavisit and Davies, 2009; 

Obata et al., 2011). Factors that can determine ANN position are salt stress, cold, mechanical 

stimulation and gravistimulation (Thonat et al., 1997; Breton et al., 2000; Clark et al., 2000; 

Lee et al., 2004). ANNs have been shown to be important for mediating osmotic stress, salt 

and drought tolerance, and ABA signaling (Lee et al., 2004; Gorantla et al., 2005; Laohavisit et 

al., 2013). Besides mediating Ca2+ transport, some ANNs also show ATPase and peroxidase 

activity (McClung et al., 1994; Gorecka et al., 2005). Given their property to associate with 

membrane phospholipids in a Ca2+-dependent matter, it has also been suggested that ANNs 

operate as regulators of membrane trafficking (Konopka-Postupolska and Clark, 2017). 

In order to transduce diverse stimuli-induced Ca2+ signatures, plants have evolved an 

extensive set of Ca2+ sensors. Sensor relays only have a Ca2+-binding domain and need to 

associate with an interaction partner (e.g. a protein kinase) to transduce the Ca2+ signal. Plant 

sensor relays are CaM and CALCINEURIN B-LIKE (CBL) proteins which bind Ca2+ ions through 

their EF hand domains (Luan et al., 2002). Among CaM targets are protein kinases, metabolic 

enzymes, and cytoskeleton-associated proteins (Zielinski, 1998; Snedden and Fromm, 2001; 

Reddy et al., 2002). CBLs associate with CBL-INTERACTING PROTEIN KINASEs (CIPKs) (Shi et al., 

1999) and function in salt stress signaling and adaptation, response to wounding, cold, and 

drought, regulation of ABA sensitivity and biosynthesis, and nutrient sensing (Luan et al., 

2002). Sensor responders combine the role of Ca2+ binding and signal transduction in one 
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protein (Sanders et al., 2002). Ca2+-DEPENDENT PROTEIN KINASEs (CDPKs or CPKs) contain 4 

EF hand domains for Ca2+ binding and a kinase domain for Ca2+-dependent phosphorylation of 

a downstream target. Arabidopsis has 34 CDPKs (Cheng et al., 2002b) operating in a diverse 

range of signaling pathways related to plant immunity, regulation of the cytoskeleton, ion and 

water transport, nitrogen and phospholipid metabolism,… (Cheng et al., 2002b; Reddy and 

Reddy, 2004; Boudsocq et al., 2010). 

After the Ca2+ signature has been sensed and decoded into a specific response, the Ca2+ resting 

levels in the cytoplasm have to be reestablished. This is achieved by active efflux of Ca2+ ions 

by Ca2+-ATPases and Ca2+-H+ antiporters, also named CATION EXCHANGERs (CAX). Ca2+-

ATPases can be further subdivided in ER-TYPE Ca2+-ATPASEs (ECAs) and AUTO-INHIBITED Ca2+-

ATPASEs (ACA) (Geisler et al., 2000a; Sze et al., 2000; Bonza and De Michelis, 2011). These 

pumps have been reported to localize at membranes of intracellular Ca2+ storages such as the 

ER, the vacuole, the Golgi Apparatus, endosomes, and at the plasma membrane (Liang et al., 

1997; Harper et al., 1998; Hong et al., 1999; Bonza et al., 2000; Geisler et al., 2000b; Schiøtt 

et al., 2004; Lee et al., 2007; George et al., 2008; Li et al., 2008b; Mills et al., 2008; Kudla et al., 

2010; Limonta et al., 2014). Initially AtACA1 was identified in the chloroplast envelop (Huang 

et al., 1993), however, more recent observations have brought the relevance of ACA1 for 

chloroplast Ca2+ import into question (Hochmal et al., 2015). Interestingly, ECAs and ACAs can 

be selectively inhibited by Cyclopiazonic acid and Eosin Y respectively (Liang and Sze, 1998; 

Bonza et al., 2004), making these drug interesting tools to study ECA and ACA function. 

Arabidopsis counts 4 ECAs (Sze et al., 2000) of which ECA1 and ECA3 were reported to be 

important for Mn2+ homeostasis (Wu et al., 2002; Mills et al., 2008). Knowledge on the 

functionality of other ECAs remains to be obtained. The AtACAs are represented by 10 

members (Sze et al., 2000) that are activated by osmotic and cold stress (Beffagna et al., 2005; 

Schiøtt and Palmgren, 2005), are involved in inflorescence architecture (George et al., 2008), 

and perform a profound role in plant defense during pathogen infection (Boursiac et al., 2010; 

Frei dit Frey et al., 2012; Yang et al., 2017). While Ca2+-ATPases obtain energy from ATP 

hydrolysis to transport Ca2+ against the strong cytosol-intracellular store gradient, Ca2+ efflux 

by CAX is driven by Ca2+ -H+ exchange. CAX are mainly found at the tonoplast, but have also 

been identified at the plasma membrane (Hirschi, 2000; Cheng et al., 2002a; Cheng et al., 

2005; Luo et al., 2005). CAXs are important for proper plant growth and nutrient acquisition 
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(Cheng et al., 2005), salt stress tolerance (Luo et al., 2005), and virus-induced oxidative stress 

resistance (Shabala et al., 2011). 

 

Conclusions and perspectives 

In this chapter we aimed to give a general introduction on auxin and Ca2+ signaling, and 

illustrate where these two fields come together. We exemplified the importance of regulated 

endomembrane trafficking and polarity of the PIN auxin efflux carriers for proper directional 

auxin transport and consequently the successful progression of a wide range of auxin-

dependent developmental processes and tropisms. We also described how auxin can 

feedback regulated the directionality of its own transport by inhibiting clathrin-mediated PIN 

endocytosis. Currently, it has been established to involve auxin-dependent activation of 

ROP/RIC signaling, but the auxin receptor involved remains to be identified. In this respect we 

have discussed the controversy on the role of ABP1 as an auxin receptor. In the second part 

of the introduction we focused on sketching our current understanding on the physiological 

importance and genetics of Ca2+ signaling in plants. As we aim to bring together auxin and Ca2+ 

in this PhD project, we highlighted our current knowledge on Ca2+-dependent auxin signaling.  

The following introductory chapters will elaborate in more depth on Ca2+ and its role in cell 

polarity (Section I – Chapter 2) and endomembrane trafficking (Section 1 – Chapter 3). 

 

References 

Appel, H.M., and Cocroft, R.B. (2014). Plants respond to leaf vibrations caused by insect herbivore chewing. 
Oecologia 175, 1257-1266. 

Arimura, G.-i., and Maffei, M.E. (2010). Calcium and secondary CPK signaling in plants in response to herbivore 
attack. Biochemical and Biophysical Research Communications 400, 455-460. 

Bailly, A., Sovero, V., Vincenzetti, V., Santelia, D., Bartnik, D., Koenig, B.W., Mancuso, S., Martinoia, E., and 
Geisler, M. (2008). Modulation of P-glycoproteins by Auxin Transport Inhibitors Is Mediated by 
Interaction with Immunophilins. Journal of Biological Chemistry 283, 21817-21826. 

Baral, A., Irani, N.G., Fujimoto, M., Nakano, A., Mayor, S., and Mathew, M.K. (2015). Salt-Induced Remodeling 
of Spatially Restricted Clathrin-Independent Endocytic Pathways in Arabidopsis Root. The Plant Cell 27, 
1297-1315. 

Barbez, E., Kubes, M., Rolcik, J., Beziat, C., Pencik, A., Wang, B., Rosquete, M.R., Zhu, J., Dobrev, P.I., Lee, Y., 
Zazimalova, E., Petrasek, J., Geisler, M., Friml, J., and Kleine-Vehn, J. (2012). A novel putative auxin 
carrier family regulates intracellular auxin homeostasis in plants. Nature 485, 119-122. 

Barbosa, Inês C.R., Zourelidou, M., Willige, Björn C., Weller, B., and Schwechheimer, C. (2014). D6 PROTEIN 
KINASE Activates Auxin Transport-Dependent Growth and PIN-FORMED Phosphorylation at the Plasma 
Membrane. Developmental Cell 29, 674-685. 



33 
 

Baster, P., Robert, S., Kleine-Vehn, J., Vanneste, S., Kania, U., Grunewald, W., De Rybel, B., Beeckman, T., and 
Friml, J. (2013). SCF(TIR1/AFB)-auxin signalling regulates PIN vacuolar trafficking and auxin fluxes during 
root gravitropism. The EMBO Journal 32, 260-274. 

Beffagna, N., Buffoli, B., and Busi, C. (2005). Modulation of Reactive Oxygen Species Production During Osmotic 
Stress in Arabidopsis thaliana Cultured Cells: Involvement of the Plasma Membrane Ca2+-ATPase and 
H+-ATPase. Plant and Cell Physiology 46, 1326-1339. 

Benjamins, R., and Scheres, B. (2008). Auxin: The Looping Star in Plant Development. Annual Review of Plant 
Biology 59, 443-465. 

Benjamins, R., Ampudia, C.S.G., Hooykaas, P.J.J., and Offringa, R. (2003). PINOID-Mediated Signaling Involves 
Calcium-Binding Proteins. Plant Physiology 132, 1623-1630. 

Benjamins, R., Quint, A., Weijers, D., Hooykaas, P., and Offringa, R. (2001). The PINOID protein kinase regulates 
organ development in <em>Arabidopsis</em> by enhancing polar auxin transport. Development 128, 
4057-4067. 

Benková, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertová, D., Jürgens, G., and Friml, J. (2003). Local, 
Efflux-Dependent Auxin Gradients as a Common Module for Plant Organ Formation. Cell 115, 591-602. 

Bennett, M.J., Marchant, A., Green, H.G., May, S.T., Ward, S.P., Millner, P.A., Walker, A.R., Schulz, B., and 
Feldmann, K.A. (1996). <strong><em>Arabidopsis AUX1</em></strong> Gene: A Permease-Like 
Regulator of Root Gravitropism. Science 273, 948-950. 

Bennett, S.R.M., Alvarez, J., Bossinger, G., and Smyth, D.R. (1995). Morphogenesis in pinoid mutants of 
Arabidopsis thaliana. The Plant Journal 8, 505-520. 

Béziat, C., Barbez, E., Feraru, M.I., Lucyshyn, D., and Kleine-Vehn, J. (2017). Light triggers PILS-dependent 
reduction in nuclear auxin signalling for growth transition 3, 17105. 

Blaauw, A. H. (1918). Mededel. Landbouwhoogeschool Wageningen, 15, 91.  
Bonza, M.C., and De Michelis, M.I. (2011). The plant Ca2+-ATPase repertoire: biochemical features and 

physiological functions. Plant Biology 13, 421-430. 
Bonza, M.C., Luoni, L., and De Michelis, M.I. (2004). Functional expression in yeast of an N-deleted form of At-

ACA8, a plasma membrane Ca2+-ATPase of Arabidopsis thaliana, and characterization of a hyperactive 
mutant. Planta 218, 814-823. 

Bonza, M.C., Morandini, P., Luoni, L., Geisler, M., Palmgren, M.G., and De Michelis, M.I. (2000). At-ACA8 
Encodes a Plasma Membrane-Localized Calcium-ATPase of Arabidopsis with a Calmodulin-Binding 
Domain at the N Terminus. Plant Physiology 123, 1495-1506. 

Bosco, C.D., Dovzhenko, A., Liu, X., Woerner, N., Rensch, T., Eismann, M., Eimer, S., Hegermann, J., Paponov, 
I.A., Ruperti, B., Heberle-Bors, E., Touraev, A., Cohen, J.D., and Palme, K. (2012). The endoplasmic 
reticulum localized PIN8 is a pollen-specific auxin carrier involved in intracellular auxin homeostasis. The 
Plant Journal 71, 860-870. 

Boudsocq, M., Willmann, M.R., McCormack, M., Lee, H., Shan, L., He, P., Bush, J., Cheng, S.-H., and Sheen, J. 
(2010). Differential innate immune signalling via Ca2+ sensor protein kinases. Nature 464, 418-422. 

Boursiac, Y., Lee, S.M., Romanowsky, S., Blank, R., Sladek, C., Chung, W.S., and Harper, J.F. (2010). Disruption 
of the Vacuolar Calcium-ATPases in Arabidopsis Results in the Activation of a Salicylic Acid-Dependent 
Programmed Cell Death Pathway. Plant Physiology 154, 1158-1171. 

Boysen-Jensen, P.(1928). Planta 6, 464-477. 
Braun, N., Wyrzykowska, J., Muller, P., David, K., Couch, D., Perrot-Rechenmann, C., and Fleming, A.J. (2008). 

Conditional Repression of AUXIN BINDING PROTEIN1 Reveals That It Coordinates Cell Division and Cell 
Expansion during Postembryonic Shoot Development in Arabidopsis and Tobacco. The Plant Cell 20, 
2746-2762. 

Breton, G., Vazquez-Tello, A., Danyluk, J., and Sarhan, F. (2000). Two novel intrinsic annexins accumulate in 
wheat membranes in response to low temperature. Plant and Cell Physiology 41, 177-184. 

Brumos, J., Alonso, J.M., and Stepanova, A.N. (2014). Genetic aspects of auxin biosynthesis and its regulation. 
Physiologia Plantarum 151, 3-12. 

Burstrom, H.G. (1968). Calcium and plant growth. Biol. Rev. (Camb.) 43 287–316. 
Bussler, W. (1962). Ca-Mangelsymptome bei Sonnenblumen. Zeitschrift für Pflanzenernährung, Düngung, 

Bodenkunde 99, 207-215. 
Calderón Villalobos, L.I.A., Lee, S., De Oliveira, C., Ivetac, A., Brandt, W., Armitage, L., Sheard, L.B., Tan, X., 

Parry, G., Mao, H., Zheng, N., Napier, R., Kepinski, S., and Estelle, M. (2012). A combinatorial TIR1/AFB–
Aux/IAA co-receptor system for differential sensing of auxin. Nat Chem Biol 8, 477-485. 

Chen, J.-G., Ullah, H., Young, J.C., Sussman, M.R., and Jones, A.M. (2001). ABP1 is required for organized cell 
elongation and division in Arabidopsis embryogenesis. Genes & Development 15, 902-911. 



34 
 

Chen, X., Naramoto, S., Robert, S., Tejos, R., Löfke, C., Lin, D., Yang, Z., and Friml, J. (2012). ABP1 and ROP6 
GTPase Signaling Regulate Clathrin-Mediated Endocytosis in Arabidopsis Roots. Current Biology 22, 
1326-1332. 

Cheng, N.-h., Pittman, J.K., Shigaki, T., and Hirschi, K.D. (2002a). Characterization of CAX4, an Arabidopsis 
H<sup>+</sup>/Cation Antiporter. Plant Physiology 128, 1245-1254. 

Cheng, N.-H., Pittman, J.K., Shigaki, T., Lachmansingh, J., LeClere, S., Lahner, B., Salt, D.E., and Hirschi, K.D. 
(2005). Functional Association of Arabidopsis CAX1 and CAX3 Is Required for Normal Growth and Ion 
Homeostasis. Plant Physiology 138, 2048-2060. 

Cheng, S., Willmann, M.R., Chen, H., and Sheen, J. (2002b). Calcium Signaling through Protein Kinases. The 
Arabidopsis Calcium-Dependent Protein Kinase Gene Family. Plant Physiology 129, 469-485. 

Cheng, Y., Dai, X., and Zhao, Y. (2006). Auxin biosynthesis by the YUCCA flavin monooxygenases controls the 
formation of floral organs and vascular tissues in Arabidopsis. Genes & Development 20, 1790-1799. 

Cheng, Y., Dai, X., and Zhao, Y. (2007). Auxin Synthesized by the YUCCA Flavin Monooxygenases Is Essential for 
Embryogenesis and Leaf Formation in Arabidopsis. The Plant Cell 19, 2430-2439. 

Cholodny, N. (1927). Wuchshormone und tropismem bei den planzen. Biol. Zentralbl. 47, 604-626. 
Christensen, S.K., Dagenais, N., Chory, J., and Weigel, D. (2000). Regulation of Auxin Response by the Protein 

Kinase PINOID. Cell 100, 469-478. 
Clark, G.B., Morgan, R.O., Fernandez, M.-P., and Roux, S.J. (2012). Evolutionary adaptation of plant annexins 

has diversified their molecular structures, interactions and functional roles. New Phytologist 196, 695-
712. 

Clark, G.B., Rafati, D.S., Bolton, R.J., Dauwalder, M., and Roux, S.J. (2000). Redistribution of annexin in 
gravistimulated pea plumules. Plant Physiology and Biochemistry 38, 937-947. 

Cook, S.D., Nichols, D.S., Smith, J., Chourey, P.S., McAdam, E.L., Quittenden, L.J., and Ross, J.J. (2016). Auxin 
biosynthesis: Are the indole-3-acetic acid and phenylacetic acid biosynthesis pathways mirror images? 
Plant Physiology. 

Cowles, C.R., Odorizzi, G., Payne, G.S., and Emr, S.D. (1997). The AP-3 Adaptor Complex Is Essential for Cargo-
Selective Transport to the Yeast Vacuole. Cell 91, 109-118. 

Cui, Y., Zhao, Q., Gao, C., Ding, Y., Zeng, Y., Ueda, T., Nakano, A., and Jiang, L. (2014). Activation of the Rab7 
GTPase by the MON1-CCZ1 Complex Is Essential for PVC-to-Vacuole Trafficking and Plant Growth in 
<em>Arabidopsis</em>. The Plant Cell Online. 

Dai, M., Zhang, C., Kania, U., Chen, F., Xue, Q., McCray, T., Li, G., Qin, G., Wakeley, M., Terzaghi, W., Wan, J., 
Zhao, Y., Xu, J., Friml, J., Deng, X.W., and Wang, H. (2012). A PP6-Type Phosphatase Holoenzyme 
Directly Regulates PIN Phosphorylation and Auxin Efflux in Arabidopsis. The Plant Cell 24, 2497-2514. 

Darwin, C., Darwin F. (1881). The power of movement in plants. Appleton and Co., New York, NY, USA. 
daSilva, L.L.P., Taylor, J.P., Hadlington, J.L., Hanton, S.L., Snowden, C.J., Fox, S.J., Foresti, O., Brandizzi, F., and 

Denecke, J. (2005). Receptor Salvage from the Prevacuolar Compartment Is Essential for Efficient 
Vacuolar Protein Targeting. The Plant Cell 17, 132-148. 

Davenport, R. (2002). Glutamate Receptors in Plants. Annals of Botany 90, 549-557. 
Davies, R.T., Goetz, D.H., Lasswell, J., Anderson, M.N., and Bartel, B. (1999). IAR3 encodes an auxin conjugate 

hydrolase from Arabidopsis. The Plant Cell 11, 365-376. 
Davis, D.J., McDowell, S.C., Park, E., Hicks, G., Wilkop, T.E., and Drakakaki, G. (2016). The RAB GTPase RABA1e 

localizes to the cell plate and shows distinct subcellular behavior from RABA2a under Endosidin 7 
treatment. Plant Signaling & Behavior 11, e984520. 

Dell’Angelica, E.C., Shotelersuk, V., Aguilar, R.C., Gahl, W.A., and Bonifacino, J.S. (1999). Altered Trafficking of 
Lysosomal Proteins in Hermansky-Pudlak Syndrome Due to Mutations in the &#x3b2;3A Subunit of the 
AP-3 Adaptor. Molecular Cell 3, 11-21. 

Demidchik, V., and Maathuis, F.J.M. (2007). Physiological roles of nonselective cation channels in plants: from 
salt stress to signalling and development. New Phytologist 175, 387-404. 

Demidchik, V., Bowen, H.C., Maathuis, F.J.M., Shabala, S.N., Tester, M.A., White, P.J., and Davies, J.M. (2002). 
Arabidopsis thaliana root non-selective cation channels mediate calcium uptake and are involved in 
growth. The Plant Journal 32, 799-808. 

Dharmasiri, N., Dharmasiri, S., and Estelle, M. (2005). The F-box protein TIR1 is an auxin receptor. Nature 435, 
441-445. 

Dhonukshe, P., Aniento, F., Hwang, I., Robinson, D.G., Mravec, J., Stierhof, Y.-D., and Friml, J. (2007). Clathrin-
Mediated Constitutive Endocytosis of PIN Auxin Efflux Carriers in Arabidopsis. Current Biology 17, 520-
527. 



35 
 

Dhonukshe, P., Huang, F., Galvan-Ampudia, C.S., Mähönen, A.P., Kleine-Vehn, J., Xu, J., Quint, A., Prasad, K., 
Friml, J., Scheres, B., and Offringa, R. (2010). Plasma membrane-bound AGC3 kinases phosphorylate 
PIN auxin carriers at TPRXS(N/S) motifs to direct apical PIN recycling. Development 137, 3245-3255. 

Di Rubbo, S., Irani, N.G., Kim, S.Y., Xu, Z.-Y., Gadeyne, A., Dejonghe, W., Vanhoutte, I., Persiau, G., Eeckhout, 
D., Simon, S., Song, K., Kleine-Vehn, J., Friml, J., De Jaeger, G., Van Damme, D., Hwang, I., and 
Russinova, E. (2013). The Clathrin Adaptor Complex AP-2 Mediates Endocytosis of BRASSINOSTEROID 
INSENSITIVE1 in Arabidopsis. The Plant Cell 25, 2986-2997. 

Ding, Z., Galvan-Ampudia, C.S., Demarsy, E., Langowski, L., Kleine-Vehn, J., Fan, Y., Morita, M.T., Tasaka, M., 
Fankhauser, C., Offringa, R., and Friml, J. (2011). Light-mediated polarization of the PIN3 auxin 
transporter for the phototropic response in Arabidopsis. Nat Cell Biol 13, 447-452. 

Ding, Z., Wang, B., Moreno, I., Dupláková, N., Simon, S., Carraro, N., Reemmer, J., Pěnčík, A., Chen, X., Tejos, 
R., Skůpa, P., Pollmann, S., Mravec, J., Petrášek, J., Zažímalová, E., Honys, D., Rolčík, J., Murphy, A., 
Orellana, A., Geisler, M., and Friml, J. (2012). ER-localized auxin transporter PIN8 regulates auxin 
homeostasis and male gametophyte development in Arabidopsis 3, 941. 

Dodd, A.N., Kudla, J., and Sanders, D. (2010). The Language of Calcium Signaling. Annual Review of Plant Biology 
61, 593-620. 

Donaldson, J.G., and Jackson, C.L. (2000). Regulators and effectors of the ARF GTPases. Current Opinion in Cell 
Biology 12, 475-482. 

Drdová, E.J., Synek, L., Pečenková, T., Hála, M., Kulich, I., Fowler, J.E., Murphy, A.S., and Žárský, V. (2013). The 
exocyst complex contributes to PIN auxin efflux carrier recycling and polar auxin transport in 
Arabidopsis. The Plant Journal 73, 709-719. 

Ebine, K., Inoue, T., Ito, J., Ito, E., Uemura, T., Goh, T., Abe, H., Sato, K., Nakano, A., and Ueda, T. (2014). Plant 
Vacuolar Trafficking Occurs through Distinctly Regulated Pathways. Current Biology 24, 1375-1382. 

Effendi, Y., Jones, A.M., and Scherer, G.F.E. (2013). AUXIN-BINDING-PROTEIN1 (ABP1) in phytochrome-B-
controlled responses. Journal of Experimental Botany 64, 5065-5074. 

Enders, T.A., Oh, S., Yang, Z., Montgomery, B.L., and Strader, L.C. (2015). Genome Sequencing of Arabidopsis 
abp1-5 Reveals Second-Site Mutations That May Affect Phenotypes. The Plant Cell 27, 1820-1826. 

Ettinger, W.F., Clear, A.M., Fanning, K.J., and Peck, M.L. (1999). Identification of a Ca(2+)/H(+) Antiport in the 
Plant Chloroplast Thylakoid Membrane. Plant Physiology 119, 1379-1386. 

Fankhauser, C., and Christie, John M. (2015). Plant Phototropic Growth. Current Biology 25, R384-R389. 
Felle, H. (1988). Auxin causes oscillations of cytosolic free calcium and pH inZea mays coleoptiles. Planta 174, 

495-499. 
Fendrych, M., Leung, J., and Friml, J. (2016). TIR1/AFB-Aux/IAA auxin perception mediates rapid cell wall 

acidification and growth of Arabidopsis hypocotyls. eLife 5, e19048. 
Feng, L., Seymour, A.B., Jiang, S., To, A., Peden, A.A., Novak, E.K., Zhen, L., Rusiniak, M.E., Eicher, E.M., 

Robinson, M.S., Gorin, M.B., and Swank, R.T. (1999). The β3A Subunit Gene (Ap3B1) of the Ap-3 
Adaptor Complex Is Altered in the Mouse Hypopigmentation Mutant Pearl, a Model for Hermansky-
Pudlak Syndrome and Night Blindness. Human Molecular Genetics 8, 323-330. 

Feng, Q.-N., Zhang, Y., and Li, S. (2017). Tonoplast targeting of VHA-a3 relies on a Rab5-mediated but Rab7-
independent vacuolar trafficking route. Journal of Integrative Plant Biology 59, 230-233. 

Feraru, E., Paciorek, T., Feraru, M.I., Zwiewka, M., De Groodt, R., De Rycke, R., Kleine-Vehn, J., and Friml, J. 
(2010). The AP-3 β Adaptin Mediates the Biogenesis and Function of Lytic Vacuoles in Arabidopsis. The 
Plant Cell 22, 2812-2824. 

Feraru, E., Feraru, M.I., Asaoka, R., Paciorek, T., De Rycke, R., Tanaka, H., Nakano, A., and Friml, J. (2012). 
BEX5/RabA1b Regulates trans-Golgi Network-to-Plasma Membrane Protein Trafficking in Arabidopsis. 
The Plant Cell 24, 3074-3086. 

Ferro, N., Bredow, T., Jacobsen, H.-J., and Reinard, T. (2010). Route to Novel Auxin: Auxin Chemical Space toward 
Biological Correlation Carriers. Chemical Reviews 110, 4690-4708. 

Forde, B.G., and Roberts, M.R. (2014). Glutamate receptor-like channels in plants: a role as amino acid sensors 
in plant defence? F1000Prime Reports 6, 37. 

Frei dit Frey, N., Mbengue, M., Kwaaitaal, M., Nitsch, L., Altenbach, D., Häweker, H., Lozano-Duran, R., Njo, 
M.F., Beeckman, T., Huettel, B., Borst, J.W., Panstruga, R., and Robatzek, S. (2012). Plasma Membrane 
Calcium ATPases Are Important Components of Receptor-Mediated Signaling in Plant Immune 
Responses and Development. Plant Physiology 159, 798-809. 

Frietsch, S., Wang, Y.-F., Sladek, C., Poulsen, L.R., Romanowsky, S.M., Schroeder, J.I., and Harper, J.F. (2007). A 
cyclic nucleotide-gated channel is essential for polarized tip growth of pollen. Proceedings of the 
National Academy of Sciences 104, 14531-14536. 



36 
 

Friml, J., and Palme, K. (2002). Polar auxin transport – old questions and new concepts? Plant Molecular Biology 
49, 273-284. 

Friml, J., Vieten, A., Sauer, M., Weijers, D., Schwarz, H., Hamann, T., Offringa, R., and Jurgens, G. (2003). Efflux-
dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426, 147-153. 

Friml, J., Benková, E., Blilou, I., Wisniewska, J., Hamann, T., Ljung, K., Woody, S., Sandberg, G., Scheres, B., 
Jürgens, G., and Palme, K. (2002). AtPIN4 Mediates Sink-Driven Auxin Gradients and Root Patterning in 
Arabidopsis. Cell 108, 661-673. 

Friml, J., Yang, X., Michniewicz, M., Weijers, D., Quint, A., Tietz, O., Benjamins, R., Ouwerkerk, P.B.F., Ljung, K., 
Sandberg, G., Hooykaas, P.J.J., Palme, K., and Offringa, R. (2004). A PINOID-Dependent Binary Switch 
in Apical-Basal PIN Polar Targeting Directs Auxin Efflux. Science 306, 862-865. 

Fu, J., and Wang, S. (2011). Insights into Auxin Signaling in Plant–Pathogen Interactions. Frontiers in plant science 
2, 74. 

Fuji, K., Shimada, T., Takahashi, H., Tamura, K., Koumoto, Y., Utsumi, S., Nishizawa, K., Maruyama, N., and 
Hara-Nishimura, I. (2007). Arabidopsis Vacuolar Sorting Mutants (green fluorescent seed) Can Be 
Identified Efficiently by Secretion of Vacuole-Targeted Green Fluorescent Protein in Their Seeds. The 
Plant Cell 19, 597-609. 

Gadeyne, A., Sánchez-Rodríguez, C., Vanneste, S., Di Rubbo, S., Zauber, H., Vanneste, K., Van Leene, J., 
De Winne, N., Eeckhout, D., Persiau, G., Van De Slijke, E., Cannoot, B., Vercruysse, L., Mayers, 
Jonathan R., Adamowski, M., Kania, U., Ehrlich, M., Schweighofer, A., Ketelaar, T., Maere, S., 
Bednarek, Sebastian Y., Friml, J., Gevaert, K., Witters, E., Russinova, E., Persson, S., De Jaeger, G., and 
Van Damme, D. (2014). The TPLATE Adaptor Complex Drives Clathrin-Mediated Endocytosis in Plants. 
Cell 156, 691-704. 

Gallavotti, A. (2013). The role of auxin in shaping shoot architecture. Journal of Experimental Botany 64, 2593-
2608. 

Gälweiler, L., Guan, C., Müller, A., Wisman, E., Mendgen, K., Yephremov, A., and Palme, K. (1998). Regulation 
of Polar Auxin Transport by AtPIN1 in <em>Arabidopsis</em> Vascular Tissue. Science 282, 2226-2230. 

Ganguly, A., Sasayama, D., and Cho, H.-T. (2012). Regulation of the Polarity of Protein Trafficking by 
Phosphorylation. Molecules and Cells 33, 423-430. 

Gao, Y., Zhang, Y., Zhang, D., Dai, X., Estelle, M., and Zhao, Y. (2015). Auxin binding protein 1 (ABP1) is not 
required for either auxin signaling or Arabidopsis development. Proceedings of the National Academy 
of Sciences 112, 2275-2280. 

Garbers, C., DeLong, A., Deruére, J., Bernasconi, P., and Söll, D. (1996). A mutation in protein phosphatase 2A 
regulatory subunit A affects auxin transport in Arabidopsis. The EMBO Journal 15, 2115-2124. 

Gehring, C.A., Irving, H.R., and Parish, R.W. (1990). Effects of auxin and abscisic acid on cytosolic calcium and 
pH in plant cells. Proceedings of the National Academy of Sciences of the United States of America 87, 
9645-9649. 

Geisler, M., Axelsen, K.B., Harper, J.F., and Palmgren, M.G. (2000a). Molecular aspects of higher plant P-type 
Ca2+-ATPases. Biochimica et Biophysica Acta (BBA) - Biomembranes 1465, 52-78. 

Geisler, M., Frangne, N., Gomès, E., Martinoia, E., and Palmgren, M.G. (2000b). The ACA4 Gene of Arabidopsis 
Encodes a Vacuolar Membrane Calcium Pump That Improves Salt Tolerance in Yeast. Plant Physiology 
124, 1814-1827. 

Geldner, N., Friml, J., Stierhof, Y.-D., Jurgens, G., and Palme, K. (2001). Auxin transport inhibitors block PIN1 
cycling and vesicle trafficking. Nature 413, 425-428. 

Geldner, N., Anders, N., Wolters, H., Keicher, J., Kornberger, W., Muller, P., Delbarre, A., Ueda, T., Nakano, A., 
and Jürgens, G. (2003). The Arabidopsis GNOM ARF-GEF Mediates Endosomal Recycling, Auxin 
Transport, and Auxin-Dependent Plant Growth. Cell 112, 219-230. 

George, L., Romanowsky, S.M., Harper, J.F., and Sharrock, R.A. (2008). The ACA10 Ca2+-ATPase Regulates Adult 
Vegetative Development and Inflorescence Architecture in Arabidopsis. Plant Physiology 146, 716-728. 

Gobert, A., Park, G., Amtmann, A., Sanders, D., and Maathuis, F.J.M. (2006). Arabidopsis thaliana Cyclic 
Nucleotide Gated Channel 3 forms a non-selective ion transporter involved in germination and cation 
transport. Journal of Experimental Botany 57, 791-800. 

Goldsmith, M.H.M. (1977). Polar Transport of Auxin. Annual Review of Plant Physiology and Plant Molecular 
Biology 28, 439-478. 

Gorantla, M., Babu, P.R., Lachagari, V.B.R., Feltus, F.A., Paterson, A.H., and Reddy, A.R. (2005). Functional 
genomics of drought stress response in rice: Transcript mapping of annotated unigenes of an indica rice 
(Oryza sativa L. cv. Nagina 22). Current Science 89, 496-514. 



37 
 

Gorecka, K.M., Thouverey, C., Buchet, R., and Pikula, S. (2007). Potential Role of Annexin AnnAt1 from 
Arabidopsis thaliana in pH-Mediated Cellular Response to Environmental Stimuli. Plant and Cell 
Physiology 48, 792-803. 

Gorecka, K.M., Konopka-Postupolska, D., Hennig, J., Buchet, R., and Pikula, S. (2005). Peroxidase activity of 
annexin 1 from Arabidopsis thaliana. Biochemical and Biophysical Research Communications 336, 868-
875. 

Gray, W.M., Kepinski, S., Rouse, D., Leyser, O., and Estelle, M. (2001). Auxin regulates SCFTIR1-dependent 
degradation of AUX/IAA proteins. Nature 414, 271-276. 

Gray, W.M., del Pozo, J.C., Walker, L., Hobbie, L., Risseeuw, E., Banks, T., Crosby, W.L., Yang, M., Ma, H., and 
Estelle, M. (1999). Identification of an SCF ubiquitin–ligase complex required for auxin response in 
Arabidopsis thaliana. Genes & Development 13, 1678-1691. 

Hála, M., Cole, R., Synek, L., Drdová, E., Pečenková, T., Nordheim, A., Lamkemeyer, T., Madlung, J., 
Hochholdinger, F., Fowler, J.E., and Žárský, V. (2008). An Exocyst Complex Functions in Plant Cell 
Growth in Arabidopsis and Tobacco. The Plant Cell 20, 1330-1345. 

Hamilton, D.W.A., Hills, A., Köhler, B., and Blatt, M.R. (2000). Ca2+ channels at the plasma membrane of 
stomatal guard cells are activated by hyperpolarization and abscisic acid. Proceedings of the National 
Academy of Sciences 97, 4967-4972. 

Haney, C.H., and Long, S.R. (2010). Plant flotillins are required for infection by nitrogen-fixing bacteria. 
Proceedings of the National Academy of Sciences 107, 478-483. 

Harper, J.F., Hong, B., Hwang, I., Guo, H.Q., Stoddard, R., Huang, J.F., Palmgren, M.G., and Sze, H. (1998). A 
Novel Calmodulin-regulated Ca2+-ATPase (ACA2) from Arabidopsis with an N-terminal Autoinhibitory 
Domain. Journal of Biological Chemistry 273, 1099-1106. 

Heisler, M.G., Hamant, O., Krupinski, P., Uyttewaal, M., Ohno, C., Jönsson, H., Traas, J., and Meyerowitz, E.M. 
(2010). Alignment between PIN1 Polarity and Microtubule Orientation in the Shoot Apical Meristem 
Reveals a Tight Coupling between Morphogenesis and Auxin Transport. PLOS Biology 8, e1000516. 

Hertel, R., Thomson, K.-S., and Russo, V.E.A. (1972). In-vitro auxin binding to particulate cell fractions from corn 
coleoptiles. Planta 107, 325-340. 

Sze, H., Liang, F., Hwang, I., and, A.C.C., and Harper, J.F. (2000). DIVERSITY AND REGULATION OF PLANT Ca2+ 
PUMPS: Insights from Expression in Yeast. Annual Review of Plant Physiology and Plant Molecular 
Biology 51, 433-462. 

Hewitt, E.J. (1963). CHAPTER TWO - The Essential Nutrient Elements: Requirements and Interactions in Plants A2 
- STEWARD, F.C. In Inorganic Nutrition of Plants (Academic Press), pp. 137-360. 

Himschoot, E., Beeckman, T., Friml, J., and Vanneste, S. (2015). Calcium is an organizer of cell polarity in plants. 
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1853, 2168-2172. 

