

Compressie en interoperabele representatie van genomische informatie

Compression and Interoperable Representation of Genomic Information

Tom Paridaens

Promotoren: prof. dr. P. Lambert, prof. dr. W. De Neve
Proefschrift ingediend tot het behalen van de graad van

Doctor in de ingenieurswetenschappen: computerwetenschappen

Vakgroep Elektronica en Informatiesystemen
Voorzitter: prof. dr. ir. K. De Bosschere

Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2017 - 2018

ISBN 978-94-6355-133-5
NUR 965
Wettelijk depot: D/2018/10.500/51

Examination board

Chair

prof. dr. ir. Filip De Turck Ghent University, Belgium

Secretary

dr. ir. Glenn Van Wallendael Ghent University, Belgium

Reading Committee

prof. dr. Jaime Delgado Universitat Politcnica de Catalunya, Spain
dr. Hannes Pousseele Applied Maths NV, Belgium
prof. dr. Yvan Saeys Ghent University, Belgium
prof. dr. ir. Jan Fostier Ghent University, Belgium

Promotors

prof. dr. ir. Peter Lambert Ghent University, Belgium
prof. dr. Wesley De Neve Ghent University, Belgium & GUGC, Korea

Acknowledgements

The past five years were a rollercoaster, and not the calm and easy wooden type.
But as with any rollercoaster, the fun is at the end and once you’re out, you want
in again :-). And all this work started with Wesley, Erik and Peter, who offered
me the chance to return to MultiMediaLab in 2013. Wesley had a great vision: we
should use or multimedia compression and representation knowledge to genomic
data. And I was stubborn enough to follow that vision and go for it, resulting in a
very beautiful diamond at the end: the MPEG-G standard.
All this would have never been possible without my wife Kaat. She was there all
the time. She had to handle all those weeks that I was physically away for confer-
ences and MPEG meetings. During these weeks she had to take care of her work,
the kids, the family, and, if some time was left, herself. And on top of that she had
to handle far more weeks during which I was physically there but mentally away:
The weeks and weekends before MPEG contribution deadlines, before journal pa-
per submissions, the months that I was writing this dissertation, the weeks before
my internal defense and even the weeks after that. Luckily, my parents and my
parents-in-law were there to help her if things really got to much.
I would like to express a special thanks to Wesley, Glenn, and Peter for supporting
me and for reviewing my papers and this dissertation and keeping me motivated
and on the right track.
I would like to thank the members of my examination board for their time, effort,
and feedback: Prof. Jaime Delgado, Dr. Hannes Pousseele, Prof. Yvan Saeys,
Prof. Jan Fostier, Dr. Glenn Van Wallendael, and Prof. Filip De Turck.
Thank you Claudio, Marco, Jan, Mikel, Daniele, Giorgio, Jaime, Daniel, Leonardo,
and all the others who made the MPEG experience so nice and fruitful. I hope we
can continue working on this diamond together for a long time.
Furthermore, I would like to thank everybody at Multimedialab/DSLab/IDLab
who helped me with smaller and/or bigger things, with whom I had fun conversa-
tions at the coffee machine, in the hallway, or during the noon break: Niels, Glenn,
Ignace, Johan, Ruben, Baptist, Aza, Vasileios, Hannes, Olivier, Laura, Kristof,
Martin, Florian, Jasper, Thijs, Dieter, Jonas, Steven, Anastasia, Miel, Jan, Chris,
Ellen, Jürgen, Saar, Sarah, Stijn, Stefaan I en II, Bart, Davy I and II, Wim, Dieter,
Yves, Sam, Gaëtan, Jozef, Sebastiaan and all the others (it is a really long list).
Yes, you all made being at work a nice experience.

ii

I would like to thank my children, Jore and Nelle, for the magnificent experi-
ences and feelings, my parents, my grandparents (dankjewel meme & pepe, meter
Denise), my parents-in-law (who are a lot nicer than the connotation of the name
implies ;-), oma & opa, and my sister. Thank you Wouter for the many evening
talks in the pub and during sports, thank you Lissa for the crowd surfing bet, and
thanks to all of my friends and my godchildren Indra & Wolf for putting a smile
on my face during the tougher days.
Finally, I would like to thank two people who gave me a huge boost (probably
without knowing it). Thank you Gary Sullivan for talking to me on my research
at the DCC conference. It was extremely inspiring and a huge honour. Thank
you Eddy De Clercq, you convinced me, during my third-year mental crash, to
continue and to finish my PhD. It worked :-).

Gent, 2018
Tom Paridaens

”Aan allen die ik vermeld heb, dank u.
Aan allen die ik niet vermeld heb... ook dank u.”

Walter D. Donder (vrije vertaling)

Table of Contents

Acknowledgements i

Nederlandstalige samenvatting xix

English summary xxiii

1 Introduction 1-1
1.1 Introduction . 1-1

1.1.1 Deoxyribo Nucleic Acid (DNA) 1-2
1.1.2 DNA Sequencing & Assembly 1-3

1.1.2.1 Sequencing & Read Assembly Workflow 1-3
1.1.2.2 Comparing Sequencing Technologies 1-5
1.1.2.3 The History of DNA Sequencing 1-6

1.1.3 Sequencing and Mapping Data 1-11
1.1.3.1 Data generated during the Sequencing Process . 1-11
1.1.3.2 Data generated during the Read Assembly Process1-11

1.1.4 Storage of Genomic Data 1-12
1.1.4.1 File Size . 1-15
1.1.4.2 Storage Cost 1-15

1.1.5 Compression of Genomic Data 1-18
1.1.5.1 The Three Dimensions of Compression 1-18
1.1.5.2 Compression of Nucleotidic Data 1-19
1.1.5.3 Compression of Quality Scores 1-20
1.1.5.4 Generic Compression 1-21

1.1.6 Exchange of Genomic Data 1-22
1.1.7 Standardisation . 1-23
1.1.8 Research & Standardisation Timeline 1-25

1.2 Outline . 1-26
1.3 Publications . 1-27

1.3.1 Publications in International Journals 1-27
1.3.1.1 Author . 1-27
1.3.1.2 Co-author . 1-27

1.3.2 Publications in International Conferences 1-28
1.3.2.1 Author . 1-28
1.3.2.2 Co-author . 1-28

iv

1.3.3 MPEG Input Contributions 1-29
1.3.3.1 Author . 1-29
1.3.3.2 Co-author . 1-30

1.3.4 MPEG Standardization Documents 1-30
References . 1-31

2 Coding Framework 2-1
2.1 Features . 2-1
2.2 Workflow . 2-2
2.3 Framework Flexibility . 2-4
2.4 Block Structure . 2-5
2.5 Context-Adaptive Binary Arithmetic Coding 2-6

2.5.1 Binarization . 2-9
2.5.2 Context Selection . 2-9
2.5.3 Random Access . 2-10

2.6 Conclusions and Original Contributions 2-10
References . 2-12

3 AFRESh 3-1
3.1 Introduction . 3-1
3.2 Related Work . 3-2
3.3 Framework Extensions . 3-3

3.3.1 Alphabets . 3-3
3.3.2 Prediction and Encoding Tools 3-4

3.3.2.1 Prediction Tools 3-5
3.3.2.2 Encoding Tools 3-5
3.3.2.3 Removed Coding Tools 3-6

3.4 Optimization Methodology . 3-6
3.4.1 Binarization and Context Modeling of Alphabet Indicators 3-7
3.4.2 Binarization and Context Modeling of Residue 3-8
3.4.3 Binarization and Context Modeling of Predictor Indicators 3-9

3.5 Random Access . 3-10
3.6 Experimental Results . 3-11

3.6.1 Experimental Setup . 3-11
3.6.2 Reads . 3-13
3.6.3 Assembled Sequences 3-15
3.6.4 Tool Selection . 3-18

3.7 Support for new Sequencing Technologies 3-20
3.8 Conclusions and Original Contributions 3-21
References . 3-22

v

4 AQUa 4-1
4.1 Introduction . 4-1
4.2 Related Work . 4-1
4.3 Coding Tools . 4-3

4.3.1 DFC - Difference Coder 4-3
4.3.2 ADFC - Average Difference Coder 4-4
4.3.3 CVP - Convolutional Predictor 4-4
4.3.4 SRP - Single Repeat Predictor 4-5
4.3.5 AVP - Average Predictor 4-5
4.3.6 NSP - Normal Search Predictor 4-6
4.3.7 HNSP - Hierarchical Normal Search Predictor 4-6
4.3.8 Removed Coding Tools 4-6

4.4 Binarization and Context Modeling 4-7
4.4.1 Value Representations 4-7
4.4.2 Binarization and Context Modeling of Residue 4-9
4.4.3 Binarization and Context Modeling of CVP Mode 4-10
4.4.4 Binarization and Context Modeling of NSP and HNSP

Pointers . 4-11
4.4.5 Binarization and Context Modeling of Coding Tool Iden-

tification . 4-11
4.5 Random Access . 4-14
4.6 Experimental Results . 4-16

4.6.1 Experimental Setup . 4-16
4.6.2 Window Size . 4-16
4.6.3 Compression Results . 4-17

4.7 Tool Selection . 4-20
4.8 Support for new Sequencing Technologies 4-21
4.9 Conclusions and Original Contributions 4-25
References . 4-26

5 Standardization: MPEG-G 5-1
5.1 Introduction . 5-1
5.2 MPEG-G . 5-3

5.2.1 Descriptor Streams . 5-4
5.2.2 Data Classes . 5-6

5.3 Random Access within MPEG-G 5-7
5.4 Encryption, Privacy & Integrity 5-7
5.5 Proposed Coding Solution . 5-8

5.5.1 Input Data Parsing . 5-8
5.5.2 Value Transformation . 5-9
5.5.3 Value Binarization . 5-11
5.5.4 Context Selection . 5-14

5.5.4.1 Context Sets 5-14
5.5.4.2 Context Set Selection 5-15
5.5.4.3 CABAC Encoding 5-15

vi

5.5.5 Example: *RCOMP . 5-16
5.6 Experimental Results . 5-19

5.6.1 Experimental Setup . 5-19
5.6.2 Compression Results . 5-20

5.6.2.1 Compression Results per Encoding Mode . . . 5-21
5.6.2.2 Compression Results per Descriptor Stream Type 5-22
5.6.2.3 Compression Results per Test File 5-24

5.6.3 Memory Usage . 5-35
5.7 Proposed Decoding Syntax . 5-37

5.7.1 Encoding Parameters Signaling Syntax 5-37
5.7.1.1 Syntax Semantics 5-37

5.7.2 Lookup Table Signaling Syntax 5-39
5.7.2.1 Syntax Definitions 5-39

5.8 Support for new Sequencing Technologies 5-41
5.9 Conclusions and Original Contributions 5-42
References . 5-43

6 Overall Conclusion 6-1
6.1 Summary . 6-1

6.1.1 Coding Framework . 6-2
6.1.2 AFRESh and AQUA . 6-2

6.1.2.1 AFRESh . 6-2
6.1.2.2 AQUa . 6-3

6.1.3 MPEG-G Standardization 6-4
6.2 Contributions . 6-5
6.3 Future Work . 6-7

6.3.1 Data Compression and Representation 6-7
6.3.2 MPEG-G Applications 6-8

6.3.2.1 Encoders, Decoders, & Data Management . . . 6-8
6.3.2.2 Sequencing & Analysis Chains 6-10

6.3.3 The Future of Sequencing 6-11

List of Figures

1.1 The double helix molecular structure of DNA as discovered by
Watson and Crick. 1-2

1.2 Example of two complementary DNA strands. 1-3
1.3 A modern (simplified) sequencing and assembly workflow. 1-4
1.4 Output of the Sanger sequencing of a DNA strand. 1-7
1.5 Output of a single-reaction Sanger sequencing process, using flu-

orescent colour labels. 1-8
1.6 The Illumina NovaSeq 6000 DNA sequencer. 1-9
1.7 The Oxford Nanopore MinION, a thumb drive sequencer. 1-10
1.8 Examples of mapping corrections: Insertion, Deletion, and Single

Nucleotide Polymorphism. 1-11
1.9 Example of two reads in a FASTA data file, using the current Illu-

mina read identifier syntax. The text in bold is for clarity, this text
is not part of the actual file. 1-13

1.10 Example of two reads in a FASTQ data file, using the NCBI Se-
quence Read Archive read identifier syntax. The text in bold is for
clarity, this text is not part of the actual file. 1-13

1.11 Example of a SAM file containing three reads. 1-14
1.12 Evolution of sequencing and storage costs (2002-2017). Gener-

ated from data provided by [19], [20], and [21]. 1-16
1.13 Evolution of sequencing cost and size of the NCBI WGS database

(2002-2017). Generated from data provided by [19], [20], and [21]. 1-16
1.14 Evolution of sequencing cost and the storage cost of the NCBI

WGS database (2002-2017). Generated from data provided by [19], [20],
and [21]. 1-17

2.1 The different steps used by the coding framework. 2-3
2.2 Data structure of a block. 2-5
2.3 Encoding the binary sequence 001 using Binary Arithmetic Coding. 2-6
2.4 Examples of different contexts. 2-8

3.1 Example of two reads in a FASTA data file. 3-2
3.2 Example of two reads in a FASTQ data file. 3-2
3.3 Coding toolset currently available in AFRESh. 3-4

viii

3.4 Example of a double repeat prediction with prediction error cor-
rection. 3-8

3.5 Visualization of a residue error correction with a diagonal orienta-
tion. 3-8

3.6 Boxplot of the effect of the block size on the resulting compression
rate over the different chromosomes of the human genome (in bits
per base). 3-16

3.7 Loss in compression effectiveness, compared to the complete toolset.3-19
3.8 Total encoding time, compared to the complete toolset. 3-19

4.1 Example of two reads in a FASTQ data file. 4-2
4.2 Minimum/average/maximum occurrence of the DFC coding tool

residue values. 4-10
4.3 Usage of the different CVP modes (min/median/max), sorted by

decreasing usage. 4-11
4.4 Coding tool usage for test file 02. 4-12
4.5 Coding tool usage for test file 05. 4-12
4.6 Coding tool usage for test file 10. 4-13
4.7 Coding tool usage for test file 23. 4-13
4.8 Overhead of smaller random access sizes versus the largest ran-

dom access size (window size 16). 4-14
4.9 Total compressed size, compared to a window size of one read. . . 4-17
4.10 Loss in compression effectiveness, compared to the complete toolset.4-23
4.11 Total encoding time, compared to the complete toolset. 4-24

5.1 The different steps used by the proposed coding solution for MPEG-
G. 5-9

5.2 Uncompressed file size per test file. 5-20
5.3 Uncompressed file size per descriptor stream type. 5-21
5.4 Output file size for the complete benchmarking set per encoding

mode, compared to 7-Zip. 5-22
5.5 Total encoding time for the complete benchmarking set per encod-

ing mode, compared to 7-Zip. 5-22
5.6 Total decoding time for the complete benchmarking set per encod-

ing mode, compared to 7-Zip. 5-23
5.7 Compression gain by sorting UREADS descriptor streams per test

set. 5-24
5.8 Output file size for the complete benchmarking set per descriptor

stream type, compared to 7-Zip. 5-25
5.9 Total encoding time for the complete benchmarking set per de-

scriptor stream type, compared to 7-Zip. 5-26
5.10 Encoding speed for the complete benchmarking set per descriptor

stream type, compared to 7-Zip. 5-27
5.11 Total decoding time for the complete benchmarking set per de-

scriptor stream type, compared to 7-Zip. 5-28

ix

5.12 Decoding speed for the complete benchmarking set per descriptor
stream type, compared to 7-Zip. 5-29

5.13 Output file size for the complete benchmarking set per test file,
compared to 7-Zip. 5-30

5.14 Total encoding time for the complete benchmarking set per test
file, compared to 7-Zip. 5-31

5.15 Encoding speed (in MiB/s) for the complete benchmarking set per
test file, compared to 7-Zip. 5-32

5.16 Total decoding time for the complete benchmarking set per test
file, compared to 7-Zip. 5-33

5.17 Decoding speed (in MiB/s) for the complete benchmarking set per
test file, compared to 7-Zip. 5-34

List of Tables

1.1 File size of the human genome NA12878 (52x coverage) in the
mainstream file formats for the storage of genomic data. 1-15

1.2 Total transmission time for four different data sets with respect to
network band width. 1-22

1.3 Combined timeline of the research described in this dissertation
and MPEG-G standardisation. 1-24

2.1 The Truncated Unary binarization for values 0 to 3 (cMax=3). . . 2-9

3.1 The binarization scheme for the alphabet indicator field. 3-7
3.2 Binarization scheme for prediction error corrections. 3-9
3.3 Binarization scheme for the predictor indicator. 3-9
3.4 Percentage of overhead versus the optimal CABAC reset window