Hirschi, K. (2000). Vacuolar H- Ca2 transport: who's directing the traffic? Trends in Plant Science 6, 100-104. 
Hochmal, A.K., Schulze, S., Trompelt, K., and Hippler, M. (2015). Calcium-dependent regulation of 

photosynthesis. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1847, 993-1003. 
Hofmann, A., Proust, J., Dorowski, A., Schantz, R., and Huber, R. (2000). Annexin 24 from Capsicum annuum : 

X-RAY STRUCTURE AND BIOCHEMICAL CHARACTERIZATION. Journal of Biological Chemistry 275, 8072-
8082. 

Hong, B., Ichida, A., Wang, Y., Scott Gens, J., Pickard, B.G., and Harper, J.F. (1999). Identification of a Calmodulin-
Regulated Ca(2+)-ATPase in the Endoplasmic Reticulum. Plant Physiology 119, 1165-1176. 

Hu, N.-J., Yusof, A.M., Winter, A., Osman, A., Reeve, A.K., and Hofmann, A. (2008). The Crystal Structure of 
Calcium-bound Annexin Gh1 from Gossypium hirsutum and Its Implications for Membrane Binding 
Mechanisms of Plant Annexins. Journal of Biological Chemistry 283, 18314-18322. 

Huang, L., Berkelman, T., Franklin, A.E., and Hoffman, N.E. (1993). Characterization of a gene encoding a Ca(2+)-
ATPase-like protein in the plastid envelope. Proceedings of the National Academy of Sciences of the 
United States of America 90, 10066-10070. 

Huang, F., Luo, J., Ning, T., Cao, W., Jin, X., Zhao, H., Wang, Y., and Han, S. (2017). Cytosolic and Nucleosolic 
Calcium Signaling in Response to Osmotic and Salt Stresses Are Independent of Each Other in Roots of 
Arabidopsis Seedlings. Frontiers in Plant Science 8. 

Ishida, T., Kurata, T., Okada, K., and Wada, T. (2008). A Genetic Regulatory Network in the Development of 
Trichomes and Root Hairs. Annual Review of Plant Biology 59, 365-386. 

Jaillais, Y., Fobis-Loisy, I., Miege, C., Rollin, C., and Gaude, T. (2006). AtSNX1 defines an endosome for auxin-
carrier trafficking in Arabidopsis. Nature 443, 106-109. 

Jiang, K., and Feldman, L.J. (2005). REGULATION OF ROOT APICAL MERISTEM DEVELOPMENT. Annual Review of 
Cell and Developmental Biology 21, 485-509. 



38 
 

Johnson, C., Knight, M., Kondo, T., Masson, P., Sedbrook, J., Haley, A., and Trewavas, A. (1995). Circadian 
oscillations of cytosolic and chloroplastic free calcium in plants. Science 269, 1863-1865. 

Jones, A.M., Im, K.-H., Savka, M.A., Wu, M.-J., DeWitt, N.G., Shillito, R., and Binns, A.N. (1998). Auxin-
Dependent Cell Expansion Mediated by Overexpressed Auxin-Binding Protein 1. Science 282, 1114-
1117. 

Jurado, S., Abraham, Z., Manzano, C., López-Torrejón, G., Pacios, L.F., and Del Pozo, J.C. (2010). The Arabidopsis 
Cell Cycle F-Box Protein SKP2A Binds to Auxin. The Plant Cell 22, 3891-3904. 

Jürgens, G. (2001). NEW EMBO MEMBER’S REVIEW: Apical–basal pattern formation in Arabidopsis 
embryogenesis. The EMBO Journal 20, 3609-3616. 

Jürgens, G., and Geldner, N. (2007). The High Road and the Low Road: Trafficking Choices in Plants. Cell 130, 
977-979. 

Kamimoto, Y., Terasaka, K., Hamamoto, M., Takanashi, K., Fukuda, S., Shitan, N., Sugiyama, A., Suzuki, H., 
Shibata, D., Wang, B., Pollmann, S., Geisler, M., and Yazaki, K. (2012). Arabidopsis ABCB21 is a 
Facultative Auxin Importer/Exporter Regulated by Cytoplasmic Auxin Concentration. Plant and Cell 
Physiology 53, 2090-2100. 

Kang, H., Kim, S.Y., Song, K., Sohn, E.J., Lee, Y., Lee, D.W., Hara-Nishimura, I., and Hwang, I. (2012). Trafficking 
of Vacuolar Proteins: The Crucial Role of Arabidopsis Vacuolar Protein Sorting 29 in Recycling Vacuolar 
Sorting Receptor. The Plant Cell 24, 5058-5073. 

Kania, U., Fendrych, M., and Friml, J. (2014). Polar delivery in plants; commonalities and differences to animal 
epithelial cells. Open Biology 4. 

Kazan, K. (2013). Auxin and the integration of environmental signals into plant root development. Annals of 
Botany 112, 1655-1665. 

Kazan, K., and Manners, J.M. (2009). Linking development to defense: auxin in plant&#x2013;pathogen 
interactions. Trends in Plant Science 14, 373-382. 

Keinath, N.F., Waadt, R., Brugman, R., Schroeder, Julian I., Grossmann, G., Schumacher, K., and Krebs, M. 
(2015). Live Cell Imaging with R-GECO1 Sheds Light on flg22- and Chitin-Induced Transient 
[Ca<sup>2+</sup>]<sub>cyt</sub> Patterns in <em>Arabidopsis</em>. Molecular Plant 8, 1188-1200. 

Kepinski, S., and Leyser, O. (2005). The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435, 446-
451. 

Kitakura, S., Vanneste, S., Robert, S., Löfke, C., Teichmann, T., Tanaka, H., and Friml, J. (2011). Clathrin Mediates 
Endocytosis and Polar Distribution of PIN Auxin Transporters in Arabidopsis. The Plant Cell 23, 1920-
1931. 

Kitakura, S., Adamowski, M., Matsuura, Y., Santuari, L., Kouno, H., Arima, K., Hardtke, C.S., Friml, J., Kakimoto, 
T., and Tanaka, H. (2017). BEN3/BIG2 ARF GEF is Involved in Brefeldin A-Sensitive Trafficking at the 
trans-Golgi Network/Early Endosome in Arabidopsis thaliana. Plant and Cell Physiology, pcx118-pcx118. 

Kleine-Vehn, J., Leitner, J., Zwiewka, M., Sauer, M., Abas, L., Luschnig, C., and Friml, J. (2008a). Differential 
degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. Proceedings of the 
National Academy of Sciences 105, 17812-17817. 

Kleine-Vehn, J., Huang, F., Naramoto, S., Zhang, J., Michniewicz, M., Offringa, R., and Friml, J. (2009). PIN Auxin 
Efflux Carrier Polarity Is Regulated by PINOID Kinase-Mediated Recruitment into GNOM-Independent 
Trafficking in Arabidopsis. The Plant Cell 21, 3839-3849. 

Kleine-Vehn, J., Dhonukshe, P., Sauer, M., Brewer, P.B., Wiśniewska, J., Paciorek, T., Benková, E., and Friml, J. 
(2008b). ARF GEF-Dependent Transcytosis and Polar Delivery of PIN Auxin Carriers in Arabidopsis. 
Current Biology 18, 526-531. 

Knight, M.R., Campbell, A.K., Smith, S.M., and Trewavas, A.J. (1991). Transgenic plant aequorin reports the 
effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352, 524-526. 

Kogl, F.a.H.-S., A.J. (1931). Uber die Chemie des Wuchsstoffs K. Akad. Wetenschap. Amsterdam. Proc. Sect. Sci. 
34, 1411-1416. 

Koizumi, K., Naramoto, S., Sawa, S., Yahara, N., Ueda, T., Nakano, A., Sugiyama, M., and Fukuda, H. (2005). 
VAN3 ARF–GAP-mediated vesicle transport is involved in leaf vascular network formation. Development 
132, 1699-1711. 

Konopka-Postupolska, D., and Clark, G. (2017). Annexins as Overlooked Regulators of Membrane Trafficking in 
Plant Cells. International Journal of Molecular Sciences 18, 863. 

Korasick, D.A., Enders, T.A., and Strader, L.C. (2013). Auxin biosynthesis and storage forms. Journal of 
Experimental Botany 64, 2541-2555. 

Křeček, P., Skůpa, P., Libus, J., Naramoto, S., Tejos, R., Friml, J., and Zažímalová, E. (2009). The PIN-FORMED 
(PIN) protein family of auxin transporters. Genome Biology 10, 249-249. 



39 
 

Kretzschmar, D., Poeck, B., Roth, H., Ernst, R., Keller, A., Porsch, M., Strauss, R., and Pflugfelder, G.O. (2000). 
Defective pigment granule biogenesis and aberrant behavior caused by mutations in the Drosophila AP-
3beta adaptin gene ruby. Genetics 155, 213-223. 

Kubeš, M., Yang, H., Richter, G.L., Cheng, Y., Młodzińska, E., Wang, X., Blakeslee, J.J., Carraro, N., Petrášek, J., 
Zažímalová, E., Hoyerová, K., Peer, W.A., and Murphy, A.S. (2012). The Arabidopsis concentration-
dependent influx/efflux transporter ABCB4 regulates cellular auxin levels in the root epidermis. The 
Plant Journal 69, 640-654. 

Kudla, J., Batistič, O., and Hashimoto, K. (2010). Calcium Signals: The Lead Currency of Plant Information 
Processing. The Plant Cell 22, 541-563. 

Kurzchalia, T.V., and Partan, R.G. (1999). Membrane microdomains and caveolae. Current Opinion in Cell Biology 
11, 424-431. 

Lam, B.C.H., Sage, T.L., Bianchi, F., and Blumwald, E. (2001). Role of SH3 Domain–Containing Proteins in Clathrin-
Mediated Vesicle Trafficking in Arabidopsis. The Plant Cell 13, 2499-2512. 

Laohavisit, A., and Davies, J.M. (2009). Multifunctional annexins. Plant Science 177, 532-539. 
Laohavisit, A., Richards, S.L., Shabala, L., Chen, C., Colaço, R.D.D.R., Swarbreck, S.M., Shaw, E., Dark, A., 

Shabala, S., Shang, Z., and Davies, J.M. (2013). Salinity-Induced Calcium Signaling and Root Adaptation 
in Arabidopsis Require the Calcium Regulatory Protein Annexin1. Plant Physiology 163, 253-262. 

Laohavisit, A., Mortimer, J.C., Demidchik, V., Coxon, K.M., Stancombe, M.A., Macpherson, N., Brownlee, C., 
Hofmann, A., Webb, A.A.R., Miedema, H., Battey, N.H., and Davies, J.M. (2009). Zea mays Annexins 
Modulate Cytosolic Free Ca(2+) and Generate a Ca(2+)-Permeable Conductance. The Plant Cell 21, 479-
493. 

Laohavisit, A., Shang, Z., Rubio, L., Cuin, T.A., Véry, A.-A., Wang, A., Mortimer, J.C., Macpherson, N., Coxon, 
K.M., Battey, N.H., Brownlee, C., Park, O.K., Sentenac, H., Shabala, S., Webb, A.A.R., and Davies, J.M. 
(2012). Arabidopsis Annexin1 Mediates the Radical-Activated Plasma Membrane Ca(2+)- and K(+)-
Permeable Conductance in Root Cells. The Plant Cell 24, 1522-1533. 

Laxmi, A., Pan, J., Morsy, M., and Chen, R. (2008). Light Plays an Essential Role in Intracellular Distribution of 
Auxin Efflux Carrier PIN2 in Arabidopsis thaliana. PLoS ONE 3, e1510. 

Lee, S., Lee, E.J., Yang, E.J., Lee, J.E., Park, A.R., Song, W.H., and Park, O.K. (2004). Proteomic Identification of 
Annexins, Calcium-Dependent Membrane Binding Proteins That Mediate Osmotic Stress and Abscisic 
Acid Signal Transduction in Arabidopsis. The Plant Cell 16, 1378-1391. 

Lee, S.M., Kim, H.S., Han, H.J., Moon, B.C., Kim, C.Y., Harper, J.F., and Chung, W.S. (2007). Identification of a 
calmodulin-regulated autoinhibited Ca2+-ATPase (ACA11) that is localized to vacuole membranes in 
Arabidopsis. FEBS Letters 581, 3943-3949. 

Leitner, J., Petrášek, J., Tomanov, K., Retzer, K., Pařezová, M., Korbei, B., Bachmair, A., Zažímalová, E., and 
Luschnig, C. (2012). Lysine63-linked ubiquitylation of PIN2 auxin carrier protein governs hormonally 
controlled adaptation of Arabidopsis root growth. Proceedings of the National Academy of Sciences 109, 
8322-8327. 

Li, F., Wang, J., Ma, C., Zhao, Y., Wang, Y., Hasi, A., and Qi, Z. (2013). Glutamate Receptor-Like Channel3.3 Is 
Involved in Mediating Glutathione-Triggered Cytosolic Calcium Transients, Transcriptional Changes, and 
Innate Immunity Responses in Arabidopsis. Plant Physiology 162, 1497-1509. 

Li, S.-B., Xie, Z.-Z., Hu, C.-G., and Zhang, J.-Z. (2016). A Review of Auxin Response Factors (ARFs) in Plants. 
Frontiers in Plant Science 7, 47. 

Li, X., Chanroj, S., Wu, Z., Romanowsky, S.M., Harper, J.F., and Sze, H. (2008). A Distinct Endosomal Ca2+Mn2+ 
Pump Affects Root Growth through the Secretory Process. Plant Physiology 147, 1675-1689. 

Liang, F., and Sze, H. (1998). A High-Affinity Ca(2+) Pump, ECA1, from the Endoplasmic Reticulum Is Inhibited by 
Cyclopiazonic Acid but Not by Thapsigargin. Plant Physiology 118, 817-825. 

Liang, F., Cunningham, K.W., Harper, J.F., and Sze, H. (1997). ECA1 complements yeast mutants defective in 
Ca2+ pumps and encodes an endoplasmic reticulum-type Ca2+-ATPase in Arabidopsis thaliana. 
Proceedings of the National Academy of Sciences 94, 8579-8584. 

Limonta, M., Romanowsky, S., Olivari, C., Bonza, M.C., Luoni, L., Rosenberg, A., Harper, J.F., and De Michelis, 
M.I. (2014). ACA12 Is a Deregulated Isoform of Plasma Membrane Ca(2+)-ATPase of Arabidopsis 
thaliana. Plant molecular biology 84, 387-397. 

Lin, D., Nagawa, S., Chen, J., Cao, L., Chen, X., Xu, T., Li, H., Dhonukshe, P., Yamamuro, C., Friml, J., Scheres, B., 
Fu, Y., and Yang, Z. (2012). A ROP GTPase-Dependent Auxin Signaling Pathway Regulates the Subcellular 
Distribution of PIN2 in Arabidopsis Roots. Current Biology 22, 1319-1325. 

Liu, J., and Guo, W. (2012). The exocyst complex in exocytosis and cell migration. Protoplasma 249, 587-597. 
Ljung, K. (2013). Auxin metabolism and homeostasis during plant development. Development 140, 943-950. 



40 
 

Logan, D.C., and Knight, M.R. (2003). Mitochondrial and Cytosolic Calcium Dynamics Are Differentially Regulated 
in Plants. Plant Physiology 133, 21-24. 

Luan, S., Kudla, J., Rodriguez-Concepcion, M., Yalovsky, S., and Gruissem, W. (2002). Calmodulins and 
Calcineurin B–like Proteins: Calcium Sensors for Specific Signal Response Coupling in Plants. The Plant 
Cell 14, s389-s400. 

Lucas, M., Kenobi, K., von Wangenheim, D., Voβ, U., Swarup, K., De Smet, I., Van Damme, D., Lawrence, T., 
Péret, B., Moscardi, E., Barbeau, D., Godin, C., Salt, D., Guyomarc’h, S., Stelzer, E.H.K., Maizel, A., 
Laplaze, L., and Bennett, M.J. (2013). Lateral root morphogenesis is dependent on the mechanical 
properties of the overlaying tissues. Proceedings of the National Academy of Sciences of the United 
States of America 110, 5229-5234. 

Ludwig-Müller, J. (2011). Auxin conjugates: their role for plant development and in the evolution of land plants. 
Journal of Experimental Botany 62, 1757-1773. 

Luo, G.-Z., Wang, H.-W., Huang, J., Tian, A.-G., Wang, Y.-J., Zhang, J.-S., and Chen, S.-Y. (2005). A Putative Plasma 
Membrane Cation/proton Antiporter from Soybean Confers Salt Tolerance in Arabidopsis. Plant 
Molecular Biology 59, 809-820. 

Luschnig, C., Gaxiola, R.A., Grisafi, P., and Fink, G.R. (1998). EIR1, a root-specific protein involved in auxin 
transport, is required for gravitropism in Arabidopsis thaliana. Genes & Development 12, 2175-2187. 

Ma, W., and Berkowitz, G.A. (2011). Ca2+ conduction by plant cyclic nucleotide gated channels and associated 
signaling components in pathogen defense signal transduction cascades. New Phytologist 190, 566-572. 

Ma, Y., Walker, R.K., Zhao, Y., and Berkowitz, G.A. (2012). Linking ligand perception by PEPR pattern recognition 
receptors to cytosolic Ca2+ elevation and downstream immune signaling in plants. Proceedings of the 
National Academy of Sciences 109, 19852-19857. 

Ma, Y., Zhao, Y., Walker, R.K., and Berkowitz, G.A. (2013). Molecular Steps in the Immune Signaling Pathway 
Evoked by Plant Elicitor Peptides: Ca(2+)-Dependent Protein Kinases, Nitric Oxide, and Reactive Oxygen 
Species Are Downstream from the Early Ca(2+) Signal. Plant Physiology 163, 1459-1471. 

Manzoor, H., Kelloniemi, J., Chiltz, A., Wendehenne, D., Pugin, A., Poinssot, B., and Garcia-Brugger, A. (2013). 
Involvement of the glutamate receptor AtGLR3.3 in plant defense signaling and resistance to 
Hyaloperonospora arabidopsidis. The Plant Journal 76, 466-480. 

Marschner, H. (1995). Mineral Nutrition of Plants. Academic Press, Boston Ed. 2. 
Mäser, P., Thomine, S., Schroeder, J.I., Ward, J.M., Hirschi, K., Sze, H., Talke, I.N., Amtmann, A., Maathuis, 

F.J.M., Sanders, D., Harper, J.F., Tchieu, J., Gribskov, M., Persans, M.W., Salt, D.E., Kim, S.A., and 
Guerinot, M.L. (2001). Phylogenetic Relationships within Cation Transporter Families of Arabidopsis. 
Plant Physiology 126, 1646-1667. 

Masson, P.H., Tasaka, M., Morita, M.T., Guan, C., Chen, R., and Boonsirichai, K. (2002). Arabidopsis thaliana: A 
Model for the Study of Root and Shoot Gravitropism. The Arabidopsis Book / American Society of Plant 
Biologists 1, e0043. 

Mbengue, M., Bourdais, G., Gervasi, F., Beck, M., Zhou, J., Spallek, T., Bartels, S., Boller, T., Ueda, T., Kuhn, H., 
and Robatzek, S. (2016). Clathrin-dependent endocytosis is required for immunity mediated by pattern 
recognition receptor kinases. Proceedings of the National Academy of Sciences 113, 11034-11039. 

McAinsh, B.H.M.R.C.A.M. (1990). Abscisic acid-induced elevation of guard cell cytosolic Ca2+ precedes stomatal 
closure. Nature 343, 186-188. 

McAinsh, M.R., and Pittman, J.K. (2009). Shaping the calcium signature. New Phytologist 181, 275-294. 
McClung, A.D., Carroll, A.D., and Battey, N.H. (1994). Identification and characterization of ATPase activity 

associated with maize (Zea mays) annexins. Biochemical Journal 303, 709-712. 
Medvedev, S.S. (2005). Calcium signaling system in plants. Russian Journal of Plant Physiology 52, 249-270. 
Michalko, J., Glanc, M., Perrot-Rechenmann, C., and Friml, J. (2016). Strong morphological defects in conditional 

Arabidopsis abp1 knock-down mutants generated in absence of functional ABP1 protein. 
F1000Research 5, 86. 

Michniewicz, M., Brewer, P.B., and Friml, J. (2007a). Polar Auxin Transport and Asymmetric Auxin Distribution. 
The Arabidopsis Book / American Society of Plant Biologists 5, e0108. 

Michniewicz, M., Zago, M.K., Abas, L., Weijers, D., Schweighofer, A., Meskiene, I., Heisler, M.G., Ohno, C., 
Zhang, J., Huang, F., Schwab, R., Weigel, D., Meyerowitz, E.M., Luschnig, C., Offringa, R., and Friml, J. 
(2007b). Antagonistic Regulation of PIN Phosphorylation by PP2A and PINOID Directs Auxin Flux. Cell 
130, 1044-1056. 

Miedema, H., Demidchik, V., Véry, A.-A., Bothwell, J.H.F., Brownlee, C., and Davies, J.M. (2008). Two voltage-
dependent calcium channels co-exist in the apical plasma membrane of Arabidopsis thaliana root hairs. 
New Phytologist 179, 378-385. 



41 
 

Mills, R.F., Doherty, M.L., López-Marqués, R.L., Weimar, T., Dupree, P., Palmgren, M.G., Pittman, J.K., and 
Williams, L.E. (2008). ECA3, a Golgi-Localized P<sub>2A</sub>-Type ATPase, Plays a Crucial Role in 
Manganese Nutrition in Arabidopsis. Plant Physiology 146, 116-128. 

Monshausen, G.B., and Haswell, E.S. (2013). A force of nature: molecular mechanisms of mechanoperception in 
plants. Journal of Experimental Botany 64, 4663-4680. 

Monshausen, G.B., Miller, N.D., Murphy, A.S., and Gilroy, S. (2011). Dynamics of auxin-dependent Ca2+ and pH 
signaling in root growth revealed by integrating high-resolution imaging with automated computer 
vision-based analysis. The Plant Journal 65, 309-318. 

Morris, D.A., and Thomas, A.G. (1978). A Microautoradiographic Study of Auxin Transport in the Stem of Intact 
Pea Seedlings (Pisum sativum L.). Journal of Experimental Botany 29, 147-157. 

Moubayidin, L., Di Mambro, R., Sozzani, R., Pacifici, E., Salvi, E., Terpstra, I., Bao, D., van Dijken, A., Ioio, R.D., 
Perilli, S., Ljung, K., Benfey, P.N., Heidstra, R., Costantino, P., and Sabatini, S. (2013). Spatial 
coordination between stem cell activity and cell differentiation in the root meristem. Developmental 
cell 26, 405-415. 

Mousavi, S., Chauvin, A., Pascaud, F., Kellenberger, S., and Farmer, E. (2013). GLUTAMATE RECEPTOR-LIKE 
genes mediate leaf-to-leaf wound signalling. Nature 500, 422-426. 

Mravec, J., Kubeš, M., Bielach, A., Gaykova, V., Petrášek, J., Skůpa, P., Chand, S., Benková, E., Zažímalová, E., 
and Friml, J. (2008). Interaction of PIN and PGP transport mechanisms in auxin distribution-dependent 
development. Development 135, 3345-3354. 

Mravec, J., Petrášek, J., Li, N., Boeren, S., Karlova, R., Kitakura, S., Pařezová, M., Naramoto, S., Nodzyński, T., 
Dhonukshe, P., Bednarek, Sebastian Y., Zažímalová, E., de Vries, S., and Friml, J. (2011). Cell Plate 
Restricted Association of DRP1A and PIN Proteins Is Required for Cell Polarity Establishment in 
<em>Arabidopsis</em>. Current Biology 21, 1055-1060. 

Mravec, J., Skupa, P., Bailly, A., Hoyerova, K., Krecek, P., Bielach, A., Petrasek, J., Zhang, J., Gaykova, V., 
Stierhof, Y.-D., Dobrev, P.I., Schwarzerova, K., Rolcik, J., Seifertova, D., Luschnig, C., Benkova, E., 
Zazimalova, E., Geisler, M., and Friml, J. (2009). Subcellular homeostasis of phytohormone auxin is 
mediated by the ER-localized PIN5 transporter. Nature 459, 1136-1140. 

Murphy, A.S., Bandyopadhyay, A., Holstein, S.E., and Peer, W.A. (2005). ENDOCYTOTIC CYCLING OF PM 
PROTEINS. Annual Review of Plant Biology 56, 221-251. 

Nagawa, S., Xu, T., Lin, D., Dhonukshe, P., Zhang, X., Friml, J., Scheres, B., Fu, Y., and Yang, Z. (2012). ROP 
GTPase-Dependent Actin Microfilaments Promote PIN1 Polarization by Localized Inhibition of Clathrin-
Dependent Endocytosis. PLOS Biology 10, e1001299. 

Nakagawa, Y., Katagiri, T., Shinozaki, K., Qi, Z., Tatsumi, H., Furuichi, T., Kishigami, A., Sokabe, M., Kojima, I., 
Sato, S., Kato, T., Tabata, S., Iida, K., Terashima, A., Nakano, M., Ikeda, M., Yamanaka, T., and Iida, H. 
(2007). Arabidopsis plasma membrane protein crucial for Ca(2+) influx and touch sensing in roots. 
Proceedings of the National Academy of Sciences of the United States of America 104, 3639-3644. 

Naramoto, S., Nodzyński, T., Dainobu, T., Takatsuka, H., Okada, T., Friml, J., and Fukuda, H. (2014). VAN4 
Encodes a Putative TRS120 That is Required for Normal Cell Growth and Vein Development in 
Arabidopsis. Plant and Cell Physiology 55, 750-763. 

Naramoto, S., Kleine-Vehn, J., Robert, S., Fujimoto, M., Dainobu, T., Paciorek, T., Ueda, T., Nakano, A., Van 
Montagu, M.C.E., Fukuda, H., and Friml, J. (2010). ADP-ribosylation factor machinery mediates 
endocytosis in plant cells. Proceedings of the National Academy of Sciences of the United States of 
America 107, 21890-21895. 

Nebenfuhr, A., Ritzenthaler, C., and Robinson, D.G. (2002). Brefeldin A: Deciphering an Enigmatic Inhibitor of 
Secretion. Plant Physiology 130, 1102-1108. 

Nielsen, E., Cheung, A.Y., and Ueda, T. (2008). The Regulatory RAB and ARF GTPases for Vesicular Trafficking. 
Plant Physiology 147, 1516-1526. 

Niemes, S., Langhans, M., Viotti, C., Scheuring, D., San Wan Yan, M., Jiang, L., Hillmer, S., Robinson, D.G., and 
Pimpl, P. (2010). Retromer recycles vacuolar sorting receptors from the trans-Golgi network. The Plant 
Journal 61, 107-121. 

Nodzyński, T., Vanneste, S., Zwiewka, M., Pernisová, M., Hejátko, J., and Friml, J. (2016). Enquiry into the 
Topology of Plasma Membrane-Localized PIN Auxin Transport Components. Molecular Plant 9, 1504-
1519. 

Nodzyński, T., Feraru, M.I., Hirsch, S., De Rycke, R., Niculaes, C., Boerjan, W., Van Leene, J., De Jaeger, G., 
Vanneste, S., and Friml, J. (2013). Retromer Subunits VPS35A and VPS29 Mediate Prevacuolar 
Compartment (PVC) Function in <em>Arabidopsis</em>. Molecular Plant 6, 1849-1862. 



42 
 

Noh, B., Murphy, A.S., and Spalding, E.P. (2001). Multidrug Resistance–like Genes of Arabidopsis Required for 
Auxin Transport and Auxin-Mediated Development. The Plant Cell 13, 2441-2454. 

Nomura, H., Komori, T., Uemura, S., Kanda, Y., Shimotani, K., Nakai, K., Furuichi, T., Takebayashi, K., Sugimoto, 
T., Sano, S., Suwastika, I.N., Fukusaki, E., Yoshioka, H., Nakahira, Y., and Shiina, T. (2012). Chloroplast-
mediated activation of plant immune signalling in Arabidopsis. Nature Communications 3, 926. 

Obata, T., Matthes, A., Koszior, S., Lehmann, M., Araújo, W.L., Bock, R., Sweetlove, L.J., and Fernie, A.R. (2011). 
Alteration of mitochondrial protein complexes in relation to metabolic regulation under short-term 
oxidative stress in Arabidopsis seedlings. Phytochemistry 72, 1081-1091. 

Okada, K., Ueda, J., Komaki, M.K., Bell, C.J., and Shimura, Y. (1991). Requirement of the Auxin Polar Transport 
System in Early Stages of Arabidopsis Floral Bud Formation. The Plant Cell 3, 677-684. 

Oliviusson, P., Heinzerling, O., Hillmer, S., Hinz, G., Tse, Y.C., Jiang, L., and Robinson, D.G. (2006). Plant 
Retromer, Localized to the Prevacuolar Compartment and Microvesicles in Arabidopsis, May Interact 
with Vacuolar Sorting Receptors. The Plant Cell 18, 1239-1252. 

Ordenes, V.R., Moreno, I., Maturana, D., Norambuena, L., Trewavas, A.J., and Orellana, A. (2012). In vivo 
analysis of the calcium signature in the plant Golgi apparatus reveals unique dynamics. Cell Calcium 52, 
397-404. 

Ortiz-Ramírez, C., Michard, E., Simon, A.A., Damineli, D.S.C., Hernández-Coronado, M., Becker, J.D., and Feijó, 
J.A. (2017). GLUTAMATE RECEPTOR-LIKE channels are essential for chemotaxis and reproduction in 
mosses. Nature 549, 91-95. 

Ory, S., and Gasman, S. (2011). Rho GTPases and exocytosis: What are the molecular links? Seminars in Cell & 
Developmental Biology 22, 27-32. 

Ottenschläger, I., Wolff, P., Wolverton, C., Bhalerao, R.P., Sandberg, G., Ishikawa, H., Evans, M., and Palme, K. 
(2003). Gravity-regulated differential auxin transport from columella to lateral root cap cells. 
Proceedings of the National Academy of Sciences of the United States of America 100, 2987-2991. 

Otto, G.P., and Nichols, B.J. (2011). The roles of flotillin microdomains – endocytosis and beyond. Journal of Cell 
Science 124, 3933-3940. 

Overbeek, J.V. (1932). An analysis of phototropism in dicotyledons. Proc. K. Ned. Akad. Wet. 35, 1325-1335. 
Overvoorde, P., Fukaki, H., and Beeckman, T. (2010). Auxin Control of Root Development. Cold Spring Harbor 

Perspectives in Biology 2. 
Paal, A. (1919). Jahrb. wiss. Bot., 58, 406-458. 
Paciorek, T., Zazimalova, E., Ruthardt, N., Petrasek, J., Stierhof, Y.-D., Kleine-Vehn, J., Morris, D.A., Emans, N., 

Jurgens, G., Geldner, N., and Friml, J. (2005). Auxin inhibits endocytosis and promotes its own efflux 
from cells. Nature 435, 1251-1256. 

Peyroche, A., Paris, S., and Jackson, C.L. (1996). Nucleotide exchange on ARF mediated by yeast Geal protein. 
Nature 384, 479. 

Peyroche, A., Antonny, B., Robineau, S., Acker, J., Cherfils, J., and Jackson, C.L. (1999). Brefeldin A Acts to 
Stabilize an Abortive ARF&#x2013;GDP&#x2013;Sec7 Domain Protein Complex. Molecular Cell 3, 275-
285. 

Pěnčík, A., Simonovik, B., Petersson, S.V., Henyková, E., Simon, S., Greenham, K., Zhang, Y., Kowalczyk, M., 
Estelle, M., Zažímalová, E., Novák, O., Sandberg, G., and Ljung, K. (2013). Regulation of Auxin 
Homeostasis and Gradients in <em>Arabidopsis</em> Roots through the Formation of the Indole-3-
Acetic Acid Catabolite 2-Oxindole-3-Acetic Acid. The Plant Cell 25, 3858-3870. 

Péret, B., De Rybel, B., Casimiro, I., Benková, E., Swarup, R., Laplaze, L., Beeckman, T., and Bennett, M.J. (2009). 
Arabidopsis lateral root development: an emerging story. Trends in Plant Science 14, 399-408. 

Petersson, S.V., Johansson, A.I., Kowalczyk, M., Makoveychuk, A., Wang, J.Y., Moritz, T., Grebe, M., Benfey, 
P.N., Sandberg, G., and Ljung, K. (2009). An Auxin Gradient and Maximum in the Arabidopsis Root Apex 
Shown by High-Resolution Cell-Specific Analysis of IAA Distribution and Synthesis. The Plant Cell 21, 
1659-1668. 

Pitts, R.J., Cernac, A., and Estelle, M. (1998). Auxin and ethylene promote root hair elongation in Arabidopsis. 
The Plant Journal 16, 553-560. 

Porco, S., Pěnčík, A., Rashed, A., Voß, U., Casanova-Sáez, R., Bishopp, A., Golebiowska, A., Bhosale, R., Swarup, 
R., Swarup, K., Peňáková, P., Novák, O., Staswick, P., Hedden, P., Phillips, A.L., Vissenberg, K., Bennett, 
M.J., and Ljung, K. (2016). Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis 
in Arabidopsis. Proceedings of the National Academy of Sciences 113, 11016-11021. 

Qi, Z., Kishigami, A., Nakagawa, Y., Iida, H., and Sokabe, M. (2004). A Mechanosensitive Anion Channel in 
Arabidopsis thaliana Mesophyll Cells. Plant and Cell Physiology 45, 1704-1708. 



43 
 

Rahman, A. (2013). Auxin: a regulator of cold stress response. Physiologia Plantarum 147, 28-35. 
Rahman, A., Hosokawa, S., Oono, Y., Amakawa, T., Goto, N., and Tsurumi, S. (2002). Auxin and Ethylene 

Response Interactions during Arabidopsis Root Hair Development Dissected by Auxin Influx Modulators. 
Plant Physiology 130, 1908-1917. 

Ramos, J.A., Zenser, N., Leyser, O., and Callis, J. (2001). Rapid Degradation of Auxin/Indoleacetic Acid Proteins 
Requires Conserved Amino Acids of Domain II and Is Proteasome Dependent. The Plant Cell 13, 2349-
2360. 

Rampey, R.A., LeClere, S., Kowalczyk, M., Ljung, K., Sandberg, G., and Bartel, B. (2004). A Family of Auxin-
Conjugate Hydrolases That Contributes to Free Indole-3-Acetic Acid Levels during Arabidopsis 
Germination. Plant Physiology 135, 978-988. 

Rashotte, A.M., DeLong, A., and Muday, G.K. (2001). Genetic and Chemical Reductions in Protein Phosphatase 
Activity Alter Auxin Transport, Gravity Response, and Lateral Root Growth. The Plant Cell 13, 1683-1697. 

Raven, J.A. (1975). Transport of Indoleacetic-Acid in Plant-Cells in Relation to Ph and Electrical Potential 
Gradients, and Its Significance for Polar Iaa Transport. New Phytologist 74, 163-172. 

Reddy, V.S., and Reddy, A.S.N. (2004). Proteomics of calcium-signaling components in plants. Phytochemistry 
65, 1745-1776. 

Reddy, V.S., Ali, G.S., and Reddy, A.S.N. (2002). Genes Encoding Calmodulin-binding Proteins in the Arabidopsis 
Genome. Journal of Biological Chemistry 277, 9840-9852. 

Reinhardt, D., Pesce, E.-R., Stieger, P., Mandel, T., Baltensperger, K., Bennett, M., Traas, J., Friml, J., and 
Kuhlemeier, C. (2003). Regulation of phyllotaxis by polar auxin transport. Nature 426, 255-260. 

Rentel, M.C., and Knight, M.R. (2004). Oxidative Stress-Induced Calcium Signaling in Arabidopsis. Plant 
Physiology 135, 1471-1479. 

Reyes, F.C., Buono, R., and Otegui, M.S. (2011). Plant endosomal trafficking pathways. Current Opinion in Plant 
Biology 14, 666-673. 

Richards, S.L., Laohavisit, A., Mortimer, J.C., Shabala, L., Swarbreck, S.M., Shabala, S., and Davies, J.M. (2014). 
Annexin 1 regulates the H2O2-induced calcium signature in Arabidopsis thaliana roots. The Plant Journal 
77, 136-145. 

Richter, S., Geldner, N., Schrader, J., Wolters, H., Stierhof, Y.-D., Rios, G., Koncz, C., Robinson, D.G., and Jurgens, 
G. (2007). Functional diversification of closely related ARF-GEFs in protein secretion and recycling. 
Nature 448, 488-492. 

Richter, S., Kientz, M., Brumm, S., Nielsen, M.E., Park, M., Gavidia, R., Krause, C., Voss, U., Beckmann, H., 
Mayer, U., Stierhof, Y.-D., and Jürgens, G. (2014). Delivery of endocytosed proteins to the cell–division 
plane requires change of pathway from recycling to secretion. eLife 3, e02131. 