(131,072 blocks). 3-11
3.5 Detailed information of reads test set and optimal compression set-

tings. 3-12
3.6 Compression results - reads (in bits per base). 3-14
3.7 Compression results - reads (file size, compared to other solutions). 3-14
3.8 Compression results - assembled sequences. 3-17

4.1 The 32 filters that are used by the CVP coding tool. 4-5
4.2 Examples of the Truncated Unary and Unsigned Exponential Golomb

binary representations. 4-8
4.3 Examples of the Signed Exponential Golomb binary representation. 4-8
4.4 Detailed information of the quality score test set. 4-15
4.5 Compression results - single-pass compressors. 4-19
4.6 Compression results - dual-pass QVZ compressor. 4-20

5.1 The Binary binarization for input value 3 for different values of
cLength. 5-12

5.2 The Truncated Unary binarization for values 0 to 3 (cMax=3). . . 5-12
5.3 The Exponential Golomb Binarization for values 0 to 8. 5-12
5.4 The Signed Exponential Golomb binarization for values -4 to 4

and their corresponding mapping for Exponential Golomb. 5-12

xii

5.5 The Truncated Exponential Golomb binarization for values 0 to 4
(cMax=2). 5-13

5.6 The Signed Truncated Exponential Golomb binarization for values
-4 to +4 (cMax=2). 5-13

5.7 Zero-order frequency distribution for the RCOMP descriptor stream
for test file 02. 5-16

5.8 First-order frequency distribution for the RCOMP descriptor stream
for test file 02 (rows: previous value, columns: current value). . . 5-16

5.9 Lookup tables to be used for the discussed example (rows: previ-
ous value, columns: current value). 5-17

5.10 Overview of the benchmarking set as proposed in [8] (U=Unmapped).5-18
5.11 Proposed syntax for signaling of the encoder parameters. 5-38
5.12 Values of binarization id and their corresponding binariza-

tions . 5-39
5.13 Proposed syntax for signaling of a look-up table. 5-39

List of Acronyms

A

A Adenine
ADFC Average DiFference Coder
AFRESh Adaptive Framework for compression of REads and

assembled Sequences
ASCII American Standard Code for Information

Interchange
AVP AVerage Predictor
AQUa Adaptive framework for compression of sequencing

QUality scores

B

BAM Binary Alignment Map
BE Binary Encoding

C

C Cytosine
CABAC Context-Adaptive Binary Arithmetic Coding
CALQ Coverage-Adaptive Lossy Quality value compression

CARGO Compressed ARchiving for GenOmics
CD Comittee Draft
CfP Call for Proposals
CoR Codon Repetition
CVP ConVolutional Predictor

xiv

D

DFC DiFference Coder
DIS Draft International Standard
DNA Deoxyribo Nucleic Acid
DNR Double Nucleotide Repetition
DRP Double Repetition Predictor
DSRC2 DNA Sequence Reads Compressor

E

EBI European Bioinformatics Institute
ERGC Efficient Referential Genome Compressor

G

G Guanine
GB GigaByte, i.e. 1000 * 1000 * 1000 bytes
GiB GibiByte, i.e. 1024 * 1024 * 1024 bytes
GNU GNU’s Not Unix
GWAS Genome-Wide Association Study

H

HNSP Hierarchical Normal Search Prediction
HRCSP Hierarchical Reverse Complement Search Prediction
HTS High-Throughput Sequencing
HxE Huffman x-values Encoding

I

ISO/IEC International Organization for Standardisation/Inter-
national Electrotechnical Commission

xv

IUB/IUPAC International Union of Biochemistry/International Union
of Pure and Applied Chemistry

K

KB KiloByte, i.e. 1000 bytes
KiB KibiByte, i.e. 1024 bytes

L

LFQC Lossless FastQ Compressor
LPS Least Probable Symbol
LUT Look-Up Table
LZMA Lempel-Ziv-MArkov chain algorithm

M

MB MegaByte, i.e. 1000 * 1000 bytes
MiB MibiByte, i.e. 1024 * 1024 bytes
MPEG Moving Picture Experts Group
MPS Most Probable Symbol

N

NCBI National Center for Biotechnology Information
NGS Next-Generation Sequencing
NSP Normal Search Predictor

O

ORCOM Overlapping Reads COmpression with Minimizers

xvi

P

PCR Polymerase Chain Reaction

Q

QVZ Quality Values Zip

R

RAM Random Access Memory
RCSP Reverse Complement Prediction

S

SAM Sequence Alignment Map
SCALCE Sequence Compression Algorithms using Locally Con-

sistent Encoding
SNP Single Nucleotide Polymorphisms
SNR Single Nucleotide Repetition
SRP Single Repetition Predictor

T

T Thymine
TB TeraByte, i.e. 1000 * 1000 * 1000 * 1000 bytes
TiB TibiByte, i.e. 1024 * 1024 * 1024 * 1024 bytes
TEG Truncated unary Exponential Golomb

xvii

V

VCF Variant Calling Format

W

WGS Whole Genome Shotgun

X

XML eXtensible Markup Language

Nederlandstalige samenvatting
–Summary in Dutch–

In de voorbije decennia is er een enorme vooruitgang geboekt bij de technologieën
die gebruikt worden voor het digitaal uitlezen van DNA (Eng. DNA sequencing).
Door deze vooruitgang is de kost voor het digitaal uitlezen van het menselijk ge-
noom gezakt van meer dan 10 miljoen dollar in 2007 naar ongeveer 1000 dollar
nu. In diezelfde tijdsspanne is de tijd die nodig is om een menselijk genoom uit te
lezen gezakt van enkele jaren naar uren. Door deze prijsdaling en snelheidsverbe-
teringen komen vele applicaties die mogelijk zijn rond het uitlezen van DNA, zoals
Genome-Wide Associatie Studies (GWAS) en studies omtrent de detectie van uit-
braken van ziektes, meer en meer binnen het bereik van patiënten en (medische)
onderzoeksinstituten.
Deze (r)evolutie resulteert echter in een nieuwe uitdaging: hoe gaan we om met de
exponentieel groeiende hoeveelheid aan gegevens die gegenereerd wordt door het
uitlezen van DNA. Als voorbeeld: één enkel menselijk genoom is al snel groter
dan 350 GiB. Deze gegevens bestaan uit drie onderdelen: nucleotiden (het eigen-
lijke DNA), kwaliteitsscores (geven aan hoe zeker de sequencer is dat een nucleo-
tide juist is geı̈dentificeerd) en read-namen (bevatten informatie over het gebruikte
DNA uitleesproces en/of tot welk monster deze nucleotiden behoren). Gedurende
de verwerking van deze gegevens, bv. bij het afbeelden van deze uitgelezen gege-
vens op een referentiegenoom, worden bovendien extra gegevens gegenereerd. Dit
leidt uiteindelijk tot groottes van 550 GiB per menselijk genoom. Daarbij komt
nog dat studies, om betrouwbaar te zijn, tientallen of zelfs honderden van deze
genomen moeten analyseren (en dus opslaan), wat resulteert in petabytes aan ge-
gevens. Bovendien is het in sommige landen (zoals de Verenigde Staten) verplicht
om gegevens te bewaren die gebruikt werden bij het nemen van beslissingen rond
de behandeling van patiënten. Deze gegevens moeten op een verliesloze wijze en
langdurig bewaard worden. Bijgevolg is er een nood aan oplossingen voor het ef-
fectief (om de benodigde opslagruimte te beperken), efficiënt (om de benodigde
verwerkingstijd en verwerkingskracht te beperken) en praktisch (om bv. gedeelte-
lijke opslag en verzending van gegevens mogelijk te maken) opslaan en beheren
van deze gegevens.
Naast bovengenoemde gegevens voor onderzoek en behandeling van ziektes, zijn
er ook genomische gegevens die gegenereerd en geanalyseerd worden in een tijds-
kritische context. Voor deze tijdskritische gegevens (bv. gegevens die gegene-
reerd worden voor de detectie van het uitbreken van ziektes) kunnen compressie-

xx NEDERLANDSTALIGE SAMENVATTING

oplossingen die toegevoegde functies aanbieden, zoals live encodering en strea-
ming, verwerking van deze gegevens vergemakkelijken, bijvoorbeeld voor snelle
analyse in gespecialiseerde netwerken (“in de cloud”).

In deze dissertatie worden drie codeeroplossingen gepresenteerd die deze ver-
eisten proberen te vervullen:

• AFRESh, een effectieve codeeroplossing voor het comprimeren van nucle-
otische gegevens met ondersteuning voor willekeurige toegang;

• AQUa, een effectieve codeeroplossing voor het comprimeren van kwaliteits-
scores met ondersteuning voor willekeurige toegang;

• Een derde codeeroplossing die ontworpen is voor het comprimeren van de
datastromen van de opkomende MPEG-G-standaard, en dit met een hoge
effectiviteit en efficiëntie.

AFRESh en AQUa zijn gebouwd bovenop een generiek raamwerk dat ontworpen
is voor de effectieve compressie van genomische gegevens (zoals nucleotiden en
kwaliteitsscores). Bij de ontwikkeling van dit raamwerk werd gekeken naar de
huidige aanpak van opslag, beheer en compressie van mediabestanden. Verder
werden belangrijke onderzoeksfuncties toegevoegd, zoals uitgebreide configura-
tiemogelijkheden en eenvoudige uitbreiding van het raamwerk met bestandsfor-
maten voor invoer en uitvoer, codeeralgoritmen en alfabetten. Het raamwerk biedt
verder ondersteuning voor eenstapsencodering (Eng. single-pass encoding) zon-
der referentie en met ondersteuning voor willekeurige toegang. Bijgevolg maakt
het raamwerk live codering mogelijk en biedt het optimale transporteffectiviteit,
aangezien subsets van de gegevens kunnen worden uitgewisseld. Gedurende de
verwerking van de gegevens splitst het raamwerk de gegevens in aparte blokken.
Elk blok wordt dan gecodeerd met één codeeralgoritme dat is geselecteerd uit een
verzameling van op maat gemaakte codeeralgoritmen. Voor elk blok wordt uit
deze verzameling het meest effectieve algoritme geselecteerd. De resulterende da-
tastroom wordt vervolgens gecomprimeerd met behulp van CABAC, een Context-
Adaptieve Binaire Aritmetische Codeeroplossing.
Om de compressie van nucleotiden te ondersteunen en te optimaliseren, breidt
AFRESh het generische codeerraamwerk uit met een verzameling van drie ver-
schillende alfabetten (inclusief ondersteuning voor complementen) en negen op
maat gemaakte codeeralgoritmen. Deze algoritmen kunnen in twee categorieën
worden onderverdeeld: encodeeralgoritmen en predictie-algoritmen. Encodeeral-
goritmen vertalen de gegevens in een blok naar een binaire representatie; predictie-
algoritmen genereren een predictie (voorspelling) en de informatie nodig om deze
predictie te corrigeren. De gegevens gegenereerd door deze algoritmen worden
vervolgens omgezet naar bitsequenties (binarisaties genoemd). Dit gebeurt met
behulp van op maat gemaakte binarisatieprocessen. Tenslotte worden deze bina-
risaties gecomprimeerd met behulp van CABAC. Deze aanpak resulteert in een
verbetering in effectiviteit tot 41% voor reads en 34% voor geassembleerde se-

SUMMARY IN DUTCH xxi

quenties in vergelijking met generische compressie-algoritmen zoals Gzip. Ver-
geleken met gespecialiseerde compressie-algoritmen, zoals SCALCE, LFQC en
ORCOM, biedt AFRESh een verbetering in effectiviteit tot 51%. Daarbovenop
biedt AFRESh ondersteuning voor willekeurige toegang tot de gecodeerde gege-
vens, een functie die heel waardevol is.
Om de compressie van kwaliteitsscores te ondersteunen en te optimaliseren, breidt
AQUa het generische codeerraamwerk uit met een alfabet voor kwaliteitsscores en
een verzameling van zeven codeeralgoritmen. Vier van deze algoritmen werden op
maat gemaakt voor kwaliteitsscores, drie werden overgenomen van AFRESh, wat
mogelijk is gemaakt door het concept van alfabetten. De gegevens gegenereerd
door deze algoritmen worden vervolgens omgezet naar binarisaties en gecompri-
meerd met CABAC. Deze aanpak resulteert in een verbetering van effectiviteit tot
38%, vergeleken met het generische compressie-algoritme Gzip, en tot 21% in ver-
gelijking met het gespecialiseerde compressie-algoritme SCALCE. Verder werd
AQUa ook vergeleken met een state-of-the-art compressie-algoritme dat data ver-
werkt in twee stappen (Eng. two-pass): QVZ. Dit tweestapsalgoritme analyseert
en herwerkt/sorteert de gegevens in een eerste stap om vervolgens, zodra deze ana-
lyse en voorverwerking zijn uitgevoerd, deze voorbewerkte gegevens te comprime-
ren. Tweestapsalgoritmen zijn typisch meer complex dan eenstapsalgoritmen en
hebben vaak nood aan tijdelijke opslag voor het bewaren van de analysegegevens
en/of het bewaren van de voorbewerkte gegevens. Bovendien laten deze algorit-
men geen live encodering toe, aangezien de data compleet moeten verwerkt zijn
voor optimale compressie-effectiviteit. Vergeleken met QVZ biedt AQUa een ef-
fectiviteit die 6% tot 33% lager is, met uitzondering van één bestand waar AQUa
een 1% hogere effectiviteit biedt. Verder biedt AQUa ondersteuning voor wille-
keurige toegang tot de gecodeerde gegevens.
De derde codeeroplossing die wordt geı̈ntroduceerd in deze dissertatie is ontwor-
pen als een oplossing voor het comprimeren van de verschillende datastromen bin-
nen de MPEG-G-standaard voor de representatie, compressie en het beheer van ge-
nomische gegevens. Het doel van de MPEG-G-standaard is om een alternatief te
bieden voor de huidige de facto standaarden FASTA/FASTQ en SAM/BAM (Eng.
Sequence Alignment Map/Binary Alignment Map). MPEG-G zal hiertoe een ver-
beterde effectiviteit en efficiëntie bieden, samen met toegevoegde functionaliteiten
zoals ingebouwde ondersteuning voor willekeurige toegang.
De voorgestelde codeeroplossing is gebaseerd op het codeerraamwerk dat werd
ontworpen als basislaag voor de AFRESh- en AQUa-codeeroplossingen. Aan-
gezien willekeurige toegang wordt voorzien in een hogere laag van de MPEG-
G-standaard, werd deze functionaliteit verwijderd. Aan de andere kant werd het
raamwerk uitgebreid met ondersteuning voor meerdere representaties voor de in-
voergegevens (dit vervangt de alfabetten), gegevenstransformaties (die encoders
toelaten om bv. analyse-informatie te gebruiken door middel van opzoektabellen),
en een uniforme decodeersyntax voor het signaleren van invoer-, transformatie-,
binarisatie- en contextselectie-informatie. Andere belangrijke functies, zoals flexi-
bele configuratie, zijn bewaard of zelfs uitgebreid om zo gebruikers toe te laten het
encodeeralgoritme optimaal te configureren voor elk type van invoergegevens.

xxii NEDERLANDSTALIGE SAMENVATTING

De codeeroplossing bestaat uit vier configureerbare stappen: data-invoer, transfor-
matie, binarisatie en contextsetselectie. In de data-invoerstap worden de invoer-
gegevens verwerkt volgens één van de drie mogelijke niveaus van granulariteit.
Vervolgens worden deze gegevens getransformeerd met behulp van zes mogelijke
transformatie-algoritmen. Deze gegevens worden vervolgens verwerkt door de bi-
narisatiestap met behulp van één van de zes verschillende binarisatie-algoritmen.
In de laatste stap wordt tenslotte de set van contexten geselecteerd, met behulp van
één van de drie mogelijke selectie-algoritmen, en waarbij deze contexten zullen
gebruikt worden bij de compressie van de binarisaties met behulp van CABAC.
Om het decodeeralgoritme toe te laten gecodeerde bitstromen te decoderen, wordt
de benodigde informatie gesignaleerd in een daarvoor ontwikkelde syntax. Deze
syntax is (samen met de decodeeralgoritmen) voorgesteld aan het MPEG-G stan-
daardisatiecomité (werkgroep ISO/IEC JTC1 SC29/WG11) en werd geselecteerd
als de basis voor het codeergedeelte van de MPEG-G-standaard. Deze basis is
vervolgens verder uitgebreid met extra binarisaties, transformaties, ondersteuning
voor sequenties van transformaties en syntaxelementen. Deze syntaxelementen
bevatten de gegevens die nodig zijn voor deze toegevoegde technologieën en die
niet konden weergegeven worden met de voorgestelde syntax.
Voor de analyse van de effectiviteit en efficiëntie van het voorgestelde algoritme
werden twee configuratiesets gecreëerd: een snelle modus (Eng. fast mode), met
een focus op efficiëntie, en een trage modus (Eng. slow mode), met een focus of
effectiviteit.
Wanneer we de codeeroplossing vergelijken met de state-of-the-art generische
compressor 7-Zip, in LZMA-ultraconfiguratie, over de gehele MPEG-G-dataset
voor prestatie-analyse (Eng. benchmarking), biedt de codeeroplossing een ho-
gere effectiviteit (de gegevens worden gereduceerd tot 21.97% van de ongecompri-
meerde grootte in snelle modus en 20.99% in trage modus, vergeleken met 22.25%
voor 7-Zip). Daarbovenop biedt de codeeroplossing (die niet is geı̈mplementeerd
met het oog op optimale efficiëntie en die wordt uitgevoerd als een ééndraadsproces)
een efficiëntie die 6.14 keer (trage modus) tot 16.96 keer (snelle modus) hoger is
dan 7-Zip (een tweedraadsproces).
Een ander belangrijk kenmerk van deze codeeroplossing is de beperkte hoeveel-
heid geheugen die nodig is voor de opslag van (tijdelijke) gegevens tijdens het
encoderen/decoderen: maximaal 64 KiB is nodig, tijdens het verwerken van de
gehele MPEG-G-dataset voor prestatie-analyse, voor het opslaan van alle transfor-
matiegegevens (bv. opzoektabellen, zoekvensters), invoergegevens, tussentijdse
waarden (transformaties, binarisaties) en uitvoergegevens, maar ook voor de con-
textsets en de tabellen nodig voor de werking van CABAC. Ter vergelijking: 7-Zip
heeft 709 MiB geheugen nodig voor encodering en 66 MiB voor decodering.

Het onderzoek dat werd beschreven in deze dissertatie resulteerde in een codeer-
oplossing die zal worden gebruikt door de MPEG-G-standaard, gegeven enkele
uitbreidingen zoals extra binarisaties, transformaties, ondersteuning voor sequen-
ties van transformaties, en aanpassingen aan de syntax die volgen uit deze uitbrei-
dingen.

English summary

In the past decades, significant advancements have been made in technology used
for DNA sequencing. As a result of these advancements, the cost for sequencing
a human genome has dropped from over $10 million in 2007 to around $1,000,
nowadays. Concurrently, the time required for sequencing a human genome has
dropped from multiple years to hours. With this price drop and speed increase,
many applications relying on DNA sequencing (such as, personalized medicine,
Genome-Wide Association Studies (GWAS), and studies on and detection of out-
breaks of diseases) have come within reach of more and more people and (medical)
research institutes.
This (r)evolution results in a major new challenge: how to handle the exponen-
tially growing amount of data generated through DNA sequencing. As an exam-
ple, the sequencing data associated with a single human genome can easily exceed
350 GiB. These data consist of three parts: nucleotides (the actual DNA), quality
scores (indicating the certainty with which the sequencer identified a nucleotide),
and read names (containing information on the used sequencing process and/or
information on the sample to which these nucleotides belong). During processing
of these data (e.g., by mapping these sequencing data onto a reference genome)
additional data are generated, resulting in total file sizes of more than 550 GiB.
Furthermore, for studies to be reliable, tens or even hundreds of these genomes
need to be stored and analysed, resulting in petabytes of data. Additionally, it is
required in some countries (such as the USA) to store data that have been used
for decisions for or during a medical treatment. These data have to be stored in a
lossless manner and for longer periods. Hence, there is a need for solutions that
offer an effective (to limit the required storage space), efficient (to limit the re-
quired processing time/power) and practical (e.g., to allow for partial transmission
and storage of data) solution for storage and management of these data.
Besides the types of genomic data that are used for research and treatment, there
are genomic data that are created and analysed in a time-critical context. These
time-critical data (e.g., data generated for disease outbreak detection) can benefit
from compression tools that offer additional features, such as live encoding and
streaming to, for example, cloud analysis networks.

In this dissertation, three coding solutions are presented that strive to meet
these requirements:

• AFRESh, an effective coding solution for the compression of nucleotidic

xxiv ENGLISH SUMMARY

data with support for random access;

• AQUa, an effective coding solution for the compression of quality scores
with support for random access; and

• a third coding solution that has been designed to compress the data streams
for the upcoming MPEG-G standard with high effectiveness and high effi-
ciency.

AFRESh and AQUa are built on top of a generic framework that has been designed
to allow for effective compression of genomic data (i.e., nucleotides and quality
scores). This framework has been inspired by the approach used for storage, man-
agement, and compression of media files and, additionally, offers key features for
research purposes such as, configurability and easy extensibility with input/output
file formats, coding tools, and symbol alphabets. The framework offers single-
pass, no-reference encoding, together with random access. As such, it allows for
live encoding and optimal transmission effectiveness, as partial data can be sent.
During processing of data, the framework splits the input data into separate blocks.
Each block is then encoded using one coding tool, selected from a set of tailor-
made coding tools. For each block, the most effective coding tool is selected. The
resulting data stream is then compressed using a Context-Adaptive Binary Arith-
metic Coder (CABAC).
To support and optimize the compression of nucleotidic data, AFRESh extends the
generic coding framework with a set of three symbol alphabets (including comple-
ment information) and nine tailor-made coding tools. These tools can be split into
two major categories: encoding tools and prediction tools. Encoding tools convert
the data in a block into a binary representation, whereas prediction tools generate a
prediction and create correction information. The output data of these coding tools
are then converted into bit sequences (called binarizations) using tailor-made bina-
rization processes and these bit sequences are then finally processed by CABAC.
This approach offers an effectiveness improvement of up to 41% for reads and
34% for assembled sequences, when compared to commonly used generic data
compressors such as Gzip. When compared to specialized compressors such as
SCALCE, LFQC, and ORCOM, an effectiveness improvement of up to 51% is pro-
vided. Additionally, AFRESh offers support for random access within the coded
data, a feature that is deemed very valuable, especially for data exchange.
To support and optimize the compression of quality scores, AQUa extends the
generic coding framework with a symbol alphabet for quality scores and a set of
seven coding tools. Four of these coding tools were tailor-made for quality scores,
three are inherited from AFRESh, which is achievable thanks to the concept of
alphabets. The output data of these coding tools are then converted into binariza-
tions, which are then processed by CABAC. This approach offers an effectiveness
improvement of up to 38%, when compared to the commonly used generic data
compressor Gzip, and up to 21% when compared to the purpose-built compression
format SCALCE. Additionally, AQUa is compared to a two-pass state-of-the-art
compressor: QVZ. This two-pass compressor analyzes and pre-processes the in-

ENGLISH SUMMARY xxv

put data in a first pass and compresses, after the analysis and pre-processing, the
output of this first pass in a second pass. This approach is typically more complex
than single-pass approaches and requires temporal storage space for the analysis
data and/or the storage of the pre-processed data. Furthermore, this approach does
not allow for live encoding, as the data need to be available to provide an optimal
coding effectiveness. Compared to QVZ, the effectiveness of AQUa is 6% to 33%
lower, except for one test file, where AQUa is 1% more effective. Additionally,
AQUa offers support for random access within the coded data, a feature that is not
offered by the other solutions.
The third solution, as introduced in this dissertation, has been designed as a so-
lution for the compression of the different data streams of the MPEG-G standard
for the representation, compression, and management of genomic data. The goal
of the MPEG-G standard is to provide an alternative to the current de facto stan-
dards FASTA/FASTQ and SAM/BAM (Sequence Alignment Map/Binary Align-
ment Map). MPEG-G will provide improved effectiveness, improved efficiency,
and additional functionalities (such as built-in support for random access).
The presented solution is based upon the coding framework that was designed as a
base layer for AFRESh and AQUa. As random access will be handled in a higher
layer of the MPEG-G standard, this feature has been removed. On the other hand,
the framework has been extended with support for multiple representations of input
data (replacing symbol alphabets), data transformations (allowing encoders to use
analysis information, e.g., through look-up tables), and a unified decoding syntax
for signaling input, transformations, binarizations, and context selection parame-
ters. Other key features, such as a flexible configuration, have been preserved (or
extended), hence allowing users to optimize the encoding process for each type of
input.
The coding solution consists of four configurable processes: data input, transfor-
mation, binarization, and context set selection. In the data input step, the input data
are processed in one of three different granularities. In the transformation step,
the input data can be transformed using six possible transformation algorithms
(or none, i.e., passing through the input data). The output of the transformation
step is then processed by the binarization step, which offers six different binariza-
tion algorithms. In the final step, a set of contexts is selected for processing the
binarizations with CABAC. This selection can be performed using one of three
presented context selection algorithms.
To provide the decoder with the information needed for decompression, a decoder
syntax has been designed. This decoder syntax (together with the decoding al-
gorithms) has been proposed to the MPEG-G standardization committee (working
group ISO/IEC JTC1 SC29/WG11) and acts as a baseline for the coding part of the
MPEG-G standard, which has been extended with additional binarizations, trans-
formations, support for transformation chains, and additional syntax elements.
These syntax elements signal the information required for these additional tech-
nologies which could not be represented with the proposed syntax.
For the analysis of the effectiveness and efficiency of the proposed algorithm, two
sets of configurations have been created: fast mode, with a focus on efficiency, and

xxvi ENGLISH SUMMARY

slow mode, with a focus on effectiveness.
When comparing the coding solution to the state-of-the-art generic compressor
7-Zip, with the LZMA ultra setting, across the MPEG-G benchmarking data set,
the coding solution offers a higher effectiveness (reduction to 21.97% of the orig-
inal file size in fast mode and to 20.99% in slow mode, compared to 22.25% for
7-Zip). Additionally, the coding solution (which has not been implemented for
optimal efficiency and is only executed in single-threaded mode) offers encoding
time reductions over 7-Zip (in dual-threaded modus) of 6.14 times (slow mode),
and 16.96 times (fast mode).
Another important feature offered by the coding solution is the limited amount
of memory required to store (temporary) values during encoding/decoding: the
maximum memory footprint during the encoding/decoding of the complete MPEG
benchmarking set for the storage of all transformation data (e.g., look-up tables,
search windows), input (input value), intermediate (transformation and binariza-
tion), and output data, and context sets and arrays required for CABAC is 64 KiB.
As a comparison, the total memory required for 7-Zip (in the tested LZMA ultra
configuration) is 709 MiB for encoding and 66 MiB for decoding.

The research described in this dissertation has resulted in a coding solution that
will be adopted by the MPEG-G standard, adding several extensions such as ad-
ditional binarizations, transformations, transformation chains, and limited adapta-
tions to the syntax following from these extensions.

1
Introduction

1.1 Introduction
The past decade has seen several (r)evolutions in Deoxyribo Nucleic Acid (DNA)
sequencing (i.e., reading). Each of these (r)evolutions resulted in faster and cheaper
sequencing of DNA. Therefore, the use of DNA sequencing has increased signifi-
cantly as previous limitations (speed and cost) have been overcome. Many appli-
cations (e.g., personalized medicine, Genome-Wide Association Studies (GWAS),
and studies of outbreaks of diseases) have now (or will soon) come within reach
of more people and (medical) research institutes.
However, with the rising popularity of DNA sequencing, new issues can be iden-
tified regarding the storage and transmission of the resulting data. As an example,
one human genome can require several hundreds of gigabytes of storage space.
This poses a challenge for institutions that want (or are required) to store/archive
genomic data or require large sets of genomes for (medical) research. Addition-
ally, transmission of one such human genome can still take hours or days, even
over fast broadband networks. As a result, transmission of such large amounts of
genomic data is typically handled by shipping hard drives through a courier ser-
vice.
In this dissertation, technologies are presented that aim to lower the storage and
transmission costs, improve transmission speeds, and facilitate the handling of
these genomic data by offering an efficient, effective, and flexible compression so-
lution.

1-2 CHAPTER 1

Figure 1.1: The double helix molecular structure of DNA as discovered by Watson and
Crick.

The final result of this dissertation has formed the basis for the coding part of
an international standard for the representation, compression, and management of
genomic data, called MPEG-G.
In this chapter, an overview is provided of:

• the concepts that are important to understand the content of this dissertation;

• the evolution of the technologies used to sequence DNA and their effect on
sequencing speed and cost; and

• the problems that arise from the ever increasing popularity of DNA sequenc-
ing, thanks to the decreasing costs and improved speeds.

1.1.1 Deoxyribo Nucleic Acid (DNA)
DNA is a molecule that forms the basis of all living organisms on earth. It con-
tains the genetic code that is responsible for the growth, development, functioning,
and reproduction of these organisms. The first extraction of DNA was performed
by Friedrich Miescher in 1869. Almost a century later, in 1953, James Watson
and Francis Crick identified the double helix molecular structure of DNA [1] (see
Figure 1.1). Watson and Crick had discovered that DNA is constructed out of two
strands, each consisting of a sequence of nucleotides: A for Adenine, C for Cyto-
sine, G for Guanine, and T for Thymine. Figure 1.2 shows an example of two such
strands. To connect these strands into a double helix structure, each nucleotide on
one strand is connected to its complement on the other strand, i.e., a nucleotide T
on one strand is connected to a nucleotide A on the complementary strand (and
vice versa), and a nucleotide C on one strand is connected to a nucleotide G on
the complementary strand (and vice versa). Given this complementarity, one can
reconstruct the complete genome of an organism by reading only one of these

INTRODUCTION 1-3

strands. In case of the human genome, this strand contains around 3.2 billion nu-
cleotides [2].

T

A

C

G T

A

C

G C

G

Complementary Strand

….

….

Strand

Figure 1.2: Example of two complementary DNA strands.

1.1.2 DNA Sequencing & Assembly
After the discovery of the extraction and the (chemical) structure of DNA, the next
challenge was to determine the exact order of the nucleotides within a DNA sam-
ple. Currently, this process consists of two steps: sequencing and assembly. In
the sequencing step, the order of the nucleotides is determined for segments of
a DNA sample, called reads. In the assembly step, these segments are reassem-
bled to recreate the nucleotide sequence of the DNA sample. In this section, a
more detailed sequencing and assembly workflow is discussed, followed by a brief
overview of the evolution of DNA sequencing technologies.

1.1.2.1 Sequencing & Read Assembly Workflow

A modern (simplified) sequencing and assembly workflow can be split into four
steps: sample preparation, library preparation, sequence generation, and (option-
ally) read assembly (see Figure 1.3). In the sample preparation step, a DNA strand
is extracted from the DNA sample. In the library preparation step, the DNA strand
is prepared for sequencing. This step, in its turn, can consist of three separate
processes:

• Target selection - selecting a specific region in the DNA sample to limit the
sample size (and as a consequence the sequencing cost). For whole genome
sequencing, this step is skipped;

• Cloning/Clustering - increasing the number of DNA samples that can be
used in the sequencing step to improve the sequencing accuracy; and

1-4 CHAPTER 1

• Fragmentation - splitting the DNA samples into random segments (reads)
that can be processed by the sequencing machine.

In the sequencing step, the order of the nucleotides is defined for all segments
created in step two.

(1) Sample Preparation

(2) Library Preparation

(3) Sample Sequencing

(4) Read Assembly (optional)

Figure 1.3: A modern (simplified) sequencing and assembly workflow.

After sequencing, the available data consist of the set of randomly generated
segments as created during fragmentation, possibly containing errors. To recreate
the DNA sequence of the original DNA sample, read assembly is performed (i.e.,
step four in Figure 1.3).
Read mapping can be divided into two categories, based on whether a reference
sequence is used for mapping or not: reference mapping and de novo mapping.
De novo assembly does not use a reference sequence and as such reassembles the
DNA sequence by mapping the sequenced segments onto each other. De novo
assembly is highly complex: millions of short segments, possibly distorted by se-
quencing errors, have to be merged into a single ”puzzle”, without information of
what the final result should look like.
Reference assembly (i.e., mapping reads onto an existing reference sequence) is
significantly less complex, as an ”example solution” of the output is available.
However, finding a mapping for each of the millions of segments is still a complex
task, especially when taking into account that these segments can contain sequenc-
ing errors and hence might require corrections to map onto the reference sequence.
The data created by the assembly step will be referred to as mapping data.