Rigó, G., Ayaydin, F., Tietz, O., Zsigmond, L., Kovács, H., Páy, A., Salchert, K., Darula, Z., Medzihradszky, K.F., 
Szabados, L., Palme, K., Koncz, C., and Cséplő, Á. (2013). Inactivation of Plasma Membrane–Localized 
CDPK-RELATED KINASE5 Decelerates PIN2 Exocytosis and Root Gravitropic Response in 
<em>Arabidopsis</em>. The Plant Cell 25, 1592-1608. 

Riveras, E., Alvarez, J.M., Vidal, E.A., Oses, C., Vega, A., and Gutiérrez, R.A. (2015). The Calcium Ion Is a Second 
Messenger in the Nitrate Signaling Pathway of Arabidopsis. Plant Physiology 169, 1397-1404. 

Robert, S., Kleine-Vehn, J., Barbez, E., Sauer, M., Paciorek, T., Baster, P., Vanneste, S., Zhang, J., Simon, S., 
Čovanová, M., Hayashi, K., Dhonukshe, P., Yang, Z., Bednarek, S.Y., Jones, A.M., Luschnig, C., Aniento, 
F., Zažímalová, E., and Friml, J. (2010). ABP1 Mediates Auxin Inhibition of Clathrin-Dependent 
Endocytosis in Arabidopsis. Cell 143, 111-121. 

Robineau, S., Chabre, M., and Antonny, B. (2000). Binding site of brefeldin A at the interface between the small 
G protein ADP-ribosylation factor 1 (ARF1) and the nucleotide-exchange factor Sec7 domain. 
Proceedings of the National Academy of Sciences of the United States of America 97, 9913-9918. 

Robinson, D.G., and Pimpl, P. (2014). Clathrin and post-Golgi trafficking: a very complicated issue. Trends in Plant 
Science 19, 134-139. 

Rubery, P.H., and Sheldrake, A.R. (1974). Carrier-Mediated Auxin Transport. Planta 118, 101-121. 
Sabatini, S., Beis, D., Wolkenfelt, H., Murfett, J., Guilfoyle, T., Malamy, J., Benfey, P., Leyser, O., Bechtold, N., 

Weisbeek, P., and Scheres, B. (1999). An auxin-dependent distal organizer of pattern and polarity in the 
Arabidopsis root. Cell 99, 463-472. 

Sata, M., Moss, J., and Vaughan, M. (1999). Structural basis for the inhibitory effect of brefeldin A on guanine 
nucleotide-exchange proteins for ADP-ribosylation factors. Proceedings of the National Academy of 
Sciences of the United States of America 96, 2752-2757. 

Salehin, M., Bagchi, R., and Estelle, M. (2015). SCF(TIR1/AFB)-Based Auxin Perception: Mechanism and Role in 
Plant Growth and Development. The Plant Cell 27, 9-19. 



44 
 

Sanderfoot, A.A., Ahmed, S.U., Marty-Mazars, D., Rapoport, I., Kirchhausen, T., Marty, F., and Raikhel, N.V. 
(1998). A putative vacuolar cargo receptor partially colocalizes with AtPEP12p on a prevacuolar 
compartment in Arabidopsis roots. Proceedings of the National Academy of Sciences of the United 
States of America 95, 9920-9925. 

Sanders, D., Pelloux, J., Brownlee, C., and Harper, J.F. (2002). Calcium at the crossroads of signaling. Plant Cell 
14, S401-S417. 

Sato, E.M., Hijazi, H., Bennett, M.J., Vissenberg, K., and Swarup, R. (2015). New insights into root gravitropic 
signalling. Journal of Experimental Botany 66, 2155-2165. 

Schellmann, S., and Pimpl, P. (2009). Coats of endosomal protein sorting: retromer and ESCRT. Current Opinion 
in Plant Biology 12, 670-676. 

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., 
Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P., and 
Cardona, A. (2012). Fiji - an Open Source platform for biological image analysis. Nature methods 9, 
10.1038/nmeth.2019. 

Schiøtt, M., and Palmgren, M.G. (2005). Two plant Ca2+ pumps expressed in stomatal guard cells show opposite 
expression patterns during cold stress. Physiologia Plantarum 124, 278-283. 

Schiøtt, M., Romanowsky, S.M., Bækgaard, L., Jakobsen, M.K., Palmgren, M.G., and Harper, J.F. (2004). A plant 
plasma membrane Ca2+ pump is required for normal pollen tube growth and fertilization. Proceedings 
of the National Academy of Sciences of the United States of America 101, 9502-9507. 

Shabala, S., BÆKgaard, L., Shabala, L., Fuglsang, A., Babourina, O., Palmgren, M.G., Cuin, T.A., Rengel, Z.E.D., 
and Nemchinov, L.G. (2011). Plasma membrane Ca2+ transporters mediate virus-induced acquired 
resistance to oxidative stress. Plant, Cell & Environment 34, 406-417. 

Shang, Z., Laohavisit, A., and Davies, J.M. (2009). Extracellular ATP activates an Arabidopsis plasma membrane 
Ca(2+)-permeable conductance. Plant Signaling & Behavior 4, 989-991. 

Shaw, S.L., and Long, S.R. (2003). Nod Factor Elicits Two Separable Calcium Responses in Medicago truncatula 
Root Hair Cells. Plant Physiology 131, 976-984. 

Shi, J., Kim, K.N., Ritz, O., Albrecht, V., Gupta, R., Harter, K., Luan, S., and Kudla, J. (1999). Novel protein kinases 
associated with calcineurin B-like calcium sensors in Arabidopsis. The Plant Cell 11, 2393-2405. 

Shih, H.-W., DePew, Cody L., Miller, Nathan D., and Monshausen, Gabriele B. (2015). The Cyclic Nucleotide-
Gated Channel CNGC14 Regulates Root Gravitropism in <em>Arabidopsis thaliana</em>. Current 
Biology 25, 3119-3125. 

Shin, H.-W., Morinaga, N., Noda, M., and Nakayama, K. (2004). BIG2, A Guanine Nucleotide Exchange Factor for 
ADP-Ribosylation Factors: Its Localization to Recycling Endosomes and Implication in the Endosome 
Integrity. Molecular Biology of the Cell 15, 5283-5294. 

Shishova, M., and Lindberg, S. (1999). Auxin-induced Cytosol Acidification in Wheat Leaf Protoplasts Depends 
on External Concentration of Ca2+. Journal of Plant Physiology 155, 190-196. 

Shishova, M., and Lindberg, S. (2004). Auxin induces an increase of Ca2+ concentration in the cytosol of wheat 
leaf protoplasts. Journal of Plant Physiology 161, 937-945. 

Shishova, M., Yemelyanov, V., Rudashevskaya, E., and Lindberg, S. (2007). A shift in sensitivity to auxin within 
development of maize seedlings. Journal of Plant Physiology 164, 1323-1330. 

Sieberer, T., Seifert, G.J., Hauser, M.-T., Grisafi, P., Fink, G.R., and Luschnig, C. (2000). Post-transcriptional 
control of the Arabidopsis auxin efflux carrier EIR1 requires AXR1. Current Biology 10, 1595-1598. 

Sieburth, L.E., Muday, G.K., King, E.J., Benton, G., Kim, S., Metcalf, K.E., Meyers, L., Seamen, E., and Van 
Norman, J.M. (2006). tSCARFACE Encodes an ARF-GAP That Is Required for Normal Auxin Efflux and 
Vein Patterning in Arabidopsis. The Plant Cell 18, 1396-1411. 

Simon, S., Skůpa, P., Viaene, T., Zwiewka, M., Tejos, R., Klíma, P., Čarná, M., Rolčík, J., De Rycke, R., Moreno, 
I., Dobrev, P.I., Orellana, A., Zažímalová, E., and Friml, J. (2016). PIN6 auxin transporter at endoplasmic 
reticulum and plasma membrane mediates auxin homeostasis and organogenesis in Arabidopsis. New 
Phytologist 211, 65-74. 

Simonini, S., Bencivenga, S., Trick, M., and Ostergaard, L. (2017). Auxin-Induced Modulation of ETTIN Activity 
Orchestrates Gene Expression in Arabidopsis. The Plant Cell. 

Simonini, S., Deb, J., Moubayidin, L., Stephenson, P., Valluru, M., Freire-Rios, A., Sorefan, K., Weijers, D., Friml, 
J., and Østergaard, L. (2016). A noncanonical auxin-sensing mechanism is required for organ 
morphogenesis in Arabidopsis. Genes & Development 30, 2286-2296. 

Singh, Manoj K., Krüger, F., Beckmann, H., Brumm, S., Vermeer, Joop E.M., Munnik, T., Mayer, U., Stierhof, Y.-
D., Grefen, C., Schumacher, K., and Jürgens, G. (2014). Protein Delivery to Vacuole Requires SAND 
Protein-Dependent Rab GTPase Conversion for MVB-Vacuole Fusion. Current Biology 24, 1383-1389. 



45 
 

Skoog, F., and Miller, C.O. (1957). Chemical regulation of growth and organ formation in plant tissues cultured 
in vitro. Symposia of the Society for Experimental Biology 11, 118-130. 

Snedden, W.A., and Fromm, H. (2001). Calmodulin as a versatile calcium signal transducer in plants. New 
Phytologist 151, 35-66. 

Stael, S., Wurzinger, B., Mair, A., Mehlmer, N., Vothknecht, U.C., and Teige, M. (2012). Plant organellar calcium 
signalling: an emerging field. Journal of experimental botany 63, 1525-1542. 

Steinmann, T., Geldner, N., Grebe, M., Mangold, S., Jackson, C.L., Paris, S., Gälweiler, L., Palme, K., and Jürgens, 
G. (1999). Coordinated Polar Localization of Auxin Efflux Carrier PIN1 by GNOM ARF GEF. Science 286, 
316-318. 

Stepp, J.D., Huang, K., and Lemmon, S.K. (1997). The Yeast Adaptor Protein Complex, AP-3, Is Essential for the 
Efficient Delivery of Alkaline Phosphatase by the Alternate Pathway to the Vacuole. The Journal of Cell 
Biology 139, 1761-1774. 

Su, S.-H., Gibbs, N.M., Jancewicz, A.L., and Masson, P.H. Molecular Mechanisms of Root Gravitropism. Current 
Biology 27, R964-R972. 

Sugawara, S., Mashiguchi, K., Tanaka, K., Hishiyama, S., Sakai, T., Hanada, K., Kinoshita-Tsujimura, K., Yu, H., 
Dai, X., Takebayashi, Y., Takeda-Kamiya, N., Kakimoto, T., Kawaide, H., Natsume, M., Estelle, M., Zhao, 
Y., Hayashi, K.-i., Kamiya, Y., and Kasahara, H. (2015). Distinct Characteristics of Indole-3-Acetic Acid 
and Phenylacetic Acid, Two Common Auxins in Plants. Plant and Cell Physiology 56, 1641-1654. 

Swarbreck, S.M., Colaço, R., and Davies, J.M. (2013). Plant Calcium-Permeable Channels. Plant Physiology 163, 
514-522. 

Swarup, K., Benkova, E., Swarup, R., Casimiro, I., Peret, B., Yang, Y., Parry, G., Nielsen, E., De Smet, I., Vanneste, 
S., Levesque, M.P., Carrier, D., James, N., Calvo, V., Ljung, K., Kramer, E., Roberts, R., Graham, N., 
Marillonnet, S., Patel, K., Jones, J.D.G., Taylor, C.G., Schachtman, D.P., May, S., Sandberg, G., Benfey, 
P., Friml, J., Kerr, I., Beeckman, T., Laplaze, L., and Bennett, M.J. (2008). The auxin influx carrier LAX3 
promotes lateral root emergence. Nat Cell Biol 10, 946-954. 

Swarup, R., Kramer, E.M., Perry, P., Knox, K., Leyser, H.M.O., Haseloff, J., Beemster, G.T.S., Bhalerao, R., and 
Bennett, M.J. (2005). Root gravitropism requires lateral root cap and epidermal cells for transport and 
response to a mobile auxin signal. Nat Cell Biol 7, 1057-1065. 

Szemenyei, H., Hannon, M., and Long, J.A. (2008). TOPLESS Mediates Auxin-Dependent Transcriptional 
Repression During <em>Arabidopsis</em> Embryogenesis. Science 319, 1384-1386. 

Tan, X., Calderon-Villalobos, L.I.A., Sharon, M., Zheng, C., Robinson, C.V., Estelle, M., and Zheng, N. (2007). 
Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640-645. 

Tanaka, H., Kitakura, S., De Rycke, R., De Groodt, R., and Friml, J. (2009). Fluorescence Imaging-Based Screen 
Identifies ARF GEF Component of Early Endosomal Trafficking. Current Biology 19, 391-397. 

Tanaka, H., Kitakura, S., Rakusová, H., Uemura, T., Feraru, M.I., De Rycke, R., Robert, S., Kakimoto, T., and 
Friml, J. (2013). Cell Polarity and Patterning by PIN Trafficking through Early Endosomal Compartments 
in Arabidopsis thaliana. PLOS Genetics 9, e1003540. 

Teh, O.-k., and Moore, I. (2007). An ARF-GEF acting at the Golgi and in selective endocytosis in polarized plant 
cells. Nature 448, 493-496. 

Thonat, C., Mathieu, C., Crevecoeur, M., Penel, C., Gaspar, T., and Boyer, N. (1997). Effects of a Mechanical 
Stimulation on Localization of Annexin-Like Proteins in Bryonia dioica Internodes. Plant Physiology 114, 
981-988. 

Tivendale, N.D., Ross, J.J., and Cohen, J.D. (2014). The shifting paradigms of auxin biosynthesis. Trends in Plant 
Science 19, 44-51. 

Toyota, M., and Gilroy, S. (2013). Gravitropism and mechanical signaling in plants. American Journal of Botany 
100, 111-125. 

Tromas, A., Braun, N., Muller, P., Khodus, T., Paponov, I.A., Palme, K., Ljung, K., Lee, J.-Y., Benfey, P., Murray, 
J.A.H., Scheres, B., and Perrot-Rechenmann, C. (2009). The AUXIN BINDING PROTEIN 1 Is Required for 
Differential Auxin Responses Mediating Root Growth. PLOS ONE 4, e6648. 

Tse, Y.C., Lam, S.K., and Jiang, L. (2007). Enigmatic Brefeldin A. Plant Signaling & Behavior 2, 199-202. 
Ulmasov, T., Hagen, G., and Guilfoyle, T.J. (1997a). ARF1, a Transcription Factor That Binds to Auxin Response 

Elements. Science 276, 1865-1868. 
Ulmasov, T., Liu, Z.B., Hagen, G., and Guilfoyle, T.J. (1995). Composite structure of auxin response elements. 

The Plant Cell 7, 1611-1623. 
Ulmasov, T., Murfett, J., Hagen, G., and Guilfoyle, T.J. (1997b). Aux/IAA proteins repress expression of reporter 

genes containing natural and highly active synthetic auxin response elements. The Plant Cell 9, 1963-
1971. 



46 
 

Veley, Kira M., Marshburn, S., Clure, Cara E., and Haswell, Elizabeth S. (2012). Mechanosensitive Channels 
Protect Plastids from Hypoosmotic Stress During Normal Plant Growth. Current Biology 22, 408-413. 

Vernoud, V., Horton, A.C., Yang, Z., and Nielsen, E. (2003). Analysis of the Small GTPase Gene Superfamily of 
Arabidopsis. Plant Physiology 131, 1191-1208. 

Vernoux, T., Besnard, F., and Traas, J. (2010). Auxin at the Shoot Apical Meristem. Cold Spring Harbor 
Perspectives in Biology 2, a001487. 

Véry, A.-A., and Davies, J.M. (2000). Hyperpolarization-activated calcium channels at the tip of Arabidopsis root 
hairs. Proceedings of the National Academy of Sciences 97, 9801-9806. 

Vieten, A., Sauer, M., Brewer, P.B., and Friml, J. (2007). Molecular and cellular aspects of auxin-transport-
mediated development. Trends in Plant Science 12, 160-168. 

Vieten, A., Vanneste, S., Wiśniewska, J., Benková, E., Benjamins, R., Beeckman, T., Luschnig, C., and Friml, J.  
(2005). Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of 
PIN expression. Development 132, 4521-4531. 

Wang, R., and Estelle, M. (2014). Diversity and specificity: auxin perception and signaling through the TIR1/AFB 
pathway. Current opinion in plant biology 0, 51-58. 

Wang, Y.-F., Munemasa, S., Nishimura, N., Ren, H.-M., Robert, N., Han, M., Puzõrjova, I., Kollist, H., Lee, S., 
Mori, I., and Schroeder, J.I. (2013). Identification of Cyclic GMP-Activated Nonselective Ca(2+)-
Permeable Cation Channels and Associated CNGC5 and CNGC6 Genes in Arabidopsis Guard Cells. Plant 
Physiology 163, 578-590. 

Weijers, D., Benkova, E., Jäger, K.E., Schlereth, A., Hamann, T., Kientz, M., Wilmoth, J.C., Reed, J.W., and 
Jürgens, G. (2005). Developmental specificity of auxin response by pairs of ARF and Aux/IAA 
transcriptional regulators. The EMBO Journal 24, 1874-1885. 

Weller, B., Zourelidou, M., Frank, L., Barbosa, I.C.R., Fastner, A., Richter, S., Jürgens, G., Hammes, U.Z., and 
Schwechheimer, C. (2017). Dynamic PIN-FORMED auxin efflux carrier phosphorylation at the plasma 
membrane controls auxin efflux-dependent growth. Proceedings of the National Academy of Sciences 
114, E887-E896. 

Went, F.W. (1926). On growth accelerating substances in the coleoptile of Avena sativa. Proc. K. Akad. Wet. 30, 
10-19. 

Went, F.W. (1928). Wuchsstoff und Wachstum. Recl. Trav. Bot. Neerland. 25, 1-116. 
Whippo, C.W., and Hangarter, R.P. (2006). Phototropism: Bending towards Enlightenment. The Plant Cell 18, 

1110-1119. 
White, P.J. (2001). The pathways of calcium movement to the xylem. Journal of Experimental Botany 52, 891-

899. 
Willige, B.C., Ahlers, S., Zourelidou, M., Barbosa, I.C.R., Demarsy, E., Trevisan, M., Davis, P.A., Roelfsema, 

M.R.G., Hangarter, R., Fankhauser, C., and Schwechheimer, C. (2013). D6PK AGCVIII Kinases Are 
Required for Auxin Transport and Phototropic Hypocotyl Bending in <em>Arabidopsis</em>. The Plant 
Cell 25, 1674-1688. 

Won, C., Shen, X., Mashiguchi, K., Zheng, Z., Dai, X., Cheng, Y., Kasahara, H., Kamiya, Y., Chory, J., and Zhao, Y. 
(2011). Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF 
ARABIDOPSIS and YUCCAs in Arabidopsis. Proceedings of the National Academy of Sciences of the 
United States of America 108, 18518-18523. 

Woodward, A.W., and Bartel, B. (2005). Auxin: Regulation, Action, and Interaction. Annals of Botany 95, 707-
735. 

Wu, Z., Liang, F., Hong, B., Young, J.C., Sussman, M.R., Harper, J.F., and Sze, H. (2002). An Endoplasmic 
Reticulum-Bound Ca(2+)/Mn(2+) Pump, ECA1, Supports Plant Growth and Confers Tolerance to Mn(2+) 
Stress. Plant Physiology 130, 128-137. 

Wyn Jones, R.G., and Lunt, O.R. (1967). The function of calcium in plants. Bot. Rev. 33 407–426. 
Xu, T., Wen, M., Nagawa, S., Fu, Y., Chen, J.-G., Wu, M.-J., Perrot-Rechenmann, C., Friml, J., Jones, A.M., and 

Yang, Z. (2010). Cell surface- and Rho GTPase-based auxin signaling controls cellular interdigitation in 
Arabidopsis. Cell 143, 99-110. 

Xu, T., Dai, N., Chen, J., Nagawa, S., Cao, M., Li, H., Zhou, Z., Chen, X., De Rycke, R., Rakusová, H., Wang, W., 
Jones, A.M., Friml, J., Patterson, S.E., Bleecker, A.B., and Yang, Z. (2014). Cell Surface ABP1-TMK Auxin-
Sensing Complex Activates ROP GTPase Signaling. Science (New York, N.Y.) 343, 1025-1028. 

Yang, D.-L., Shi, Z., bao, Y., Yan, J., Yang, Z., Yu, H., Li, Y., Gou, M., wang, s., zou, b., Xu, D., ma, z., Kim, J., and 
Hua, J. (2017). Calcium pumps and interacting BON1 protein modulate calcium signature, stomatal 
closure, and plant immunity. Plant Physiology. 



47 
 

Yin, X.-J., Volk, S., Ljung, K., Mehlmer, N., Dolezal, K., Ditengou, F., Hanano, S., Davis, S.J., Schmelzer, E., 
Sandberg, G., Teige, M., Palme, K., Pickart, C., and Bachmair, A. (2007). Ubiquitin Lysine 63 Chain–
Forming Ligases Regulate Apical Dominance in <em>Arabidopsis</em>. The Plant Cell 19, 1898-1911. 

Yorimitsu, T., Sato, K., and Takeuchi, M. (2014). Molecular mechanisms of Sar/Arf GTPases in vesicular trafficking 
in yeast and plants. Frontiers in Plant Science 5. 

Yoshioka, K., Moeder, W., Kang, H.-G., Kachroo, P., Masmoudi, K., Berkowitz, G., and Klessig, D.F. (2006). The 
Chimeric Arabidopsis CYCLIC NUCLEOTIDE-GATED ION CHANNEL11/12 Activates Multiple Pathogen 
Resistance Responses. The Plant Cell 18, 747-763. 

Yuan, F., Yang, H., Xue, Y., Kong, D., Ye, R., Li, C., Zhang, J., Theprungsirikul, L., Shrift, T., Krichilsky, B., Johnson, 
D.M., Swift, G.B., He, Y., Siedow, J.N., and Pei, Z.-M. (2014). OSCA1 mediates osmotic-stress-evoked 
Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514, 367-371. 

Žárský, V., and Potocký, M. (2010). Recycling domains in plant cell morphogenesis: small GTPase effectors, 
plasma membrane signalling and the exocyst. Biochemical Society Transactions 38, 723-728. 

Zažímalová, E., Křeček, P., Skůpa, P., Hoyerová, K., and Petrášek, J. (2007). Polar transport of the plant hormone 
auxin – the role of PIN-FORMED (PIN) proteins. Cellular and Molecular Life Sciences 64, 1621-1637. 

Zažímalová, E., Murphy, A.S., Yang, H., Hoyerová, K., and Hošek, P. (2010). Auxin Transporters—Why So Many? 
Cold Spring Harbor Perspectives in Biology 2, a001552. 

Zhang, J., Vanneste, S., Brewer, Philip B., Michniewicz, M., Grones, P., Kleine-Vehn, J., Löfke, C., Teichmann, 
T., Bielach, A., Cannoot, B., Hoyerová, K., Chen, X., Xue, H.-W., Benková, E., Zažímalová, E., and Friml, 
J. (2011). Inositol Trisphosphate-Induced Ca2+ Signaling Modulates Auxin Transport and PIN Polarity. 
Developmental Cell 20, 855-866. 

Zhang, S., Pan, Y., Tian, W., Dong, M., Zhu, H., Luan, S., and Li, L. (2017). Arabidopsis CNGC14 Mediates Calcium 
Influx Required for Tip Growth in Root Hairs. Molecular Plant 10, 1004-1006. 

Zhao, Y. (2014). Auxin Biosynthesis. The Arabidopsis Book / American Society of Plant Biologists 12, e0173. 
Zhao, Y., Christensen, S.K., Fankhauser, C., Cashman, J.R., Cohen, J.D., Weigel, D., and Chory, J. (2001). A Role 

for Flavin Monooxygenase-Like Enzymes in Auxin Biosynthesis. Science 291, 306-309. 
Zielinski, R.E. (1998). CALMODULIN AND CALMODULIN-BINDING PROTEINS IN PLANTS. Annual Review of Plant 

Physiology and Plant Molecular Biology 49, 697-725. 
Zolman, B.K., Yoder, A., and Bartel, B. (2000). Genetic analysis of indole-3-butyric acid responses in Arabidopsis 

thaliana reveals four mutant classes. Genetics 156, 1323-1337. 
Zolman, B.K., Nyberg, M., and Bartel, B. (2007). IBR3, a novel peroxisomal acyl-CoA dehydrogenase-like protein 

required for indole-3-butyric acid response. Plant Molecular Biology 64, 59-72. 
Zourelidou, M., Müller, I., Willige, B.C., Nill, C., Jikumaru, Y., Li, H., and Schwechheimer, C. (2009). The polarly 

localized D6 PROTEIN KINASE is required for efficient auxin transport in <em>Arabidopsis 
thaliana</em>. Development 136, 627-636. 

Zourelidou, M., Absmanner, B., Weller, B., Barbosa, I.C.R., Willige, B.C., Fastner, A., Streit, V., Port, S.A., 
Colcombet, J., de la Fuente van Bentem, S., Hirt, H., Kuster, B., Schulze, W.X., Hammes, U.Z., and 
Schwechheimer, C. (2014). Auxin efflux by PIN-FORMED proteins is activated by two different protein 
kinases, D6 PROTEIN KINASE and PINOID. eLife 3, e02860. 

Zwiewka, M., Feraru, E., Möller, B., Hwang, I., Feraru, M.I., Kleine-Vehn, J., Weijers, D., and Friml, J. (2011). 
The AP-3 adaptor complex is required for vacuolar function in Arabidopsis. Cell Research 21, 1711-1722. 

 

 

 

 

 

 



48 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



49 
 

Chapter 2:  
Calcium is an organizer of cell 

polarity in plants 
 
 
Ellie Himschoot1, 2, Tom Beeckman1, 2, Jiří Friml3, Steffen Vanneste1, 2 
 
1 Department of Plant Biotechnology and Bio-informatics, Ghent University, B-9052 Ghent, Belgium 
2 Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium 
3 Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Adapted from: 
Ellie Himschoot1, 2, Tom Beeckman1, 2, Jiří Friml3, Steffen Vanneste1, 2. Calcium is an organizer 
of cell polarity in plants. Biochimica et Biophysica Acta - Molecular Cell Research 2015, 
1853(9): 2168-2172. 
 
Author contribution:  
E.H. performed the literature study and is the main author of this chapter. T.B, J.F., and S.V. 
contributed to the writing and revision of the manuscript. 



50 
 

Abstract 

Cell polarity is a fundamental property of pro- and eukaryotic cells. It is necessary for 

coordination of cell division, cell morphogenesis and signaling processes. How polarity is 

generated and maintained is a complex issue governed by interconnected feed-back 

regulations between small GTPase signaling and membrane tension-based signaling that 

controls membrane trafficking, and cytoskeleton organization and dynamics. Here, we will 

review the potential role for calcium as a crucial signal that connects and coordinates the 

respective processes during polarization processes in plants. This article is part of a Special 

Issue entitled: 13th European Symposium on Calcium. 

 

Introduction to polarity and plant development 

At its simplest level, polarity can be defined as an asymmetric distribution of components 

along one or more axes, thereby breaking symmetry (Bloch and Yalovsky, 2013). The most 

basic type of polarity involves establishing a single polar domain and can be found in a wide 

range of biological processes in unicellular as well as in multicellular organisms, ranging from 

asymmetric cell divisions, polarized axon growth, directional movement of motile cells, pollen 

tube and root hair formation in plants, zygote polarization in algae, etc. In each of these 

examples, the polarity is defined by the local accumulation of cellular components to one side 

of the cell. 

In multicellular organisms, cells are often embedded in a three-dimensional tissue context, 

requiring additional dimensions of polarity. Hitherto, molecular markers exist defining apical 

and basal polarity (reflecting position along the embryonic axis), as well as inner- and outer-

lateral polar domains (radial polarity) that can coexist within a single plant cell (Dettmer and 

Friml, 2011). In addition to these four polar domains, specialized cell types have the capacity 

to develop additional polar features, superimposed on or across other polar domains, such as 

in the endodermis that develops casparian strips that encircle the cells (Alassimone et al., 

2012) and root hairs that develop at a discrete positions in the outer-lateral domains of root 

epidermal cells (Grebe, 2012). Another complex manifestation of polarity in plants is seen 

during the morphogenesis of leaf epidermal cells in dicotyledons that is characterized by 
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interdigitation of adjacent cells via the coordinated formation of lobes and indentations (Yang 

and Lavagi, 2012). 

How plants can generate such complex polarity patterns remains poorly understood. Yet, 

several of the mechanisms underlying generation and maintenance of polarity become 

identified step by step. Two important cellular processes control polarity: 1) anisotropic 

membrane trafficking by local delivery or removal of specific membrane proteins and lipids, 

and 2) the polar organization and dynamics of the cytoskeleton. These cellular processes are 

believed to be controlled by signals derived from the local activity of small GTPases and from 

cellular mechanosensing mechanisms. These different aspects of polarity are tightly 

interconnected, making it difficult to assess their individual contribution to polarity and how 

they are coordinated to generate and maintain polarity. 

In this review, we will focus on the mechanisms by which the second messenger Ca2+ is 

connected to each of the aforementioned polarity processes and signaling cascades and we 

elaborate on how Ca2+ could serve as a general coordinative and integrative signal for plant 

polarity, a principle that we propose not to be restricted to tip-growing cells (Fig. 1). 
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Fig. 1. Interconnection between Ca2 + and polarity components. A. A Ca2+ gradient spatially coordinates 

membrane trafficking. High Ca2+ concentrations to one side of a cell locally stimulate secretion while reducing 

(clathrin-mediated) endocytosis thereby locally promoting membrane delivery. The blue and orange color 

represent the gradients in Ca2+ and membrane delivery respectively. B. A Ca2+ gradient differentially controls 

cytoskeleton dynamics. Ca2+ controls F-actin dynamics and organization through Ca2+-dependent actin regulating 

proteins of the villin/gelsolin/fragmin superfamily, regulating actin organization and dynamics. Via 

MICROTUBULE-DESTABILIZING PROTEIN25 (MDP25) Ca2+ can destabilize cortical microtubules (MT). In turn, MTs 

can stabilize Ca2+ signaling via controlling DEPOLARIZATION-ACTIVATED Ca2+ CHANNELS (DACC). The blue color 

represents the Ca2+ gradient and the orange/green color the actin/MT dynamics respectively. C. Interaction 

between Ca2+ and ROP signaling to generate and maintain cell polarity. Polarized ROPs (orange gradient) locally 

stimulate Ca2+ entry through the ROP effector RIC3 and ROP-induced reactive oxygen species (ROS) production. 

ROP activity is positively or negatively regulated by GEFs or GAPs respectively. Polar localization of ROPs to the 

apex is maintained by GDI which in turn can be controlled by Ca2+. The blue and orange color represent the 

gradients in Ca2+ and ROP activity respectively. D. Interplay between Ca2+ and PM tension. The plant cell wall and 

local differences in plasma membrane (PM) tension both contribute to cell polarization. Upon cellular growth, 

increased PM tension results in opening of STRETCH-ACTIVATED Ca2+ CHANNELS (SACs) resulting in local Ca2+ 

influx. Ca2+ itself can control cell wall rigidity and membrane delivery and turgor pressure to regulate PM tension. 

The blue and orange color represent the Ca2+ gradient and locally high PM tension respectively. 

 

Calcium hallmarks polarity 

Calcium is an elusive second messenger because it can be triggered by a wide range of signals 

and is transient in nature (Kudla et al., 2010). Therefore, it is commonly described in terms of 

Ca2+ signatures that can be very local and short-lived, making it often difficult to detect 
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reliably. Under these limitations, a sharp Ca2+ gradient can be detected in the tip of growing 

pollen tubes and root hairs, that is essential for polar growth (Cole and Fowler, 2006; 

Steinhorst and Kudla, 2013). In addition, local Ca2+ signaling is also central to polarity 

establishment in fucoid algal zygotes (Hable and Hart, 2010). Importantly, manipulations that 

refocus Ca2+ signals are sufficient to reorient polarity of tip growth, not only in pollen tubes 

(Malho and Trewavas, 1996), but also in root hairs (Bibikova et al., 1997) demonstrating the 

potential of Ca2+ gradients as instructive signals for polarity. The role of Ca2+ as a regulator of 

polarity is mainly derived from studies on tip growth in pollen tubes, a cell type that is easily 

accessible, and expresses only a relatively small subset of the Ca2+ toolkit (Berridge et al., 

2000). However, it must be noted that Ca2+ levels were also found to impact on apical–basal 

polarity in root cells (Zhang et al., 2011), suggesting that the role of Ca2+ in plant polarity is not 

restricted to tip growth. 

At least four distinct Ca2+ channels contribute to the Ca2+ gradient that exists at the pollen 

tube tip. The first, and most important Ca2+ channels for the tip-focused Ca2+ gradient, are 

STRETCH-ACTIVATED Ca2+ CHANNELS (SAC) that open in response to plasma membrane strain, 

such as the strain associated with rapid growth (Dutta and Robinson, 2004). However, the 

underlying molecular nature of these channels remains completely unknown. Secondly, 

members of the GLUTAMATE RECEPTOR-LIKE (GLR) family, AtGLR1.2 and AtGLR3.7 have been 

demonstrated to form Ca2+ channels in pollen tubes in response to D-Serine derived from the 

pistil to guide pollen tube growth (Michard et al., 2011). Thirdly, several CYCLIC NUCLEOTIDE 

GATED CATION CHANNEL (CNGC) genes have been implicated in pollen tube growth 

(Steinhorst and Kudla, 2013). Among them, CNGC18 displays a clear apical localization, with 

its strongest localization just behind the apex, a position that would allow to refocus the Ca2+ 

maximum in response to directional cues (Frietsch et al., 2007). A fourth family of Ca2+ 

channeling proteins that could contribute to tip-focused Ca2+ gradients are the ANNEXINs, that 

can generate Ca2+-permeable channels in response to hydroxyl radicals (Laohavisit et al., 

2010). Whereas these Ca2+ channels reflect mechanisms by which Ca2+ enters the cell through 

the plasma membrane, Ca2+-ATPases are continuously active to move Ca2+ from the cytosol 

into adjacent cellular compartments or the apoplast. These mechanisms can contribute to 

shaping the Ca2+ signal (Steinhorst and Kudla, 2013). Several of these Ca2+-ATPases, such as 
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ACA9, do not show polar localization (Schiøtt et al., 2004), but are instead activated by local 

high Ca2+ concentrations, acting to dissipate Ca2+ signals. 

Given that Ca2+ carries no structural information, the information embedded in Ca2+ gradients 

and temporal signatures needs to be decoded and translated into a cellular response. This can 

be achieved by a complex set of Ca2+-binding proteins (> 250 in Arabidopsis) (Hashimoto and 

Kudla, 2011a) that represent Ca2+ sensors with enzymatic activity (Ca2+ sensor responders; 

Ca2+-DEPENDENT PROTEIN KINASE (CDPK/CPK)) or without enzymatic activity (Ca2+ sensor 

relays; CALMODULIN (CaM), CALMODULIN-LIKE (CML), CALCINEURIN B-LIKE (CBL)). Strong 

polarity defects in pollen tubes have thus far only been reported for overexpression of CDPKs 

(Zhou et al., 2009), supporting the importance of local CDPK activity in directing pollen tube 

polarity (Moutinho et al., 1998). Many known targets of CDPKs are ion channels, allowing to 

regulate osmotic pressure and membrane potential in the context of Ca2+ signals (Kudla et al., 

2010). Moreover, it was recently found that CPK32 directly contributes to the tip-focused Ca2+ 

gradient by activating the Ca2+ permeability of CNGC18 (Zhou et al., 2014). Moreover, CNGC 

activity can be further modulated by interaction with active CaM (Fischer et al., 2013), 

revealing a complex Ca2+-dependent regulation of the Ca2+ channeling activities of CNGCs. 

The complexity of Ca2+  signaling that is already needed for generating polarity within a simple 

pollen tube, suggests that the additional dimensions of polarity that exist in cells embedded 

in a tissue context will involve even more complex Ca2+ signaling. In the following paragraphs 

we will highlight the connections that exist between Ca2+ signaling and the cellular processes 

and signaling cascades that impact on polarity throughout the plant body. 