INTRODUCTION 1-5

1.1.2.2 Comparing Sequencing Technologies

Before discussing the evolution of sequencing technologies, it is important to iden-
tify the four dimensions along which sequencing technologies can be compared:

• Cost - what is the total cost of sequencing one base (or one genome)? Cost
can be expressed in a highly diverse manner (e.g., including sequencing
machine purchase cost and/or preparation cost or not). Therefore, cost will
only be discussed on a magnitude basis, with some indications of a typical
cost;

• Speed - how long does it take to sequence one base (or one genome)? As
with cost, speed can be expressed in many ways (e.g., by including prepa-
ration time or not, or by deducting the per-base speed from a larger test (to
divide the preparation time across all processed nucleotides)). Therefore,
speed will only be discussed on a magnitude basis, with some indications of
the typical sequencing speed;

• Accuracy - what percentage of bases is read without an error? This is an im-
portant measure. It should be noted that none of the currently existing tech-
nologies has an accuracy of 100%. This, together with the limited maximum
read length, explains the need for the cloning and fragmentation procedure
in the sequencing workflow. By cloning the DNA samples and splitting the
samples in reads of a (random) length, multiple copies of each nucleotide in
the genome are created (i.e., coverage1, or number of segments containing a
nucleotide at locus x, where locus is a position on a genome). Based upon
these multiple copies, the most probable call for a given position can be
identified. If the accuracy of a certain technique is lower, one can improve
the accuracy by increasing the coverage. However, it is important to keep in
mind that the amount of output data to be stored increases linearly with cov-
erage. Besides accuracy, the type of errors can be important, as some types
of errors (e.g., due to inability to capture long repetitions of nucleotides)
cannot be countered effectively; and

• Read Length - what is the number of bases that are contained in one read?
Longer reads will be easier to map as there are less segments needed for
equal coverage and longer segments are easier to map correctly. This is
especially important for de novo sequencing.

1The average coverage is indicated using a number followed by an ’x’. 52x indicates that the
average coverage of a given file is 52.

1-6 CHAPTER 1

1.1.2.3 The History of DNA Sequencing

Since the development of the first sequencing technologies, three generations of
sequencing have been developed. The first generation of sequencing technolo-
gies is a fully manual process, both for sample preparation and base calling (i.e.,
the identification of the order of nucleotides in a sample). The second genera-
tion, which is still widely used, provides many cost and speed improvements by
automating and parallelizing these process steps. The third generation follows a
different approach, where the preparation step is (almost) non-existent and DNA
strands are sequenced by ’reading’ the DNA strands from start to end, without
splitting the strands into smaller segments. In the rest of this section, a more de-
tailed discussion of the different generations is provided.

Generation 1: Manual Sequencing The Sanger method [3] is seen as the first
mainstream method for sequencing DNA. Succeeding sequencing methods by
Wu [4], and Maxam and Gilbert [5], it was widely used thanks to its relative re-
liability and safety. It consists of two steps: the sample preparation step and the
base calling step. During the sample preparation step, a set of DNA segments (of
a random length) is generated from the original DNA sample. At the end of each
sample, a radio-active label is installed to allow identification in the second step.
This process is performed in fourfold, where each instance creates DNA samples
that end with one specific nucleotide (i.e., A, C, G, or T). The resulting segments of
each of these instances are then put into a separate lane on a glass plate. Through
capillary electrophoresis, the segments in each sample are then ’sorted’ on the
glass plate by size.
In the next step, an X-ray photograph is taken from the glass plate to identify the
position of the different reads for each of the instances (i.e., the instances that end
with nucleotide A, C, G, or T, respectively). Figure 1.4 shows a simplified re-
sult of this process. Each bar indicates samples that contain a radio-active label
at their end position for that specific instance. As it is known which nucleotide is
radio-actively labelled (indicated at the top of the column) and the segments are
sorted by length, the sequence of the DNA sample can be read by identifying the
nucleotide for each row (i.e., for each base position). This process is performed
from bottom to top.
Given the manual processing of all preparation and sequencing steps (including the
identification of the order of the nucleotides), it is clear that the first generation of
sequencing techniques is very slow and requires a lot of manual labour, resulting
in high costs.

Generation 2a: Automated Sequencing To circumvent the extensive manual
labour that is required for Sanger sequencing, several improvements have been
applied to the original method to lower preparation time (and thus cost) and to

INTRODUCTION 1-7

Figure 1.4: Output of the Sanger sequencing of a DNA strand.

allow for automatic (and full-genome) sequencing. The first major improvement
was the automated and parallel creation of clones of the DNA sample. In the
cloning process, the DNA sample is divided into segments and inserted into the
DNA of a self-replicating host [6]. This process can generate more than 1012

identical copies in less than a day, as such amplifying the fragment accordingly.
A sample of this colony of clones can then be picked (colony picking) and used
for sequencing. To sequence a human genome, this repetitive and labour intensive
task has to be performed 100,000s of times, so automation of this whole task has
been a major step to faster and cheaper sequencing. A second improvement was
the replacement of radioactive labels with fluorescent labels with a separate colour
for each nucleotide. This allows for the merging of the four reactions into one

1-8 CHAPTER 1

reaction (see Figure 1.5). By using these four different colours for the fluorescent
labels, the result after capillary electrophoresis can be read automatically (e.g., by
using a laser, and in one pass).
The development of these first steps towards automated sequencing coincided with
the sequencing of the first human reference genome. This project took 13 years and
cost around 2.7 billion dollar [7]. After this project, it was estimated that, based
on the development of these automation technologies, sequencing a second human
reference genome would cost significantly less: around 50 million dollar [7].

Figure 1.5: Output of a single-reaction Sanger sequencing process, using fluorescent
colour labels.

INTRODUCTION 1-9

Generation 2b: High-Throughput Sequencing In a second stage of automa-
tion (called Next-Gen Sequencing or High-Throughput Sequencing), the sample
preparation step has been further optimized by replacing the host-based cloning
method by so-called in vitro cloning. In vitro cloning is a cloning process that
uses an emulsion or bridge Polymerase Chain Reaction (PCR) to clone the DNA
segments.
This evolution, together with further optimizations of the preparation process and
further technological advances in sequencing technology (e.g., improved sensors,
increased parallelism), resulted in the current cost of less than 1,000 dollar for se-
quencing a whole human genome2 [9], and a total sequencing time of one hour
per genome, when sequencing with the Illumina NovaSeq 60003 (see Figure 1.6).
The typical read lengths of this technology are currently 50 to 150 bases4 with a
minimal confidence5 of 85% and 75%, respectively, and with 91.3% of the bases
sequenced with a confidence above 99.9% [11].

Figure 1.6: The Illumina NovaSeq 6000 DNA sequencer.

2This is based on a setup of 10 Hiseq X sequencers, including instrument depreciation, DNA ex-
traction, sample preparation, and labour.

3The NovaSeq 6000 is able to sequence 48 genomes at a time, resulting in a one genome per hour
claim. The run time of the shortest process that can sequence one genome is around 13 hours [10].

4The Illumina MiSeq produces read lengths of up to 250 bases.
5i.e., a value calculated by the sequencing machine to indicate the probability that a base is se-

quenced correctly.

1-10 CHAPTER 1

Generation 3: Single-Molecule Sequencing To further lower the cost of DNA
sequencing and to increase the read lengths, a new generation of sequencers is
currently being developed that handle single strands of DNA, thus avoiding the
need for cloning. Multiple solutions are currently available:

• PacBio - uses a microscope to ”watch” the process of a single strand of DNA
replicating itself (thus voiding the cloning step and lowering the preparation
time). The approach of reading a single strand also results in significantly
larger reads, having a length of 2,000 to 60,000 bases. The accuracy of this
sequencing technology is around 86%. This accuracy can be improved to
around 99.999% by running the sequencing process at a 50x coverage [12];
and

• Oxford Nanopore - ”pulls” a single DNA strand through a pore and mon-
itors the chemical process inside the pore to call each of the passing bases.
This method is already implemented inside a thumb drive sequencer: the
Oxford Nanopore minION (see Figure 1.7). This device is available for
$1,0006. The reads produced by this technology can be longer than 150,000
bases, with an accuracy of more than 80% and a consensus accuracy of
99.5% at 30x coverage [14]. Each run can process up to 4.4 million reads
within 48 hours [15]. An important feature of this technology is the avail-
ability of the sequencing data in real time, allowing for live streaming of
data to the point of analysis7.

Figure 1.7: The Oxford Nanopore MinION, a thumb drive sequencer.

6This is significantly less than the Illumina Novaseq 6000 sequencer, which costs around
$985,000 [13].

7The time to the sequencing of the first base is two minutes.

INTRODUCTION 1-11

1.1.3 Sequencing and Mapping Data

In the previous section, the sequencing and assembly of a DNA sample has been
discussed. In this section, an overview is provided of the different types of data
that are generated during these sequencing and assembly processes.

1.1.3.1 Data generated during the Sequencing Process

During the sequencing process, sequencers of the second and third generation out-
put three different types of data per sequenced read8:

• Read name - textual information to identify a read. This information can
also contain data on the sequencing process and equipment;

• Nucleotidic data - the nucleotides of the read; and

• Quality data - the quality scores, which are defined by the sequencing ma-
chine and represent the error probability per nucleotide.

1 2 3 4 5 6 7 8 9 10 11 12 13

A C T C A G G C T A T T A

C T C A G G

C A T G G

G C T A C->T

CCAGG -> Map at position 2, with Insertion of T at read position 2

CATGG -> Map at position 4, with Deletion of T at read position 3

GCTAC -> Map at position 7, with SNP (replacing C with T) at read position 5

Figure 1.8: Examples of mapping corrections: Insertion, Deletion, and Single Nucleotide
Polymorphism.

1.1.3.2 Data generated during the Read Assembly Process

To recreate a sequenced genome9, based upon the sequencing data from Sec-
tion 1.1.3.1, an assembly process can be performed (See Section 1.1.2.1). The
assembly process creates three types of data per read10:

8Sequencing technologies of the first-generation sequencing process are exclusively manual and
only result in a set of base calls. Hence, the output consists of nucleotidic data (and optionally read
name information).

9The term genome has been selected as a reference to the different omics data, such as (16S) metage-
nomics, RNASeq, and transcriptomics. From a coding point of view, these data are equal as they are
stored using the same data formats and alphabets.

10These data will be referenced to with the generic term mapping data.

1-12 CHAPTER 1

• Read position - the position at which each read is mapped (on the respective
reference genome);

• Mapping score - the certainty with which this mapping is correct; and

• Mapping corrections - the corrections that need to be applied to the read
to create a perfect mapping, containing pairs of a base position (i.e., the
position in the read that needs to be corrected) and a correction. These
corrections are one of three types:

– Insertions - insertion of a certain nucleotide at a given position. In
Figure 1.8, a nucleotide T was inserted into read CCAGG, to map the
(first) read onto position 2;

– Deletions - deletion of the nucleotide at a given position. In Figure 1.8,
a nucleotide T was deleted, to map read CATGG onto position 4; or

– Single Nucleotide Polymorphism (SNP) - replacement of the nu-
cleotide at a given position by another nucleotide. In Figure 1.8, a
nucleotide C was replaced with nucleotide T, to map read GCTAC onto
position 7.

If reads cannot be mapped11, they are stored as unmapped reads, hence voiding
the need for the storage of mapping information.

1.1.4 Storage of Genomic Data

To preserve the data described in Section 1.1.3.1 and in Section 1.1.3.2, two file
formats became prevalent for data storage and data exchange: FASTA/FASTQ [16]
for sequencing data and SAM (Sequence Alignment Map) [17] and its binary
equivalent BAM (Binary Alignment Map) for read mapping data (which inher-
ently includes the sequencing data). These file formats are the de facto standards
and are highly popular as they offer human readability12, but more importantly,
they can be easily processed using scripting languages and are the input/output
formats supported by most of the software libraries and tools used in the bioin-
formatics field. However, they are not effective at storing genomic data as they
store the data in a raw form (i.e., without compression) and typically in the ASCII
format (except for BAM).
In this section, a short overview will be given of both the FASTA/FASTQ and
SAM/BAM file formats, including an example.

11The thresholds that define whether a read is categorized as unmapped are defined by the mapping
software and, as such, can differ between software solutions and even between software versions.

12Note: BAM is the binary representation of SAM and, as such, not human readable by default.

INTRODUCTION 1-13

Line 1: >EAS149:136:FC806VJ:2:2104:1543:19393
Line 2: GATTTGGCGGTTCAAGAGCAGTATCGATCATAATAGTATAATCCATTT

Line 1: >EAS139:136:FC706VJ:2:5:1000:12850
Line 2: AAGAGCAGTATCGATCATAATAGTATAACCAATGTACATTTGTCAGCG

Figure 1.9: Example of two reads in a FASTA data file, using the current Illumina read
identifier syntax. The text in bold is for clarity, this text is not part of the actual file.

Line 1: @SRR001666.1 EAS149:136:FC806VJ:2:2104:1543:19393
Line 2: GATTTGGCGGTTCAAGAGCAGTATCGATCATAATAGTATAATCCATTT
Line 3: +SRR001666.1 EAS149:136:FC806VJ:2:2104:1543:19393
Line 4: EEDEEDEDCCDDDCCBA><>>>>>>>>====<<<888976333#####

Line 1: @SRR001666.1 EAS139:136:FC706VJ:2:5:1000:12850
Line 2: GATTTGGCGGTTCAAGAGCAGTATCGATCATAATAGTATAATCCATTT
Line 3: +SRR001666.1 EAS139:136:FC706VJ:2:5:1000:12850
Line 4: IIIIIIIIHFGFFEEDDCDDDCBBA>>>><<88887778776666665

Figure 1.10: Example of two reads in a FASTQ data file, using the NCBI Sequence Read
Archive read identifier syntax. The text in bold is for clarity, this text is not part of the

actual file.

FASTA/FASTQ Sequencing data (see Section 1.1.3.1) are typically stored in the
FASTA/FASTQ file format. FASTA/FASTQ files contain reads consisting of two
lines (FASTA, see Figure 1.9) or four lines (FASTQ, see Figure 1.10) of data:

• Line 1: Read Name Identifier - a sequence of characters describing the
data in the read and/or providing information about the sequencing process
(e.g., identification number of the used sequencing machine or bar code in-
formation).
The read name identifier line starts with an ”>” (FASTA) or an ”@” (FASTQ)
to facilitate efficient parsing. The syntax of the sequence of characters in
the read name identifier is not fixed but manufacturers and large genome
archives typically have a fixed syntax. Figure 1.9 shows an example of an
Illumina identifier, whereas Figure 1.10 shows an example of the NCBI Se-
quence Read Archive identifier;

• Line 2: Nucleotidic data - the (read) nucleotides;

• Line 3 (FASTQ only): Identifier - the character ”+” followed by an optional
sequence of characters, typically a repetition of the read name identifier or
empty; and

1-14 CHAPTER 1

• Line 4 (FASTQ only): Quality scores - one value, ranging from value 33,
i.e., (’!’), to value 126 (’∼’)13, per nucleotide in line 2, indicating the cer-
tainty that the respective nucleotide is sequenced correctly (i.e., base call
accuracy). These values are defined by adding a fixed offset (typically 33)
to the Phred quality scores. Phred quality scores are a logarithmic repre-
sentation of the base call accuracy (i.e., the certainty that a nucleotide is se-
quenced correctly). This offset ensures that the representation of the Phred
quality scores are limited to the range of human-readable ASCII characters
(i.e., [33,126]). In the FASTQ files created by more recent sequencers (and
the corresponding base callers), such as the Novaseq 6000, the set of quality
scores has been limited to a small subset of 4 quality scores [18].

@HD VN:1.5 SO:coordinate\\
@SQ SN:ref LN:45\\
r001 99 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG *\\
r002 0 ref 9 30 3S6M1P1I4M * 0 0 AAAAGATAAGGATA *\\
r003 0 ref 9 30 5S6M * 0 0 GCCTAAGCTAA * SA:Z:ref,29,-,6H5M,17,0;

Figure 1.11: Example of a SAM file containing three reads.