 

Calcium coordinates the balance of exo- and endocytosis 

The semi-fluid nature of the plasma membrane allows diffusion of membrane proteins and 

lipids, implying that maintenance of polarity requires spatially regulated membrane 

trafficking. Consistently, membrane trafficking is a crucial process to maintain tip growth in 

pollen (Moscatelli and Idilli, 2009; Zhao et al., 2010), root hairs (Synek et al., 2006), as well as 

in apical–basal polarity in the plant body (Men et al., 2008; Kitakura et al., 2011; Fan et al., 

2013). During tip growth, exocytosis (secretion and recycling) occurs predominantly in the tip, 

whereas endocytosis occurs subapically. Similarly, in apical polar domains of root cells, exo- 
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and endocytosis are also spatially separated; exocytosis occurs in a super-apical domain, while 

endocytosis occurs mainly at the flanks of the respective polar domains (Kleine-Vehn et al., 

2011). 

In plants, the exocytosis-stimulating effect of Ca2+ could be mediated by ANNEXINs (ANNs). 

These are Ca2+-dependent phospholipid binding proteins that regulate secretion in animals 

(Gerke and Moss, 2002), and possibly also in plants (Clark et al., 2012). Consistently, 

overexpression of AtANN5 rendered Arabidopsis pollen partially resistant to Brefeldin A (BFA) 

(Zhu et al., 2014) (a fungal toxin which targets BARF GTPase guanine-nucleotide exchange 

factors, thereby inhibiting endosomal recycling (Geldner et al., 2003) and late secretory and 

vacuolar trafficking (Richter et al., 2014)), and root hair growth is reduced in AtANN1 mutants 

(Laohavisit et al., 2012). However, the function of ANNs in regulating Ca2+-dependent 

secretion in plants remains to be demonstrated unequivocally. Importantly, it should be noted 

that the tip-focused Ca2+ gradient and the maximal growth phase of the pollen tube oscillate 

partially out of phase with each other (Messerli et al., 2000; Holdaway‐Clarke et al., 2003), 

making a direct link between Ca2+ and secretion not very intuitive. 

Clathrin-mediated endocytosis (CME) occurs mainly subapically in growing pollen tubes 

(Moscatelli and Idilli, 2009), as if excluded from the high Ca2+ concentrations found in the tip. 

Consistently, several components of the core CME machinery displayed a subapical 

localization in growing pollen (Zhao et al., 2010; Gadeyne et al., 2014). Moreover, several 

subunits of a recently identified endocytic adaptor complex (TPLATE complex; TPC) contain 

predicted Ca2+ binding EF-hand motifs (Gadeyne et al., 2014a), suggestive of a Ca2+ sensitive 

activity. Consistently, a treatment with the presumed intracellular Ca2+ store leak inducer, 

caffeine (Cessna et al., 1998), could dislodge the TPC subunit, TPLATE and CLATHRIN LIGHT 

CHAIN2 from the cell plate during cytokinesis (Van Damme et al., 2011b). This is consistent 

with a model in which high Ca2+ concentrations act to inactivate CME. Calcium can also have 

an indirect effect on CME via phosphatidylinositides, at least in pollen tubes, where Ca2+ 

signals control the subapical localization of the phosphatidylinositol 4,5-bisphosphate 

(PI(4,5)P2)-hydrolyzing enzyme NtPLC3 (Helling et al., 2006). Interestingly, PI(4,5)P2 is required 

for CME and polarity in pollen tubes (Zhao et al., 2010) as well as root cells (Ischebeck et al., 

2013a; Tejos et al., 2014). However the role of Ca2+ in regulating PI(4,5)P2 homeostasis in root 

cells remains to be demonstrated. 
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Together, these findings suggest that Ca2+ could control polarity in different plant cell types 

through coordination of exo- and endocytosis (Fig. 1, A). 

 

Reciprocal interaction between calcium signaling and the cytoskeleton 

The actin filaments (F-actin) are critical elements in cell morphogenesis and directional 

growth. These dynamic structures control membrane trafficking, including correct delivery of 

secretory vesicles and regulation of vesicle docking and fusion (Gu et al., 2003), as well as actin 

regulation of endocytosis (Dhonukshe et al., 2008; Nagawa et al., 2012). Interestingly, the 

actin filaments in pollen tubes occur in a polarized gradient overlapping with the tip-focused 

Ca2+ gradient (Fan et al., 2004) (Fig. 1, B), an observation that can be mechanistically explained 

via the Ca2+-dependence of actin organizing proteins (nucleation, bundling, and severing) such 

as members of the villin/gelsolin/fragmin superfamily (Huang et al., 2015), which also control 

directional elongation in other cell types (van der Honing et al., 2012). 

Polarity can also be regulated via microtubules (MT) by providing structural rigidity and 

stiffness to the cell, imposing restrictions on cell expansion (Sedbrook and Kaloriti, 2008). In 

addition, MTs were recently found to be part of a symmetry breaking system for secondary 

wall patterning in metaxylem cells (Oda and Fukuda, 2012). Interestingly, Ca2+ can destabilize 

cortical MTs via MICROTUBULE-DESTABILIZING PROTEIN25 (MDP25) during directional 

elongation of hypocotyl cells (Li et al., 2011a). Conversely, the MTs seem to contribute to the 

stability of Ca2+ signaling via control over the activity of depolarization-activated Ca2+ channels 

(Fig. 1, B). 

This demonstrates that the intimate link between Ca2+ signaling and cytoskeleton dynamics is 

involved in sustaining and/or generating polarity in plants. 

 

Calcium interdependence of ROP-based polarity signaling 

Small GTPases of the RHO superfamily, such as Rac and Cdc42, play major roles in generating 

and stabilizing asymmetry (Hable and Hart, 2010; Mogilner et al., 2012; Freisinger et al., 2013). 

Land plants have no Rac or Cdc42 in their genomes. Instead, they have a plant-specific 

subfamily dubbed ‘RHO-LIKE GTPASE FOR PLANT’ or ROPs, that are closely associated with 
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polarity in higher land plants (Yang and Lavagi, 2012), and recently also in the lower land plant 

Physcomitrella patens (Ito et al., 2014). The polarization of RHO GTPase family members 

tightly interconnects via several effectors to other polarity-associated processes, including 

exo- and endocytosis and cytoskeleton organization (Chen and Friml, 2014). 

ROP GTPases are active when bound to GTP and return to an inactive, GDP-bound state by 

hydrolysis of GTP to GDP. The exchange of GDP by GTP can be promoted by GEFs (GUANINE-

NUCLEOTIDE EXCHANGE FACTORs), whereas inactivation is stimulated by GAPs (GTPASE 

ACTIVATING PROTEINs) (Fig. 1, C). Mechanisms that control GEFs and GAPs can thus be used 

for local regulation of ROP activity (Kost, 2008). In addition, RHO-GDIs (GUANINE NUCLEOTIDE 

DISSOCIATION INHIBITOR) seem to act as conserved polarity facilitators of RHO GTPases via 

stimulation of RHO GTPase recycling (Fig. 1, C). In yeast, the polarization of Cdc42 was 

proposed to be regulated by GDI-dependent Cdc42 removal from the plasma membrane, and 

subsequent rapid polar recycling (Freisinger et al., 2013). A similar mechanism could also be 

active for ROP polarization, as a mutant in AtRHO-GDI1 (supercentipede1/scn1) shows ectopic 

ROP2 accumulation associated with multiple root hair initiation sites along a single trichoblast 

(Carol et al., 2005), and knock-down of AtRHO-GDI2a showed strong pollen depolarization 

(Hwang et al., 2010). Two lines of evidence suggest that this GDI-mediated mechanism is 

under control of Ca2+. Firstly, the strength of pollen tube depolarization in AtRHO-GDI2a 

knock-downs was found to be dependent on the Ca2+ concentration in the germination 

medium (Hwang et al., 2010). Secondly, it was shown that the phosphorylation status of 

conserved CPK3 phosphorylation sites in AtRHO-GDI1, impacts on ROP-regulated polarization 

processes during pavement cell morphogenesis (Wu et al., 2013). Although the direct 

involvement of Ca2+ in this process remains to be demonstrated unequivocally, it represents 

an interesting hypothesis on how Ca2+ can feed into ROP polarity. 

While these data suggest that ROP polarity can be Ca2+-regulated, ROPs can in turn control 

Ca2+ signaling in pollen tubes, via ROP-INTERACTIVE CRIB-CONTAINING PROTEIN3 (RIC3)-

regulated Ca2+ influx at the apex of pollen tubes (Gu et al., 2005) (Fig. 1, C). Moreover, ROPs 

can also directly activate reactive oxygen species (ROS) production via RESPIRATORY BURST 

OXIDASE HOMOLOGUEs (RBOHs) (Wong et al., 2007), to activate Ca2+ channels that contribute 

to the tip-focused Ca2+ gradient in root hairs (Foreman et al., 2003). Interestingly, whereas the 
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fungus Piriformospora indica can activate ROP-dependent actin remodeling, ROP signaling is 

not required for Ca2+ signals that are induced during infection (Venus and Oelmüller, 2013). 

In biological systems, polarization mechanisms involve coupled feed-back mechanisms that 

are optimized for robust symmetry breaking (Freisinger et al., 2013). The reciprocal regulation 

between Ca2+ and ROP signaling could thus represent such a feedback mechanism that 

underlies symmetry breaking in plants. 

 

Mechano-sensitive polarity signaling involves calcium 

Until recently, the cell wall was mostly regarded as a passive capsule that protects the cell 

against the high turgor pressure. However, it is becoming more and more clear that the 

interaction between the cell and its encapsulating cell wall has important implications for 

polarity (Fig. 1, D). 

On the one hand, the cell wall contributes directly to the maintenance of polarity by restricting 

lateral diffusion rates of plasma membrane proteins (Feraru et al., 2011; Martinière et al., 

2012). On the other hand, local differences in the strength or elasticity of the cell wall in 

conjunction with the turgor pressure, as well as the anchorage of the plasma membrane to 

the cell wall can generate local differences in membrane tension, thereby directly impacting 

on polarity (Asnacios and Hamant, 2012). Although the underlying mechanism is not well 

understood, local differences in plasma membrane tension can be directly translated in 

polarity instructing Ca2+ signals via stretch-activated Ca2+ channels in the plasma membrane. 

This mechanism is believed to be relevant for tip growth processes where the fast growth 

generates a significant strain on the plasma membrane (Steinhorst and Kudla, 2013). 

In addition, Ca2+ seems to contribute to several determinants of plasma membrane strain. At 

the level of the cell wall, Ca2+ can change the mechanical properties of de-esterified pectin, 

via cross-linking (Harholt et al., 2010). On the other hand, Ca2+ signaling could modify the cell 

wall via control over secretion of e.g. cell wall modifying enzymes (Guan et al., 2013), as 

indicated by the tremendous anisotropy in cell wall composition observed in root hairs and 

pollen tubes (Gu and Nielsen, 2013). In addition Ca2+ itself can reduce the plasma membrane 

tension via modulation of membrane trafficking (cf. above) and via regulation of ion channel 
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activities that modify the turgor pressure (Kudla et al., 2010). Thus, Ca2+ provides an 

interesting signal through which such mechanical signals can be translated in changes in 

polarity. 

 

Conclusions and perspectives 

Polarity in plants is a complex issue involving complex membrane trafficking and dynamic 

cytoskeleton reorganization in the context of an interconnected signaling network of small 

GTPases and physical cues. Although most of our knowledge derives from studies in pollen 

tubes and root hairs, which are examples of extremely polarized cells, it is slowly becoming 

more and more clear that cellular processes and signaling networks that govern polarity in tip 

growth are probably also at work in generating and maintaining polarity in other polarized 

cells and tissues. 

The second messenger Ca2+ is commonly accepted as a core regulator of polarity in tip growth. 

Here, we illustrated the potential of Ca2+ as a general regulator of polarity, through 

highlighting the intimate connections between Ca2+ and polarity-driving processes and 

signaling cascades that are active throughout plant development. The lack of reports 

demonstrating Ca2+ gradients coinciding with other polarity-hallmarking events, argues 

against our generalization of Ca2+ as ubiquitous polarity-instructing signal. Yet, we believe that 

the reports thus far lack the necessary spatio-temporal resolution and sensitivity to visualize 

such Ca2+ signals in plant cells within a complex tissue context. Consistent with this notion is 

that the use of an ultra-sensitive genetically-encoded Ca2+ indicator (GECI), Yellow Cameleon 

(YCnano), has only recently allowed to visualize a wave of Ca2+ signals moving from the root 

to the shoot upon application of salt stress through the cortical cell file (Choi et al., 2014). 

Similarly, a BRET-based GFP-aequorin (G5A) Ca2+ reporter was recently tested in plants, also 

visualizing a similar salt-induced mobile Ca2+ signal with high sensitivity (Xiong et al., 2014). 

This suggests that implementation of alternative GECIs in plants, could provide the plant 

community with an unprecedented sensitivity and resolution to revisit this question. 

Other difficulties associated with assessing the role of Ca2+ signaling in polarity are directly 

related to the Ca2+ signaling toolkit of plants. On the one hand, gene function can be masked 

by extensive functional redundancy among Ca2+ channels and decoders, as they are often 
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encoded in large multi-gene families (Verret et al., 2010; Hashimoto and Kudla, 2011a). On 

the other hand, through divergence in evolution, plants lack well-characterized Ca2+ channels 

present in animals, such as L-type voltage-dependent Ca2+ channels, transient receptor 

potential channels, inositol triphosphate receptors and ryanodine receptors (Verret et al., 

2010). This implies that we cannot simply use Ca2+ channel blockers or agonists that were 

developed to target specific animal Ca2+ channels, to dissect the involvement of related Ca2+ 

channels in plants. While several important types of Ca2+ channels can be characterized 

electrophysiologically in plant cells, the molecular nature of the channels is often not known. 

Prominently among them are the SACs that contribute to the Ca2+ gradient in pollen tubes. 

This fundamental gap in plant Ca2+ signaling, precludes the thorough evaluation of Ca2+ 

signaling in plant polarity. Recently, a completely new family of Ca2+ channels involved in 

osmosensing has been identified in plants (Yuan et al., 2014), opening up new avenues for 

Ca2+ research and polarity. 
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Abstract 

Trafficking of proteins and lipids within the plant endomembrane system is essential to 

support cellular functions and is subject to rigorous regulation. Despite this seemingly strict 

regulation, endomembrane trafficking needs to be dynamically adjusted to ever-changing 

internal and environmental stimuli, while maintaining cellular integrity. Although often 

overlooked, the versatile second messenger Ca2+ is intimately connected to several 

endomembrane-associated processes. Here, we discuss the impact of electrostatic 

interactions between Ca2+ and anionic phospholipids on endomembrane trafficking, and 

illustrate the direct role of Ca2+-sensing proteins in regulating endomembrane trafficking and 

membrane integrity preservation. Moreover, we discuss how Ca2+ can control protein sorting 

within the plant endomembrane system. We thus highlight Ca2+ signaling as a versatile 

mechanism by which numerous signals can be integrated into plant endomembrane 

trafficking dynamics. 

 

Introduction 

The alkaline earth metal calcium is one of most abundant elements on earth. Much of the Ca2+ 

as we know it is present as calcium phosphate in bones and teeth, or as calcium carbonate in 

lime stone, pearls and shells. These prominent forms of Ca2+ have been generated by living 

organisms that employ calcium’s chemical propensity to precipitate anions such as 

phosphates and carbonate as scaffolds and protection for their bodies. Besides such structural 

functions, Ca2+ acts in all living organisms as a second messenger in the context of a wide range 

of cellular processes and signaling cascades. In plants, the second messenger function of Ca2+ 

is best described in the context of responses to biotic and abiotic stress, symbiosis, tip growth 

of pollen tubes and root hairs and egg cell fertilization. For a detailed overview of the 

complexities that underlie Ca2+ signal generation and transduction in plants, the reader is 

referred to a number of recent outstanding reviews on the topic and references therein (Dodd 

et al., 2010; Hashimoto and Kudla, 2011; Boudsocq and Sheen, 2013; Edel et al., 2017) 

Importantly, one of the key aspects of Ca2+ signaling, which is often overlooked, is the local 

nature of Ca2+ signals, acting in microdomains within the cell. To avoid toxic effects of high 
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Ca2+ e.g. at the level of phosphate metabolism, cells keep cytoplasmic Ca2+ levels very low 

(typically in the submicromolar range: 100-200nM), via energy consuming Ca2+ transport into 

the apoplast and intracellular organelles, which can have Ca2+ concentrations in the millimolar 

range (reviewed in (Stael et al., 2012), Fig. 1). The resulting steep concentration gradients over 

the cellular membranes thus allow to rapidly generate a local cytoplasmic Ca2+ signal by 

opening a few Ca2+ channels. Moreover, electrostatic interaction with anionic moieties buffer 

the cytoplasm against rapid Ca2+ diffusion, resulting in sharply defined microdomains of high 

Ca2+ (>100µM) in the direct proximity (+/-100nM) of activated Ca2+ channels (Berridge, 2006; 

Demuro and Parker, 2006; Filadi and Pozzan, 2015). Therefore, such discrete Ca2+ signals allow 

for regulation of subcellular processes with sub-micrometer precision.  
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Figure 1: Calcium distribution within the plant endomembrane system. In blue: summary of experimental 

estimates of Ca2+ levels, being high (millimolar range) in the apoplast, the endoplasmic reticulum (ER) and 

vacuole, intermediately high (700nM) in the Golgi Apparatus (GA) and low in the cytoplasm (submicromolar 

range). In orange: Unknown Ca2+ levels across the endomembrane system. Extrapolations from the animal field 

and biochemical observations suggest the folowing: 1) Vesicle budding does not allow exclusion of Ca2+ from the 

lumen of budding vesicles and is illustrated as the budding vesicle having the same Ca2+ concentration as its 

donor organelle. 2) Ca2+ can be released from the vesicles during trafficking or by fusion to the target organelle. 

3) Each endomembrane compartment is postulated to be decorated with Ca2+ channels that can generate Ca2+ 

signals for regulation of e.g. membrane fusion events. 4) Stress and other stimuli activate Ca2+ channels that 

generate Ca2+ signals that are focused around the mouth of the Ca2+ channel. 5) Because VSRs are dissociated 

from their ligands in the trans-Golgi Network/Early Endosomes (TGN/EE), we postulate that this reflects Ca2+ 

levels being lower in the TGN/EE than in the GA. 6) The presence of the Ca2+-ATPase ER-TYPE Ca2+-ATPASE3 
(ECA3) in Multi Vesicular Bodies/Late Endosomes (MVB/LE) suggests the Ca2+ levels to be at least higher than in 

the cytoplasm, but are difficult to further resolve relative to those in the TGN/EE.  

 

In animal cells, local Ca2+ signaling is well known for its role as a regulator of endomembrane 

trafficking; the process in which proteins are selectively moved between interconnected 

subcellular endomembrane compartments via tightly regulated membrane budding, 

transport and fusion. This paradigm is nicely illustrated in neurotransmission, where local 

cytoplasmic Ca2+ signals in axon termini trigger the exocytosis of neurotransmitter-filled 

vesicles to activate downstream neurons (Benarroch, 2013). Despite the common 

evolutionary origin of Ca2+ signaling in Eukaryotes, it is often difficult to identify conserved 

molecular mechanisms of Ca2+ signaling between animals and plants, as the large evolutionary 

distance also allowed for a remarkable Kingdom-specific diversification and specializations 

within the Ca2+ toolset (Edel and Kudla, 2015; Marchadier et al., 2016; Edel et al., 2017).  

In this review, we provide an overview of how Ca2+ regulates plant endomembrane trafficking 

and discuss possible underlying molecular mechanisms. In particular, we will discuss the 

interplay between Ca2+ and phospholipids, the direct effect of Ca2+ on the endomembrane 

machinery and how luminal Ca2+ levels are connected to protein sorting in the endomembrane 

system. Despite the well described functions of Ca2+ in plant stress responses, limited 

information is available regarding the cell biological relevance of Ca2+ signaling in plants. 

Therefore, we will at some points resort to reasonable extrapolations from observations in 

metazoans to bridge some gaps in our knowledge in plants. 
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Calcium sensing via anionic phospholipids 

Although only representing a minor fraction of the total membrane lipids, anionic 

phosphoinositides and phosphatidic acid are key endomembrane components. Each 

endomembrane compartment is hallmarked by a specific phosphoinositide signature that 

determines differential protein recruitment (Simon et al., 2014; Simon et al., 2016), which 

underlies important connections to processes such as regulation of cytoskeleton dynamics 

(Pleskot et al., 2013; Pleskot et al., 2014), exocytosis (Yamashita et al., 2010; Bloch et al., 2016) 

and endocytosis (Cocucci et al., 2012; Ischebeck et al., 2013; Tejos et al., 2014). Recently, a 

unique electrostatic signature controlled by phosphatidylinositol 4-phosphate (PI4P) was 

described for the plant plasma membrane and the cell plate of dividing cells (Simon et al., 

2016). The membrane surface charge was found to control the plasma membrane recruitment 

of several peripheral plasma membrane proteins. The net negative charge of anionic 

phospholipids depends on local pH and could allow for dynamic pH-dependent modulation of 

proteins interaction at the membrane (see Box 1). This biochemical principle is probably 

universally valid as a similar pH sensing function has been described in yeast and animals for 

phosphatidic acid (PA) (Young et al., 2010; Shin and Loewen, 2011) (Fig. 2). Consistently with 

such an electrostatic regulation at the plasma membrane, the dynamics of clathrin-mediated 

endocytosis were shown to depend on anionic phospholipids (Ischebeck et al., 2013b), and 

cytoplasmic pH (Ischebeck et al., 2013b; Dejonghe et al., 2016).  

Figure 2: Schematic representation of the pH-dependent interplay between Ca2+ and anionic phospholipids. 

Ca2+ interacts electrostatically with the phosphate head groups in phosphatidic acid (PA) and phosphoinositides, 

such as phosphatidylinositol 4-phosphate, PI4P and phosphatidylinositol 4,5-bisphosphate, PI(4,5)P2 (right). 

Interaction of Ca2+ neutralizes negative charges of the lipids, can induce clustering and lipid head group tilting, 

which stimulates or interferes with specific protein-lipid interactions. Under conditions of low pH, Ca2+ 
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dissociation from the lipids is stimulated (left), thereby reverting the Ca2+ dependent effects on phospholipids 

and their interaction with proteins. 

 

The bivalent cation Ca2+ binds to deprotonated anionic phospholipids and has, besides effects 

on protein interactions, many biophysical consequences for membrane organization 

(reviewed in (Wang et al., 2014)). Importantly, the positive charge of Ca2+ modulates the 

Box 1: Electrostatic interactions of phospholipids with ions 

Non-covalent interactions are key interactions in biological systems; they play essential 

roles in protein folding, DNA replication or enzyme catalysis. Electrostatic interactions, 

hydrogen bonds and van der Waals interactions are the three fundamental non-

covalent interactions. Electrostatic interactions between two charged molecules or 

ions could be either repulsive in the case of same charges or attractive in the case of 

opposite charges. The presence of acidic phospholipids in the cytoplasmic face of the 

eukaryotic membranes results in a significant negative surface charge (Slochower et al., 

2014), which recruits mobile counterions from the cytoplasm that can cause 

pronounced changes in membrane curvature and surface patterning (Slochower et al., 

2014; Graber et al., 2017). Phosphatidic acid, PI4P and PI(4,5)P2 contain phosphate 

group(s) as a part of their head group region (Figure 2). Protonation state, i.e. the 

negative charge (-1 or -2) of the phosphate group, changes within a physiological pH 

range (i.e. 6.9 to 7.9) (Kooijman et al., 2005). Changes in the negative charge of the 

phosphate group affect interaction with positively charged ions and/or proteins and 

thus enable anionic phospholipid containing the phosphate group to work as pH 

sensors (Young et al., 2010; Shin and Loewen, 2011). Moreover, electrostatic 

interaction allows to concentrate Ca2+ in the direct proximity of the membrane, 

exceeding ten times the bulk concentration in the cytoplasm (Mclaughlin et al., 1981). 

On the one hand, Ca2+ could act as a charge bridge connecting phospholipids and 

proteins as was recently shown for mammalian syntaxin 1 (Milovanovic et al., 2016). 

On the other hand, specific binding of Ca2+ to PI(4,5)P2 changes the phospholipid head 

group conformation and inhibits PI(4,5)P2 recognition by pleckstrin homology (PH) 

domain (Bilkova et al., 2017).  
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effective charge of the cytoplasmic leaflet of the endomembranes, and could thus interfere 

with electrostatic interactions at these positions. This is relevant during membrane fusion, 

where Ca2+ facilitates contact of two proximal membranes by bridging lipid head groups (Tsai 

et al., 2013). However, several recent studies have suggested that the interaction of Ca2+ with 

membranes is more complex and is not just limited to Ca2+-regulated vesicle fusion (Melcrova 

et al., 2016; Bilkova et al., 2017; Magarkar et al., 2017).  

Besides modulating the electrostatic properties of the membrane, Ca2+ binding to the 

phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) head group and carbonyl regions leads to 

confined lipid head group tilting and conformational rearrangements that modify lipid 

recognition specificity (Bilkova et al., 2017). Together, these findings imply that Ca2+ allows to 

rapidly modulate the local electrostatic environment and presentation of phospholipids in 

membranes for differential recruitment and/or activity of phospholipid-binding proteins.  

Conversely, the Ca2+ buffering capacity of membranes can also modify Ca2+ signaling, as lipids 

can display high lateral diffusion rates within the membrane (Melcrova et al., 2016), and can 

locally release the Ca2+ bound to anionic phospholipids by acidification of the cytoplasm, or by 

enzymatic removal of the phosphate head group. Together, this intricate electrostatic 

interplay between Ca2+ and phospholipids highlights a fundamental mechanism by which Ca2+ 

signals are integrated in controlling endomembrane trafficking. 

 

Calcium sensing proteins that regulate endomembrane trafficking  

Endomembrane trafficking encompasses highly orchestrated membrane budding and fusion 

and cytoskeleton-based transport in which Ca2+ sensing proteins are involved. Calcium sensing 

is usually conferred by the presence of one or more highly conserved Ca2+ binding domains 

(Marchadier et al., 2016). For example, the Arabidopsis genome encodes for at least 250 

proteins, including prominent regulators of endomembrane trafficking, with one or more EF-

hands, archetypal Ca2+ binding sites (Day et al., 2002). Several endocytic regulators as well as 

subunits of the T-PLATE adaptor complex (TPC) were reported to contain EF hand motifs (Bar 

et al., 2008; Gadeyne et al., 2014). Although not experimentally validated, Ca2+ binding via the 

EF hands in the TPC may explain the potent and immediate effect of caffeine treatment on 

the removal of TPC subunits as well as clathrin from the growing cell plate during cytokinesis 
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(Van Damme et al., 2011a). In this model, caffeine-induced Ca2+ release from intracellular 

stores is sensed by TPC subunits and blocks their recruitment. The released Ca2+ is not 

efficiently dissipated during cell plate expansion. Following cell plate attachment to the 

plasma membrane, membrane recruitment of the TPC and other CME machinery rapidly 

recovers, suggesting restoration of Ca2+ dissipation after establishing a continuum between 

the cell plate lumen and the apoplast. Next to endomembrane trafficking, many regulators of 

the actin and microtubule cytoskeleton are known to be regulated by Ca2+ (Burstenbinder et 

al., 2013; Hepler, 2016; Burstenbinder et al., 2017). In addition to Ca2+-dependent regulation 

of somatic cell shape and growth, this is highly relevant for tip growing pollen tubes, where 

an oscillating tip-focused Ca2+ gradient instructs targeted secretion in a positive feedback 

regulation between Ca2+ and ROS production (Boisson-Dernier et al., 2013; Himschoot et al., 

2015b). 

In animals, Ca2+ sensing via CALMODULIN (CaM) fine-tunes core regulatory mechanisms of 

vesicle tethering and fusion at the level of RAB GTPase and SNARE (SOLUBLE N-ETHYL-

MALEIMIDE SENSITIVE FUSION FACTOR ATTACHMENT PROTEIN RECEPTOR) activity (Reviewed 

in (Burgoyne and Clague, 2003)). In plants, canonical CaM has not yet been reported to be 

enriched in RAB or SNARE enriched endosomal fractions (Fujiwara et al., 2014; Heard et al., 

2015). However, Arabidopsis CALMODULIN-LIKE4 (AtCML4) and AtCML5 are CaM domain-

containing membrane proteins that reside in endosomal populations that overlap with Golgi 

and MVB/LE markers (Ruge et al., 2016), suggesting that they could modulate Ca2+-dependent 

vesicle trafficking at these endosomal compartments.  

Two other classes of bona fide Ca2+-sensing proteins seem to be involved in endomembrane 

trafficking: ANNEXINs and SYNAPTOTAGMINs. ANNEXINs (ANNs) are conserved, 

multifunctional Ca2+-binding proteins that are involved in membrane trafficking, membrane-

cytoskeleton interactions, and can even generate Ca2+ channels. Plant ANNs display many 

similarities to their metazoan counterparts (reviewed in (Laohavisit and Davies, 2011)). As 

their name suggests, they function to bring together/annex membranes, a process intrinsic to 

endomembrane trafficking. Consistently, purified maize ANNs (ZmANN33/35) could 

potentiate Ca2+-regulated exocytosis in root cap protoplasts (Carroll et al., 1998), and 

overexpression of Arabidopsis ANN5 (AtANN5) renders pollen tube growth more resistant to 

the exocytosis-inhibiting fungal toxin, Brefeldin A (Zhu et al., 2014). In addition, AtANN4 co-
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purifies with the Qa-SNAREs SYNTAXIN OF PLANT121 (SYP121), SYP122, SYP123, SYP21 and 

SYP22 (Fujiwara et al., 2014), suggesting that plant ANNs act in conjunction with the core 

membrane fusion machinery. However, genetic evidence supporting the role of plant ANNs in 

membrane trafficking remains scarce. One clear example is that protoplasts expressing a RNAi 

construct directed against AtANN3 display defective segregation of TGN/EE and MVB/LE 

markers, connecting this AtANN3 to vacuolar trafficking (Scheuring et al., 2011).  

On the other hand, plant SYNAPTOTAGMINs (SYTs), such as SYT1, act as molecular tethers 

between the ER and the plasma membrane (Perez-Sancho et al., 2015). In their C-terminal 

domains, they have Ca2+-sensing C2 domains for Ca2+-dependent interaction with 

phospholipids (Schapire et al., 2008). Interestingly, expression of a truncated SYT1 construct 

in tobacco inhibits endocytosis as indicated by a reduced uptake of the endocytic tracer dye 

FM4-64 and aberrant localization of the endosomal marker RabF1/Ara6-GFP (Lewis and 

Lazarowitz, 2010). Similarly, the structurally related Xenopus EXTENDED SYNAPTOTAGMIN2 

acts as an early endocytic adaptor for the rapid phase of endocytosis of activated Fibroblast 

Growth Factor Receptors (Jean et al., 2010), suggesting a conserved functionality for such Ca2+ 

sensing proteins in regulation of endocytosis in animals and in plants.  

Together, these examples illustrate how Ca2+-sensing proteins control endomembrane 

trafficking. 

 

Calcium connects endomembrane trafficking to membrane integrity 

One of the most fundamental battles that cells are engaged in, is the continuous fight to 

preserve their membrane integrity in an ever-changing environmental and developmental 

context and this involves a strict coordination with endomembrane trafficking. A striking 

example is the reversible change in guard cell surface, up to 40%, during stomatal movement, 

that is dependent on concomitant changes in endo- and exocytosis rates due to the limited 

elasticity of the plasma membrane (Shope et al., 2003; Meckel et al., 2007). Similarly, cell 

volume changes triggered by changes in turgor pressure during osmotic challenges are 

followed by changes in endomembrane trafficking. When plants are subjected to acute hyper-

osmotic stress, endocytosis (including bulk internalization) increases and exocytosis 

decreases, while hypo-osmotic conditions have the opposite effect (Baral et al., 2015; 
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Zwiewka et al., 2015; Pou et al., 2016). The functional connection to membrane integrity 

systems is illustrated by mutants defective in early endocytic steps being more sensitive to 

hyperosmotic stress compared to controls (Zwiewka et al., 2015). This is consistent with a 

model in which stress hijacks endomembrane trafficking processes to lower membrane 

tension and preserve cellular integrity by changing the balance between endo- and exocytosis. 

Given that Ca2+ signals are readily elicited upon stress perception, it is easy to envision a role 

for Ca2+ sensing regulators of endomembrane trafficking in membrane integrity preservation, 

which is the case for plant ANNs and SYTs. Indeed, mutants Atann1 and Atann4, but also 

overexpressors of AtANN8 are tolerant to abiotic stress (Huh et al., 2010; Yadav et al., 2016). 

Given their presumed conserved role in membrane fusion (see above), plant ANNs could thus 

be involved in a patch-like membrane repair mechanism in which vesicles are fused as a 

‘membrane patch’ across the plasma membrane breach (Laohavisit and Davies, 2011). On the 

other hand, syt1 mutants are hypersensitive to mechanical stress (Perez-Sancho et al., 2015), 

hyperosmotic stress (Schapire et al., 2008) and freezing (Yamazaki et al., 2008), while 

overexpression of a truncated SYT1 results in inhibition of endocytosis (Lewis and Lazarowitz, 

2010). These examples illustrate the Ca2+-dependent interconnection between controlled 

endomembrane trafficking and membrane integrity preservation mechanisms. 

 

Calcium and protein sorting 

Endomembrane trafficking involves highly regulated sorting of specific cargoes of the 

secretory and the endocytic pathways for secretion, recycling and/or degradation. VACUOLAR 

SORTING RECEPTORs (VSRs) divert vacuolar cargoes away from the default secretory pathway 

into the vacuolar pathway, as mutants defective in VSR function missort vacuolar cargoes to 

the apoplast (Fuji et al., 2007b; Sanmartin et al., 2007; Sohn et al., 2007). For reasons of 

cellular economy, the VSRs do not follow their ligands into the vacuole, but become recycled 

to the TGN/EE via retrograde transport from MVB/LE. Therefore, VSRs have to dissociate from 

their ligands prior to being released in the intraluminal bodies of the MVB/LE. In mammalian 

cells, this dissociation is induced by rapid acidification and a loss of Ca2+ from the maturing 

endosome, based on pH- and Ca2+-sensitive ligand binding (Andersen and Moestrup, 2014). 

Similarly, in plants, Ca2+ strongly stabilizes receptor-ligand interactions, albeit independently 
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of pH (Watanabe et al., 2002; Shimada et al., 2003). The latter is consistent with the absence 

of a dramatic acidification within the anterograde endosomal pathway (Luo et al., 2015). 

Interestingly, targeted retention of soluble VSRs in different subcellular compartments 

demonstrated that the VSR-ligand interaction occurs in the ER and the GA, but not the TGN/EE 

and MVB/LEs (Kunzl et al., 2016). This raises the possibility that Ca2+ release from the 

endosomal lumen could promote VSR-ligand dissociation. Consistently with this notion, the 

GA has a relatively low Ca2+ concentration (700nM) (Ordenes et al., 2012) compared to the 

expected Ca2+ levels in the ER (Stael et al., 2012). Moreover, one might expect even lower Ca2+ 

levels in the TGN/EE to effect VSR-ligand dissociation. Therefore, it will be of interest to further 

dissect the Ca2+ dynamics along the endomembrane system and the underlying homeostasis 

mechanisms (Fig. 1). Prime candidates for endosomal Ca2+ homeostasis are the Ca2+-ATPase 

ER-TYPE Ca2+-ATPASE3 (ECA3) which resides in MVB/LE (Li et al., 2008a), and an 

uncharacterized member of the REDUCED HYPEROSMOLALITY-INDUCED [Ca(2+)]i INCREASE 

(OSCA)-type Ca2+-permeable cation channels, whose loss of function results in missorting of 

vacuolar cargoes to the apoplast (Fuji et al., 2007). 

 

Conclusions and perspectives  

The flexibility of plant growth and development depends largely on its ability to integrate 

numerous environmental stimuli and endogenous cues. This involves a tight coupling with 

endomembrane trafficking as illustrated by the modulation of cellular signal transduction and 

transport capacities in the plasma membrane through endocytic regulation of receptors and 

transporters (Paciorek et al., 2005a; Robatzek et al., 2006; Sutter et al., 2007; Kasai et al., 2011; 

Ortiz-Morea et al., 2016). Ca2+ is well known as a second messenger downstream of many 

cellular stimuli, including those that also modify endomembrane trafficking. From the 

examples outlined above it is clear that Ca2+ is a potent regulator of endomembrane 

trafficking, making it tempting to speculate that Ca2+ connects stimulus perception to 

modulation of endomembrane trafficking. Thus resolving the molecular mechanisms by which 

Ca2+ controls endomembrane trafficking remains one of the major open questions in plant cell 

biology.  
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Abstract 

Calcium sensors are indispensable tools to study the role of Ca2+ and visualize Ca2+ dynamics 

during biological processes. Over the past years, the field of Ca2+ imaging has strongly 

expanded by the development of a wide palette of sensors and optimization of sample 

handling. Here, we provide guidelines for imaging of the Ca2+ sensor R-GECO1 in Arabidopsis 

thaliana roots which can be interpolated to other intensiometric Ca2+ sensors. Furthermore, 

we demonstrate a procedure for image analysis of the acquired time-lapse recordings. Finally, 

the protocol was used to determine the dose-response of Ca2+ signals amplitude of roots 

treated with different concentrations of the synthetic auxin NAA. Moreover, we demonstrate 

the impact of reduced extracellular Ca2+ availability on the overall amplitude of the NAA-

induced Ca2+ signal. The resulting data are in turn important in the context of Chapter 2 

(Section II – Chapter 2), where we address the functional relevance of auxin-induced Ca2+ for 

regulation of clathrin-mediated endocytosis. 

 

1. Introduction 

Calcium is an important second messenger regulating a wide range of developmental 

processes and environmental responses in plants and animals (Rudd and Franklin-Tong, 1999; 

Sanders et al., 1999; Knight and Knight, 2001; Sanders et al., 2002a; Scrase-Field and Knight, 

2003; Clapham, 2007). Typically, the resting Ca2+ concentration in the cytoplasm is kept low, 

around 100-200nM, while the Ca2+ concentration in the organelles and extracellular space is 

several orders of magnitude higher (reviewed in Himschoot et al., 2017). This steep 

concentration gradient allows to generate rapid cytoplasmic Ca2+ signals by opening only a 

few Ca2+ channels. After a stimulus-induced cytosolic Ca2+ increase, the cytoplasmic Ca2+ levels 

are rapidly restored to the resting status. Based on the amplitude and duration of the Ca2+ 

signals, specific Ca2+ signatures can be defined for distinct cellular processes. Therefore, to 

investigate the role of Ca2+ in biological processes, it is critical to be able to capture accurately 

and with high resolution the distinct Ca2+ signatures. Given that Ca2+ is a bivalent ion, rather 

than a protein, its dynamics cannot be visualized using standard molecular biology approaches 

such as translational reporters. Instead, the visualization of Ca2+ is commonly done indirectly, 

based on the change in physical properties of dyes or genetically encoded Ca2+ indicators 
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(GECIs) upon binding of Ca2+. The rapid loading, sensitivity and broad dynamic range makes 

fluorescent dyes highly attractive to study Ca2+ dynamics. This explains why, to date, multiple 

Ca2+-sensitive dyes, such as Fura-2, are still commonly used to capture dynamic Ca2+ signatures 

in animal cells (Homma et al., 2009; Kettunen, 2012; Dolenšek et al., 2015). However, such 

dyes have never been commonly used in plants, mainly due to technical difficulties to load the 

dyes uniformly into the plant tissues and the requirement of specimen manipulations which 

can introduce artefacts. In contrast, the plant field has benefited a lot from a wide range of 

GECI which have the key advantage that they can be expressed both in specific tissues and in 

the entire plant. Moreover, they can be targeted to distinct subcellular compartments to 

dissect the mechanisms of Ca2+ signaling at the organelle level (Krebs et al., 2012; Mehlmer et 

al., 2012; Bonza et al., 2013; Loro and Costa, 2013).  

The GECIs can be subdivided in the chemiluminescence- and fluorescence-based indicators. A 

frequently used chemiluminescent Ca2+ indicator is based on aequorin. This Ca2+ binding 

photoprotein naturally occurs in the jellyfish Aequorea victoria and consists of the enzyme 

apoaequorin and the luminophore coelenterazine (Knight, 1991; Shimomura et al., 1993; 

Shimomura, 1995). Oxidation of coelenterazine by apoaequorin upon Ca2+ binding results in 

emission of light. For Ca2+ imaging, the recombinant apoaequorin is expressed in the seedlings 

and the substrate coelenterazine is loaded into the cells to visualize Ca2+ dynamics. One of the 

downfalls of chemiluminescent Ca2+ indicators is their limited spatial resolution and rather low 

light emission levels (quantum yield) (Creton et al., 1999). Recent advances in probe 

optimization have led to the development of the luciferases Nano-latern(Ca2+) (Saito et al., 

2012; Takai et al., 2014) and NanoLuc (Hall et al., 2012) having respectively a 20- and 100 to 

150-fold increase in brightness resulting in a higher signal-to-noise ratio and improved spatial 

resolution. Most of the chemiluminescent probes are not ratiometric and do not allow 

correcting for sample drift and differences in expression levels of the probe. Therefore, 

ratiometric bioluminescence resonance energy transfer (BRET)-based chemiluminescent 

sensors such as CALcium FLUX composed of Venus, Troponin and NanoLuc (CalfluxVTN) have 

been developed (Yang et al., 2016). This probe combines the bright NanoLuc luciferase with a 

truncated Venus fluorophore, interconnected by linkers and the Ca2+ binding protein Troponin 

C (Tn C). As a substrate, NanoLuc uses furimazine which is less autoluminescent than the 

typical coelenterazine thereby further improving the signal-to-noise ratio (Hall et al., 2012). 



86 
 

Upon addition of the substrate and in the presence of Ca2+, Ca2+ binding to Tn C results in a 

conformational change bringing NanoLuc and Venus in closer proximity. Consequently, the 

light released upon NanoLuc-mediated oxidation of furimazine results in BRET-based 

excitation of Venus, and the ratio of Venus emission over NanoLuc emission reflects the Ca2+ 

dynamics. Unfortunately, these optimized probes have not yet been used in plants, and the 

need for coelenterazine loading into the cells and tissues, the low light emission and limited 

cellular resolution of aequorin have prompted the development of fluorescence-based 

sensors.  

Among the fluorescence-based Ca2+ sensors, ratiometric and intensiometric sensors can be 

distinguished. The ratiometric sensors are usually based on Ca2+-dependent Förster resonance 

energy transfer (FRET), in which a donor and acceptor fluorophore (e.g. CFP-YFP) are 

interconnected by a Ca2+-controlled interaction module (e.g. CALMODULIN (CaM) and CaM-

binding peptide M13). Upon Ca2+ sensing, the interaction module induces a conformational 

change thereby bringing both fluorophores in closer proximity allowing FRET. This FRET causes 

a simultaneous increase in acceptor fluorescence and decreased donor fluorescence resulting 

in an increased ratio of acceptor emission/donor emission which can be imaged using confocal 

microscopy. A great advantage of the ratiometric character of such sensor is that it allows to 

assess Ca2+ dynamics independently of the expression levels and correct for changes of focus. 

However, ratiometric sensors have a limited dynamic range. Intensiometric sensors are based 

on enhancement or decrement in fluorescence of a single fluorophore depending on the Ca2+-

controlled interaction module. In this case, Ca2+ binding leads to a (de)stabilization of the 

fluorophore, and thus correspondingly an increase or decrease of brightness. These sensors 

generally have a relatively high dynamic range, and have fast on-off kinetics, but do not allow 

to correct for differences in expression levels. Multiple intensiometric probes such as the 

green fluorescent GCaMP series (Allen et al., 1999; Denninger et al., 2014) and GECOs with 

different spectral properties and sensitivities (Zhao et al., 2011; Zhao et al., 2014; Podor et al., 

2015) have been developed over the past years, and are continuously being improved. 

Recently the red fluorescent R-GECO1 (Fig. 1) (in planta dissociation constant (Kd) = 158nM, 

(Waadt et al., 2017)) and the green fluorescent GCaMP6s (in vitro Kd = 144nM, (Chen et al., 

2013)), and derivatives thereof have been described as very sensitive probes for monitoring 

Ca2+ dynamics in A. thaliana (Keinath et al., 2015; Liu et al., 2017; Waadt et al., 2017). 
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Figure 1: R-GECO1 spectral properties and mode of action. (A) Spectral properties of R-GECO1 with the 

excitation (dotted line) and emission (full line) spectrum (modified from Zhao et al., 2011). (B) Simplified 

schematic representation of the mode of action of the intensiometric R-GECO1 Ca2+ sensor. R-GECO1 consists 

of the mApple red fluorescent protein, the Ca2+ binding protein calmodulin (CaM), and the CaM binding M13 

peptide. Binding of Ca2+ ions to CaM induces an intramolecular conformational change resulting in increased 

fluorescence intensity of mApple upon R-GECO1 excitation with 561 nm light. 

 

Our main interest is to study Ca2+ dynamics upon treatment with the plant hormone auxin. 

Many publications have already demonstrated a rapid and transient increase in cytosolic Ca2+ 

concentrations upon treatment with the natural auxin indole-5-acetic acid (IAA) and synthetic 

auxin 1-naphthaleneacetic acid (NAA) in different species and tissues (Gehring et al., 1990; 

Irving et al., 1992; Ayling et al., 1994; Shishova and Lindberg, 2004, 2010; Monshausen et al., 

2011; Waadt et al., 2017). However, we are interested in the impact of the synthetic auxin 

NAA, which is frequently used in experimental set-ups, as it is more stable than IAA, on Ca2+ 

dynamics in roots of Arabidopsis seedlings. The auxin-induced cytosolic Ca2+ increase takes 

place in a matter of seconds (Shishova and Lindberg, 2004), which makes it experimentally 

challenging to capture this event. Therefore, we made a customized imaging chamber based 

on a design developed in the Schumacher lab (Krebs and Schumacher, 2013) which facilitates 

image acquisition for real-time recording of Ca2+ dynamics during treatment while minimizing 
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sample drift. Here, we provide guidelines for image acquisition of the intensiometric R-GECO1 

sensor, which also apply to other intensiometric Ca2+ sensors. In addition, we provide a 2D- 

and 3D design for the imaging chamber and present a method for image analysis using Fiji 

(manual) and MATLAB (script). Finally, I have included data on auxin-induced Ca2+ dynamics in 

Arabidopsis roots using this set-up to illustrate some expected outcomes, when using this set-

up.  

 

2. Materials 

1. Seed sterilization  

- Eppendorf tubes (2 mL) 

- Desiccator in fume hood 

- Sterilization solution: 5mL concentrated HCl (37%), 100mL NaClO (13%) 

2. Growth medium (0.5x MS) 

-  For preparation of 1 L growth medium weigh 10 g sucrose, 2.3 g MS salts, 0.5 g MES 

-  Dissolve in +/-950 mL MilliQ 

-  Adjust pH to 5.7 using KOH 

-  Add MilliQ up to 1 L 

-  Add 8 g of agar and mix well before autoclaving 

3. Plant growth and sample preparation 

- Growth medium (see 2.) 

- Square sterile plates (e.g. Greiner Bio-One, 12/12/17mm, item No. 688161) 

- Sterile tooth picks 

- Epifluorescence binocular with a suitable filter (e.g. an RFP filter for R-GECO1) 

4. Imaging medium (minimal medium) 

-  For preparation of 1 L growth medium weigh 2,132 g MES, 0,372 g KCl, 1,11 g CaCl2 

-  Dissolve in +/-950 mL MilliQ 

-  Adjust pH to 5.7 using KOH 

-  Add MilliQ up to 1L 
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5. Imaging chamber 

We use a customized imaging chamber (based on the imaging incubation chamber shown in 

(Krebs and Schumacher, 2013)) suited for imaging on an inverted microscope. The design of 

the chamber allows to apply treatments during imaging while minimizing sample drift. Here 

we provide a 2D- and 3D design for fabrication of the chamber by milling/cutting or 3D printing 

depending on the available equipment (see Notes 1.). The designs are made available through 

the following link: https://www.psb.ugent.be/docs/himschoot-et-al-2017-calcium-ion-

dynamics-in-roots-chamber-designs-and-matlab-script. The required components for 

assembly of the chamber are listed below.  

- Customized imaging chamber with lid (see 2D, 3D design) 

- Petri dish (e.g. Greiner Bio-One, 35/10mm, item No. 627161) 

- Low viscous silicon paste (e.g. GE Bayer Baysilone from VWR, catalog No. 291-1210) 

and swab 

- Round cover glasses diameter 24 mm, thickness 1 (e.g. from neoLab, item No. 1-6290) 

- Chemically pure glass wool (e.g. from Roth, item No. 7377.2) 

- 2 M3 x 5mm screws + 2 washers with outer diameter 15mm and inner diameter 4mm 

(e.g. from Farnell, order code 1420120 and 2426053 respectively)  

 

6. A Widefield Microscope (WM), Confocal Laser Scanning Microscope (CLSM) or 

Spinning Disk Microscope (SDM) 

The procedures described can be applied to any inverted WM, CLSM or SDM.  

7. Fiji  

Fiji (Fiji Is Just ImageJ) is an open-source image processing package based on ImageJ 

(Schindelin et al., 2012). The described procedures for image analysis with Fiji can be 

implemented using any version of Fiji. It is freely available from 

https://imagej.net/Fiji/Downloads.  
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8. MATLAB  

MATLAB (matrix laboratory) is a multi-paradigm numerical computing environment which is 

popular among scientists for image processing. A script for image analysis 

intensiometric_Ca_imaging.m is provided under the following link: 

https://www.psb.ugent.be/docs/himschoot-et-al-2017-calcium-ion-dynamics-in-roots-

chamber-designs-and-matlab-script. It was developed in MATLAB 2013a and is compatible 

with this and more recent MATLAB releases. In contrast to Fiji, it is not available for free and 

a license is required. In case no MATLAB license is available, a free product trial can be 

requested on www.mathworks.com.  

 

3. Methods 

3.1 Seed sterilization using chlorine gas 

1. Put the desired seeds into 2 mL Eppendorf tubes (the recommended amount of seeds is 

approx. 50 µL) and place the seeds into the desiccator in the fume hood.  

2. Add 5 mL of concentrated HCl (37%) and 100 mL 13% NaClO into the desiccator, close the 

desiccator immediately and incubate the seeds with developed chloral gas for at least 3hrs or 

overnight.  

3. Let the majority of the toxic chloral gas escape from the desiccator in the fume hood. Close 

the tubes and transfer them to the laminar flow to air out the remnant chloral gas for 15 min. 

 

3.2 Plant growth 

1. Square sterile plates for in vitro growth are filled with 50 mL growth medium (0.5x MS) with 

agar. 

2. Place the seeds using a sterile tooth pick on the solidified medium. Ensure that the seeds 

are not too close to one another (+/- 0.5 cm). This will facilitate screening for seedlings with 

good expression levels later on.  

3. After sowing, the plates are transferred to the cold room (4°C, dark) for 1 day vernalization.  
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4. Transfer the plates to the growth chamber (21°C, continuous light) for 4-5 days. 

 

3.3 Imaging chamber assembly and sample preparation (Fig. 2) 

1. Before preparing the samples it is advised to check the seedlings for good expression levels 

of the sensor. This can be done using an epifluorescence binocular with a suitable filter.   

2. Apply a small amount of silicon paste on the rim of the base of the chamber using a swab 

and mount a round cover glass. The silicon paste will seal the chamber and prevent leakage.  

3. Put a seedling in a small Petri dish filled with liquid minimal medium for a few seconds to 

hydrate the seedling and prevent it from drying out. Transfer the seedling to the center of the 

cover glass and cover it with a thin layer of glass wool. The glass wool will reduce seedling drift 

during treatment. Add 200 µL minimal medium to the chamber. It is crucial to perform these 

operations quickly to avoid the seedling would dry out. 

4. Mount the top lid, with the opening parallel to the seedling, and mount the M3 screws with 

washers. The washer will hold down the top lid. 

5. Let the mounted seedling recover for about 30 min before initiating the Ca2+ imaging. The 

mechanostimulation of the seedlings during sample preparation may render the seedlings less 

responsive to subsequent stimuli. See Notes, 2. 

6. Prepare the solution for treatment in 100 µL minimal medium.  Ensure the compound 

concentration is three times higher than the desired end-concentration. See Notes, 3. 

 

Figure 2: Imaging chamber assembly. A) The imaging chamber components. B) Assembled imaging chamber.  
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3.3 Ca2+ Imaging  

The data processing procedure is compatible with widefield microscope (WM), confocal laser 

scanning microscope (CLSM) and spinning disk microscope (SDM) image acquisition. The main 

difference between WM and CLSM or SDM is the lack of optical sectioning thereby not only 

capturing fluorescence from the focal plane, but also out-of-focus light which affects the 

resolution of the image. A WM typically uses a fluorescent lamp as an excitation source, while 

a CLSM and SDM are equipped with lasers. The main difference between CLSM and SDM is 

the method of scanning the sample. In case of CLSM, a point-by-point illumination is used, 

while in SDM multiple points are illuminated simultaneously, thereby speeding up image 

acquisition, which can be important to capture very fast Ca2+ kinetics. The WM also allows for 

fast image acquisition. Most steps described below apply to WM, CLSM and SDM set-ups; 

where differences occur the guidelines will be described for both devices separately. 

 R-GECO1 is an intensiometric Ca2+ sensor, meaning that an increase in fluorescence intensity 

reflects an increase in Ca2+ levels in a single emission channel (Zhao et al., 2011). As it is a red-

shifted Ca2+ indicator, it can be excited by 561 nm wave-length and emission light can be 

captured in a range of 620 nm to 650 nm wave-length.  

1. Select an objective (see Notes 4.) and set the desired image resolution (e.g. 512 x 512) and 

bit depth (e.g. 16 bit).  

2. Mount the imaging chamber on the stage, position the root tip in the center of the field of 

view (see Notes 5.), and focus on the root tip.  

3. Set the percentage of laser, the pinhole size in case of CLSM, detector gain, and offset to 

minimize photo bleaching during a time-lapse recording and use the full dynamic range of the 

detector. The maximal Ca2+ signal should not result in pixel saturation, and the background 

should be close to the detector noise levels for optimal semi-quantitative assessment of Ca2+ 

dynamics in the sample. Therefore, it is advised to perform a test experiment to estimate the 

extent of fluorescence intensity increase which can be expected, and adjust the settings 

accordingly.  

4. For detection of the signal, microscopes can be equipped with photomultiplier tubes (e.g. 

CLSM) or (CCD) cameras (e.g. SDM). In case of a camera detector, it is required to set the 
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exposure time during which the sample is illuminated and fluorescence will be collected by 

the camera. High laser power combined with long exposure times can cause photobleaching. 

5. Set up the time lapse recording (Notes 6.). Time series are recorded by collecting a scan 

every 3-5 sec. If higher temporal resolution is required, the frame rate can be increased. For 

very fast data acquisition the SDM is preferred. However, increasing the frame rate will result 

in more frequent scanning of the sample and possible photobleaching.  

6. Start the time lapse recording. Allow the fluorescence level to stabilize (3-5 min) before 

applying a treatment.  

7. Pause the time lapse, write down the frame number, apply the treatment, and resume the 

recording. Use 100 µL minimal medium supplemented with the 3x concentrated treatment 

(after addition, the end volume in the imaging chamber will be 300 µl, thereby diluting the 

treatment to 1x). The frame number will be important for normalization during image analysis 

of the data (see Notes 7.). In the case of a compound-induced Ca2+ increase, the fluorescence 

levels will increase. 

8. Save the time lapse recording. For image analysis the procedures for Fiji and MATLAB are 

described. It is therefore important that the file format used for saving the time lapse 

recording is compatible with either program. A wide range of file formats can be opened and 

processed in Fiji (.lsm, .tiff, .ometiff, …). In case of MATLAB, the number of file formats is more 

limited (e.g. .lsm cannot be processed by the provided MATLAB script). It is advised to use .tiff 

or .ometiff files. (see Notes 8.) 

 

3.4 Image analysis: 

Here, the fluorescence intensity dynamics will be analyzed for multiple regions of interest. 

Analysis of these plots will allow to identify the maximal amplitude, duration, onset,… of a Ca2+ 

response upon treatment. The procedure consists of 5 major steps: 1) image registration, 2) 

measurement of the background levels, 3) measurement of the fluorescence intensity in a 

selected ROI, 4) background subtraction, and 5) normalization of the background-corrected 

fluorescence intensities to the initial fluorescence intensity (see Notes 7.). These operations 

can be performed using different image processing software packages. Here, we provide the 
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guidelines for manual image analysis in Fiji and a MATLAB script to automate part of the image 

analysis. 

 3.4.1 Fiji (Fig. 3) 

1. Open the time lapse recording by selecting ‘File’ > ‘Open…’. 

2. Perform image registration. In case of movement/drift of the root during the time lapse 

recording, it is essential to perform an image registration step to align the different frames. 

This is to avoid that the area of interest would move over time and would no longer be 

contained within the marked ROI. 

To perform intensity-based image registration use the StackReg plugin in Fiji (Thevenaz et al., 

1998). Go to ‘Plugins’ > ‘Registration’ > ‘StackReg’. In case the plugin is not available it can be 

downloaded here: http://bigwww.epfl.ch/thevenaz/stackreg/. Select a transformation 

method depending on the type of movement the root makes over time. The transformation 

methods are Translation, Rigid Body (translation + rotation), Scaled Rotation (translation + 

rotation + scaling), Affine (more complex movement). In case of root movement due to growth 

or drift, translation is usually sufficient for proper image alignment.   

3. Define a region for background measurement and regions of interest (ROIs). To mark a 

region use a selection tool of choice (e.g. a polygon) in the toolbar. After drawing the region, 

it can be saved by going to ‘Edit’ > ‘Selection’ > ‘Add to Manager’. The region for background 

measurement should be drawn outside of the root (Fig. 3). Multiple ROIs can be drawn at 

positions of choice. The number of ROIs is referred to as n. 
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Figure 3: Screen shot of Fiji interface. The ROI Manager window stores the background region and ROIs. The 

corresponding regions are displayed on the image at the left. The Results window shows the mean gray values 

for the different regions over time. 

 

4. Measure the mean fluorescence intensity in the background region and n ROIs. First, define 

the parameter that has to be measured. Go to ‘Analyze’ > ‘Set Measurements…’ > select ‘Mean 

gray value’ > ‘OK’. Next, measure the mean gray value in the different regions. In the ROI 

Manager window, select all regions and click on ‘More’ > select ‘Multi Measure’ > enable ‘One 

row per slice…’ > ‘OK’. The Results window shows the mean fluorescence intensity for the 



96 
 

background region (IBG) and n ROI (IROIn) over time (Fig. 3). The obtained results are further 

processed in Excel.  

5. Perform a background subtraction by calculating (IROIn - IBG) (t). (Fig. 4); Subtract, per frame, 

the mean background signal IBG from the mean signals in each of the n ROI, IROIn 

 

Figure 4: Visualization of background subtraction procedure. (A) The measured mean fluorescence intensity 

values for ROI n (IROIn (t)) and the background region (IBG (t)) over time. Note the initial drop in mean fluorescence 

intensity for ROI n due to photobleaching at the start of the time lapse recording. (B) The mean fluorescence 

intensity values of ROI n before (dotted line) and after (full line) background subtraction. 

 

6. Normalize the background-corrected values by calculating [(IROIn - IBG) (t) - (IROIn - IBG) (tref)] / 

(IROIn - IBG) (tref) (Fig. 5); The background-corrected mean intensities (IROIn - IBG) for ROI n over 

time t are normalized to the background-corrected mean intensity (IROIn - IBG) at a reference 

time point tref. The reference time point is usually a time point prior to the treatment, when 

fluorescence levels have stabilized (see Notes 7.). For normalization, subtract and 

subsequently divide the background-corrected mean intensities for a ROI (IROIn - IBG) (t) by the 

background-corrected mean intensity at the reference time point (IROIn - IBG) (tref). 
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Figure 5: Visualization of normalization procedure. The graph shows the background-corrected mean intensities 

over time before (dotted line) and after (full line) normalization. The background-corrected mean intensity at 

timepoint tref (= (IROIn – IBG) (tref)) is used for normalization. 

 

7. Plot the data in a line chart. The normalized background-corrected mean intensities [(IROIn - 

IBG) (t) - (IROIn - IBG) (tref)] / (IROIn - IBG) (tref) are used for the y-axis values. Recalculate the number 

of frames to the corresponding time in seconds by taking into account the time interval 

between subsequent scans (x-axis values). 

8. Plot analysis. Different parameters can be extracted from this plot and compared among 

treatments/genotypes such as the peak amplitude, response time, steepness of the peak, 

peak duration, … 

 3.4.2 MATLAB  

The workflow of the provided MATLAB script intensiometric_Ca_imaging.m is schematically 

illustrated in Fig. 6 and is described in more detail below. The script does not include an image 

registration step. Therefore, it should be first performed in Fiji as described above (3.4.1. step 

2)).  
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Figure 6: Workflow of MATLAB script intensiometric_Ca_imaging.m. The oval shapes indicate steps where user 

input is required. The rectangular shapes mark the steps which are performed automatically while running the 

script. 

 

1. Getting started with MATLAB. Copy the provided script intensiometric_Ca_imaging.m to 

the directory used by MATLAB and add it to the path (right click > ‘Add to path’) (Fig. 7). Ensure 

that all the movies are in the same directory and added to the path. The plots that will be 

generated by the script will be saved to this directory. In order to run the script, right-click on 

intensiometric_Ca_imaging.m in the ‘Current Folder’ panel, and select ‘Run’. 
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Figure 7: Getting started with MATLAB. The current folder used in this case is D:\MATLAB. Copy the 

intensiometric_Ca_imaging.m script and the movies of interest to this folder and add them to the active path as 

shown. The plots that will be generated by the script will be saved in this current folder. 

 

2. A ‘Select File to Open’ window will pop up. Select the time lapse recording of interest and 

click ‘Open’. If the time lapse file is not visible in the opened folder, ensure that ‘All Files’ is 

selected and that the time lapse file is stored in this folder. 

3. An ‘Input’ window will be shown. Provide the required input parameters: the number of the 

frame of which the fluorescence intensity has to be used for normalization (tref), the time 

interval between scans in sec (here: 5 sec), and the number of ROI (= n).  
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4. The first frame of the time lapse recording will appear, together with a window containing 

the instructions to set a (polygon) region for measurement of background fluorescence. To 

proceed and start drawing the region, click ‘OK’. Specify the region by selecting vertices of the 

polygon. To close the polygon, double-click or position the mouse over the first vertex and 

single-click. The polygon can be moved or resized using the mouse. When the polygon has the 

desired size and position, create a mask by right-clicking inside the region and selecting ‘Create 

mask’ from the menu. Once this is done, the script will measure the mean background 

intensity IBG in the defined region for every frame, and store the values in the I_BG vector. 

5. The next step is to mark a first ROI. As in step 4, the first frame of the time lapse recording 

and a window containing the instructions for drawing the ROI will appear. To start drawing 

the ROI, click ‘OK’. Draw the ROI as described in step 4. When the polygon is drawn, create a 

mask by right-clicking inside the region and selecting ‘Create mask’ from the menu. 

The following tasks are performed automatically by the commands in the script. The mean 

fluorescence intensity IROI1 in the defined region is measured for every frame, and the values 

are stored in the I_ROIn vector. A background subtraction is performed (IROI1 – IBG), and the 

background-corrected mean fluorescence intensities are saved in the I_corr vector. Based on 

the number of the frame for normalization defined in step 3. (tref), the background-corrected 

mean fluorescence intensities for the ROI over time t (IROI1 – IBG) (t) are normalized to the 

background-corrected mean fluorescence intensity of the ROI at tref by subtracting and 

subsequently dividing by this value: [(IROI1 - IBG) (t) - (IROI1 - IBG) (tref)] / (IROI1 - IBG) (tref). The 

obtained values are stored in the I_corr_norm vector and plotted over time. The graph is saved 

in the MATLAB directory as JPEG file and is named 'ROI1.jpg' (Fig. 8). 
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Figure 8: MATLAB output. The script generates a plot for every individual ROI (ROI1.jpg, ROI2.jpg,…) and a 

summary plot (Summary_graph.jpg) which will be saved to the current folder. The Workspace lists all the vectors 

containing the fluorescence intensities which have been measured/calculated while running the script. To access 

the values, see Notes 9. 

 

6. Depending on the number of ROIs (n), step 5 is repeated n times. 

7. In the case of multiple ROIs (n > 1) the script generates a single graph containing all the 

graphs of the n ROI (Fig. 8). The graph is saved as a JPEG file named ‘Summary_graph.jpg’ in 

the MATLAB directory. 

8. Analyze the graphs. Different parameters can be extracted and compared among 

treatments/genotypes such as the peak amplitude, response time, steepness of the peak, 

peak duration, … (See Notes 9. and 10.). 

9. Before proceeding to analysis of another time lapse recording, ensure to rename the 

‘Summary_graph’ and ‘ROIn’ plots. Otherwise they will be overwritten during a subsequent 

run of the script. 

 

4. Notes 

1. Two different methods were used for producing the imaging chamber. One set of chambers 

was made by manually machining the base of the chamber from an aluminum block and the 
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lid from plexiglass. A second set of chambers was made by 3D printing from PETG plastic. Both 

methods resulted in functional imaging chambers. The manually machined chambers were 

made based on the provided 2D drawing. The 3D design is provided as a STL file which is the 

universal file format for most 3D printers. For 3D printing a fused deposition modelling (FDM) 

printer was used. Both the base of the chamber and the lid were printed from PETG filament. 

PETG has a melting temperature of 220°C to 250°C, and it is advised to print it on a heated 

bed of around 80°C to prevent warping. 

2. To increase the time-efficiency during imaging, it is convenient to have several imaging 

chambers to allow imaging a sample while preparing another sample and let it recover for 30 

min.  

3. The total volume of the chamber is about 300 µL. Because 200 µL minimal medium is added 

during sample preparation, only an additional 100 µL can be applied for treatment, resulting 

in a three-fold dilution of the treatment solution upon mixing it to the sample. Therefore, the 

concentration of any drug in the treatment solution should be 3x more concentrated than the 

desired end-concentration. 

4. It is recommended to use and objective with high Numerical Aperture (NA). For imaging of 

root cells it is advised to use a 40X water immersion objective.  

5. Keep in mind that root tips might grow out of the field of view during long time lapse 

recordings. To increase the field of view, tile scanning can be performed at every time point. 

The frame rate might have to be decreased to have enough time to execute this operation. A 

SDM might be more suitable for this purpose as it allows for faster data acquisition. 

6. Depending on the stimulus, the time of Ca2+ response can vary. Set the duration of the time 

lapse recording according to the purpose of the experiment.  

7. By normalization of the fluorescence intensities, the initial fluorescence intensities are 

brought to a similar level making comparison among different ROIs in a root or among 

different roots more convenient. Typically, at the start of the time lapse recording, some 

photobleaching can occur. Therefore, it is advised to wait until the fluorescence levels have 

stabilized. For normalization, use the fluorescence intensity after fluorescence stabilization, 

and prior to treatment (tref).  
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8. A full overview of the file formats which are supported by Fiji can be found here: 

http://imagejdocu.tudor.lu/doku.php?id=faq:general:which_file_formats_are_supported_by

_imagej. A list of MATLAB- compatible file formats is listed here 

https://nl.mathworks.com/help/matlab/import_export/supported-file-formats.html.  

9. To access the measured fluorescence intensity values and the ones calculated by the 

MATLAB script, go in the ‘Home’ tab to ‘Open Variable’ and select the variable of choice. A 

‘Variables’ window will be opened containing the data which can be selected and copied to 

e.g. Excel for further analysis. An example for the I_corr_norm_array is shown below. A row 

corresponds to the normalized background-corrected mean fluorescence intensities of a ROI 

over time. In the example (Fig. 9) the data for three ROIs are shown. 

Figure 9: Screen shot of the ‘Variables’ window containing the data of the desired variable. 

10. The absence of changes in fluorescence intensity can be explained by the absence of Ca2+ 

signaling, or by lack of responsiveness of the seedling e.g. when it is damaged. In order to 

distinguish between both scenarios a positive control treatment can be applied at the end of 

each time lapse recording (e.g. 0.1 or 1 mM ATP). If the response to the positive control occurs 

as expected, this suggests the seedling is intact and the test treatment does not elicit a Ca2+ 

increase. 

 

5. Results 

Several reports on auxin treatment of different plant species and tissues are available. In the 

root, most Ca2+ dynamics in response to the natural auxin IAA, are well characterized 

(Monshausen et al., 2011; Waadt et al., 2017). The rapid Ca2+ response to IAA was most 

intense in the region shootwards to the root meristem, corresponding to the elongation zone 

and differentiation zone. This tissue-specific response could be recorded both with Yellow 

Cameleon3.6 (YC3.6) and R-GECO1-mTurquoise GECIs. Here, we analyzed Ca2+ dynamics upon 
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treatment with the synthetic auxin NAA in Arabidopsis roots. We focused on the root 

epidermal cells since these cells are at the root surface and therefor easiest to treat, and 

because R-GECO1 is best expressed in this cell type. Upon treatment with 10µM NAA, a rapid 

cytosolic Ca2+ elevation was observed (Fig. 10). The onset of the Ca2+ increase started 

immediately after NAA application, and the maximal amplitude was reached in about 70 sec. 

In some seedlings, this primary Ca2+ peak was followed by a more subtle secondary Ca2+ 

increase (Fig. 10, B), and a gradual attenuation of the Ca2+ signal. These observations suggest 

the involvement of multiple Ca2+ signaling components jointly shaping the NAA-induced Ca2+ 

signature.  
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Figure 10: Ca2+ dynamics upon NAA treatment in root epidermal cells. (A) Visualization of NAA-induced Ca2+ 

dynamics in the cytosol using the intensiometric Ca2+ reporter, R-GECO1. A control treatment with DMSO (top) 

shows no changes in cytosolic Ca2+ concentrations. Treatment with 10µM NAA however induces a rapid cytosolic 

Ca2+ increase. (B) The average normalized fluorescence intensities over time upon DMSO (orange) and 10µM 

NAA (blue) treatment. 10µM NAA was added at time point 0 sec. The DMSO treatment does not induce a 

cytosolic Ca2+ increase while 10µM NAA rapidly induces a first Ca2+ peak (red arrow 1.) followed by a more gentle 

secondary Ca2+ peak (red arrow 2.) in most of the seedlings. Recovery to the initial resting levels occurs gradually. 

The error bars represent the SE (n=10).  
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Next we evaluated the dose-response of the Ca2+ response to different NAA concentrations 

(Fig. 11). Treatment with 1µM NAA resulted in a cytosolic Ca2+ increase, however, the average 

maximal amplitude was lower than for 10µM NAA treatment. For 100nM NAA, an even lower 

average maximal amplitude was observed, suggesting that the amplitude of the NAA-induced 

Ca2+ increase is dose-dependent. Note that, as for 10µM NAA, recovery to the initial Ca2+ 

resting levels seemed to occur more slowly. 
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Figure 11: Dose-dependent NAA-induced Ca2+ dynamics. (A) The average normalized fluorescence intensities 

over time upon treatment of R-GECO1 with 100nM, 1µM, 10µM NAA. NAA was added at time point 0 sec. Note 

that the amplitude of the initial Ca2+ peak is higher with increased NAA concentration. The error bars represent 

the SE. (B) Boxplots of the maximum amplitudes of the initial Ca2+ peak induced by treatment with 100nM, 1µM, 

10µM NAA. The mean maximum amplitude significantly increases with an increase in NAA concentration. A single 

and double asterisk represent a p-value <0.05 and <0.01 respectively (t-test; n=10). 
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Next, we aimed to evaluate the impact of extracellular Ca2+ availability on the NAA-induced 

Ca2+ response. Therefore, we prepared ‘Ca2+-free medium’ (CaMIN), which contains all 

components present in 0.5x MS medium, but lacks the only Ca2+ source CaCl2. By prewashing 

seedlings for 30 min in CaMIN we aimed to reduce the availability of free Ca2+ in the apoplast. 