SAM/BAM Mapping data (see Section 1.1.3.2) are typically stored in the SAM
file format, or its binary equivalent, the BAM file format. SAM/BAM files enable
the storage of information that has been used in or has been generated during the
sequencing and read mapping stage. Figure 1.11 shows an example of a SAM file,
including an optional header on line 1 and line 2. The main information stored in
a SAM/BAM file is:

• Mapping Reference - identification of the reference to which the read is
mapped;

• Read Length - the length of the read in number of nucleotides;

• Read Mapping Positions - the position in the reference to which a read is
mapped;

• CIGAR Information - the list of positions and corrections applied to a read,
as discussed in Section 1.1.3.2;

• Unmapped Reads - reads that were not mapped onto a reference, are stored
raw. This replaces Read Mapping Positions and CIGAR information;

13It should be noted that the FASTQ standard does not define the values and their corresponding
certainty.

INTRODUCTION 1-15

• Mapping Quality Score - the (estimated) quality of the mapping; and

• Quality Scores - the read quality scores.

1.1.4.1 File Size

As can be seen in the examples of FASTA/FASTQ and SAM in Section 1.1.4,
genomic data are typically stored in a human readable manner, and thus uncom-
pressed. BAM files are stored in a more effective representation (rendering it un-
readable for humans), including a compression layer. To provide an indication of
the storage required for these files, Table 1.1 shows the file size for the FASTA,
FASTQ, SAM, and BAM versions of the NA12878 test file (with an average cov-
erage of 52x, used in Chapter 3 and Chapter 4). The sequencing data for a single
human genome can easily exceed 350 GiB when stored in the FASTQ format. In-
cluding the mapping data, the size can increase to around 550 GiB, which still
exceeds 110 GiB in its binary equivalent BAM version. In the next section, we
will discuss the cost of storing such a genome, compare the evolution of this cost
with the evolution of sequencing cost, and discuss the effect of low sequencing
costs on the generation of genomic data.

File Format File Size
FASTA 215.3 GiB
FASTQ 368.6 GiB
SAM 548.6 GiB
BAM 113.3 GiB

Table 1.1: File size of the human genome NA12878 (52x coverage) in the mainstream file
formats for the storage of genomic data.

1.1.4.2 Storage Cost

As discussed in Section 1.1.2, the cost of sequencing DNA dropped significantly
compared to the cost of sequencing the first Human Genome. In this section, we
will discuss the evolution of the resulting storage cost.
Figure 1.12 shows the evolution of sequencing cost from 2002 to 2017, compared
to the evolution of the storage cost (represented by the hard drive cost, expressed
in dollars per Gigabyte), both on a logarithmic scale. This graph shows that both
costs decrease at a similar pace, resulting in a stable storage cost if the number
of sequenced nucleotides rises proportional to the decrease in sequencing costs.
However, as can be expected, the decreasing costs result into a higher than pro-
portional growth. As an example of this growth, Figure 1.13 shows the evolution
of the size of the nucleotidic information stored in the Whole Genome Shotgun
(WGS) database of the National Center for Biotechnology Information (NCBI),

1-16 CHAPTER 1

0,01

0,04

0,20

1,00

5,00

1

10

100

1 000

10 000

100 000

1 000 000

10 000 000

100 000 000

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

St
o
ra

ge
 C

o
st

 p
er

 G
ig

ab
yt

e
(i
n
 U

S
D

o
lla

r)

Se
q
u
en

ci
n
g

C
o
st

 p
e
r
H

u
m

an
 G

en
o
m

e
(i
n
 U

S
D

o
lla

r)

Sequencing Cost Storage Cost

Figure 1.12: Evolution of sequencing and storage costs (2002-2017). Generated from data
provided by [19], [20], and [21].

0

5E+11

1E+12

1,5E+12

2E+12

2,5E+12

0

0,5

1

1,5

2

2,5

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

D
at

ab
as

e
Si

ze
 (

in
 n

u
m

b
er

 o
f

n
u

cl
eo

ti
d

es
)

St
o

ra
ge

 C
o

st
 p

er
 G

ig
ab

yt
e

 (
in

 U
S

D
o

lla
r)

Storage Cost WGS NCBI Size

Figure 1.13: Evolution of sequencing cost and size of the NCBI WGS database
(2002-2017). Generated from data provided by [19], [20], and [21].

INTRODUCTION 1-17

0

10 000

20 000

30 000

40 000

50 000

60 000

1

10

100

1 000

10 000

100 000

1 000 000

10 000 000

100 000 000

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

D
at
ab
as
e
St
o
ra
ge
 C
o
st
 (
in
 U
S
D
o
lla
r)

Se
q
u
e
n
ci
n
g
C
o
st
 p
er
 H
u
m
an
 G
en
o
m
e
 (
in
 U
S
D
o
lla
r)

Sequencing Cost NCBI WGS Database Storage Cost

Figure 1.14: Evolution of sequencing cost and the storage cost of the NCBI WGS database
(2002-2017). Generated from data provided by [19], [20], and [21].

which grows more than exponentially, especially after 2010. To illustrate this, the
total cost of this database (expressed in hard drive purchase cost, excluding op-
erating and maintenance costs) is shown in Figure 1.14. This figure shows that,
since 2010, i.e., when the sequencing cost dropped to around $10,000 per human
genome, the storage cost for the complete database started rising in an almost ex-
ponential proportion, as confirmed by the observations by Stein et al. [22]. The
cost peak in the period 2004-2007 is mainly caused by the combination of the
stagnation of storage costs and the stable growth of the archive content, as shown
in Figure 1.13. Based on the recent exponential growth of genomic data, it is to
be expected that the storage cost will become a more significant part of the total
cost of sequencing and handling genomic data. One possible way to lower the
storage cost and the band width cost is to apply compression to the different types
of genomic data. In the next section, the current solutions for the compression of
genomic data will be discussed.

1-18 CHAPTER 1

1.1.5 Compression of Genomic Data

In this section, the different existing approaches that are used for the compression
of genomic data will be discussed: compression algorithms that are specifically
designed for the compression of nucleotidic data, for the compression of quality
scores, and generic algorithms that are applied to existing file formats, such as
FASTA/FASTQ.
Before discussing the different compression algorithms, it is important to elaborate
on the three dimensions along which compression algorithms can be compared.

1.1.5.1 The Three Dimensions of Compression

When comparing different compression algorithms, performance can be analysed
across three different dimensions [23]:

• Effectiveness - the compression ratio offered by the algorithm/file format,
i.e., how small is the storage footprint of the compressed file;

• Efficiency - what is the (de)compression complexity? How complex are
the compression and decompression process, i.e., how fast can data be com-
pressed and decompressed; and

• Functionality - what are the additional features offered by the algorithm/file
format? For example, random access, support for file streaming, support for
metadata, and encryption.

Ideally, a compression algorithm (for genomic data) offers a high effectiveness
(allowing for lower storage costs and faster transmission), is highly efficient (hun-
dreds of gigabytes of genomic data need to be processed), and offers additional
functionality (random access to limit data exchange and decompression to the re-
quired data, encryption to protect privacy,...). Depending on the application, prior-
ities can be set to each of these dimensions. For example, in case of archiving, the
priority will be more on effectiveness (storage cost), than on efficiency (speed).
However, in case of real-time transmission (transmission during sequencing), a
technology that has only been enabled recently by sequencers such as the Oxford
Nanopore minION (See Section 1.1.2) with their support for sequencing data pro-
visioning during the sequencing process, the priority will be more on efficiency.
This real-time sequencing and transmission can be powerful when e.g., studying
the outbreak of diseases or food contamination with central data analysis (e.g.,
Pulsenet [24]). In these cases efficiency will be of a higher importance. Given this
wide range of possible applications, it would be beneficial to have compression
algorithms that offer the possibility to select a trade-off between efficiency and ef-
fectiveness.
Additionally, applications that only require specific parts of genomic data, can

INTRODUCTION 1-19

benefit from features such as random access. Given random access, only the parts
of interest have to be stored or transmitted, and decoded.

One- or Two-Pass Besides these three dimensions, one can identify another
property to distinguish compressors: the use (or not) of a pre-processing step.
This pre-processing step is used to reorder individual reads and/or group them into
bins which are consequently compressed using, e.g., dictionary-based encoding.
Examples of this approach are SCALCE [26] and ORCOM [27]. These two-pass
processes are typically more effective when compared to one-pass solutions, as
they can analyse the input data, sort the input data (which is a highly complex
process), and optimize the compression algorithm. However, if data need to be
available immediately (e.g., for streaming purposes) or the available hardware is
limited (e.g., for storing temporary files or dictionaries), such dual-pass solutions
cannot be applied.

1.1.5.2 Compression of Nucleotidic Data

In general, compression algorithms for nucleotidic information (i.e., the second
line in FASTA/FASTQ files, as discussed in Section 1.1.4) can be split into five
categories [25]:

• Bit Encoding - nucleotides are stored as a sequence of two bits per nu-
cleotide (in case of the 4-symbol ACGT alphabet), a sequence of three nu-
cleotides per byte (when the N symbol is used, which signals an uncertain
base call), or as a sequence of four bits per nucleotide (when the complete
IUB/IUPAC alphabet is used), instead of the eight-bit ASCII format [28];

• Dictionary-based Encoding - groups of nucleotides are stored as a ref-
erence to entries in a dictionary. Well-known examples of this category
of compressors are the Lempel-Ziv-based algorithms, such as LZ77 and
LZ78 [29], and DSRC [30];

• Statistical Encoding - nucleotides are predicted based on a probabilistic
model. A well-known and widely used example of this category of com-
pressors is Huffman encoding [31]. Another type of statistical encoding
algorithms is based on hidden Markov models [32];

• Reference-based Encoding - groups of nucleotides are stored as a pointer to
a position in a reference genome. Reference-based compression algorithms,
such as CRAM [33], can be highly effective for storing a genome, provided
that a good reference (i.e., of a similar species) is selected. However, finding
long identical matches between the genome and the reference genome can
be complex. Additionally, the (correct version of the) reference genome has
to be stored and/or transmitted to enable decoding.

1-20 CHAPTER 1

• Neural Networks - more recently, another category of compressors is be-
ing proposed, based upon machine learning [34] [35] [36]. In particular,
these algorithms use neural networks, such as auto encoders, to predict the
sequence of nucleotides and store the parameters for the neural network,
together with a correction (i.e., the residue).

The encoding framework presented in Chapter 2 and the AFRESh compres-
sion solution presented in Chapter 3 offer a novel hybrid one-pass solution, where
coding tools of different categories compete and the parameters and output data
are stored using statistical compression. Furthermore, the input data are processed
in independent blocks, allowing for random access, and thus for streaming and
parallel processing.

1.1.5.3 Compression of Quality Scores

Besides the division into the categories discussed in Section 1.1.5.2, solutions for
the compression of quality scores (i.e., the fourth line in FASTQ files, as discussed
in Section 1.1.4) can additionally be divided into categories along a second dimen-
sion: lossy compression versus lossless compression (i.e., the categories discussed
for the compression of nucleotidic data). Recently, it has been shown that lossy
compression can maintain, and in some cases even improve, the performance of
variant calling algorithms14 [37] [38]. Based on this observation, and the promise
of significant gains in compression effectiveness, the focus in the area of qual-
ity score compression is moving towards lossy compression. Lossy quality score
compression algorithms are typically based on quantization. Two types of quanti-
zation can be identified:

• Fixed Quantization - Each of the values within a range are mapped onto
one single value. Both the number of quantized values and the mapping are
fixed. An example of this approach is Illumina 8-level binning [39], which
divides the quality score range (which is typically 94 values wide) into eight
separate (fixed) ranges, which can be identified using a 3-bits code word;
and

• Adaptive Quantization - Each of the values within a range are mapped onto
one single value. The number of quantized values and/or the mapping are
defined adaptively. Two different types can currently be identified:

– Position-based Adaptive Quantization - For each position in the read,
a set of quantizers is defined. An example of this approach is Quality

14I.e., algorithms that identify variants (mutations) of a base on a given position, indicating e.g.,
sensitivity for certain diseases.

INTRODUCTION 1-21

Value ZIP (QVZ) [40], which calculates for each position a set of quan-
tizers that is defined in such a way that it minimizes the distortion for
the quality scores at the position in the read. Optionally, QVZ allows
to pre-process the input data and to group the input data in clusters,
according to the Euclidean distance of the quality values of each read
compared to a predefined number of randomly selected reads; and

– Locus-based Adaptive Quantization - For each position in the genome
(i.e., locus), a set of quantizers is defined. An example of this approach
is Coverage-Adaptive Lossy Quality value compression (CALQ) [41],
which introduced the concept of locus-based quantization, where the
number of quantization steps is defined based upon the ”genotype un-
certainty” of a certain locus in the genome.

1.1.5.4 Generic Compression

Despite the availability of specialized compression solutions, generic compression
algorithms such as LZ77 (e.g., in Gzip) are widely applied for the compression
of genomic data. The efficiency, acceptable effectiveness, and wide availability of
Gzip makes it even the de facto industry standard for the compression of FASTA/-
FASTQ files.
Applying this type of generic compressors to the example data file NA12878, used
in Section 1.1.4 as an indicator for file sizes for FASTA/FASTQ and SAM/BAM
file formats, can result in a significant file size reduction. When using the Gzip
compressor, the FASTQ file is reduced from 368.6 GiB to 82.5 GiB. In case of the
SAM file, the file is reduced from 548.6 GiB to 103.5 GiB. In the results discussed
in Chapter 3, Chapter 4, and Chapter 5, a second generic compression algorithm
is used for comparison purposes: LZMA. LZMA and LZMA2 are highly effective
variants of LZ77, used in 7-Zip. These algorithms trade efficiency15 and memory
usage16 for a higher effectiveness. Using LZMA/LZMA2 in ultra settings pro-
vides an additional file size reduction of approximately 20%, resulting in file sizes
of 67.5 GiB for the FASTQ file and 82.5 GiB for the SAM file.
Unfortunately, the functionality offered by these generic algorithms is typically
limited: there is no or limited support for random access and all different data
streams (e.g., quality scores, read names, and nucleotides) are compressed as one
input stream.

15LZMA and LZMA2 ar approximately 10 times slower than Gzip, when configured in ultra mode.
16LZMA, limited to two processing threads, uses a maximum of 709 MiB of RAM. LZMA2, which

supports more than 2 processing threads, uses a maximum of 4 GiB of RAM. Gzip only requires 4 MiB
of RAM.

1-22 CHAPTER 1

1.1.6 Exchange of Genomic Data
A second part of data management is data exchange: how do we transmit data
from one point (e.g., a sequencing machine, a database, or computer storage) to
another (e.g., another database, an analysis center, or a cloud service)? Currently,
two types of data exchange are competing for the transmission of large data sets:
transmission over computer networks and transport via courier. It is clear that for
smaller files or even one human genome, transmission of the data over a high-
bandwidth network is the fastest solution.
Table 1.2 shows the transmission durations for a single human genome (NA12878)
and a set of five such genomes in both BAM and FASTQ file format across multiple
network connections offering different band widths. The table shows that transmit-

10Mbit/s 25Mbit/s 100Mbit/s 1Gbit/s
NA12878-BAM (113.3GiB) 1 day 10 hours 3 hours 15 minutes
NA12878-FASTQ (368.6GiB) 3 days 1 day 8 hours 49 minutes
5 x NA12878-BAM 5 days 2 days 13 hours 1 hour
5 x NA12878-FASTQ 17 days 7 days 2 days 4 hours

Table 1.2: Total transmission time for four different data sets with respect to network band
width.

ting the BAM file over a 25 Mbit/s network connection will take around 10 hours
(hence, faster than the typical 24-hour courier service). However, only 12% of the
broadband connections in the world exceed this 25Mbit/s (actual) band width [42].
Moreover, data are rarely limited to a single file. In case of wider studies, such as
genome-wide association studies (GWAS), it can be required to exchange multi-
ple (up to hundreds) of human genomes. As shown in Table 1.2, transmission of
this relatively small set of five human genomes can already take days, even when
using relatively fast network connections of 25-100 Mbit/s. Therefore, the trans-
mission via courier is still a very popular option. As Andrew S. Tanenbaum once
concluded:

”Never underestimate the bandwidth of a station wagon full of tapes
hurtling down the highway.”

Andrew S. Tanenbaum

Indeed, sending a state-of-the-art 14TB hard drive (i.e., 14,000,000,000,000
bytes) filled with data using a 24-hour courier service (commonly called Sneak-
ernet) equals to a bandwidth of 1,236 Mbit/s17. Large cloud operators, such as

17If this hard drive would be replaced by microSD cards of 400 GiB, more than 2,360 cards would fit
into the same volume, which would result in a maximum storage capacity of 945 TiB and an equivalent
band width of around 83 Gbit/s. Of course, given the price of around $250 per card, the total hardware
cost would be around $590,000.

INTRODUCTION 1-23

Google and Microsoft, offer solutions to transmit data to their cloud services this
way [43].

If latency is not an issue, it is clear that Sneakernet is a valid option to transmit
large amounts of data. However, if low latency is important, other solutions such
as (more) effective compression18 with support for random access (for partial file
transmission) and/or faster networks are the only solutions.

1.1.7 Standardisation
As discussed in Section 1.1.4, genomic data are currently stored using the de facto
standards FASTA/FASTQ and SAM/BAM. This (de facto) standardisation enables
interoperability: it ensures that software and hardware solutions that are designed
to be standard-compliant can process all data stored in a standard-compliant bit-
stream. As a result, standardisation enables researchers, doctors and institutions to
exchange data in a manner that is understood by all.
Examples of these positive effects of standardisation are seen with the
H.264/AVC [44] and H.265/HEVC [45] video coding standards by the Moving
Picture Experts Group (MPEG). As with other MPEG standards, the specification
of H.264/AVC and H.265/HEVC describes the syntax and processes used by the
decoder to access (and decode) the content of each standard-compliant bitstream.
This approach allows encoder developers to design (and constantly improve) their
own encoding algorithms according to their own priorities, while the output can
still be decoded with any standard-compliant decoder. In case of H.264/AVC and
H.265/HEVC, this resulted in a large diversity of encoders, each with their own
focus, priorities, and/or strengths.
Currently, the MPEG standardisation committee is finalizing such a standard for
the representation, compression, and management of genomic data. In the next
section, an overview will be provided of the evolution of this standardization pro-
cess, combined with the evolution of the research discussed in this dissertation.

18More effective compression algorithms can be applied to both Sneakernet and network transmis-
sions. Therefore, it will move the switching point between these two types towards larger data set
sizes.

1-24 CHAPTER 1

03-2014
Genome Sequences as Media Files.
Biostec, 2014

07-2014
Issues in Genome Compression
and Storage.

12-2014
Towards Block-Based Compression
of Genomic Data with
Random Access Functionality.
Globalsip, 2014

06-2015
Requirements on Genome
Compression and Storage.

10-2015
Call for Evidence for Genome

Compression and Storage.
03-2016
Leveraging CABAC for No-Reference
Compression of Genomic Data
with Random Access Support.
DCC, 2016

06-2016
Joint Call for Proposals for
Genome Compression
and Storage.

01-2017
AFRESh : an adaptive framework for
compression of reads and assembled
sequences with random access functionality.
Bioinformatics, 2017

09-2017
AQUa: an adaptive framework for
compression of sequencing quality
scores with random access functionality.
Bioinformatics, 2018

01-2018
ISO/IEC CD 23092-2 Coding
of Genomic Information.

Table 1.3: Combined timeline of the research described in this dissertation and MPEG-G
standardisation.

INTRODUCTION 1-25

1.1.8 Research & Standardisation Timeline
Figure 1.3 shows the timeline of the research described in this dissertation (left
side), combined with the timeline of the standardization efforts by MPEG (right
side). In March 2014, a first publication on the compression of genomic data was
published. This paper discussed the vision on how technologies for media com-
pression, distribution, and management can be useful for the compression, distri-
bution, and management of genomic data. Additionally, the paper discussed the
positive effects of standardisation on acceptance and, as a result, on the interest in
and opportunities for research and continuous improvement.
A few months later, MPEG published its first document describing the issues in
genome compression and storage. This document discussed the issues with cur-
rent genomic data file formats and the requirements needed to solve these issues,
confirming the high-level requirements that were listed in my first publication,
such as random access, encryption, and privacy protection.
In December 2014, the first results were published on the development and the
coding effectiveness of the framework that is discussed in Chapter 2 of this dis-
sertation. These results demonstrated that the block-based approach with a set of
competing coding tools was a promising approach.
Early 2016, the results were published of the integration of CABAC in the frame-
work. Compression gains of up to 70% were shown, compared to the earlier ver-
sion of the framework, without CABAC. During the integration of CABAC into
the framework, MPEG published an overview of the identified requirements for
genome compression and storage, followed by a Call for Evidence (CfE) and a
joint Call for Proposals (CfP). In a response to this CfP, the solutions discussed in
Chapter 3 and Chapter 4 of this dissertation were presented as possible solutions
for the compression of genomic data.
Based upon the requirements and the solutions proposed during the CfP, the con-
cept of descriptor streams, each containing a single type of data (e.g., quality
scores, mapping position, or pairing information), had been proposed and ac-
cepted. Given this heterogeneous set of descriptor streams, a need was identified
for a flexible, efficient and effective compression solution. As a response to this
need, the solution discussed in Chapter 5 was developed and presented. The syn-
tax and concepts of this solution have been selected to form the baseline of the
coding part of MPEG-G. This syntax and the concepts have been further extended
and adapted and finally lead to the current version of the MPEG-G standard which
is described in the Committee Draft (CD) of the standard.

1-26 CHAPTER 1

1.2 Outline
This dissertation is organized as follows:

• Chapter 2 discusses the novel coding framework that has been built as a
basis for the coding solutions presented in the successing chapters.

• Chapter 3 discusses the extensions that have been designed for the coding
framework to enable effective coding of nucleotidic data (both reads and full
genomes) and analyses the compression performance.

• Chapter 4 discusses the extensions that have been designed for the coding
framework to enable effective coding of quality scores and analyses the com-
pression performance.

• Chapter 5 discusses the solution that has been proposed as a compression so-
lution for the MPEG-G standard and analyses the compression performance.

• Chapter 6 offers an overview of the different conclusions and discusses di-
rections for future research.

INTRODUCTION 1-27

1.3 Publications

The research discussed in this dissertation resulted in 5 international publications,
of which 2 are A1 publications, 13 are MPEG input documents, and 1 is a draft
standard specification document (as first author and co-author) for the MPEG-G
standard.
Besides this research, 9 international publications, of which 3 are A1 publications,
were published on video coding technologies (as first author and co-author).

1.3.1 Publications in International Journals

1.3.1.1 Author

AFRESh : an adaptive framework for compression of reads and assembled se-
quences with random access functionality.
T. Paridaens, G. Van Wallendael, W. De Neve, and P. Lambert
Bioinformatics, Vol. 33, No. 10, pp. 1464-1472, 2017.

AQUa: an adaptive framework for compression of sequencing quality scores with
random access functionality.
T. Paridaens, G. Van Wallendael, W. De Neve, and P. Lambert
Bioinformatics, Vol. 34, No. 3, pp. 425-433, 2018.

1.3.1.2 Co-author

Simultaneous encoder for high-dynamic-range and low-dynamic-range video.
J. De Praeter, A. Jesus Diaz-Honrubia, T. Paridaens, G. Van Wallendael, and P.
Lambert
IEEE Transactions on Consumer Electronics, Vol. 62, No. 4, pp. 420-428, 2016.

NinSuna: a fully integrated platform for format-independent multimedia content
adaptation and delivery using Semantic Web technologies.
D. Van Deursen, W. Van Lancker, W. De Neve, T. Paridaens, E. Mannens and R.
Van de Walle
Multimedia Tools and Applications, Vol. 46, No. 2-3, pp. 371-398, 2010.

Moving object detection in the H.264/AVC compressed domain for video surveil-
lance applications.
C. Poppe, S. De Bruyne, T. Paridaens, P. Lambert and R. Van de Walle
Journal of Visual Communication and Image Representation, Vol. 20, No. 6, pp.
428-437, 2009.

1-28 CHAPTER 1

1.3.2 Publications in International Conferences

1.3.2.1 Author

Leveraging CABAC for no-reference compression of genomic data with random
access support.
T. Paridaens, J. Panneel, G. Van Wallendael, W. De Neve, P. Lambert and R. Van
de Walle
Data Compression Conference (DCC), 2016.

Towards block-based compression of genomic data with random access function-
ality.
T. Paridaens, Y. Van Stappen, W. De Neve, P. Lambert and R. Van de Walle
IEEE Global Conference on Signal and Information Processing (Globalsip), 2014.

Genome sequences as media files.
T. Paridaens, W. De Neve, P. Lambert and R. Van de Walle
8th International Joint Conference on Biomedical Engineering Systems and Tech-
nologies (BIOSTEC), 2014.

XML-driven bitrate adaptation of SVC bitstreams.
T. Paridaens, D. De Schrijver, W. De Neve and R. Van de Walle
Workshop on Image & Audio Analysis for Multimedia Interactive Services (WIAMIS),
2007.

1.3.2.2 Co-author

A Just Noticeable Difference Subjective Test for High Dynamic Range Images.
A. Ahar, S. Mahmoudpour, G. Van Wallendael, T. Paridaens, P. Lambert and P.
Schelkens
Qomex, 2018.

Multistream video encoder for generating multiple dynamic range bitstreams.
C. Van Goethem, J. De Praeter, T. Paridaens, G. Van Wallendael and P. Lambert
Picture Coding Symposium(PCS), 2016.

Perceptual quality of 4K-resolution video content compared to HD.
G. Van Wallendael, P. Coppens, T. Paridaens, N. Van Kets, W. Van den Broeck and
P. Lambert
Eighth International Conference on Quality of Multimedia Experience (Qomex),
2016.

INTRODUCTION 1-29

Statistical multiplexing using SVC.
M. Jacobs, J. Barbarien, S. Tondeur, R. Van de Walle, T. Paridaens and P. Schelkens
IEEE International Symposium on Broadband Multimedia Systems and Broad-
casting, 2008.

NinSuna: a format-independent multimedia content adaptation platform based on
semantic web technologies.
D. Van Deursen, W. Van Lancker, T. Paridaens, W. De Neve, E. Mannens and R.
Van de Walle
IEEE International Symposium on Multimedia (ISM), 2008.

1.3.3 MPEG Input Contributions

1.3.3.1 Author

Proposal of a genomic data file compression framework, based on existing MPEG
practices and technologies (m39200).
T. Paridaens, G. Van Wallendael, W. De Neve and P. Lambert
MPEG 116, 2016

CE1: Cross-check of the PirBright Genomic Data Compression proposal (m39875).
T. Paridaens, G. Van Wallendael, W. De Neve and P. Lambert
MPEG 117, 2017

CE2: Cross-check of the PirBright Genomic Data Compression proposal (m39876).
T. Paridaens, G. Van Wallendael, W. De Neve and P. Lambert
MPEG 117, 2017

CE1 & CE2: Proposal for a genomic data file compression framework, based on
existing MPEG practices and technologies - update (m39881).
T. Paridaens, G. Van Wallendael, W. De Neve and P. Lambert
MPEG 117, 2017

CE5: Results of syntax compression based on CABAC (m40272).
T. Paridaens, G. Van Wallendael, W. De Neve and P. Lambert
MPEG 118, 2017

Summary of Core Experiment 5 on Entropy Coding (m40850).
T. Paridaens, G. Van Wallendael, W. De Neve and P. Lambert
MPEG 119, 2017

1-30 CHAPTER 1

Core Experiment 5 on Genomic Information Representation results (m40851).
T. Paridaens, G. Van Wallendael, W. De Neve and P. Lambert
MPEG 119, 2017

Proposal for decoding process of MPEG-G descriptor streams (m41595).
T. Paridaens, G. Van Wallendael, W. De Neve and P. Lambert
MPEG 120, 2017

Study on ISO/IEC 23092-1 (m42003).
T. Paridaens, G. Van Wallendael, W. De Neve and P. Lambert
MPEG 121, 2018

Study on ISO/IEC 23092-2 (m42004).
T. Paridaens, G. Van Wallendael, W. De Neve and P. Lambert
MPEG 121, 2018

Study on ISO/IEC 23092-2 (m42549).
T. Paridaens, G. Van Wallendael, W. De Neve and P. Lambert
MPEG 122, 2018

Overview of coding modes (m42550).
T. Paridaens, G. Van Wallendael, W. De Neve and P. Lambert
MPEG 122, 2018

1.3.3.2 Co-author

Unified representation of sequencing quality values (m40222).
J. Voges, C. Alberti, M. Hernaez, T. Paridaens, J. Bonfield, P. Ribeca, J. Delgado
MPEG 118, 2017

1.3.4 MPEG Standardization Documents
ISO/IEC 23092-2: Coding of Genomic Information.
C. Alberti, J. Voges, J. Ahmad, T. Paridaens
2018

INTRODUCTION 1-31

References
[1] J. D. Watson et al., ”Molecular Structure of Nucleic Acids: A Structure for

Deoxyribose Nucleic Acid”, Nature, Vol. 171, No. 4356, pp. 737-738, 1953.

[2] NIH, ”Genetics by the Numbers”,
https://publications.nigms.nih.gov/insidelifescience/genetics-numbers.html

[3] F. Sanger et al., ”DNA sequencing with chain-terminating inhibitors”, Pro-
ceedings of the National Academy of Sciences of the United States of Amer-
ica, Vol. 74, No. 12, pp. 5463-5467, 1977.

[4] R. Wu, ”Nucleotide sequence analysis of DNA: I. Partial sequence of the co-
hesive ends of bacteriophage and 186 DNA”, Journal of Molecular Biology,
Vol. 51, No. 3, pp. 501-521, 1970.

[5] A.M. Maxam et al., ”A new method for sequencing DNA”, Proceedings of the
National Academy of Sciences of the United States of America, Vol. 74, No.
2, 1977.

[6] B. Alberts et al., ”Isolating, Cloning, and Sequencing DNA”, Molecular Biol-
ogy of the Cel 4th edition, Garland Science, 2002.

[7] NIH, ”The Cost of Sequencing a Human Genome”,
https://www.genome.gov/27565109/the-cost-of-sequencing-a-human-
genome/

[8] K. Mullis et al., ”Specific enzymatic amplification of DNA in vitro: the poly-
merase chain reaction”, Cold Spring Harbor Symposia on Quantitative Biol-
ogy, Vol. 51, pp. 263-273, 1986.

[9] ”Illumina Hiseq X sequencing system”,
https://www.illumina.com/systems/hiseq-x-sequencing-system.html, 2014.

[10] ”Scalability for sequencing like never before”,
https://www.illumina.com/systems/sequencing-
platforms/novaseq/specifications.html, 2017.

[11] ”Human Whole-Genome Sequencing with the NovaSeq 6000 Sequencing”,
https://support.illumina.com/content/dam/illumina-
marketing/documents/products/appnotes/novaseq-hiseq-q30-app-note-
770-2017-010.pdf, 2017.

[12] ”SMRT sequencing: consensus accuracy”,
http://www.pacb.com/smrt-science/smrt-sequencing/accuracy/, 2017.

1-32 CHAPTER 1

[13] ”Illumina unveils novaseq 5000 and 6000”,
https://blog.genohub.com/2017/01/10/illumina-unveils-novaseq-5000-and-
6000/, 2017.

[14] M. Jain, ”The Oxford Nanopore MinION: delivery of nanopore sequencing
to the genomics community”, Genome Biology, Vol. 17, No. 1, pp. 239-249,
2016.

[15] ”Nanopore product specifications comparison”,
https://nanoporetech.com/products#comparison, 2017.

[16] P. J. A. Cock et al., ”The Sanger FASTQ file format for sequences with qual-
ity scores, and the Solexa/Illumina FASTQ variants”, Nucleic Acids Research,
Vol. 38, No. 6, pp. 1767-1771, 2010.

[17] H. Li et al., ”The Sequence Alignment/Map format and SAMtools”, Bioin-
formatics, Vol. 25, No. 16, pp. 2078-2019, 2009.

[18] ”NovaSeq 6000 System Quality Scores and RTA3 Software”,
https://www.illumina.com/content/dam/illumina-marketing/documents/
products/appnotes/novaseq-hiseq-q30-app-note-770-2017-010.pdf

[19] Matthew Komorwski, ”A History of Storage Cost”,
http://www.mkomo.com/cost-per-gigabyte and http://www.mkomo.com/cost-
per-gigabyte-update

[20] Backblaze, ”Hard Drive Cost Per Gigabyte”,https://www.backblaze.com/blog/hard-
drive-cost-per-gigabyte/

[21] NCBI, ”GenBank and WGS Statistics”,
https://www.ncbi.nlm.nih.gov/genbank/statistics/

[22] L. D. Stein, ”The case for cloud computing in genome informatics”, Genome
Biology, Vol. 11, No. 5, pp. 207, 2010

[23] T. Paridaens et al., ”Genome sequences as media files”, 8th International
joint conference on biomedical engineering systems and technologies, Pro-
ceedings, 2014.

[24] ”Pulsenet”, https://www.cdc.gov/pulsenet/index.html

[25] S. Wandelt, M. Bux, and U. Leser, ”Trends in Genome Compression”, CBIO
Current Bioinformatics, vol. 9, no. 3, pp. 315-326, 2014.