Subsequent treatment with 10µM NAA resulted in a considerable reduction of the average 

amplitude of the Ca2+ response, while preserving the secondary Ca2+ peak in some of the 

seedlings, demonstrating the importance of apoplastic Ca2+ for NAA-induced Ca2+ dynamics 

(Fig. 12). 
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Figure 12: NAA-induced Ca2+ dynamics upon extracellular Ca2+ reduction. (A) The average normalized 

fluorescence intensities over time of R-GECO1 upon 10µM NAA treatment after pretreatment with CaPLUS or 

CaMIN. CaPLUS is 0.5x MS medium, CaMIN is ‘Ca2+-free medium’ lacking CaCl2. NAA was added at time point 0 

sec. NAA treatment upon pretreatment with CaMIN results in a decreased NAA-induced cytosolic Ca2+ response 

compared to pre-incubation with CaPLUS. The red arrows 1. and 2. refer to the first and second Ca2+ peak 

respectively. B) Boxplots of the maximum amplitude of the initial NAA-induced Ca2+ peak upon pretreatment 

with CaPLUS or CaMIN. The average maximum amplitude is significantly lower after CaMIN pre-incubation. The 

double asterisks represents a p-value <0.01. (t-test; n=11) 
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Given the promptness of the NAA-induced cytosolic Ca2+ increase, this NAA effect could 

potentially be mediated by the auxin receptor ABP1. Therefore, we aimed to address NAA-

induced Ca2+ dynamics upon ABP1 inactivation. ABP1 can be found in both the apoplast and 

ER, but it has been hypothesized that auxin is sensed by the apoplastic ABP1 pool (Tian et al., 

1995). The AtSS12S line has been developed in which apoplastic ABP1 can be conditionally 

inactivated by ethanol (EtOH)-inducible expression of a apoplast-targeted ABP1-specific 

antibody (Braun et al., 2008). To monitor NAA-induced Ca2+ dynamics upon inactivation of 

apoplastic ABP1, we crossed the AtSS12S line with a Ca2+ reporter line. In this case the 

ratiometric Ca2+ sensor Yellow Cameleon 3.6 (YC3.6) was used since R-GECO1 was not 

available yet in Arabidopsis at that time. Unfortunately, induction of ABP1 inactivation 

resulted in silencing of the reporter expression in the root, except for the root tip (Fig S1, D), 

for the majority of the seedlings making it problematic to visualize and record the Ca2+ 

dynamics in our region of interest. For the seedlings that did preserve reporter fluorescence 

upon induction, we obtained very variable results. Some seedlings did not respond to NAA, 

while other seedlings gave a similar or elevated response compared to wild type. This 

variability is reflected by the large error bars in the graph (Fig S1, E). Therefore, we could not 

draw a consistent conclusion on the role of ABP1 in NAA-induced Ca2+ dynamics based on 

these observations. 

 

6. Conclusions and perspectives 

Ca2+ is an elusive signal that is rapidly generated and in many cases also rapidly dissipated. 

Therefore, it remains a major challenge to accurately capture the Ca2+ signal. In recent years, 

a revolution in the available GECI is in the process of completely changing our view of Ca2+ 

signaling in plants (Chen et al., 2013; Kanchiswamy et al., 2014; Keinath et al., 2015; Wagner 

et al., 2015a; Loro et al., 2016; Candeo et al., 2017; Liu et al., 2017; Waadt et al., 2017). Given 

the increased sensitivity of these new GECI, it is imperative to disturb the sample as little as 

possible during Ca2+ imaging. Here, we reported a detailed protocol for image acquisition of 

the intensiometric Ca2+ sensor R-GECO1 using a customized chamber to facilitate sample 

treatment during imaging, and provided guidelines for image analysis.  
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Even though this imaging set-up allows to capture fast Ca2+ responses there is room for further 

optimization. Some experiments might require pulsed treatments or more complex 

combinations of multiple elicitors/drugs. For those purposes the imaging chamber could be 

combined with a perfusion system. Another benefit of such system is that it does not require 

manual application of the compound assuring a more precise, homogenous, and reproducible 

treatment. A wide range of perfusion solutions have been developed, e.g. a customized 

chamber combined with a manually controlled peristaltic pump or automated syringe pump, 

or microfluidic chips. As some of the commercially available systems can be rather costly, open 

source projects have been initiated to develop and manufacture your own low-cost syringe 

pump for simple perfusion experiments (Wijnen et al., 2014). Grossmann and coworkers have 

developed a microfluidic platform, called RootChip, for cultivation of Arabidopsis roots and 

highly controlled perfusion during live-imaging (Grossmann et al., 2011). The main advantages 

of this set-up are the requirement of small volumes for treatment, and the possibility to image 

and treat multiple samples in parallel. Nevertheless, this platform requires rather expensive 

customized production of disposable chips and involves a laborious assembly procedure. For 

more simplified experimental set-ups, the imaging chamber described here is a much cheaper, 

less labor intensive and reusable alternative. 

 In many studies, the synthetic auxin NAA, is preferred over the naturally occurring IAA, in part 

due to its higher stability under in vitro conditions. Although they elicit many similar 

physiological responses, NAA and IAA have a markedly different chemical structure and 

physico-chemical properties. This has inevitably dramatic consequences for how they are 

perceived by the cells. Here, we used our imaging set-up to characterize NAA-induced Ca2+ 

responses in roots. Our findings show that the synthetic auxin NAA induces a rapid, 

concentration-dependent cytosolic Ca2+ increase in root epidermal cells. Furthermore, we 

observed that Ca2+ resting levels are reestablished rather slowly. This might be caused by the 

sustained presence of NAA, as NAA can be added to the chamber, but not removed. This 

possibility can be excluded by performing pulsed NAA treatment using e.g. a perfusion system. 

Alternatively, the gradual recovery could indicate that NAA affects Ca2+ pump activity thereby 

causing a slower Ca2+ removal from the cytosol. A third plausible explanation could be that 

NAA affects Ca2+-ATPase activity via its impact on H+-ATPases. Given that Ca2+-ATPases use H+ 

as a counter ion for Ca2+ exchange (Luoni et al., 2000; Zhai et al., 2012), NAA-regulated H+-
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ATPase action can indirectly affect Ca2+-ATPase activity and therefore Ca2+ removal from the 

cytosol. In most of the seedlings the NAA-induced Ca2+ signature consists of two Ca2+ peaks; a 

rapid first Ca2+ peak with high amplitude followed by a slower and smaller second Ca2+ peak. 

Interestingly, Monshausen and coworkers reported that the cytosolic Ca2+ increase upon 

treatment of the YC sensor with 100nM IAA could be prevented by pretreatment with the 

membrane-impermeable Ca2+ channel blocker La3+ (Monshausen et al., 2011). This would be 

in favor of our hypothesis that the first NAA-induced Ca2+ peak is derived from the extracellular 

Ca2+ pool in the apoplast (Knight et al., 1997). Indeed, we found that limiting extracellular Ca2+ 

availability reduces the initial NAA-induced cytosolic Ca2+ increase. Based on these 

observations, we hypothesize that NAA induces an extracellular Ca2+ influx causing the primary 

Ca2+ peak in the cytosol, and that this primary Ca2+ increase in turn triggers Ca2+ release from 

intracellular Ca2+ stores causing the subtle secondary Ca2+ peak. Analysis of targeted Ca2+ 

sensors (e.g. to the apoplast and ER) yields a higher spatial resolution, and could provide more 

insight on the postulated intracellular Ca2+ source.  

Given that the observed NAA-induced Ca2+ increase occurs rapidly, we hypothesized that this 

NAA effect could be mediated by the auxin receptor ABP1. Unfortunately, silencing of the Ca2+ 

reporter upon ABP1 inactivation in the majority of the seedlings and variable responses in the 

remaining seedlings has made it difficult to draw any robust conclusions from these 

observations. The recent findings concerning off-target effects in the ABP1 repression lines 

(Michalko et al., 2016) could explain the variability observed in our data. Therefore, we should 

address NAA-induced Ca2+ dynamics in the more recently developed ABP1 knock-out mutant 

(Gao et al., 2015). However, given the current debate on the role of ABP1 in auxin signaling, 

we should keep in mind the possibility that ABP1 might not function as an auxin receptor when 

analyzing our current and future observations.   

Besides NAA, also other plant hormones are known to trigger Ca2+ signaling. Abscisic acid 

(ABA) triggers repetitive Ca2+ increases in the cytosol of guard cells thereby regulating stomatal 

aperture (McAinsh et al., 1997; Allen et al., 1999; Assmann and Shimazaki, 1999), however, in 

roots ABA does not affect cytosolic Ca2+ dynamics (Waadt et al., 2017).  A frequently used 

positive control for induction of a cytosolic Ca2+ increase is adenosine triphosphate (ATP). ATP 

treatment of seedlings expressing the chemiluminescence-based sensor aequorin revealed 
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that ATP, as NAA, rapidly generates a dual peak Ca2+ signature. In contrast, recovery occurred 

swiftly and Ca2+ resting levels where reestablished after about 5min (Tanaka et al., 2010). By 

pretreatment with Ca2+ channel inhibitors Gd3+ and La3+, and a Ca2+ ionophore, it was 

demonstrated that the initial Ca2+ peak was the outcome of extracellular Ca2+ influx, and the 

second peak mainly resulted from Ca2+ release from intracellular stores. It should be noted 

that these recordings where made from whole seedlings and spatial resolution is lacking, 

Nevertheless, an ATP-induced cytosolic Ca2+ increase also has been reported for roots, albeit 

only a single Ca2+ peak is measured (Costa et al., 2013; Waadt et al., 2017). These observations 

show that different tissues can have distinct Ca2+ responses to the same stimulus, and caution 

should be taken when comparing Ca2+ signatures obtained from distinct tissues and set-ups.  

Looking at IAA-induced Ca2+ dynamics using R-GECO1, it has been shown that 10µM IAA 

induces a biphasic cytosolic Ca2+ increase with a fast, transient, high amplitude, primary Ca2+ 

peak (about 5min) followed by a smaller prolonged second peak (about 15min; (Waadt et al., 

2017). This pattern reassembles the 10µM NAA-induced double peak Ca2+ signature that we 

observed. Furthermore, a dose-dependent effect could be detected. The amplitude of the first 

peak upon 1µM IAA treatment was lower, yet the second peak could still be observed. Even 

though, IAA and NAA show some similarities in their Ca2+ signature, our observations were 

made in the meristematic region, while these data where obtained for the root elongation 

zone. As discussed in the previous paragraph the results obtained from distinct tissues/cell 

populations should be compared with caution as the observed IAA-induced Ca2+ response in 

the elongation zone might not be visible in the meristematic region. Moreover, the transition 

between the first and second Ca2+ peak is more subtle upon NAA treatment. These subtle 

differences in IAA- and NAA-induced Ca2+ signatures suggest the involvement of distinct Ca2+ 

signaling components mediating the observed Ca2+ dynamics. Therefore, an interesting 

question is which Ca2+ channel(s) and/or Ca2+ pumps are activated by NAA to establish the 

NAA-induced cytosolic Ca2+ signature. Recently, CYCLIC NUCLEOTIDE-GATED CHANNEL14 

(CNGC14) has been identified as a Ca2+ channel mediating IAA-induced Ca2+ dynamics in roots, 

and auxin-regulated Ca2+ signaling during inhibition of root growth and root gravitropism (Shih 

et al., 2015). Evaluating Ca2+ dynamics upon NAA treatment in the cngc14 background would 

allow us to verify to what extent CNGC14 is also relevant for NAA-induced Ca2+ signaling.  
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As a final remark, I would like to point out that, in order to address if the observed Ca2+ 

signature is specific for NAA treatment, additional control experiments with e.g. the weak acid 

benzoic acid and the auxin-like, yet inactive in the transcriptional auxin response, 2- 

naphthaleneacetic acid (2-NAA), need to be performed. 
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Abstract 

The composition of the plasma membrane is a key determinant of cellular behavior, as it 

defines the cellular potential to perceive signals, transport molecules, and communicate with 

its environment. The combined action of endomembrane processes like secretion, 

endocytosis, recycling to the plasma membrane or targeting to the vacuole control plasma 

membrane composition, and thus cellular functionality. The phytohormone auxin is known to 

regulate a wide range of developmental processes and mediate adaptation to environmental 

changes by establishment of specific distribution patterns of the phytohormone. An important 

element in the establishment of these auxin distribution patterns are the PIN proteins 

mediating directional auxin efflux by their polar localization in the plasma membrane. Various 

stimuli and stresses disrupt the balance of endomembrane processes to alter PIN homeostasis 

and auxin transport. Auxin itself is known to feedback regulate its own distribution by 

interfering with clathrin-mediated PIN endocytosis. However, the exact mechanisms through 

which auxin and other stimuli can modify endomembrane trafficking of PINs remain unclear. 

Here, we reveal a completely novel function for Ca2+ in regulating clathrin-mediated 

endocytosis (CME) of PINs. We found that elevating cytoplasmic Ca2+ levels caused a dramatic 

inhibition of CME at the plasma membrane. Similarly, constitutive activation of the Ca2+-

DEPENDENT PROTEIN KINASE30 (CPK30) was sufficient to prevent PIN internalization. 

Consistent with a model in which auxin-induced Ca2+ explains how auxin inhibits endocytosis, 

reductions in Ca2+ availability impaired the inhibitory effect of auxin on endocytosis. 

Interestingly, we also found that some Ca2+ drug could also affect late endosomal PIN 

trafficking suggesting that Ca2+ might be regulating additional steps in the endomembrane 

trafficking pathway besides endocytosis. Together, these data demonstrate a new function for 

Ca2+ as a second messenger in auxin-regulated PIN trafficking.  
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Introduction 

Auxin is a prominent phytohormone regulating a wide range of developmental processes and 

is essential for rapid acclimation to environmental challenges. A crucial factor for auxin to be 

able to exert its function is proper auxin transport resulting in stimulus- or process-specific 

auxin distribution patterns. The PIN proteins operate as auxin efflux carriers and are essential 

for polar cell-to-cell auxin transport (Zažímalová et al., 2007). The subcellular polarity of PINs 

determines the direction of intracellular auxin transport, and is the result of targeted 

secretion, local endocytosis, degradation and recycling (Kleine-Vehn et al., 2011; Wabnik et 

al., 2011; Łangowski et al., 2016). PINs are continuously internalized through clathrin-

mediated endocytosis (CME) (Dhonukshe et al., 2007) and recycled back to the plasma 

membrane (Geldner et al., 2001). The dynamic character of these auxin efflux carriers enables 

rapid PIN redistribution and thereby redirection of auxin flow during plant development. The 

flexible modulation of directional auxin transport across tissues underlies to a great extent the 

developmental plasticity observed in plants. Importantly, auxin itself has multiple effects on 

PIN trafficking and polarization thereby feedback regulating its own distribution by controlling 

PIN transcription, PIN turnover, and inhibiting CME of the PINs (Sieberer et al., 2000; Paciorek 

et al., 2005; Vieten et al., 2005; Robert et al., 2010). Our interest goes to investigating the 

latter feedback mechanism. It has been established that auxin-inhibited PIN endocytosis relies 

on the auxin receptor ABP1 and involves activation of intracellular ROP/RIC signaling (Robert 

et al., 2010; Lin et al., 2012; Chen et al., 2012), however, more detailed insight on the 

molecular players involved is still missing.  

A potential mediator of inhibition of PIN endocytosis by auxin is the second messenger Ca2+. 

Ca2+ is known to be involved in different signaling pathways mediating plant development, 

and responses to (a)biotic stresses (Dodd et al., 2010; Kudla et al., 2010). Many reports have 

shown that different types of auxin can trigger a rapid cytosolic Ca2+ increase in distinct plant 

species and tissues (Felle, 1988; Gehring et al., 1990; Shishova and Lindberg, 1999, 2004; 

Shishova et al., 2007). Furthermore, Ca2+ has also been identified as a mediator of auxin-

regulated root gravitropism (Ma and Berkowitz, 2011; Monshausen et al., 2011; Shih et al., 

2015). Given that auxin induces rapid, transient, Ca2+ signals in the root, we postulated that 

auxin controls endocytosis through Ca2+. Due to the diversity of Ca2+ signaling components, 

we initially addressed our question by means of Ca2+ pharmacology and treatment with ‘Ca2+ 
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-free medium’ (CaMIN). These experiments revealed that Ca2+ was both required and 

sufficient for inhibition of PIN internalization. A more in depth analysis showed that the 

observed effect of CaMIN treatment relies on early endocytic trafficking, while some of the 

Ca2+ drug also seemed to effect post-endocytic trafficking events. Furthermore, we identified 

a role for the Ca2+ -DEPENDENT PROTEIN KINASE30 (CPK30) in regulation of PIN endocytosis. 

Altogether, these observations confirm our hypothesis that Ca2+ is involved in inhibition of PIN 

endocytosis by auxin. 

 

Materials and methods 

Plant material and growth conditions 

SYP32/WAVE22- GFP (Geldner et al., 2009), VHAa1-mRFP (Dettmer et al., 2006), SYP42-YFP 

(Uemura et al., 2012), ARA7-mRFP (Gillooly et al., 2001), VAMP727-YFP (Ueda et al., 2004), 

2xFYVE-YFP (Ebine et al., 2008), SYP22-YFP (Robert et al., 2008), CLC2-GFP (Di Rubbo et al., 

2013), XVE>>AX2-1 (Ortiz-Morea et al., 2016), INTAM>>HUB1 (Kitakura et al., 2011) and ben1-

2 ben2 (Tanaka et al., 2009) have been described previously. The DRP1c-GFP seeds were kindly 

provided by Dr. Mates Fendrych. After sowing, plates were transferred to the cold room (4 °C, 

dark) for 1 day of vernalization, and were subsequently transferred to the growth room (21 

°C, continuous light). Three days or 4 days (for inducible lines) after transfer to the growth 

room, the seedlings were used for immunolocalization experiments. The seedlings for live 

imaging were kept in the growth room for 4-5 days.  

 

Induction of the mutant lines 

For induction of the mutant lines INTAM>>HUB1, amiR-TML, XVE>>AX2-1, and RxCPK13/30, 2 

day-old seedlings were transferred to plates with 0,5x MS and 2 μM hydroxytamoxifen, 2 μM 

β-estradiol, 5 μM β-estradiol, or 10 μM β-estradiol respectively for 2 days. Hydroxytamoxifen 

and β-estradiol were purchased from Sigma Aldrich and dissolved in DMSO. 
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Drugs and CaMIN treatments 

Three to 4 day-old seedlings were typically pretreated with the Ca2+ drugs or CaMIN for 30min 

followed by a 1h cotreatment with BFA and/or NAA diluted in 0.5x MS medium with (CaPLUS) 

or without CaCl2 (CaMIN). For analysis of the endomembrane marker lines 5h treatments were 

performed. The following hormones/drugs were used: NAA (10 μM), BFA (25 μM), Nifedipine 

(100 μM), Bepridil hydrochloride (50 μM), W-7 (100 μM), Eosin Y (500 nM), Staurosporin (200 

nM), and Cantharidin (50 μM). All hormones/drug were dissolved in DMSO, and were obtained 

from Sigma Aldrich. To prepare 0,5 L liquid CaMIN medium following components were 

dissolved in MilliQ: 25mL MS basal salt micronutrient solution, 5 g sucrose, 0,05 g myoinositol, 

0,25 g MES, 0,413 g NH4NO3, 0,045 g MgSO4, 0,475 g KNO3, 0,043 g H2KO4P- and pH was set 

to 5,7. The liquid CaPLUS medium has the same composition with additionally 0,083 g CaCl2. 

For solid medium, 4 g of agar was added. 

 

Immunohistochemistry 

Immunolocalizations were performed on 3- to 4-d-old seedlings using the Intavis in situ pro 

robot, as described by Sauer et al. (2006). The primary antibodies used were anti-PIN1 goat 

and anti-PIN2 rabbit which were both used in 1:800 dilution. For the secondary antibodies, 

Alexa488 anti-goat and Alexa555 anti-rabbit were used in 1:600 dilution. 

 

Microscopy and image analysis 

Ca2+ imaging experiments and analysis were performed as described in Himschoot et al., 2017 

(see also Section II – Chapter 1). For imaging of immunolocalisation samples and 

endomembrane markers the confocal laser scanning microscopes Leica SP2 (Leica) and Zeiss 

710 (Zeiss) were used. Fluorescence emission of GFP (excitation 488 nm/emission 500-545 

nm), Alexa488 (ex 488 nm/em 500-545 nm), Alexa555 (ex 561 nm/em 555-610nm), mRFP (ex 

561 nm/em 570-630 nm), and YFP (ex 514 nm/em 520-565 nm) was detected using a 63x 

water objective (NA 1.2, digital zoom 1,2x). Images were analysed using Fiji (Schindelin et al., 

2012). For imaging DRP1c-GFP (ex 488 nm/em 500-540) dynamics an Ultra View Vox spinning 

disc microscope (Perkin Elmer) was used equipped with a 100x oil immersion objective (NA 
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1.45) and an electron microscopy charge-coupled device camera (Hamamatsu Phototonics). 

Time lapses were recorded for 100 sec taking a scan every 0,5 sec. Kymographs were 

generated in Fiji using the Multi Kymograph plugin. 

 

Transmission electron microscopy 

Roottips of 4-days-old seedlings of Arabidopsis thaliana treated for 5h with CaPLUS, CaMIN, 

DMSO, 100 μM Nifedipine, 50 μM Bepridil, and 100 μM W-7 were excised, immersed in 

20% (w/v) BSA and frozen immediately in a high-pressure freezer (Leica EM ICE; Leica 

Microsystems, Vienna, Austria). Freeze substitution was carried out using a Leica EM AFS (Leica 

Microsystems) in dry acetone containing 1% (w/v) OsO4 and 0.2% glutaraldehyde over a 4-days 

period as follows: -90°C for 54 hours, 2°C per hour increase for 15 hours, -60°C for 8 hours, 2°C 

per hour increase for 15 hours, and -30°C for 8 hours. Samples were then slowly warmed up to 

4°C, rinsed 3 times with acetone for 20 min each time and infiltrated stepwise over 3 days at 

4°C in Spurr’s resin and embedded in capsules. The polymerization was performed at 70 °C for 

16 h. Ultrathin sections were made using an ultra-microtome (Leica EM UC6) and post-stained 

in in a Leica EM AC20 for 40 min in uranyl acetate at 20 °C and for 10 min in lead stain at 20 

°C. Sections were collected on formvar-coated copper slot grids.  

Grids were viewed with a JEM 1400plus transmission electron microscope (JEOL, Tokyo, Japan) 

operating at 60 kV. 

 

Growth experiments on CaPLUS and CaMIN 

For analysis of the root length, seeds were plated on CaPLUS (0.5x MS) with agar, vernalized 

in the cold room (4°C, dark) for 1 day, and then transferred to the growth room (21°C, 

continuous light) for 3 days. Subsequently, seedlings were transferred to plates with CaPLUS 

or CaMIN with agar for 6,5 days prior to measurement of the root length. For the 

gravistimulation experiments, 3 day-old seedlings were transferred to CaPLUS or CaMIN with 

agar for 24hs. To gravistimulate the roots, the plates were rotated over an angle of 90° and 

gravitropic root bending was analyzed 5hs after onset of gravistimulation. 
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Statistical analysis 

A logistic regression was performed to compare the presence of BFA bodies or CLC2-GFP at 

the plasma membrane in root cells of untreated roots versus treated roots or wild type versus 

mutant. A random effect was added to the model for the experiments with multiple repeats 

to take into account the correlation between measurements done at the same time. An 

additional random effect was added to the model to account for correlations between roots 

treated in the same well. The analysis was performed with the glimmix procedure from SAS 

(Version 9.4 of the SAS System for windows 7 64bit. Copyright 2002-2012 SAS Institute Inc. 

Cary, NC, USA (www.sas.com). Maximum likelihood estimation was done with the default 

estimation method. A Wald-type test was performed to estimate the treatment/genotype 

effect on the presence of BFA bodies in the root cells or localization of CLC2-GFP at the plasma 

membrane. 

 

Results 

Ca2+ is required for auxin-regulated PIN endocytosis 

In the previous chapter (Section II – Chapter 1), we visualized NAA-induced Ca2+ dynamics in 

root epidermal cells. We found that NAA induces a rapid Ca2+ increase in the cytosol, and that 

this NAA-induced Ca2+ signature consists of two distinct Ca2+ peaks. Furthermore, we observed 

a dose-dependent response to NAA as treatment with lower NAA concentrations resulted in 

a general decrease in amplitude of the Ca2+ signature. When reducing the extracellular Ca2+ 

availability by pretreating seedlings with ‘Ca2+-free medium’ (CaMIN), the maximal amplitude 

of the initial Ca2+ peak was significantly reduced. Together, these data highlight that Ca2+ is 

one of the earliest signals downstream of NAA perception.  

A well-known effect of NAA, is that it potently inhibits CME, and thus PIN internalization 

(Paciorek et al., 2005; Robert et al., 2010). Therefore, we postulated that Ca2+ could act in the 

pathway through which NAA inhibits CME. 

To visualize PIN trafficking we used the fungal drug brefeldin A (BFA). BFA inhibits a subgroup 

of ARF-GEFs amongst others GNOM, an ARF-GEF mediating recycling of PINs to the plasma 

membrane (Geldner et al., 2003; Peyroche et al., 1996). At a concentration of 25 µM, BFA 
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interferes with recycling and secretion, and induces the formation of so called BFA bodies that 

result from fusion of the TGN, Golgi, and ER (Donaldson and Jackson, 2000; Geldner et al., 

2001; Nebenfuhr et al., 2002). Consequently, internalized proteins such as PINs cannot be 

recycled to the plasma membrane and accumulate in the BFA bodies. As a proxy for the rate 

of CME, we used the amount of PIN-accumulating BFA bodies upon BFA treatment. Roots 

treated with BFA had substantial amounts of PIN1 in BFA bodies (Fig. 1, A), and this effect was 

counteracted upon cotreatment with NAA (Fig. 1, B). To address the possible requirement of 

Ca2+, we pharmacologically interfered with Ca2+ influx by cotreatment with Nifedipine and 

Bepridil hydrochloride (Ketchum and Poole, 1990; Shishova and Lindberg, 2004), two drug that 

are known to inhibit specific Ca2+ channels in animals. When Nifedipine or Bepridil were 

included in the BFA/NAA co-treatment, PIN1 accumulation in BFA bodies recovered, thus by-

passing the inhibitory effect of NAA (Fig. 1, C, D). Similarly, inclusion of the membrane 

permeable CALMODULIN (CaM) inhibitor W-7 in the BFA/NAA co-treatment resulted in PIN1 

accumulation in BFA bodies, again by-passing the inhibitory effect of NAA on PIN1 

internalization (Fig. 1, E). These findings suggest that these Ca2+ drugs counteract the 

inhibitory effect of auxin on PIN endocytosis, and/or that they modify BFA-sensitive endocytic 

trafficking of PINs.  

 

 

Figure 1: Effect of Ca2+ pharmacology on auxin-inhibited PIN1 endocytosis. Analysis of PIN1 internalization 

through whole-mount immunolocalisation in 3 day-old seedling root meristems. (A) 25µM BFA caused PIN1 

accumulation in BFA bodies (white arrow). (B) Co-treatment with 25µM BFA and 10µM NAA interfered with PIN1 

internalization, as shown by a lack of BFA bodies. (C-E) Inclusion of Ca2+ channel inhibitors Nifedipine (100µM, C) 

and Bepridil (50µM, D), or the CaM-inhibitor W-7 (100µM, E) restored PIN1 internalization in BFA25/NAA10 co-
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treated roots. White arrows highlight PIN1 in BFA bodies. For co-treatments with inhibitors, seedlings were 

pretreated for 30min.  

 

However, since Nifedipine and Bepridil are animal Ca2+ channel blockers and their specificity 

in plants has not been characterized yet, and off-target effects are to be expected for each 

inhibitor, we aimed to manipulate Ca2+ signaling more specifically by lowering the availability 

of Ca2+ for the cell. Therefore, we prepared ‘Ca2+-free 0.5xMS medium’, termed CaMIN, lacking 

CaCl2 which is the only Ca2+ source in our medium. As controls we used normal 0.5xMS 

medium (CaPLUS), CaMIN with 1.5mM CaCl2 and CaMIN with 1.5mM MgCl2. As expected, in 

CaPLUS medium BFA treatment readily caused PIN1 accumulation in BFA bodies (Fig. 2, C), 

which was inhibited in the BFA/NAA co-treatment (Fig. 2, E). In contrast, PIN1 accumulated in 

BFA bodies when the BFA/NAA co-treatment was performed in CaMIN medium (Fig. 2, F), 

which is consistent with the observations using Ca2+ channel or CaM inhibitors. To further 

confirm the specificity of the treatment to Ca2+ availability, we compared PIN1 trafficking in 

the context of CaMIN supplemented with either 1.5mM CaCl2  or 1.5mM MgCl2. Importantly, 

only the addition of 1.5mM CaCl2  restored BFA/NAA sensitivity of PIN1 trafficking (Fig. 2, G, 

H), demonstrating the specific requirement of Ca2+ for NAA-inhibited PIN internalization. 

Together with the observation that the NAA-induced Ca2+ signal is strongly reduced in CaMIN, 

these data are consistent with a model in which auxin-induced Ca2+ inhibits PIN internalization. 
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Figure 2: Extracellular Ca2+ is required for auxin-inhibited PIN internalization. Analysis of PIN1 internalization 

through whole-mount immunolocalisation in 3 day-old seedling root meristems. (A, B) Control treatment with 

CaPLUS (A) and CaMIN (B). (C, D) Treatment with 25µM BFA in CaPLUS (C) and CaMIN (D) results in PIN1 

accumulation in BFA bodies (white arrow). (E) Co-treatment with 25µM BFA and 10µM NAA in CaPLUS resulted 

in the absence of PIN1 accumulation in BFA bodies. (F) In CaMIN (Ca2+-free 0.5xMS medium) NAA could no longer 

inhibit PIN1 internalization as seen by the presence of PIN1 accumulates in BFA bodies (white arrow). (G) In 

CaMIN supplemented with 1.5mM CaCl2 no BFA bodies were observed, consistent with a requirement for Ca2+ in 

NAA-inhibited PIN internalization. (H) In CaMIN supplemented with 1.5mM MgCl2 NAA could not prevent PIN1 
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accumulation in BFA bodies (white arrow), demonstrating the specific requirement of Ca2+ for auxin’s inhibitory 

effect. (I) Quantification of the probability that BFA bodies will be present in root cells. The asteriks represents a 

p-value <0.05. The error bars represent the 95% confidence interval (n > 5). Seedlings were pretreated for 30min 

with either CaPLUS or CaMIN, (supplemented with CaCl2 or MgCl2) as indicated.  

 

As mentioned in the introduction, it has been established that NAA-inhibited PIN endocytosis 

relies on the putative auxin receptor ABP1 and activation of ROP/RIC signaling (Robert et al., 

2010; Lin et al., 2012; Chen et al., 2012). To verify at what level Ca2+ could be operating in 

relation to these molecular players, we performed preliminary experiments in which we 

evaluated PIN endocytosis upon CaMIN treatment in mutants related to ABP1 and ROP/RIC 

signaling.  

To address if Ca2+ would be operating up- or downstream of ABP1, we studied CaMIN-induced 

PIN internalization in the EtOH-inducible ABP1 antisense mutant (AtABP1AS, Braun et al., 

2008) and upon cotreatment with α-(phenyl ethyl-2-one)-indole-3-acetic acid (PEO-IAA), an 

auxin derivative that specifically activates non-transcriptional auxin signaling (Robert et al., 

2010) (Fig. S2). Under control conditions, PIN endocytosis was inhibited in the AtABP1AS 

mutant and after PEO-IAA treatment reflected by the lack of PIN-accumulating BFA bodies 

(Fig. S2, B, E). However, in CaMIN medium inhibition of PIN endocytosis was bypassed (Fig. S2, 

D, F), suggesting that Ca2+ operates downstream of ABP1.   

ROP/RIC activity is negatively regulated by GUANINE NUCLEOTIDE DISSOCIATION INHIBITORs 

(GDIs). The mutant supercentipede1 (scn1) is defective in a RHO-GDI resulting in constitutive 

ROP/RIC activity (Carol et al., 2005). In preliminary experiments we observed that upon BFA 

treatment of the scn1 mutant less PIN1-accumulating BFA bodies were formed (Fig. S3, B, E) 

which fits the model in which ROP/RIC activation is required for inhibition of PIN 

internalization by NAA. After pretreatment with CaMIN this reduced PIN1 endocytosis was 

overcome (Fig. S3, D, E) suggesting that Ca2+ is also operating downstream of ROP/RIC. 

Together, these observations suggest that Ca2+ functions downstream of ABP1 and ROP/RIC 

signaling in the inhibition of PIN endocytosis by NAA. However, given the current controversy 

on the involvement of ABP1 in auxin signaling, it remains unclear what the role of ABP1 is in 

NAA-regulated PIN endocytosis. 
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Ca2+ drugs impair late endosomal trafficking 

BFA targets the activity of several ARF-GEFs in Arabidopsis, such as GNOM and BIG2 (Geldner 

et al., 2003; Kitakura et al., 2017), thereby impairing many processes in the endosomal 

trafficking pathway. Moreover, altered Ca2+ signalling can have dramatic effects on 

endomembrane trafficking and polarity, which are thus far poorly characterized in plants 

(Section I – Chapters 1 and 2) (Himschoot et al., 2015; Himschoot et al., 2017). During live 

imaging of roots, we observed via the transmitted light channel that the Ca2+ drugs induced 

vacuolar rounding and possibly also swelling. Therefore, we tested markers for the Golgi 

Apparatus (SYNTAXIN OF PLANT32 (SYP32)- GFP/WAVE22) (Geldner et al., 2009), Early 

Endosomes/trans-Golgi Network (EEs/TGN; VHAa1-mRFP, SYP42-YFP) (Dettmer et al., 2006) 

Uemura et al., 2012), late endosomes (LEs; ARA7-mRFP, VAMP727-YFP, 2xFYVE-YFP) (Gillooly 

et al., 2001; Ueda et al., 2004; Ebine et al., 2008) and the vacuole (SYP22-YFP) (Robert et al., 

2008). No obvious differences could be observed in the shape and size of SYP32-YFP-, VHAa1-

mRFP-, SYP42-YFP-, and SYP22-YFP-labelled endosomes after treatment with CaMIN in 

comparison to CaPLUS. However, clear differences became apparent for LE/MVB markers 

treated with the Ca2+ pharmacology (Fig. 3). ARA7-positive endosomes became enlarged upon 

W-7 treatment (Fig.3, E), an effect that is reminiscent of Wortmannin (Wm) treatment and 

mutation in SAND/CCZ1 (Ebine et al., 2008; Singh et al., 2014), suggesting that W-7 affects 

TGN to MVB maturation. Moreover, Bepridil and W-7 caused a dramatic mislocalisation of the 

R-SNARE VAMP727 to the tonoplast (Fig. 3, I, J), all features that are consistent with severe 

defects in vacuolar trafficking by these Ca2+ drugs. However, the PI3P marker 2xFYVE-YFP did 

not become cytoplasmic upon Bepridil treatment (Fig. 3, N), as would be the case after 

treatment with the PI3P kinase inhibitor Wm (Vermeer et al., 2006), suggesting that it does 

not interfere with PI3P production. Even though Nifedipine has profound effects on PIN 

internalization, it did not seem to affect LE morphology like Bepridil and W-7 (Fig. 3, C, H, M) 

suggesting Nifedipine has a different mode of action.  
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Figure 3: Impact of CaMIN and Ca2+ drug treatment on MVB/LE/PVC markers. (A-E) Ara7, (F-J) VAMP727, (K-N) 

2xFYVE. Treatments were performed for 5h with concentrations as shown in the figure. (I) 5h treatment with 

50µM Bepridil resulted in tonoplast-localized VAMP727 (red arrow). (E, J) 5h treatment with 100µM W-7 results 

in Ara7 swelling (red arrows) (E), and tonoplast-localized VAMP727 (red arrows) (J). 
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At the ultrastructural level, prolonged CaMIN treatment did not cause any significant 

differences in organelle morphology compared to CaPLUS control (Fig. 4, A). Yet, in some 

cases, root epidermal cells displayed clusters of enlarged TGN/EEs near the cis-side of the 

Golgi Apparatus (GA) (Fig. 4, A-C), and some GAs appeared to have a more cup-shaped 

appearance (Fig. 4, D). Nifedipine treatment resulted in swelling of the Golgi cisternae that 

became less electron-dense, reflecting lower protein content, than in the control (Fig. 4, E, F). 

Bepridil-treated roots in general seemed to have more MVBs/LEs, which often seemed 

enlarged with a large number of intraluminal vesicles (Fig. 4, G, H), consistent with the defect 

in vacuolar trafficking as suggested by the mislocalisation of late endosomal markers (Fig. 3). 

However, more images are required to perform a quantitative analysis of MVB/LE sizes and 

their intraluminal vesicles. Furthermore, the TGN/EE appeared clustered in some cells (Fig. 4, 

G, H). As for Bepridil, also W-7 treatment seemed to generate enlarged MVBs/LEs and 

clustering with TGN in some cases (Fig. 4, I, J).  
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Figure 4: Transmission electron microscopy images of root epidermal cells after CaMIN and Ca2+ drug 

treatment. Root epidermal cell ultrastructure upon 5h treatment with CaPLUS, CaMIN, 100µM Nifedipine, 50µM 

Bepridil, and 100µM W-7. (A, B) The GA and MVBs indicated by yellow and red arrows respectively reflect the 
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typical morphology of the Golgi and MVBs/LEs under control conditions. (C, D) In CaMIN-treated roots few TGN 

clusters (blue arrow) and rounded Golgis (yellow arrow) can be observed. (E, F) Nifedipine treatment results in 

swollen Golgi cisternae (yellow arrows). (G, H) Generally, MVBs/LEs seem more abundant and enlarged after 

Bepridil treatment (red arrows), and the TGN appears clustered and swollen (blue arrows). (I, J) As for Bepridil, 

W-7 also seems to induce MVB/LE swelling (red arrows), and in some cases enlarged and clustered TGN (blue 

arrows). The scale bar corresponds to 1.0µM. 