[26] F. Hach et al., ”SCALCE: boosting sequence compression algorithms using
locally consistent encoding”, Bioinformatics, Vol. 28, No. 23, pp. 3051-3057,
2012.

INTRODUCTION 1-33

[27] S. Grabowski, ”Disk-based genome sequencing data compression”, Bioin-
formatics, Vol. 31, No. 9, pp. 1389-95, 2015.

[28] S. Grumbach et al., ”A new challenge for compression algorithms: genetic
sequences”, Information Processing & Management, Vol. 30, No. 6, pp. 875-
886,1994.

[29] J. Ziv and A. Lempel, ”A universal algorithm for sequential data compres-
sion”, IEEE Transactions on Information Theory, Vol. 23, No. 3, pp. 337-343,
1977.

[30] S. Deorowicz et al., ”Compression of DNA sequence reads in FASTQ for-
mat”, Bioinformatics, Vol. 27, No. 6, pp. 860-862, 2011.

[31] D. Huffman, ”A method for the construction of minimum-redundancy
codes”, Proceedings of the Institute of Radio Engineers, Vol. 40, No. 9, pp.
1098-1101, 1952.

[32] G. Cormack et al., ”Data compression using dynamic markov modelling”,
The Computer Journal, Vol. 30, No. 6, pp. 541-550, 1987.

[33] M. Fritz et al., ”Efficient storage of high throughput DNA sequencing data
using reference-based compression”, Cold Spring Harbor Laboratory Press,
2011.

[34] M. Duarte et al., ”Bacterial DNA Sequence compression models using arti-
ficial neural networks”, Entropy, Vol. 15, No. 9, pp. 3435-3448, 2013.

[35] M. Hinderyckx, ”Non-reference-based DNA sequence compression using
machine learning techniques”, UGent, 2016.

[36] T. Mortier, ”Non-reference-based DNA read compression using machine
learning techniques”, UGent, 2016.

[37] C. Kozanitis et al., ”Compressing Genomic Sequence Fragments Using
SlimGene.”, Journal of Computational Biology, vol. 18, no. 3, pp. 401-413,
2011.

[38] I. Ochoa et al., ”Effect of lossy compression of quality scores on variant
calling”, Briefings in Bioinformatics, Vol. 18, no. 2, pp. 183-194, 2017.

[39] ”Reducing Whole-Genome Data Storage Footprint”,
http://www.illumina.com/documents/products/whitepapers/
whitepaper datacompression.pdf

[40] G. Malysa et al., ”QVZ: Lossy compression of quality values”, Bioinformat-
ics, Vol. 31, No. 19, pp. 3122-3129, 2015.

1-34 CHAPTER 1

[41] J. Voges et al., ”CALQ: compression of quality values of aligned sequencing
data”, Bioinformatics, to be published. DOI:10.1093/bioinformatics/btx737.

[42] ”Akamai state of the internet report Q1 2017”,
https://www.akamai.com/us/en/about/our-thinking/state-of-the-internet-
report/, 2017

[43] ”Introducing Transfer Appliance: Sneakernet for the cloud era.”,
https://cloudplatform.googleblog.com/2017/07/introducing-Transfer-
Appliance-Sneakernet-for-the-cloud-era.html

[44] T. Wiegand et al., ”Overview of the H.264/AVC Video Coding Standard”,
IEEE Transactions on Circuits and Systems for Video Technology, Vol. 13,
No. 7, pp. 560-576, 2003.

[45] G. J. Sullivan et al., ”Overview of the High Efficiency Video Coding
(HEVC) Standard”, IEEE Transactions on Circuits and Systems for Video
Technology, Vol. 22, No. 12, pp. 1649-1668, 2012.

2
Coding Framework

In this chapter, the novel coding framework will be presented that has been de-
signed as the foundation for the coding solutions for nucleotidic data (AFRESh,
see Chapter 3) and quality scores (AQUa, see Chapter 4).
First, the main features of the coding framework are outlined, followed by a discus-
sion of the different steps in the processing workflow. Then, the different forms of
flexibility and configurability, provided by the coding framework, are detailed. In
the final part of this section, the main concepts of Context-Adaptive Binary Arith-
metic Coding (CABAC) are explained to provide the reader with the knowledge
required to understand the content of the succeeding chapters.

2.1 Features
In this section, an overview is provided of the key features of the coding frame-
work. These features are selected based on observations on how large media
files are handled, which applications are currently important for genomic data,
and which applications will become important. During the design of this coding
framework, special attention has been paid to flexibility, allowing for easy setup
and extensibility. While some of the choices will negatively affect efficiency, this
is deemed as less important for research usage.

The key features of the presented coding framework are:

• single-pass encoding - input data can be processed immediately, without

2-2 CHAPTER 2

the need for an analysis or pre-processing pass, hence allowing for live en-
coding;

• stand-alone, no-reference encoding - input data are coded without any
external dependencies, hence voiding the need for reference management,
storage capacity for the reference, and limiting encoding complexity. This
approach is followed by many popular genome data banks such as the DNA
Data Bank of Japan (ftp.ddbj.nig.ac.jp), NCBI (www.ncbi.nlm.nih.gov) and
EBI (www.ebi.ac.uk). These data banks provide all data available in non-
reference file formats such as FASTQ and BAM1, while only a subset of the
data is available in reference-based formats, such as CRAM [1];

• random access in combination with arithmetic coding - it is impossible
to discern individual symbols in an arithmetically coded bit stream, hence
technologies have been integrated into the framework to allow for random
access support in combination with arithmetic coding;

• flexible configuration of the coding tools and random access parameters
- the coding framework allows to set parameters for specific coding tools
(e.g., block size2, search window sizes3) and for the coding framework (e.g.,
random access block sizes4);

• flexible configuration of coding complexity and effectiveness - the coding
framework offers the possibility to select (and configure) a set of coding
tools to choose a bias between efficiency and effectiveness; and

• extensibility - the coding framework has been designed to provide easy ex-
tensibility with:

– input file formats;

– symbol alphabets;

– coding tools; and

– output file formats.

2.2 Workflow
The coding framework processes the input data as a continuous stream of sym-
bols (i.e., single-pass encoding), without any reference to external data (i.e., no-
reference encoding), thus following an approach that is similar to the approach

1BAM files can contain links to references but are stored as stand-alone files, i.e., not using a
reference.

2The number of input values that are processed as one entity (block) by the coding framework.
3The number of blocks that is available for reference during encoding.
4The number of blocks that is contained within one random access block.

CODING FRAMEWORK 2-3

typically used in the area of video compression [2] [3]. Figure 2.1 shows the dif-
ferent steps used by the coding framework:

(1) Input data parsing
(a) Split into data streams

(b) Split symbol stream into blocks

(2) Per-block coding tool selection
(a) Evaluate all coding tools

(b) Select the most effective tool

(3) Output data generation
(a) Binarization of tool parameters & residue

(b) Process binarization data with CABAC

Symbol blocks

Tool parameters & residue

Figure 2.1: The different steps used by the coding framework.

1. The input data (in FASTA or FASTQ format) are parsed and split into two
data streams: a data stream of symbols (nucleotides or quality scores) and a
data stream containing the data that are not processed by the coding frame-
work (i.e., read names, extended with quality scores, in case of AFRESh, or
nucleotides, in case of AQUa) (a). The data stream containing the metadata
is stored separately; the symbol stream is split into blocks of a fixed length
(b).

2. A set of prediction and encoding tools is used to process each block (a).
The tool with the highest effectiveness is selected (b). The effectiveness is
defined by performing step 3, without writing the resulting data to disk, and
resetting the arithmetic encoder to the state before this test.

2-4 CHAPTER 2

3. The tool identifier, parameters, and residual data are then converted to an
optimized binary representation (a) which is then processed by the CABAC
arithmetic coder (b). The output of CABAC is subsequently written to disk.

2.3 Framework Flexibility
The presented coding framework has been designed with two forms of flexibility
in mind:

• extensibility, i.e., adding new capabilities such as:

– new input file formats - a new input filter can be added which takes
the new file format as an input and provides the data that need to be
compressed (e.g., nucleotides or quality scores) as an output;

– new symbol alphabets - if an input file format supports symbols that
are not part of one of the existing symbol alphabets, then the set of
symbol alphabets needs to be extended with a new symbol alphabet.
This alphabet consists of a list of symbols and, if required, their com-
plements. In case of nucleotides, these are the real complements; in
case of quality scores, no complements are set as quality scores do not
have complementary values/symbols;

– new coding tools - if a new input file format generates new types of
data (e.g., with a new alphabet, or data differing from nucleotides or
quality scores), the set of coding tools can be extended with new cod-
ing tools that offer a more effective compression. A coding tool gen-
erates a prediction and returns this prediction, together with a list of
parameters that are needed for decoding;

– new output file formats - a new output filter can be added which takes
all data generated by the coding tools (e.g., alphabet identification,
coding tool parameters, residue), encodes these data, and writes the
output of the encoding process to a file or transmits the output over a
network.

• configurability, i.e., selection of:

– used symbol alphabets - selecting the symbol alphabet(s) that can
occur in the input data stream;

– used coding tools - selecting the (set of) coding tool(s) that will com-
pete during the coding tool selection. A smaller list of coding tools
will lower the compression effectiveness but will typically improve
the compression efficiency;

CODING FRAMEWORK 2-5

– configuration parameters for coding tools - e.g., the window size
used by some coding tools. A larger window size will lower the com-
pression efficiency but will typically improve the compression effec-
tiveness;

– configuration parameters for the coding framework - e.g., the size
of random access blocks, block sizes (i.e., the size of the segments that
are created by the input data parsing step as discussed in Section 2.2).

2.4 Block Structure

The data that is created during step 2 of the workflow discussed in Section 2.2 is
represented by a data structure, consisting of up to 5 parts (see Figure 2.2):

• Last Block Flag - a flag that indicates if the current block is the last block
in the data stream. If the Last Block Flag is true, the size of this block is
signaled;

• Alphabet ID - an ID that signals the alphabet that is used during the encod-
ing of this block;

• Coding Tool ID - an ID that signals the predictor that has been used during
the encoding of this block;

• Coding Tool Parameters - this data structure signals the configuration pa-
rameters for the used coding tool. In case of encoding tools, this structure
contains the encoded values;

• Residual Data (only for prediction tools) - this data structure contains the
residual data, used to correct the output of a prediction tool.

Block structure

Last Block
Flag

Alphabet ID Coding Tool ID
Coding Tool
Parameters

Residual Data

Figure 2.2: Data structure of a block.

Each of these parts is then separately processed in step 3, where all data are
converted to a binary representation which can than be encoded using CABAC,
which is discussed in Section 2.5.

2-6 CHAPTER 2

2.5 Context-Adaptive Binary Arithmetic Coding
In this section, the basic concepts of Context-Adaptive Binary Arithmetic Cod-
ing (CABAC) will be discussed. CABAC is an entropy coder that is used in
modern standards for video compression, such as High-Efficiency Video Coding
(HEVC) [4] [5], to compress the different syntax elements that are generated by
the encoder. In the coding framework that is discussed in the previous section,
CABAC is applied to the syntax elements that form the output of the encoder (i.e.,
the output of step 3.a). CABAC is a core element of all work discussed in this dis-
sertation, hence it is important that the reader understands the high-level concepts
of CABAC. As the name implies, CABAC is an arithmetic coder for binary val-
ues that adapts the probabilities that are represented in contexts. The meaning of
each highlighted concept is discussed below:

Binary Arithmetic Coder Arithmetic coding is a form of lossless compression
that represents a set of symbols (in case of a binary arithmetic coder, the set of
symbols is {0,1}) into a single number [6]. To define this output number, and as
such the compressed output, the arithmetic coder partitions the range [0.0,1.0] into
subintervals according to the probability distribution of the different symbols. The
top of Figure 2.3 shows an example of this partitioning for a probability of 0.8
(i.e., 80%) for 0 and 0.2 (i.e., 20%) for 1, resulting in two ranges: [0.0,0.8[and
[0.8,1.0].

Figure 2.3: Encoding the binary sequence 001 using Binary Arithmetic Coding.

To encode a symbol, the arithmetic coder retains the partition that corresponds to
the symbol to be encoded. If additional symbols are to be processed, the resulting
partition is further partitioned into intervals, according to the probability distri-
bution. This process is performed iteratively, until the set of symbols has been

CODING FRAMEWORK 2-7

processed.
Figure 2.3 shows an example of the encoding of the sequence of symbols ’0 0 1’
with a fixed probability distribution of 0.8 for ’0’ (P0) and 0.2 for ’1’ (P1) for
each of the input symbols5. In the first step, the interval representing the first sym-
bol (’0’) is selected (i.e., [0.0,P0[or [0.0,0.8[). To encode the second symbol,
this interval is further partitioned, using the same probability distribution, result-
ing in the intervals [0.0,P0 ∗ P0[and [P0 ∗ P0,P0] (i.e., [0.0,0.64[and [0.64,0.8[).
In the second step, the interval representing the second symbol (’0’) is selected
([0.0,0.64[) and further partitioned, resulting in the intervals [0.0,P0 ∗P0 ∗P0[and
[P0 ∗ P0 ∗ P0,P0 ∗ P0[(i.e., [0.0,0.512[and [0.512,0.64[). Finally, the interval
representing the last symbol (’1’) is selected ([0.512,0.64[). This range can then
be represented by any single value6, contained within this range: e.g., 0.5625.
As shown in the example in Figure 2.3, the encoding of each symbol (except for the
first symbol) depends on the encoding of the set of previous symbols. Therefore,
symbols cannot be discerned separately. This property is therefore not compatible
with random access.
To decode the symbol sequence, the decoder will follow a similar approach as the
encoder. In the first step, the decoder will partition the interval according to the
probability distribution and select the interval in which the output value of the en-
coder is situated. Given the encoding example, the decoder will select the interval
[0.0,0.8[as 0.5625 is contained within this range. The first output symbol will be
the corresponding symbol ’0’. In the second step, the decoder will further partition
the interval [0.0,0.8[in the intervals [0.0,0.64[and [0.64,0.8[and again select the
interval that contains the output value 0.5625, i.e., interval [0.0,0.64[, which corre-
sponds to symbol ’0’. In the third and final step, the decoder will further partition
this interval into the intervals [0.0,0.512[and [0.512,0.64[. Given that 0.5625 falls
within the second interval, corresponding to symbol ’1’, the output of the decoder
will be ’0 0 1’.

Adaptive An Adaptive Binary Arithmetic Coder is a binary arithmetic coder that
is capable of adapting the probability distribution of the symbols. When a symbol
has been encoded, the probability distribution is adapted to the new probability
distribution (i.e., the probability of the coded symbol is increased, the probability
of the other symbol is lowered). The process of probability distribution adaptation
is often referred to as modeling. It is important that the adaptation of the proba-
bility distribution is performed after coding an input symbol as the decoder is not
aware of this symbol before decoding it.
During the development of the coding solution in Chapter 5, some experiments
were performed on adapting the speed of adaptation. The results of these adapta-

5Note that the sum of all probabilities Pi is 1.
6Provided that the length of the sequence is known.

2-8 CHAPTER 2

tions were showing no significant gains in compression effectiveness (across the
test set). Furthermore, adapting parts of the CABAC encoder would require ex-
isting CABAC implementations7 to be adapted. Therefore, it was decided to not
perform further research on this topic.

Figure 2.4: Examples of different contexts.

Context A Context-Adaptive Binary Arithmetic Coder is an adaptive binary
arithmetic coder that allows to use multiple (adaptive) probability distributions,
represented in so-called contexts. Figure 2.4 shows some examples of different
contexts: context 0 (ctx 0) represents a probability of 80% for symbol ’0’, context
1 (ctx 1) represents a probability of 80% for symbol ’1’, context 2 (ctx 2) repre-
sents an equi-probability state i.e., each symbol has a probability of 50%. When
encoding a symbol, exactly one context is used and adapted. The decision on
which context is to be selected is performed on a higher level and can be based on
any type of information that is available to both the encoder and the decoder (Sec-
tion 2.5.2) provides more details on how this process is performed). In a binary
arithmetic coder, each context can be represented by one value, e.g., the probabil-
ity of ’0’. The probability of the other symbol (in this case ’1’) can be calculated
from the probability of the symbol: probability(1) = 1.0− probability(0).
In addition to the context-adaptive mode, CABAC offers a bypass mode. In this
mode, CABAC assumes that the input symbols are equally distributed and hence
codes these bins assuming a fixed probability distribution with equal probability
for the input symbol to be 0 or 1.