 

Together these data demonstrate that Ca2+ drugs have profound effects on the 

endomembrane system in plants. This suggests that the PIN internalization seen during 

BFA/NAA cotreatment in combination with such Ca2+ drugs might be a consequence of a 

pleiotropic defect in vacuolar trafficking. Therefore, we sought to explore the origin of the 

internalized PINs in each of the Ca2+ manipulations.  

Previously, a screen for mutants with reduced BFA-sensitive PIN trafficking resulted in the 

identification of ARF-GEF BFA-VISUALIZED ENDOCYTIC TRAFFICKING DEFECTIVE1 (BEN1)/BFA-

INHIBITED GEF5 (BIG5)/ HOPM INTERACTOR7 (MIN7) (Tanaka et al., 2009), and the 

Sec1/Munc18 protein BEN2/VACUOLAR PROTEIN SORTING45 (VPS45) (Tanaka et al., 2013), as 

key regulators of early endocytic trafficking. Consistently with their reported reduced BFA-

sensitive PIN trafficking, the ben1-1 ben2 mutants displayed strong defects in PIN1 

accumulation in BFA bodies in CaPLUS (Fig. 5, A, B). Also in CaMIN conditions, PIN1 

accumulation in BFA bodies was strongly reduced (Fig. 5, C, D). Similarly, ben1-1 ben2 double 

mutants showed reduced PIN1 accumulation in BFA bodies compared to WT, when cotreated 

with Ca2+ channel inhibitors Bepridil and Nifedipine or the CaM inhibitor W-7 (Fig. 5, E-J). 

Together, these findings suggest that the effect of Ca2+ signaling on the BFA sensitivity of PIN 

trafficking depends on BEN1 and BEN2 function. 
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Figure 5: The effect of CaMIN and Ca2+ drug on PIN trafficking in ben1-1 ben2 and syp42 syp43. (A, D, G, J, M) 

Immunolocalisation of PIN1 in wild type upon 25µM BFA cotreatment with (A) CaPLUS, (D) CaMIN, (G) 100µM 

Nifedipine, (J) 50µM Bepridil, and (M) 100µM W-7. In all cases PIN1-accumulating BFA bodies can be observed 

(white arrows). (B, E, H, K, N) Immunolocalisation of PIN1 in ben1-1 ben2 upon 25µM BFA cotreatment with (B) 

CaPLUS, (E) CaMIN, (H) 100µM Nifedipine, (K) 50µM Bepridil, and (N) 100µM W-7. No PIN internalization can be 

observed. (C, F, I, L, O) Immunolocalisation of PIN1 in syp42 syp43 upon 25µM BFA cotreatment with (C) CaPLUS, 

(F) CaMIN, (I) 100µM Nifedipine, (L) 50µM Bepridil, and (O) 100µM W-7. Note the BFA body formation upon 

cotreatment with the Ca2+ drug, but not CaMIN (white arrows). Seedlings were pretreated with CaPLUS, CaMIN, 

and the Ca2+ drug for 30min prior to 1h co-incubation with BFA.  

 

BEN2/VPS45 controls vacuolar trafficking via the SYP41/SYP61/VTI12 SNARE complex (Zouhar 

et al., 2009), and the syp42 syp43 double mutant is defective in secretion and vacuolar 

trafficking (Uemura et al., 2012). Interestingly, in contrast to ben1-1 ben2 mutants (Tanaka et 

al., 2009; Tanaka et al., 2013), syp42 syp43 does not show defects in uptake of the endocytic 

tracer dye FM4-64 (Uemura et al., 2012). This suggests that the trafficking defects of syp42 

syp43 are more specific to vacuolar trafficking and secretion, than those in ben1-1 ben2. When 

we analyzed PIN internalisation in the syp42  syp43 double mutant PIN1 accumulation in BFA 
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compartments was strongly reduced both in CaPLUS and CaMIN, similarly as for ben1-1 ben2 

(Fig. 5, K, L).  However, in contrast to ben1-1 ben2, Bepridil, Nifedipine, and W-7 reinstalled 

the capacity for PIN1 accumulation in BFA bodies in syp42 syp43 cotreated with BFA (Fig. 5, 

M-O) and had regained levels that were comparable to those in the WT controls. This suggests 

that Bepridil, Nifedipine and W-7 have effects on endocytic trafficking in the late endosomal 

pathway that are not affected by the CaMIN treatment.  

 

Ca2+ versus CME 

Previously, we demonstrated that NAA interferes with PIN internalization via inhibition of CME 

(Robert et al., 2010). Therefore, we tested if CaMIN conditions counteract the negative effect 

of NAA on the plasma membrane residence of clathrin. Consistently with previous reports, we 

observed that in Ca2+-containing medium (CaPLUS), NAA treatment strongly reduced the 

number of cells with plasma membrane-localized CLATHRIN LIGHT CHAIN2-GFP (CLC2-GFP) in 

comparison to the DMSO treated control (Fig. 6, A vs. B). When the NAA treatment was 

performed in CaMIN (Fig. 6, C), a significant increase in the fraction of cells with CLC2-GFP at 

their plasma membranes was observed in comparison to NAA-treated roots in CaPLUS (Fig. 6, 

D,E). This corroborates the notion that Ca2+ acts downstream of auxin to inhibit CME.  
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Figure 6: Extracellular Ca2+ is involved in auxin-induced displacement of CLATHRIN LIGHT CHAIN 2 (CLC2) from 

the plasma membrane. CLC2-GFP localization after 1h treatment with (A) DMSO or (B, C) 10µM NAA in CaPLUS 

(B) and CaMIN (C). Besides the prominent intracellular CLC2-GFP localization, CLC2-GFP is also present a the 

plasma membrane (i,ii) Details from the respective images. The white and red arrows highlight plasma 

membranes with and without CLC2-GFP respectively. Seedlings were pretreated for 30min with CaPLUS/CaMIN. 

(D, E) Quantification and the statistical analysis of the average proportion of cells with plasma membrane-

localized CLC2-GFP under the different treatments. (D) The probabilities that CLC2-GFP is localized at the plasma 

membrane in each of the three treatments as indicated by the Least Square (LS) Means (calculated via linear 

regression). Error bars indicate the respective lower and upper 95% confidence limits. A high LS Means in DMSO 

is consistent with a high probability that CLC2-GFP is localized at the plasma membrane. Upon NAA treatment in 

CaPLUS the probability of finding cells with plasma membrane-localized CLC2-GFP was strongly reduced, 
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reflecting the inhibitory effect of NAA on CME. When NAA treatment is performed in CaMIN, the probability of 

finding cells with CLC2-GFP at the plasma membrane was increased, indicating the importance of extracellular 

Ca2+ for CLC2 displacement by NAA. (E) The odds ratios for contrasting the different treatments. The effect of 

treatment is significant at the 0.05 level when the value 1 (vertical line) is not comprised within the 95% 

confidence interval as delineate by the error bars. 

 

Next, we questioned if CME would be required for the effects of CaMIN on PIN internalization. 

Therefore, we used an inducible, dominant-negative fragment of the clathrin coat subunit 

CHC1 (HTAM>>HUB1) (Kitakura et al., 2011), the inducible silencing of the T-PLATE endocytic 

adaptor complex subunit TML (amiR-TML) (Gadeyne et al., 2014), and inducible 

overexpression of the clathrin coat disassembly factor AUXILIN2 (XVE>>AX2-1) (Ortiz-Morea 

et al., 2016) impairing clathrin-mediated trafficking both at the TGN/EE and PM 

(HTAM>>HUB1, XVE>>AX2-1) and specifically at the PM  (amiR-TML). Consistently with 

previous reports, induction of these endocytosis-interference constructs resulted in a strong 

inhibition of PIN accumulation in BFA bodies when the BFA treatment was done in CaPLUS 

conditions (Fig. 7, A vs B, E vs F, I vs J). Surprisingly, under CaMIN conditions, the complete 

inhibition of PIN1 accumulation in BFA bodies was by-passed in the HTAM>>HUB1 and amiR-

TML line (Fig. 7, D, H), but not in the XVE>>AX2-1 line (Fig. 7, L). Furthermore, the BFA body 

size in the amiR-TML line seems smaller than in the estradiol-treated control (Fig. 7, H). This 

implies that the effect of CaMIN on PIN trafficking cannot be solely explained by CME, but 

could involve an alternative clathrin-independent pathway. However, this does not seem to 

be in line with the observations for the XVE>>AX2-1 line. The fact that we cannot observe a 

similar phenotype in the XVE>>AX2-1 line might be explained by the fact that inhibition of 

CME by the XVE>>AX2-1 construct is much stronger than for the HTAM>>HUB1 and amiR-TML 

construct. Induced XVE>>AX2-1 seedlings show an occasional accumulation of excess of 

membranous material around the cell (Ortiz-Morea et al., 2016) which results from a strong 

inhibition of CME while secretion proceeds normally. This could possibly also explain the loss 

of PIN polarity in the XVE>>AX2-1 seedlings in the immunolocalization experiments (Fig. 7, J, 

I). Similar phenotypes have not been reported for the HTAM>>HUB1 and amiR-TML lines. 

Furthermore, in contrast to the HTAM>>HUB1 and amiR-TML, induction of AX2-1 

overexpression results in inhibition of root growth. Altogether, these observations suggest a 

stronger CME inhibition by AX2-1 overexpression which could explain the distinct phenotypes 

for the XVE>>AX2-1 versus HTAM>>HUB1 and amiR-TML line. Furthermore, not much is 
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known about the impact of this AX2-1 overexpression on other endomembrane trafficking 

steps and the endomembrane system itself which could complicate the interpretation of our 

observations.  
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Figure 7: CaMIN treatment enhances PIN1 internalization partially via CME. Immunolocalization of PIN1 in 4 

day-old roots treated for 1h with 25µM BFA. (A,B) Under CaPLUS conditions, hydroxytamoxifen (HTAM)-treated 

wild type seedlings formed PIN1-accumulating BFA bodies (A), while HTAM-treated inducible dominant negative 

CLATHRIN HEAVY CHAIN1 (CHC1) seedlings (HTAM>>HUB1) did not (B). (C,D) Under CaMIN conditions, both 

HTAM-treated wild type (C) and HTAM>>HUB1 (D) seedlings formed BFA bodies. (E,F) Under CaPLUS conditions, 

estradiol (estra)-treated controls formed BFA bodies (E). Estradion-induced TML knock-down (KD) lines did not 

(F). (G,H) Under CaMIN conditions, both estradiol-treated controls (G) and induced TML knock-down lines (H) 

formed BFA bodies. (I,J) The estradiol-treated control showed BFA body formation upon CaPLUS treatment (I), 

while PIN1 internalization was inhibited in the induced XVE>>AX2-1 overexpression (OE) line (J). Under CaMIN 

conditions, estradiol-treated controls formed BFA bodies (K), however, in contrast to the other lines, the AX2-1 

OE line did not (L). (M-O) Quantification of the probability of BFA bodies in the cell for (M) wild type (dark grey) 

versus HTAM>>HUB1 (light grey), (N) wild type (dark grey) versus TML knock-down (light grey), and (O) wild type 

(dark grey) versus AX2-1 OE (light grey). The asteriks represents a p-value <0.05. The error bars represent the 

95% confidence interval (n > 5).  Seedlings were pretreated for 30min with CaPLUS/CaMIN. White arrows indicate 

PIN1-accumulating BFA bodies. 

 

To better understand these observations, we performed preliminary experiments to assess 

the contribution of clathrin-independent endocytosis to PIN internalization in CaMIN. 

Therefore, we used methyl-β-cyclodextrin (MβCD) to interfere with lipid-raft-dependent, 

clathrin-independent endocytosis. This sterol depleting agent efficiently disrupts the sterol-

rich detergent-resistant membranes (DRMs; Valitova et al., 2014), also called lipid rafts. When 

BFA and MβCD cotreatment was performed in CaMIN, no PIN1-accumulating BFA bodies could 

be observed (Fig. S4, D) suggesting that PIN internalization in CaMIN in the absence of MβCD 

is mediated by lipid raft-dependent endocytosis. However, similar observations were made in 

the control medium (Fig. S4, B), opposing the well-established notion that under control 

conditions PIN internalization relies on clathrin-mediated endocytosis which should not be 

affected by  MβCD treatment. This suggests that MβCD might have secondary effects, thereby 

directly or indirectly also impairing CME, making it difficult to interpret the outcome of these 

experiments. Therefore, alternative approaches will have to be explored to address the 

contribution of clathrin-independent endocytosis. 

 

Cytoplasmic Ca2+ is sufficient to inhibit CME 

Based on the observation that Ca2+ acts downstream of auxin to inhibit CME, we hypothesized 

that Ca2+ signaling negatively regulates endocytosis. Therefore, we targeted Ca2+-ATPase 

activities as a means to increase cytoplasmic Ca2+ levels artificially with the fluorescein 

derivative, Eosin Y, which efficiently inhibits AUTO-INHIBITED Ca2+-ATPASEs (ACAs) (Bonza et 
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al., 2013). Consistently with our hypothesis, Eosin Y pretreatment followed by a co-treatment 

with BFA plus Eosin Y, strongly interfered with PIN1 internalization in BFA bodies (Fig. 8, A, B), 

suggesting that PIN internalization was inhibited by increased cytoplasmic Ca2+ signaling. To 

confirm that the observed effects of Eosin Y on PIN internalization could indeed be attributed 

to interference with Ca2+-ATPases, we analyzed the BFA sensitivity of PIN trafficking in amiRNA 

lines designed to target 9 out of 13 auto-inhibited Ca2+-ATPases in the Arabidopsis genome 

(Zhang et al., 2011). In 2 independent lines (lines 2#1 and 6#4), a reduction of PIN1 

accumulation in BFA bodies was observed (Fig. 8, C-E). This observation further corroborates 

the notion that cytoplasmic Ca2+ signaling interferes with PIN internalization. 

 
Figure 8: PIN1 localization upon pharmacological and genetic interference with Ca2+-ATPase activity. 

Immunolocalization of PIN1 in 3 day-old seedling roots. (A, B) Pharmacological interference with ACA function 

using the Ca2+-ATPase inhibitor Eosin Y. (A) 1 h treatment with 25µM BFA resulted in PIN1 accumulation in BFA 

bodies (white arrow). (B) Co-treatment with 500nM Eosin Y and 25µM BFA strongly reduced PIN1 accumulation 

in BFA bodies. (C-E) Genetic interference with ACA function in knock-down lines. 1h treatment with 25µM BFA 

resulted in BFA body formation in wild type seedlings (C, white arrow), but not in 2 independent knock-down 

lines, 2#1 (D) and 6#4 (E), expressing amiRNA constructs targeting 9 out of 13 ACAs. (F, G) Quantification of the 

probability of BFA bodies in the cells upon BFA Eosin Y cotreatment (F) and upon BFA treatment of the ACA knock-

down lines (G). The asteriks represents p-values <0.05. The error bars represent the 95% confidence interval (n 

> 8). For Eosin Y treatment seedlings were pretreated for 30min.  
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Given that CME is the predominant pathway for PIN internalization, we analyzed the effect of 

Eosin Y on CME dynamics. The progression of CME involves the sequential recruitment of 

different adaptor complexes that organize all the cargoes in budding endocytic vesicles. The 

final step of this process requires the activity of DYNAMIN-RELATED PROTEINS (DRPs), which 

are involved in membrane scission of the budding vesicle. The dynamics of DRPs at the plasma 

membrane thus reflect the progression through endocytosis. Under control conditions 

(DMSO), the dwell time of DYNAMIN-RELATED PROTEIN1c-GFP (DRP1c-GFP) at the plasma 

membrane ranges between 10 and 50 seconds (Fig. 9, A, C). However, in Eosin Y-treated roots, 

DRP1c-GFP dwell times were dramatically prolonged (Fig. 9, B, D), suggesting an arrest in CME 

progression. Together, these data demonstrate that cytoplasmic Ca2+ is a potent negative 

regulator of CME.  

 

 

Figure 9: Eosin Y treatment arrests DYNAMIN-RELATED PROTEIN1c (DRP1c) at the plasma membrane. 

Kymographs of time-lapse recording (100 sec) of DRP1c1-GFP in elongated root epidermal cells treated for 90min 

with (A) DMSO or (B) 500nM Eosin Y. The length of the vertical lines is proportional to the life-time (dwell time) 

of a DRP1c-labelled endocytic spot at the plasma membrane. (C, D) Quantification of dwell time upon (C) DMSO 

and (D) 500nM Eosin Y treatment. Eosin Y treatment prolongs the life-time of the DRP1c-labelled endocytic spots 

supporting the inhibitory effect of elevated cytosolic Ca2+ on CME.  

 

Ca2+-dependent kinase activity inhibits PIN internalization 

We thus established a model in which Ca2+ acts downstream of auxin to inhibit CME. 

Therefore, we aimed to explore the underlying molecular mechanism. The Arabidopsis 
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genome encodes many Ca2+-sensing proteins, as illustrated by the observation that it encrypts 

more than 250 proteins that have at least one EF hand, a canonical Ca2+-sensing domain. In 

many Ca2+-dependent signaling cascades, phosphorylation plays an important role. Indeed, 

inhibition of PROTEIN PHOSPHATASE A activity with Cantharidin interfered with PIN 

internalization (Fig. 10, A, B), which could be partially overcome in CaMIN medium (Fig. 10, C). 

Conversely, treatment with the kinase inhibitor Staurosporin induced PIN internalization in 

the presence of NAA (Fig. 10, F).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: PIN1 localization upon pharmacological interference with kinase and phosphatase activity. (A-C) 

Pharmacological interference with phosphatase inhibitor Cantharidin. Upon 1h treatment with 25µM BFA in 

CaPLUS, PIN1-accumulating BFA bodies are formed (A). Upon cotreatment with 50µM Cantharidin (Cantha) PIN1 

internalization is inhibited (B). However, this is partially overcome when BFA Cantharidin treatment is performed 

in CaMIN (C). (D-F) Pharmacological inhibition of kinase activity. In the BFA control, PIN1-accumulating BFA 

bodies can be observed (D), while cotreatment with 10µM NAA results in inhibition of PIN1 endocytosis and 

consequently lack of BFA bodies (E). Upon cotreatment with 200nM Staurosporine (Stauro) NAA-inhibited PIN 

endocytosis is overcome and BFA bodies can be observed (F). For inhibitor treatments seedlings were pretreated 

for 30min. White arrows indicate PIN1-accumulating BFA bodies. 
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Together, these observations suggest that an increased phosphorylation status is associated 

with inhibition of PIN internalization. Therefore, we explored a large set of published Ca2+-

sensing mutants for altered sensitivity of BFA-visualized PIN internalization to NAA. An 

important fraction of Ca2+ signaling in plants involves kinase activity via Ca2+-DEPENDENT 

KINASEs (CPKs), and CALCINEURIN B-LIKE (CBL)-CBL-INTERACTING PROTEIN KINASE (CIPK) 

complexes. These include CPK single (cpk1, cpk2, cpk3, cpk4, cpk5, cpk6, cpk7, cpk8, cpk10, 

cpk11, cpk13, cpk21, cpk28, cpk30) and higher order mutants (cpk5/6, cpk5/6, cpk1/2/5/6, 

cpk3/5/6/11, cpk7/8/32 and cpk4/11) (Boudsocq et al., 2010; Kanchiswamy et al., 2010; Franz 

et al., 2011; Hubbard et al., 2012; Matschi et al., 2013) and CBL higher order mutants 

(cbl1/4/5/9, cbl2/3, cbl1/4/5/8/9) (Eckert et al., 2014). However, none of these mutants 

showed PIN accumulation in BFA bodies upon co-treatment with NAA (data not shown), 

suggesting that the observed effects of CaMIN on PIN trafficking involve other Ca2+ sensors 

and/or combinations thereof.  

In an alternative approach, we followed a gain-of-function screen for the CPK gene family, 

which displays strong functional redundancy. We generated a collection of estradiol-inducible 

overexpression lines of constitutive active (CA) variants for 13 out of 34 CPKs in Arabidopsis 

(Cheng et al., 2002). We obtained stable lines for CPK2, CPK3, CPK4, CPK7, CPK8, CPK11, 

CPK12, CPK13, CPK22, CPK27, CPK28, CPK29 and CPK30. We screened these lines for 

phenotypes that would reflect defects in auxin-dependent processes after transfer to estradiol 

medium. For CPK30 belonging to subgroup III (Fig. 11, A), we observed a partial loss of 

gravitropic root growth after transfer to inductive medium (Fig. 11, B; Fig. S5, C). Similarly, the 

related CPK13 showed agravitropic root growth upon induction (Fig. S5, B). However, none of 

the lines expressing slightly divergent subgroup III CPKs, CPK7 or CPK8, showed agravitropic 

root growth (Fig. S5, D, E). Immunolocalisation revealed reduced PIN2 levels in the root 

epidermis of induced CPK30 lines (Fig. 11, C, D), which could explain the gravitropic defect. In 

addition, the polarity of the remant PIN2 protein was reduced  as indicated by apical and basal 

localisations of PIN2 (Fig. 11, C.i). Interestingly, we found that mainly PIN1 accumulation in 

BFA bodies was strongly reduced in these lines (Fig. 11, D, E). Both CPK13 and CPK30 have 

been reported to localize to the plasma membrane (Yuan et al., 2007; Ronzier et al., 2014). 

Reducing extracellular Ca2+ availability by pretreatment with CaMIN could not overcome the 

reduced PIN endocytosis (Fig. 11, G, H) which fits with the idea that CPK30 operates 
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downstream of Ca2+. Interestingly, pretreatment with Bepridil, Nifedipine, and W-7 did induce 

PIN1 accumulation in BFA bodies and bypassed the PIN internalisation defect in the CPK30 line 

(Fig. S6). This suggest a difference in mode of action between CaMIN and these Ca2+ drug, as 

seen by their effects on late endosomal trafficking.  

 

Figure 11: Agravitropic root growth and PIN1/PIN2 immunolocalization upon induction of constitutive active 

CPK30. (A) Unrooted distance tree based on protein sequence alignment of Arabidopsis CPKs (from Cheng et al., 

2002). Roman numbers I-IV refer to the different CPK subgroups. The branch lengths are proportional to 
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divergence, with the scale of “0.1” representing 10% change. (B) Agravitropic root growth in estradiol (estra)-

induced CA CPK30 seedling. (C, D) Immunolocalisation of PIN2 in roots. Estradiol-induced CA CPK30 seedlings (D) 

show a strong reduction in PIN2 abundance compared to wild type (C), and loss of PIN2 polarity (highlighted in 

D.i). The white arrow points on basal PIN2 which is normally restricted to the apical cell side. (E-H) 

Immunolocalisation of PIN1 in roots. (E, F) Upon 1h treatment with 25µM BFA in CaPLUS, BFA bodies (white 

arrow) are formed in estradiol-treated wild type seedlings (E), while the amount of PIN1-accummulating BFA 

bodies is strongly reduced in estradiol-induced CPK30 seedlings (F). (G, H) Upon pretreatment with CaMIN, BFA 

body formation is observed in estradiol-treated wild type (G, white arrow), but inhibited PIN endocytosis in the 

CA CPK30 line is not overcome (H). 

 

Despite the clear effect of constitutive activation of CPK30 on PIN endocytosis, preliminary 

data showed that dynamics of the endocytic marker DRP1c did not seem to be affected in this 

line (Fig. S7). Observations from a single experiment showed a similar trend in DRP1c dynamics 

in both the induced CPK30 seedlings and wild type. Nevertheless, a subtle shift towards 

shorter dwell times could be observed for the CA CPK30 line (Fig. S7, D) which might suggest 

a higher turn-over of DRP1c-labelled endocytic spots at the plasma membrane. However, the 

number of spots seemed to be strongly diminished (Fig. S7, B, D). Therefore, the defect in 

endocytosis in the CA CPK30 line might be explained by a reduced abundance of DRP1c (and 

possibly other components of the CME machinery) rather than a difference in dynamics. 

Nevertheless, given the limited amount of seedlings available for this experiment, a biological 

repeat with a larger sample population is essential to draw reliable conclusions. 

Together, these data show that, as for Eosin Y treatment, constitutive activation of CPK13 and 

CPK30 is sufficient to inhibit PIN internalization. This would suggest a model in which NAA-

induced Ca2+ would activate CPK signaling leading to inhibition of PIN endocytosis. Identifying 

CPK13/30 phosphorylation targets could reveal how they regulate PIN endocytosis. 

 

Physiological relevance of Ca2+-regulated PIN trafficking 

The question remains what the implications of our observations are for plant growth and 

development. We have collected preliminary data showing that growth on CaMIN results in 

shorter roots (Fig. 12, A) (Wang, Vanneste, Beeckman, unpublished results). Furthermore, 

gravitropic bending of the roots seemed to be delayed on CaMIN (Fig. 12, C), suggesting an 

underlying issue with auxin transport possibly caused by aberrant PIN localization. This would 

fit with our observations highlighting the importance of Ca2+ for proper regulation of PIN 
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endocytosis by NAA. To further clarify this hypothesis we should reconfirm these observations 

and look into DR5 expression marking auxin distribution during gravistimulation on CaMIN.  

 

Figure 12: Phenotypic analysis of the root length and root gravitropic response on CaMIN. (A) Quantification of 

the root length of seedlings grown on CaPLUS and CaMIN. The root length is significantly shorter for roots grown 

on CaMIN. The asteriks represents a p-value<0,05 (n > 59). Four day-old seedlings were transferred to CaPLUS or 

CaMIN for 6,5 days prior to measurement of the root length. (B, C) Root gravitropic response of seedlings grown 

on CaPLUS (B) and CaMIN (C) after 5hs of gravistimulation. The arrows show the direction of the gravitropic 

vector (g). Note that gravitropic bending is delayed on CaMIN. (B i) and (C i) show a detail of a gravistimulated 

root tip on CaPLUS and CaMIN respectively. Four day-old plants were transferred to CaPLUS or CaMIN 24hs prior 

to gravistimulation. For gravistimulation the plates were rotated 90°.  

 

Conclusions and perspectives 

Based on Ca2+ pharmacology and manipulation of extracellular Ca2+ availability using ‘Ca2+ -

free medium’ (CaMIN) (Fig. 13, Table 1), we have demonstrated that on the one hand Ca2+ is 

required for NAA-inhibited PIN endocytosis, and on the other hand that Ca2+ is sufficient for 

inhibition of PIN internalization.  
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Figure 13: Schematic representation of the impact of Ca2+ drug and CaMIN treatment on Ca2+ distribution. Ca2+ 

ions, Ca2+ channels, and Ca2+ pumps are marked in green, brown, and red respectively. CaM: CALMODULIN. 

 

Table 1. Overview of the Ca2+ drug used, their putative target and reported effects in plants. Flg22: flagellin 
peptide (22 amino acid fragment), CaM: calmodulin, ABA: abscisic acid, ACA: AUTO-INHIBITED Ca2+-ATPASEs, ER: 
endoplasmic reticulum. 

DRUG PUTATIVE TARGET EFFECTS IN PLANTS 

Nifedipine voltage gated Ca2+ channels  
(animals) 

inhibits root hair tip growth (Schiefelbein et al., 1991);  
reduced blue light response (Łabuz et al., 2016);  
reduced auxin-induced Ca2+ influx (Shishova and Lindberg, 2004);  
reduced flg22-induced cytosolic Ca2+ oscillations (Thor & Peiter, 2014) 

Bepridil hydrochloride non-selective Ca2+ channels  
(animals) 

inhibits protoplast division in P. patens (Bhatla et al., 2001) 

W-7 CaM  inhibits the hypersensitive response to pathogens (Ma et al., 2008);  
interferes with ABA-induced anti-oxidant defense (Hu et al., 2006) 

Eosin Y ACA Ca2+-ATPases  enhances Ca2+ increase in the cytosol and ER (Bonza et al., 2013) 

 

Based on preliminary observations, it seems that Ca2+ is operating downstream of the auxin 

receptor ABP1 and ROP/RIC, two molecular players involved in NAA-inhibited PIN endocytosis. 

However, given the recent findings on the off-target effects in the ABP1 knock-down lines (see 
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Section I – Chapter 1) the auxin receptor function of ABP1 and its involvement in this pathway 

are questionable. Therefore, these data should be interpreted with caution. Meanwhile we 

are awaiting a molecular explanation that reconciles the observed inhibition of CME in the 

conditional ABP1 knock-down lines (Robert et al., 2010) and the auxin-resistance of PIN 

internalization in lines that overexpress a non-auxin-binding variant of ABP1 (Grones et al., 

2015). To further consolidate the observation that Ca2+ would be operating downstream of 

ROP/RIC signaling, NAA-induced Ca2+ dynamics should be analyzed in the scn1 background. 

Also in other signaling cascades, Ca2+ was shown to act downstream of ROP signaling (Venus 

and Oelmüller, 2013), however, this does not exclude the possible existence of another Ca2+-

dependent process that acts upstream of ROP signaling. Since scn1 is defective in a negative 

regulator of ROP/RIC signaling, it is important to complement our observations with more 

direct evidence from analysis of overexpression and knock-out mutants of the ROPs and RICs. 

The observation that Ca2+ is sufficient to inhibit PIN internalization is further corroborated by 

genetic evidence that constitutively active Ca2+ signaling by CPK13 and CPK30 was sufficient 

to prevent PIN endocytosis. More in depth analysis of the impact of CaMIN and Ca2+ drug 

treatment on endomembrane trafficking revealed that the Ca2+ drug not only affect 

endocytosis but also post-endocytic events such as vacuolar trafficking. Consistently, Ca2+ 

drug-induced PIN internalization was reduced in the early endocytic trafficking mutant ben1-

1 ben2, but not in the syp42 syp43 mutant, which is defective in secretion and vacuolar sorting. 

Furthermore, Bepridil and W-7 treatment resulted in aberrant MVB/LE morphology as shown 

by analysis of different marker lines and transmission electron microscopy. Interestingly, these 

effects could not be observed for CaMIN, implying that CaMIN and the Ca2+ drug might have 

distinct modes of action, or affect multiple steps in the endomembrane trafficking pathway. 

Further study of the impact of CaMIN treatment revealed that Ca2+ operates downstream of 

NAA in the regulation of CME. Interestingly, we also observed that CaMIN-induced PIN 

internalization might partially occur via a clathrin-independent mechanism, or that CaMIN 

possibly affects additional levels in the endocytic trafficking pathway. 

Together, these observations cumulate into a model in which NAA-induced Ca2+ would inhibit 

PIN endocytosis via CPK13 and/or CPK30 activity (Fig. 14). Additionally, Ca2+ could also operate 

at distinct levels in the endomembrane trafficking pathway. The Ca2+ channel mediating NAA-
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induced Ca2+ influx and the target(s) of CPK13- and/or CPK30-dependent phosphorylation 

remain to be identified. 

 

Figure 14: A schematic representation of the proposed model for Ca2+-dependent inhibition of PIN endocytosis 

by auxin. We hypothesize that NAA-induced Ca2+ would activate CPK13/30-dependent signaling leading to 

inhibition of CME of PINs. Based on preliminary observations, we speculate that Ca2+ operates downstream of 

the auxin receptor ABP1 and ROP/RIC signaling. However, keep in mind that the function of ABP1 as an auxin 

receptor is currently under debate. Note that Ca2+ could possibly also regulate other steps in the endomembrane 

trafficking pathway e.g. late endosomal trafficking towards the vacuole. The different marker lines (VHAa1, 

SYP32, Ara7, VAMP727, 2xFYVE, SYP22, DRP1c, CLC2) and regulators (TPLATE complex subunit TML, AX2, BEN1, 

BEN2, SYP42, SYP43) of endosomal trafficking analyzed in this Chapter are indicated in the figure. Round arrow 

heads represent inhibition, diamond arrow heads are used where the type of interaction is not known. NAA: 1-
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naphthaleneacetic acid; ABP1: AUXIN BINDING PROTEIN1, ROP: RHO-LIKE GTPASE FOR PLANTS, RIC: ROP 

INTERACTIVE CRIB MOTIF-CONTAINING PROTEINS, EF: EF hand domain, K: kinase domain, VHAa1: V-TYPE 

PROTON ATPASEa1; SYP: SYNTAXIN OF PLANT; DRP1c; DYNAMIN-RELATED PROTEIN1c; CLC2: CLATHRIN LIGHT 

CHAIN2; AX2: AUXILIN2; BEN: BFA-VISUALIZED ENDOCYTIC TRAFFIKING DEFECTIVE; CPK: Ca2+-DEPENDENT 

PROTEIN KINASE. 

 

It should be noted that previous research demonstrated that the in vitro activity of both CPK13 

and CPK30 is Ca2+-independent since phosphorylation levels of the synthetic peptide syntide-

2 by CPK13 and CPK30 did not alter with increasing free Ca2+ concentration (Boudsocq et al., 

2002). However, in the same assay it was shown that Ca2+ sensitivity of CPKs can vary 

depending on the substrate. Therefore, the absence of Ca2+-dependent activation might be 

explained by the lack of an appropriate substrate. Furthermore, it is possible that Ca2+ binding 

is not sufficient for activation of these CPKs but forms a prerequisite for additional regulatory 

processes such as (auto)phosphorylation or phospholipid association (Klimecka and 

Muszyńska, 2007). 

Our data suggest the involvement of CPK13 and CPK30 in inhibition of PIN endocytosis. 

However, to further consolidate this hypothesis, we should address auxin-inhibited PIN 

endocytosis in the corresponding knock-out mutants. As described earlier, screening single 

knock-out mutants did not yield any candidates, suggesting that there might be functional 

redundancy among related CPKs. CPK13 and CPK30 are part of the class III subgroup of CPKs 

in Arabidopsis containing 8 CKPs, and cluster together with CPK10 based on protein sequence 

similarity (Cheng et al., 2002). To exclude lack of phenotypes due to functional redundancy, 

we should assess PIN localization in the cpk10 cpk13 cpk30 triple knock-out mutant. Secondly, 

analysis of CPK expression patterns in the root should be addressed, which would allow us to 

confirm the relevance of CPK13 and CPK30 in regulation of PIN endocytosis in roots, and might 

uncover additional CPKs as potential regulators. Thirdly, the CPK13 and CPK30 lines remain to 

be characterized in more detail. Preliminary data on DRP1c dynamics showed less DRP1c-

labelled foci with a shorter life time, suggesting the defect in endocytosis might be attributed 

to a reduced abundance of DRP1c at the plasma membrane rather than aberrant dynamics. It 

is therefore crucial to reconfirm this observation and address dynamics and abundance of 

other endocytosis markers such as CLC or T-PLATE in these backgrounds to better understand 

the endocytic defect in the CA CPK30 line. Given the agravitropic root growth of these CPK 
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lines, another interesting experiment would be to visualize auxin distribution in the roots. 

Finally, an important piece to the CPK-regulated PIN endocytosis puzzle is identification of the 

CPK target(s). A phosphoproteomics approach would allow to identify differentially 

phosphorylated proteins between wild type and the CA CPK lines that could represent 

potential CPK targets in the regulation of PIN endocytosis.  

The observation that CaMIN treatment has an impact on CLC2-GFP localization, and that 

DRP1c-GFP dynamics is negatively regulated by increased cytosolic Ca2+ concentrations, 

suggests that the importance of Ca2+ for regulation of CME could not restricted to PINs but 

could also apply to other cargoes that are internalized in a clathrin-dependent manner. 

Furthermore, the observation that inhibition of CME in the TML KD and DN HUB1 line is 

bypassed upon CaMIN treatment could suggest the possible involvement of a clathrin-

independent endocytic mechanism. The complete inhibition of (clathrin-dependent) PIN 

endocytosis by treatment with MβCD, an inhibitor of clathrin-independent lipid raft-mediated 

endocytosis, suggests MβCD might not be a reliable tool to assess the contribution of clathrin-

independent endocytosis to PIN internalization in CaMIN, and alternative tools/markers 

would have to be used. Based on our observations it could be speculated that Ca2+ might have 

a more universal role in mediation of endocytosis in general. In order to address whether the 

importance of Ca2+ for regulation of endocytosis is specific for and restricted to PINs, we 

should verify the impact of our Ca2+ drug and CaMIN treatment on other (non-polar) 

transmembrane proteins such as the plasma membrane H+-ATPase or the water channel PIP2, 

as it has been reported that endocytosis of these proteins is also inhibited by NAA (Paciorek 

et al., 2005). Since our read-out heavily relies on BFA treatment, most of our observations are 

obtained from (pharmacological) manipulation of an already perturbed system. Therefore, it 

is indispensable to also address PIN trafficking in a BFA-independent context. A possible 

strategy that could be used is measuring the turn-over of photoconverted PIN2-Dendra (Jásik 

et al., 2013). Dendra is a photoconvertible protein that can be converted from GFP to RFP by 

exposure to UV light. Photoconversion of PIN2-Dendra at the plasma membrane and 

subsequent follow-up of the decrease in RFP intensity at the plasma membrane over time can 

serve as a proxy for the rate of PIN2 endocytosis. Alternatively, we aimed to look at CME, not 

restricted to PINs, in a BFA-independent read-out by analyzing CLC2-GFP localization at the 

plasma membrane. To address the possible requirement of Ca2+ for regulation of endocytosis 
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in general we can monitor the uptake of the endocytic tracer Fei-Mao (FM; Malínská et al., 

2014). FM is incorporated in the plasma membrane and thereby labels endosomes derived 

from the plasma membrane. The ratio of intracellular FM intensity over FM intensity at the 

plasma membrane reflects the rate of endocytosis. Altogether, these experiments will allow 

us to assess to what extent our observations are specific for PINs and CME, and address PIN 

trafficking in a BFA-independent set-up. 

Our data strongly focus on cell biological events, but the question remains: what is the 

physiological relevance of our findings for plant growth and development? Preliminary 

experiments suggest a role for Ca2+-regulated PIN trafficking and auxin transport during 

gravitropic bending of the root, however, this remains to be confirmed.  

The biological function of both CPK13 and CPK30 has been addressed previously. CPK13 was 

shown to be expressed in guard cells where it reduces stomata aperture by inhibition of the 

K+ TRANSPORTERS OF ARABIDOPSIS THALIANA 1 (KAT1) and KAT2 K+ channels (Ronzier et al., 

2014). Recently, the class III subfamily members CPK10, CPK30, and CPK32 have been shown 

to be important regulators of Ca2+-dependent nitrate sensing (Liu et al., 2017). Nitrate-

triggered Ca2+-dependent activation of these CPKs results in phosphorylation of specific 

transcription factors and reprogramming of gene expression. As the cpk10 cpk30 double 

knock-out is embryo-lethal, a chemically switchable rescue construct was integrated in the 

double knock-out and was used to generate a cpk10 cpk30 cpk32 mutant, revealing defects in 

nitrate-regulated lateral root growth and root architecture. Given the importance of auxin in 

embryogenesis and root development, we postulate that the observed embryolethality and 

defects in root architecture could be explained by effects of the CPKs on auxin transport and 

distribution. In this model, auxin would activate CPK activity to inhibit PIN internalization and 

regulate PIN polarity, during auxin-regulated development, while providing an integration 

point for additional stimuli, such as nutrient availability. 
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CONCLUSIONS and PERSPECTIVES 

Previous work showed that auxin can feedback regulate its own distribution by inhibiting CME 

of the auxin efflux carriers PIN mediated by the auxin receptor ABP1 , intracellular activation 

of ROP/RIC signaling, and cytoskeletal rearrangements (Geldner et al., 2001; Paciorek et al., 

2005b; Robert et al., 2010; Xu et al., 2010; Chen et al., 2012; Lin et al., 2012; Nagawa et al., 

2012). It has been well established that auxin can induce a rapid cytosolic Ca2+ increase, and 

this auxin-induced Ca2+ increase has been linked to auxin-regulated root gravitropism. In my 

PhD dissertation entitled “The role of calcium in auxin-regulated PIN endomembrane 

trafficking”, we wanted to bring together these two findings and address what could be the 

role of Ca2+ and auxin-induced Ca2+ as a second messenger mediating inhibition of PIN 

endocytosis by auxin.  

The molecular mechanism behind the NAA-induced Ca2+ signature  

As inhibition of PIN endocytosis was observed for the synthetic auxin NAA, one of our goals 

was to study NAA-induced Ca2+ dynamics in more detail. Our data revealed that NAA 

treatment rapidly generated a cytosolic biphasic Ca2+ signature that slowly recovered to the 

Ca2+ resting levels. Since the amplitude of the first Ca2+ peak was strongly diminished upon 

reduced availability of apoplastic Ca2+ by CaMIN pretreatment, we hypothesized that this 

initial Ca2+ peak is generated by influx of extracellular Ca2+. Importantly, also the secondary 

Ca2+ release was reduced in CaMIN, suggestive of a Ca2+-induced Ca2+ entry mechanism. The 

secondary Ca2+ peak can originate either from intracellular stores but also from the apoplast. 

We postulate that the secondary Ca2+ release would originate from intracellular stores rather 

than from the apoplast based on the observation that NAA treatment induces Ca2+ signaling 

throughout the cytoplasm, and not only in the periphery of the plasma membrane.  

Major intracellular Ca2+ stores are the ER and vacuole. The mitochondria seem to be unlikely 

to release Ca2+ in response to NAA, as NAA treatment increases mitochondrial Ca2+ levels 

(Wagner et al., 2015). Thus, Ca2+ sensors that are targeted to specific subcellular 

compartments will be instrumental in revealing the origin of the secondary Ca2+ signal. In this 

case, apoplast-, ER-, and vacuole-targeted Ca2+ sensors might give us a better insight on which 
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Ca2+ sources contribute to shaping the NAA-induced Ca2+ signature. However, it is not highly 

straightforward to design appropriate GECI. The GECI should have a high sensitivity and a 

dynamic range that allows to capture semi-subtle Ca2+ changes in a high Ca2+ environment. 

Moreover, the lumen of the secretory pathway and the vacuole may interfere with the 

properties of the GECI, due to misfolding, oligomerisation, lysis or low pH (Zhao et al., 2011; 

Costantini et al., 2015). The palette of GECI designed for visualizing Ca2+ dynamics in 

intracellular compartments, such as ER and mitochondria, is rapidly expanding (Suzuki et al., 

2014), but their implementation in plants lags behind.  

Pinpointing the compartment(s) from which NAA-induced Ca2+ signals originate will allow 

narrowing down the number of Ca2+ signaling components involved, based on their subcellular 

localization. Analyzing NAA-regulated PIN trafficking in the corresponding mutants might 

provide evidence for Ca2+ signaling components linking the NAA-induced cytosolic Ca2+ 

increase to NAA its effect on PIN endocytosis. Shih and colleagues demonstrated that the IAA-

induced cytosolic Ca2+ increase observed in roots is mediated by the Ca2+ channel CNGC14 

(Shih et al., 2015). Evaluating Ca2+ dynamics upon NAA treatment in the cngc14 background is 

a straightforward experiment to assess the contribution of CNGC14 to the NAA-induced Ca2+ 

influx.  

 

Is NAA-induced Ca2+ involved in NAA-inhibited PIN endocytosis?  

This has been one of our main questions that we wanted to address in this PhD project. We 

do have evidence that the NAA-induced Ca2+ signature is required for inhibition of PIN 

endocytosis by NAA. On the one hand, depleting the extracellular Ca2+ by CaMIN pretreatment 

reduced the first NAA-induced Ca2+ peak. On the other hand, CaMIN treatment resulted in PIN 

internalization and accumulation in BFA compartments in the presence of NAA. Similar 

observations were made for the Ca2+ channel inhibitor Nifedipine. Cotreatment with BFA, NAA 

and Nifedipine resulted in pronounced intracellular PIN accumulation, and preliminary data 

showed a reduced cytosolic Ca2+ increase upon treatment with NAA in seedlings pretreated 

with Nifedipine. We have demonstrated that Ca2+ most likely operates downstream of 

ROP/RIC signaling. Additional support for these observations and the hypothesis that the NAA-

induced cytosolic Ca2+ increase is required for inhibition of PIN endocytosis could be found by 
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addressing NAA-induced Ca2+ dynamics upon interference with ROP/RIC function. Similar 

experiments could be performed for ABP1 using the proper mutant backgrounds, however, 

given that the role of ABP1 as an auxin receptor is currently under debate we should interpret 

these results with caution and await further clarification of the function of ABP1 in auxin 

signaling. 

We have also made some observations which are not following the model in which NAA-

induced Ca2+ inhibits PIN endocytosis. As mentioned in the previous paragraph, CNGC14 has 

been identified as the Ca2+ channel mediating Ca2+ dynamics in roots induced by 1 µM IAA and 

during auxin-regulated root gravitropism (Shih et al., 2015). However, our preliminary data 

showed that NAA-regulated PIN trafficking was not affected in the cngc14 mutant (Fig. S8). 

Ideally, NAA treatment should be performed on a cncg14 line expressing a Ca2+ sensor to see 

if cngc14 would be unresponsive to the effects of 10µM NAA. If the NAA-induced response is 

abolished in cngc14 this would suggest that the NAA-induced Ca2+ increase and inhibition of 

PIN endocytosis by NAA are not interconnected. In the case NAA-induced Ca2+ is not affected 

in cngc14 an alternative explanation could be that, since IAA and NAA show subtle differences 

in their Ca2+ signatures, the Ca2+ influx might be mediated by distinct Ca2+ channels. Possibly 

CNGC14 is specific for IAA-induced Ca2+ influx and NAA might actuate other Ca2+ channels, or, 

perhaps NAA activates multiple Ca2+ channels, among which CNGC14, and a clear phenotype 

is masked by their functional redundancy.  

A crucial experiment which still remains to be performed in order to link NAA-induced Ca2+ to 

NAA-inhibited PIN endocytosis is addressing the Ca2+ response to control treatments benzoic 

acid and 2-NAA. Benzoic acid is a weak acid like auxin, but does not inhibit PIN endocytosis 

(Paciorek et al., 2005). 2-NAA resembles auxin, yet it is inactive in the transcriptional auxin 

response and also does not inhibit PIN endocytosis (Paciorek et al., 2005). If these compounds 

yield Ca2+ responses that are obviously distinct from NAA-induced Ca2+ signatures, this would 

be in favor of our hypothesis. However, in the case that the Ca2+ signatures are highly 

overlapping, it remains possible that the observed Ca2+ response does not have enough 

subcellular resolution to capture differences between micro-domain Ca2+ signatures, which 

may be highly relevant for the downstream cellular read-out. 
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PIN endocytosis upon CaMIN treatment: clathrin-dependent or -independent?  

It seems that CaMIN-induced PIN internalization is to some extent affected in CME mutants, 

suggesting that an alternative, clathrin-independent endocytic mechanism might be involved. 

In contrast to animals, clathrin-independent endocytosis (CIE) is poorly characterized in plants. 

Based on preliminary observations, we found that MβCD, an inhibitor of clathrin-independent 

lipid raft-mediated endocytosis, might not be a reliable tool to address this question due to 

possible secondary effects. Baral and coworkers suggested that glycosyl phosphatidyl inositol-

anchored proteins such as SKU5 are internalized through a clathrin-independent endocytic 

mechanism that is restricted to the epidermal cell layer (Baral et al., 2015a). Furthermore, 

they showed that exposure to mM concentrations of NaCl induced CIE, albeit across all cell 

layers and not restricted to specific cargo. The latter mechanism is most likely mediated by 

membrane lipid rafts as lipid-raft-dependent endocytosis of the aquaporin PIP2;1 was shown 

to be increased by high NaCl (Li et al., 2011b). Flotillin1 (Flot1) localizes to such lipid rafts, also 

called detergent-resistant membranes (DRMs), and was shown to contribute to endocytic 

vesicle formation, independent of clathrin (Borner et al., 2005; Li et al., 2011b), making Flot1 

a reliable marker for CIE. To test the contribution of CIE to CaMIN-induced PIN internalization 

we could verify how CaMIN affects SKU5 and Flot1 localization and make a quantitative 

comparison of CaMIN- and NaCl-induced PIN internalization in terms of number and size of 

BFA bodies formed.  

 

CaMIN versus Ca2+ pharmacology  

To assess the importance of Ca2+ for NAA-inhibited PIN localization we analyzed PIN 

localization when interfering with Ca2+ signaling by (1) Ca2+ depletion of the extracellular 

environment by pretreatment with Ca2+-free medium (CaMIN) and (2) using a pharmacological 

approach. Although both CaMIN and the Ca2+ drug had similar impact on PIN localization in 

wild type seedlings, PINs were differentially affected in some mutant backgrounds (e.g. syp42 

syp43, CA CPK30 line). Furthermore, different endomembrane markers showed distinct 

labeling and/or morphology after CaMIN versus Ca2+ drug treatment. Together, these 

observations suggest that the Ca2+ drugs operate via a different mechanism or that the Ca2+ 

drug might have multiple effects at different levels in the endocytic trafficking pathway. The 
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former explanation can be appreciated given the differential impact on extracellular free Ca2+ 

levels of CaMIN versus the Ca2+ drug, thereby also possibly differently affecting the luminal 

Ca2+ levels in the (early) endomembrane system. Treatment with Ca2+ channel inhibitor 

Nifedipine or Bepridil and CaM inhibitor W-7 is expected not to affect the free apoplastic Ca2+ 

concentration, while CaMIN would reduce the extracellular free Ca2+ levels. The latter could 

also affect the luminal Ca2+ concentrations in the (early) endomembrane system, as initially 

the lumen of endosomes is derived from the extracellular space. Since the luminal Ca2+ levels 

in the endosomes have not been established yet (see Section I - Chapter 3) it is difficult to 

assess how and to what extent changes in the extracellular Ca2+ levels by CaMIN, might affect 

luminal Ca2+ in the endosomes. Currently, constructs are being generated in our lab which 

would allow to target different Ca2+ sensors to the luminal side of distinct endomembrane 

compartments. Analysis of these lines would allow us to gain more insight into Ca2+ 

distribution throughout the endosomal trafficking pathway, and would allow us to assess 

possible differential effects of CaMIN versus Ca2+ drug treatment.  

Importantly, the bfa-visualized endocytic trafficking defective double mutant (ben1-1 ben2) 

did not accumulate PINs in BFA bodies, both in CaPLUS and CaMIN. This demonstrates that 

the internalized PINs under CaMIN conditions follow an early endocytic trafficking pathway 

that is under control of the ARF-GEF BEN1/BIG5/MIN7 and BEN2/VPS45. Moreover, mutants 

in VPS45-regulated SYP4s (syp42 syp43) were also resistant to BFA-induced PIN internalization 

in CaMIN conditions. This double mutant was less sensitive to BFA-induced endosome 

aggregation and has defects in secretion and vacuolar trafficking (Uemura et al., 2012). This 

suggests that internalized PINs cannot be seen in BFA bodies simply due to a defect in 

endosome aggregation. The fact that we do see strong PIN-accumulation in BFA bodies in this 

mutant upon cotreatment with the Ca2+ drug could suggest that our drug affect endosome 

aggregation and/or membrane fusion. The latter is known to rely on Ca2+ (Section I – Chapter 

3). Therefore, it will be of interest to see how Ca2+ affects endosomal mobility, and to which 

extent this could explain our observations.  
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Ca2+ and PIN recycling 

Besides affecting PIN endocytosis, we have observations that CaMIN also affects PIN recycling 

to the plasma membrane (Fig. S9). In BFA wash-out experiments, seedlings are initially treated 

with BFA resulting in formation of PIN-accumulating BFA compartments (Fig. S9, A), followed 

by BFA removal from the medium and wash-out from the cells, so that exocytosis can be 

resumed and BFA bodies disappear in time. In case the wash-out step is performed in CaMIN, 

we observed a slower dissociation of BFA bodies (Fig. S9, C). This resembles BFA wash-out 

phenotypes of mutants defective in protein recycling/exocytosis such as mutants in exocyst 

complex subunits (Drdová et al., 2013) and bex5 (Feraru et al., 2012). The fact that CaMIN 

affects exocytosis besides endocytosis, might explain why enlarged BFA bodies can be 

observed when BFA treatment is performed in CaMIN compared to CaPLUS. The controlled 

regulation of PIN endo- and exocytosis is crucial for proper PIN distribution, suggesting that 

Ca2+ might indirectly be a key regulator of auxin transport.  

 

Final conclusion 

Based on the Ca2+ pharmacology and CaMIN experiments we have clear evidence for a role of 

Ca2+ in inhibition of CME of PINs by NAA. We speculated that the cytosolic Ca2+ increase which 

is triggered by NAA treatment could initiate inhibition of PIN internalization. The NAA-induced 

Ca2+ signature is generated immediately and rapidly and shows two Ca2+ peaks pointing on 

extracellular Ca2+ influx and secondary intracellular Ca2+ release. However, the Ca2+ channel(s) 

involved remains to be identified. Part of the results supports our hypothesis that NAA-

induced Ca2+ blocks PIN endocytosis, however, the lack of genetic data has made it difficult to 

resolve the link between NAA-induced Ca2+ and NAA-inhibited PIN endocytosis. Given that we 

found the involvement of CPKs (such as CPK30 and CPK13), it will be of interest to dissect the 

dynamic auxin-regulated phosphoproteome, and define an overlap with the direct targets of 

these CPKs. The proposed experiments should allow us to unambiguously clarify this.  

 



163 
 

References 

Baral, A., Irani, N.G., Fujimoto, M., Nakano, A., Mayor, S., and Mathew, M.K. (2015). Salt-Induced Remodeling 
of Spatially Restricted Clathrin-Independent Endocytic Pathways in Arabidopsis Root. The Plant Cell 27, 
1297-1315. 

Borner, G.H.H., Sherrier, D.J., Weimar, T., Michaelson, L.V., Hawkins, N.D., MacAskill, A., Napier, J.A., Beale, 
M.H., Lilley, K.S., and Dupree, P. (2005). Analysis of Detergent-Resistant Membranes in Arabidopsis. 
Evidence for Plasma Membrane Lipid Rafts. Plant Physiology 137, 104-116. 

Carol, R.J., Takeda, S., Linstead, P., Durrant, M.C., Kakesova, H., Derbyshire, P., Drea, S., Zarsky, V., and Dolan, 
L. (2005). A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells. Nature 438, 1013-
1016. 

Costantini, L., Baloban, M., L Markwardt, M., Rizzo, M., Guo, F., V Verkhusha, V., and Snapp, E. (2015). A palette 
of fluorescent proteins optimized for diverse cellular environments. 

Chen, X., Naramoto, S., Robert, S., Tejos, R., Löfke, C., Lin, D., Yang, Z., and Friml, J. (2012). ABP1 and ROP6 
GTPase Signaling Regulate Clathrin-Mediated Endocytosis in Arabidopsis Roots. Current Biology 22, 
1326-1332. 

Drdová, E.J., Synek, L., Pečenková, T., Hála, M., Kulich, I., Fowler, J.E., Murphy, A.S., and Žárský, V. (2013). The 
exocyst complex contributes to PIN auxin efflux carrier recycling and polar auxin transport in 
Arabidopsis. The Plant Journal 73, 709-719. 

Feraru, E., Feraru, M.I., Asaoka, R., Paciorek, T., De Rycke, R., Tanaka, H., Nakano, A., and Friml, J. (2012). 
BEX5/RabA1b Regulates trans-Golgi Network-to-Plasma Membrane Protein Trafficking in Arabidopsis. 
The Plant Cell 24, 3074-3086. 

Geldner, N., Friml, J., Stierhof, Y.-D., Jurgens, G., and Palme, K. (2001). Auxin transport inhibitors block PIN1 
cycling and vesicle trafficking. Nature 413, 425-428. 

Kim, M., Kim, Y., Kim, J., Lee, H.-S., Sung Lee, W., Kim, S.-K., Wang, Z.-Y., and Kim, S.-H. (2013). Identification of 
Arabidopsis BAK1-Associating Receptor-Like Kinase 1 (BARK1) and Characterization of its Gene 
Expression and Brassinosteroid-Regulated Root Phenotypes. 

Kitakura, S., Vanneste, S., Robert, S., Löfke, C., Teichmann, T., Tanaka, H., and Friml, J. (2011). Clathrin Mediates 
Endocytosis and Polar Distribution of PIN Auxin Transporters in Arabidopsis. The Plant Cell 23, 1920-
1931. 

Li, X., Wang, X., Yang, Y., Li, R., He, Q., Fang, X., Luu, D.-T., Maurel, C., and Lin, J. (2011). Single-Molecule Analysis 
of PIP2;1 Dynamics and Partitioning Reveals Multiple Modes of <em>Arabidopsis</em> Plasma 
Membrane Aquaporin Regulation. The Plant Cell 23, 3780-3797. 

Lin, D., Nagawa, S., Chen, J., Cao, L., Chen, X., Xu, T., Li, H., Dhonukshe, P., Yamamuro, C., Friml, J., Scheres, B., 
Fu, Y., and Yang, Z. (2012). A ROP GTPase-Dependent Auxin Signaling Pathway Regulates the Subcellular 
Distribution of PIN2 in Arabidopsis Roots. Current Biology 22, 1319-1325. 

Nagawa, S., Xu, T., Lin, D., Dhonukshe, P., Zhang, X., Friml, J., Scheres, B., Fu, Y., and Yang, Z. (2012). ROP 
GTPase-Dependent Actin Microfilaments Promote PIN1 Polarization by Localized Inhibition of Clathrin-
Dependent Endocytosis. PLOS Biology 10, e1001299. 

Paciorek, T., Zazimalova, E., Ruthardt, N., Petrasek, J., Stierhof, Y.-D., Kleine-Vehn, J., Morris, D.A., Emans, N., 
Jurgens, G., Geldner, N., and Friml, J. (2005). Auxin inhibits endocytosis and promotes its own efflux 
from cells. Nature 435, 1251-1256. 

Robert, S., Kleine-Vehn, J., Barbez, E., Sauer, M., Paciorek, T., Baster, P., Vanneste, S., Zhang, J., Simon, S., 
Čovanová, M., Hayashi, K., Dhonukshe, P., Yang, Z., Bednarek, S.Y., Jones, A.M., Luschnig, C., Aniento, 
F., Zažímalová, E., and Friml, J. (2010). ABP1 Mediates Auxin Inhibition of Clathrin-Dependent 
Endocytosis in Arabidopsis. Cell 143, 111-121. 

Shih, H.-W., DePew, Cody L., Miller, Nathan D., and Monshausen, Gabriele B. (2015). The Cyclic Nucleotide-
Gated Channel CNGC14 Regulates Root Gravitropism in <em>Arabidopsis thaliana</em>. Current 
Biology 25, 3119-3125. 

Suzuki, J., Kanemaru, K., Ishii, K., Ohkura, M., Okubo, Y., and Iino, M. (2014). Imaging intraorganellar Ca at 
subcellular resolution using CEPIA. 

Valitova, J., Sulkarnayeva, A., Kotlova, E., Ponomareva, A., Mukhitova, F.K., Murtazina, L., Ryzhkina, I., Beckett, 
R., and Minibayeva, F. (2014). Sterol binding by methyl-β-cyclodextrin and nystatin – comparative 
analysis of biochemical and physiological consequences for plants. FEBS Journal 281, 2051-2060. 

Wagner, S., Behera, S., De Bortoli, S., Logan, D.C., Fuchs, P., Carraretto, L., Teardo, E., Cendron, L., Nietzel, T., 
Füßl, M., Doccula, F.G., Navazio, L., Fricker, M.D., Van Aken, O., Finkemeier, I., Meyer, A.J., Szabò, I., 



164 
 

Costa, A., and Schwarzländer, M. (2015). The EF-Hand Ca<sup>2+</sup> Binding Protein MICU 
Choreographs Mitochondrial Ca<sup>2+</sup> Dynamics in Arabidopsis. The Plant Cell. 

Xu, T., Wen, M., Nagawa, S., Fu, Y., Chen, J.-G., Wu, M.-J., Perrot-Rechenmann, C., Friml, J., Jones, A.M., and 
Yang, Z. (2010). Cell surface- and Rho GTPase-based auxin signaling controls cellular interdigitation in 
Arabidopsis. Cell 143, 99-110. 

Xu, T., Dai, N., Chen, J., Nagawa, S., Cao, M., Li, H., Zhou, Z., Chen, X., De Rycke, R., Rakusová, H., Wang, W., 
Jones, A.M., Friml, J., Patterson, S.E., Bleecker, A.B., and Yang, Z. (2014). Cell Surface ABP1-TMK Auxin-
Sensing Complex Activates ROP GTPase Signaling. Science (New York, N.Y.) 343, 1025-1028. 

Zhao, Y., Araki, S., Wu, J., Teramoto, T., Chang, Y.-F., Nakano, M., Abdelfattah, A.S., Fujiwara, M., Ishihara, T., 
Nagai, T., and Campbell, R.E. (2011). An Expanded Palette of Genetically Encoded Ca(2+) Indicators. 
Science (New York, N.Y.) 333, 1888-1891. 

 

 

 

 

 

 

 

 

 

 

 

 

 



165 
 

 

 

OTHER SCIENTIFIC CONTRIBUTIONS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



166 
 

Salicylic acid interferes  
with clathrin-mediated endocytic 
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E.H. performed an immunolocalization experiment using anti-PIN1 and anti-PIN2 antibodies on wild 

type seedlings treated with BFA and seedlings cotreated with BFA and salicylic acid (Figure 5). 
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Supplemental experimental procedures 

Plant material  

The AtSS12S (Braun et al., 2008), AtABP1AS (Braun et al., 2008), Yellow Cameleon 3.6 (Krebs 

et al., 2011), scn1 (Carol et al., 2005), cngc14-1 (Shih et al., 2015; SALK_206460), cngc14-2 

(Shih et al., 2015; WisDsLox437E09) lines have been described previously. Seeds of the CA CPK 

lines have been provided by Prof. Dr. Steffen Vanneste. The crosses used in the experiments 

were obtained by controlled cross pollination, and homozygous lines were generated for the 

YC3.6 crosses.  

 

Drugs and treatments 

Alfa-(phenyl ethyl-2-one)-indole-3-acetic acid (PEO-IAA, 10µM) was kindly provided by Prof. 

Dr. Jiří Friml. Methyl-β-cyclodextrin (MβCD, 5mM) was purchased from Sigma Aldrich and 

dissolved in DMSO. Seedlings were pretreated with the drugs and hormones for 30min in 

CaPLUS or CaMIN, followed by 60min coincubation with 25µM BFA or 25µM BFA 10µM NAA 

in CaPLUS or CaMIN. For the BFA wash-out experiments, seedlings were treated with 25µM 

BFA for 90min in CaPLUS and subsequently transferred to CaPLUS or CaMIN for 60min. 

 

Induction of mutant lines 

For induction of the mutant lines AtSS12S and AtABP1AS, plates with 3 day-old seedlings were 

used. An 0,5mL Eppendorf tube with 5% EtOH was attached to the inside of the lid of the plate 

for 2 days. The Eppendorf tube remained opened so the vapors could reach the seedlings. 

 

Phenotypic analysis of CA CPK lines 

For phenotypic screening of the CA CPK lines, seeds were plated on 0.5x MS with agar, 

vernalized in the cold room (4°C, dark) for 1 day, and then transferred to the growth room 

(21°C, continuous light) for 3 days. The 3 day-old seedlings were transferred to solid 0.5x MS 
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with 10µM estradiol for induction for 7 days and subsequently screened for aberrant 

phenotypes. 

 

Microscopy and image analysis  

For imaging the FRET-based ratiometric Ca2+ sensor Yellow Cameleon 3.6 (YC3.6), an Ultra 

View Vox spinning disc microscope (Perkin Elmer) was used equipped with a 20x air objective 

(NA 0.45) and a top and rear electron microscopy charge-coupled device camera (Hamamatsu 

Phototonics). The samples were prepared in the customized imaging chamber as described in 

Section II – Chapter 1 (Himschoot et al., 2017). The donor fluorophore CFP was excited using 

440 nm and emission was detected from 420nm to 460nm. FRET was detected between 

520nm and 570nm. Images were acquired every 3 sec, and were analyzed using Fiji (Schindelin 

et al., 2012). The fluorescence intensity was measured in our region of interest (meristematic 

zone) for both the CFP and FRET channel over time. For every time frame and channel, 

background fluorescence intensities were measured as well. After background subtraction, 

the FRET/CFP emission ratio (R) was calculated for every timepoint and normalized to R at the 

reference timepoint prior to NAA treatment. The average normalized ratios R of all the 

seedlings were plotted over time. 
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Supplemental figures Section II – Chapter 1 

 

 

 

Figure S1: Ca2+ imaging using Yellow Cameleon 3.6 (YC3.6) upon inactivation of apoplastic ABP1. (A-D) Silencing 

of YC3.6 upon induction of ABP1 inactivation in the majority of the seedlings. (A, B) YC3.6 fluorescence prior to 

induction in the wild type (A) and the AtSS12S line (B). (C, D) YC3.6 expression seems to be silenced upon EtOH 

exposure of the AtSS12S seedlings (D), but not in the wild type seedlings (C). The AtSS12S line expresses an 

apoplast-targeted antibody upon exposure to EtOH vapors that binds and inactivates apoplastic ABP1 (Braun et 

al., 2008). Reporter silencing occurred in the majority of the seedlings. Due to lack of YC3.6 expression in our 

region of interest measurement of NAA-induced Ca2+ dynamics upon apoplastic ABP1 inactivation became 

strongly impeded. (E) NAA-induced Ca2+ dynamics upon inactivation of apoplastic ABP1. For a few seedlings in 

which the Ca2+ reporter did not become silenced after EtOH exposure, NAA-induced Ca2+ dynamics could be 

assessed. In contrast to the other Ca2+ imaging experiments, these experiments have been performed with the 

FRET-based ratiometric Ca2+ sensor Yellow Cameleon 3.6 (YC3.6). The Y-axis depicts the average normalized 

FRET/donor emission ratios (R) which increase with increasing Ca2+ levels in the cytosol. The error bars represent 

the SE. 10µM NAA was added at timepoint 0. Note the large error bars for the AtSS12S line reflecting the 

variability in response among different seedlings. (n > 3).  
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Supplemental figures Section II – Chapter 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2: PIN1 internalization in CaMIN upon interference with ABP1 signaling and PEO-IAA cotreatment. 

Analysis of PIN1 internalization through whole-mount immunolocalization in 4 day-old seedling root meristems. 

(A-D) PIN1 internalization in the EtOH-inducible ABP1 antisense line (AtABP1AS) in CaPLUS versus CaMIN. 25µM 

BFA in CaPLUS caused PIN1 accumulation in BFA bodies in EtOH-exposed wild type seedlings (A), while in EtOH-

exposed AtABP1AS seedlings PIN1 internalization was inhibited (B). Treatment with 25µM BFA in CaMIN resulted 

in PIN1 accumulation in BFA bodies in both EtOH-treated wild type (C) and AtABP1AS (D) seedlings. (E, F) PIN1 

internalization upon treatment with α-(phenyl ethyl-2-one)-indole-3-acetic acid (PEO-IAA). PEO-IAA is an auxin 

derivative that specifically activates non-transcriptional auxin signaling and inhibits PIN endocytosis (Robert et 

al., 2010). Cotreatment of 25µM BFA and 10µM PEO-IAA results in inhibition of PIN1 internalization in CaPLUS 

(E), but not in CaMIN (F). White arrows highlight PIN1 in BFA bodies.  
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Figure S3: PIN1 internalization in CaMIN upon interfering with ROP/RIC signaling. Analysis of PIN1 

internalization through whole-mount immunolocalization in 4 day-old seedling root meristems. (A-D) PIN1 

internalization in the supercentipede1 (scn1) mutant in CaPLUS versus CaMIN. scn1 is defective in a RHO-GDI 

resulting in constitutive activation of ROP/RIC signaling (Carol et al., 2005). 25µM BFA in CaPLUS caused PIN1 

accumulation in BFA bodies in wild type seedlings (A), while in scn1 seedlings PIN internalization was inhibited 

(B). Treatment with 25µM BFA in CaMIN resulted in PIN1 accumulation in BFA bodies in both wild type (C) and 

scn1 (D) seedlings. (E) Quantification of the probability that BFA bodies will be present in root cells. The asteriks 

represents a p-value <0.05. The error bars represent the 95% confidence interval (n > 5).  

 

 

 

 

 

 

 

 

 

 

 

Figure S4: PIN1 internalization in CaMIN upon inhibition of clathrin-independent lipid raft-mediated 

endocytosis by methyl-β-cyclodextrin (MβCD). Analysis of PIN1 internalization through whole-mount 

immunolocalization in 3 day-old seedling root meristems. (A) 25µM BFA in CaPLUS caused PIN1 accumulation in 

BFA bodies. (B) Treatment with 25µM BFA and 5mM MβCD in CaPLUS interfered with PIN1 internalization, 

reflected by a lack of BFA bodies. (C) As for CaPLUS, treatment with 25µM BFA in CaMIN resulted in formation of 

PIN1-accumulating BFA bodies. (D) Upon cotreatment with 25µM BFA and 5mM MβCD in CaMIN no BFA bodies 

could be observed. White arrows highlight PIN1 in BFA bodies. For cotreatments with inhibitors, seedlings were 

pretreated for 30min.  

 



185 
 

 

Figure S5: Root gravitropism upon overexpression of constitutive active CPK7, 8, 13, and 30 (CA CPK). (A) Wild 

type seedlings grown on estradiol show gravitropic root growth. (B, C) The CA CPK13 (B) and CA CPK30 (C) line 

however grow agravitropically. (D, E) For the related CPKs, CPK7 (D) and CPK8 (E), overexpression of their 

constitutive active form did not affect root gravitropism. Seeds were germinated on 0.5x MS and 3 day-old 

seedlings were transferred to 0.5x MS with estradiol for induction for 7 days.  

 

 

Figure S6: The effect of Ca2+ drug on PIN1 trafficking in the constitutively active CPK30 (CA CPK30) line. (A, C, 

E, G) Immunolocalization of PIN1 in estradiol-treated wild type upon (A) 25µM BFA treatment and 25µM BFA 
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cotreatment with (C) 100µM Nifedipine, (E) 50µM Bepridil, and (G) 100µM W-7. In all cases PIN1-accumulating 

BFA bodies can be observed (white arrows). (B, D, F, H) Immunolocalization of PIN1 in the estradiol-treated 

constitutively active CPK30 (CA CPK30) line upon (B) 25µM BFA treatment and 25µM BFA cotreatment with (D) 

100µM Nifedipine, (F) 50µM Bepridil, and (H) 100µM W-7. Seedlings were pretreated with the Ca2+ drug for 

30min prior to 1h co-incubation with BFA.  

 

 

 

Figure S7: DYNAMIN-RELATED PROTEIN1c (DRP1c) dynamics in estradiol-induced CA CPK30. (A, B) Kymographs 

of time-lapse recording (100 sec) of DRP1c1-GFP in elongated root epidermal cells in estradiol-treated wild type 

(A) and CA CPK30 seedlings (B). The length of the vertical lines is proportional to the life-time (dwell time) of 

DRP1c-labelled endocytic spots at the plasma membrane. Note that there are less lines in the kymograph of CA 

CPK30 (B) reflecting less DRP1c-labelled endocytic spots at the plasma membrane. (C, D) Quantification of the 

dwell time of DRP1c-labelled endocytic foci in estradiol-treated wild type (C, 3 seedlings) and  CA CPK30 seedlings 

(D, 4 seedlings). Note that, even though more CA CPK seedlings were analyzed compared to wild type, the 

number of spots that could be counted is much lower for CA CPK (93) compared to the wild type (186). 
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Supplemental figures Conclusions and perspectives 

 

 

Figure S8: NAA-inhibited PIN1 endocytosis in cngc14 mutants. Analysis of PIN1 internalization through whole-

mount immunolocalization in 3 day-old seedling root meristems. (A) 25µM BFA caused PIN1 accumulation in BFA 

bodies (white arrow). (B-D) Cotreatment with 25µM BFA and 10µM NAA interfered with PIN1 internalization in 

the wild type (B), and the cngc14-1 (C) and cngc14-2 (D) mutants.  

 

 

 

 

 

 

 

 

 

 

 

Figure S9: BFA wash-out in CaPLUS versus CaMIN. (A) PIN2-GFP expressing seedlings were treated with 25µM 

BFA in CaPLUS for 90min resulting in formation of PIN2-accumulating BFA bodies. (B, C) Seedlings were 

subsequently transferred to CaPLUS (B) or CaMIN (C) for 60min to wash out BFA. In CaPLUS (B), no BFA bodies 

remained after 60min of wash-out, while a few BFA bodies could be observed after 60min of wash-out in CaMIN 

(C). The latter reflects a delay in recycling/secretion of PIN2 to the plasma membrane in CaMIN. White arrows 

highlight PIN2 in BFA bodies. 
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