7CABAC implementations are widely available in both hardware and software solutions. Therefore,
CABAC was selected for the research described in this dissertation.

CODING FRAMEWORK 2-9

2.5.1 Binarization
CABAC can only be applied on a set of binary symbols, i.e., symbols can only be
0 or 1. Therefore, there is a need for transforming non-binary values to a sequence
of binary symbols, called bins. These transformations are called binarizations. Be-
sides the conversion to a binary string, it is important that a binarization is designed
in such a way that each bin (i.e., a bit in the binarization output) is as predictable
as possible as this improves the effectiveness of the arithmetic coder. Some bi-
narization processes even create an output that is larger than the representation of
the input symbol in binary coding. However, if the bins in these binarizations are
more predictable, the output can be (significantly) smaller after arithmetic coding.
An example of a binarization is Truncated Unary [4], which represents the non-
binary value N by N 1-values followed by a 0. If N is equal to a defined maximum
value cMax, the trailing 0-value is discarded. Table 2.1 shows the Truncated Unary
binarization for values 0 to 3 with cMax equal to 3. In this case, the binary rep-
resentation of value 0 is one bit shorter and the representation of values 2 and 3 is
one bit longer than the standard binary representation, which would need two bits
to represent each of the values.

value binarization
0 0
1 10
2 110
3 111

Table 2.1: The Truncated Unary binarization for values 0 to 3 (cMax=3).

2.5.2 Context Selection
To encode a symbol, CABAC requires an expected probability distribution for this
symbol. This probability distribution is stored in a context8. To identify the context
that will be applied to the specific symbol, a process called ”context selection” is
performed. This process selects the contexts based on information outside of the
CABAC process. Examples of such information are:

• The position of the input symbol within a binarization;

• The previous input symbol;

• The previous input value to the binarization;

• The correctness of previous predictions.
8At the start of the CABAC coding process, each context is set to a predefined value. This process

is called ”context initialization”.

2-10 CHAPTER 2

It is advised to limit the number of contexts used for coding. A larger set of
contexts will typically allow for a better adaptation to the exact probabilities of the
input data but will require more memory to store these contexts and will slow down
the adaptation process as less symbols will be coded using this context. Therefore,
it is advised to use a specific context for multiple symbols which are (expected
to be) distributed according to the same probability distribution. This will reduce
memory requirements and speed up the adaptation process as more symbols are
coded with a single context.

2.5.3 Random Access

As discussed in Section 2.5, the impact of CABAC on random access is defined by
the concept of arithmetic coding; it is impossible to discern individual symbols or
syntax elements in an arithmetically coded bit stream. Following this reasoning,
the only point in the compressed bit stream where decompression can start, is at
the very beginning.

To allow for random access, additional entry points are created (i.e., points
where decompression can start), by resetting the complete status of the encoder
(CABAC contexts, search window, ...) to its initial state every m blocks. That
way, groups of CABAC-encoded blocks are created. Each group of blocks can be
decoded separately, and as such provides a random access point. For ease of use,
random access blocks are byte-aligned.

2.6 Conclusions and Original Contributions

In this section, a novel coding framework has been presented that can be used for
the compression of genomic data and forms the foundation of the coding solutions
discussed in Chapter 3 and Chapter 4. The coding framework processes the in-
put data in a single pass and without any reference to external data. The coding
framework consists of three steps: input parsing, coding tool selection, and data
output. In the first step, data are read from an input file and split into blocks (a set
of multiple input values, e.g., nucleotides or quality scores). In the second step,
the framework tests a set of coding tools and selects the most effective coding
tool. In the third step, the parameters for the selected coding tool and (if neces-
sary) the residue are processed using Context-Adaptive Binary Arithmetic Coding
(CABAC). All input data are processed in one pass and without reference to exter-
nal data.
The coding framework has been designed to offer a flexible foundation for the
coding of genomic data: the sets of input file formats, alphabets, coding tools, and
output file formats can be extended easily without the need for adapting the core
of the coding framework. Additionally, the trade-off between effectiveness and

CODING FRAMEWORK 2-11

efficiency can be selected by configuring the set of coding tools, and framework
parameters (such as block size and search window size).
Finally, to enable random access in combination with arithmetic coding and coding
tools that use previously encoded data, the concept of random access entry points
has been introduced. At these points, the encoder status (i.e., CABAC contexts
and the search window) is reset.

Binarization A binary representation of a given symbol.
Block Size The number of symbols stored in one block.
Coding Tool An algorithm used to encode or predict the data

contained in a block.
Context A value that indicates the expected probability

for a given symbol.
Effectiveness The compression ratio provided by a coding

solution. A higher effectiveness results in a
smaller output.

Efficiency The complexity of a coding solution. A higher
efficiency results in faster encoding.

Random Access Block Size The number of blocks contained in one
Random Access Block.

Random Access Block A unit of blocks, that can be decoded without
additional information. At the beginning of
a Random Access Block, the arithmetic coder is
reset and the search window is cleared.

Residual Data The data that contains the information required
to correct a prediction.

Search Window The set of blocks that can be used as a reference
by coding tools.

Symbol Alphabet The set of symbols that can occur in the input
data stream.

(Search) Window Size The number of blocks that are contained within
the (sliding) search window.

2-12 CHAPTER 2

References
[1] M. H.-Y. Fritz et al., ”Efficient storage of high throughput DNA sequencing

data using reference-based compression”, Genome Research, Vol. 21, no. 5,
pp. 734-740, 2011.

[2] M. Wien, ”High efficiency video coding: coding tools and specification.”,
Berlin, DE: Springer, 2015.

[3] V. Sze et al., ”High Efficiency Video Coding (HEVC): Algorithms and Archi-
tectures.”, Basel, CH: Springer, 2014.

[4] D. Marpe et al., ”Context-based adaptive binary arithmetic coding in the
H.264/AVC video compression standard”, IEEE Trans. Circuits Syst. Video
Technol. IEEE Transactions on Circuits and Systems for Video Technology,
vol. 13, no. 7, pp. 620-636, 2003.

[5] V. Sze et al., ”High Throughput CABAC Entropy Coding in HEVC”, IEEE
Trans. Circuits Syst. Video Technol. IEEE Transactions on Circuits and Sys-
tems, Vol. 20, no. 12, pp. 1778-1791, 2012

[6] G. G. Langdon, ”An Introduction to Arithmetic Coding”, IBM Journal of Re-
search and Development IBM J. Res. and Dev., vol. 28, no. 2, pp. 135149,
1984.

3
AFRESh: Compression of Reads and

Assembled Sequences

3.1 Introduction

AFRESh is a compression solution for genomic reads and assembled genomic se-
quences. These are the data that are contained in line 2 of each read in FASTA1

files (see Figure 3.12) and FASTQ3 files (see Figure 3.24). To enable effective
compression for genomic reads and assembled genomic sequences, the coding
framework presented in Chapter 2 has been extended with alphabets, prediction
tools, and encoding tools. To encode the data generated by the framework (i.e.,
signaling information), the prediction tools, and the encoding tools, a set of bina-
rizations and contexts have been designed and defined for use with CABAC.
First, an overview is provided of existing approaches for genomic data compres-
sion. Subsequently, the designed framework extensions are discussed, followed by
the discussion of the designed binarizations and the approaches used for context
modeling. Finally, the effect of random access block granularity on coding effec-
tivity is discussed, followed by an extensive analysis of the coding performance
offered by AFRESh when coding reads and assembled sequences, respectively.

1FASTA is a file format designed by Lipman and Pearson for use with the FASTA similarity search
tool [1].

2For reading comfort, Figure 1.9 is repeated here.
3FASTQ is an extension of the FASTA file format, with added support for quality scores.
4For reading comfort, Figure 1.10 is repeated here.

3-2 CHAPTER 3

Line 1: >EAS149:136:FC806VJ:2:2104:1543:19393
Line 2: GATTTGGCGGTTCAAGAGCAGTATCGATCATAATAGTATAATCCATTT

Line 1: >EAS139:136:FC706VJ:2:5:1000:12850
Line 2: AAGAGCAGTATCGATCATAATAGTATAACCAATGTACATTTGTCAGCG

Figure 3.1: Example of two reads in a FASTA data file.

Line 1: @SRR001666.1 EAS149:136:FC806VJ:2:2104:1543:19393
Line 2: GATTTGGCGGTTCAAGAGCAGTATCGATCATAATAGTATAATCCATTT
Line 3: +SRR001666.1 EAS149:136:FC806VJ:2:2104:1543:19393
Line 4: EEDEEDEDCCDDDCCBA><>>>>>>>>====<<<888976333#####

Line 1: @SRR001666.1 EAS139:136:FC706VJ:2:5:1000:12850
Line 2: GATTTGGCGGTTCAAGAGCAGTATCGATCATAATAGTATAATCCATTT
Line 3: +SRR001666.1 EAS139:136:FC706VJ:2:5:1000:12850
Line 4: IIIIIIIIHFGFFEEDDCDDDCBBA>>>><<88887778776666665

Figure 3.2: Example of two reads in a FASTQ data file.

3.2 Related Work
In general, two different types of compression solutions are used for the compres-
sion of genomic data: generic compression tools and specialized genomic data
compression algorithms.

Generic compression tools such as GNU Gzip and 7-Zip provide support for
the compression of both reads and assembled sequences, are easy-to-use and of-
fer acceptable compression rates. As a result, these tools are commonly used;
however, the aforementioned tools do not come with support for random access.
Hence, it is necessary to transmit complete files, even when only a subset of the
data is needed.

Specialized genomic data compression tools can be split further into two
different types, depending on the input data: read data compression tools (e.g.,
the reference-based tools Deez [2] and CRAM [3], and the referenceless tools
LFQC5 [4] and the referenceless two-pass algorithms SCALCE6 [5] and OR-
COM7 [6].), and reference-based assembled sequence compression tools (e.g.,
ERGC8 [7] and iDoComp [8]).

LFQC uses an approach where a read is split into l-mers of a length between

5Lossless FASTQ Compressor
6Sequence Compression Algorithms using Locally Consistent Encoding
7Overlapping Reads COmpression with Minimizers
8Efficient Referential Genome Compressor

AFRESH 3-3

4 and 12 nucleotides. These l-mers are put into a bucket9, based on the nucleotide
that occurs in more than 50% of the cases. If no such nucleotide exists, the l-mer
is put into a default bucket. Depending on the bucket to which the l-mer has been
assigned to, a different Huffman tree is used for compression.

The two-pass algorithms SCALCE and ORCOM use an approach were reads
are grouped into bins that share substrings (i.e., a chunk of nucleotides) followed
by a second step in which the reads are compressed. After grouping the reads into
bins SCALCE compresses the binned data, using GZIP. ORCOM however, first
reorders the reads in a bin in such a way that the overlapping parts of the reads
are close to each other. In the final step, ORCOM uses one of the previous reads
as a reference and encodes the differences between these reads, with a different
encoding depending on the overlap and the number of differences. The data that is
created in this step is then compressed using an arithmetic coder.

The other tools mentioned above rely on the use of so-called reference se-
quences. Such an approach allows for significantly higher compression rates com-
pared to stand-alone compression. However, to allow every file to be handled as a
separate entity (and as such avoid the storage and management of reference files
and their different versions), a stand-alone solution was chosen. This approach
is followed by many popular genome data banks such as the DNA Data Bank of
Japan (ftp.ddbj.nig.ac.jp) and EBI (www.ebi.ac.uk). Both provide all data avail-
able in non-reference file formats such as FASTQ and BAM10, while only a subset
of the data is available in reference-based formats, such as CRAM [3]. These
elements lead to the investigation of a referenceless approach.

3.3 Framework Extensions
To support the compression of nucleotidic information, the framework proposed in
Chapter 2, has been extended with a set of alphabets and prediction and encoding
tools. These extensions are discussed in the next Sections. Section 3.4 will dis-
cuss the processes and extensions related to Context-Adaptive Binary Arithmetic
Coding (CABAC) i.e., binarizations and context modeling.

3.3.1 Alphabets

Although DNA is made up of only four nucleotides (A, C, G, T), sequenced (and
assembled) genomic data can contain additional so-called IUB/IUPAC nucleic acid
codes [9]. AFRESh supports three different (sub)sets of these codes, referred to as
alphabets, of these IUB/IUPAC nucleic acid codes:

9Note that this bucket is not a storage concept, as LFQC is a single-pass compressor the bucket is
only a label to identify the coding tree during compression.

10BAM files can contain links to references but are stored as stand-alone files, i.e., not using a
reference.

3-4 CHAPTER 3

• Simple Alphabet (S): A, C, G, T

• Extended Alphabet (E): A, C, G, T, N

• Full Alphabet (F): A, C, G, T, N, R, Y, K, M, S, W, B, D, H, V, -

During encoding, AFRESh identifies and signals the alphabet on a block-per-block
basis, allowing for an effective encoding per block, while maintaining support for
all IUB/IUPAC nucleic acid codes.

3.3.2 Prediction and Encoding Tools

To code the genomic symbols, AFRESh uses a set of coding tools. This set of
coding tools allows AFRESh to exploit, on a block-by-block basis, the different
types of redundancy that can be found within genomic data. Figure 3.3 shows
the different coding tools that are currently available in AFRESh, split into two
categories:

Prediction Tools

Hierarchical

HNSP/HRCSP

Full-Block

Search

NSP/RCSP

Repetition

SNR/DNR/CoR

Encoding Tools

HxEBE

Figure 3.3: Coding toolset currently available in AFRESh.

• Prediction tools - define a prediction and create correction information
(residual data). The predictions are based on previously encoded parts of
the input file or on a repetition of one or more bases. To mitigate com-
pression complexity, the search and hierarchical tools will only look for the
best matching blocks within a certain search window of n blocks. The latter
parameter can be configured at initialisation.

• Encoding tools - convert blocks to a bit representation. This can be either
plain bit encoding (Binary Encoding, or BE) or based on the statistical anal-
ysis of previously encoded parts of the input file (Huffman Encoding with
code words consisting of x nucleotides, HxE). The statistical analysis for the
HxE tools is, similar to prediction tools, limited to the search window.

AFRESH 3-5

3.3.2.1 Prediction Tools

The selection of provided prediction tools is such that they are able to exploit a
variety of known characteristics of genomic data. They are as follows:

• Single Nucleotide Repetition (SNR) - generates a prediction based on the
repetition of one nucleotide. This tool is mainly applied to homopolymers
(repetitions of a single nucleotide) and regions of uncertainty (positions
where reliable base calling was not possible, indicated with the symbol/
nucleotide N).

• Double Nucleotide Repetition (DNR) - generates a prediction based on the
repetition of a pair of nucleotides. This tool is mainly applied to dinucleotide
repeats.

• Codon Repetition (CoR) - generates a prediction based on the repetition of
codons (or, as such, amino acids, represented by a triplet of nucleotides).

• Normal Search Prediction (NSP) - selects, within the search window, the
contingent sequence of nucleotides of length block size that has the least
amount of mismatches when compared to the current block. This tool can
be used to compress larger tandem repeats, such as minisatellites, and over-
lapping reads.

• Reverse Complement Search Prediction (RCSP) - reverses and comple-
ments the current block, followed by a NSP based on this converted block.
This tool can be used to compress the two strands of the same genomic re-
gion.

For larger block sizes, it may be more effective to split a block into two smaller
parts, so to be able to look for a match separately. These tools can be used for reads
or blocks where both halves differ significantly (e.g., one half contains a region of
uncertainty). Therefore, two hierarchical prediction tools are provided:

• Hierarchical Normal Search Prediction (HNSP)

• Hierarchical Reverse Complement Search Prediction (HRCSP)

3.3.2.2 Encoding Tools

In cases where prediction tools are not effective one of two (types of) encoding
tools can be selected:

• Binary Encoding (BE) - represents all nucleotides in a binary manner using
two bits (simple alphabet), three bits (extended alphabet), or four bits (full
alphabet). BE is needed to encode the first block after a Random Access

3-6 CHAPTER 3

starting point and provides a lower boundary for compression effectiveness
when encoding blocks.

• Huffman Encoding (HxE) - represents the input nucleotides using Huff-
man Encoding. Three Huffman trees are generated, based on the nucleotide
frequencies in the search window: H1E for encoding of single nucleotides,
H2E for encoding of pairs of nucleotides, and H3E for encoding of triplets
of nucleotides11. These tools can be used in situations where a bias is ob-
served towards certain symbols and/or symbol combinations, hence improv-
ing coding effectiveness over fixed-length Binary Encoding.

3.3.2.3 Removed Coding Tools

During the development of AFRESh, two additional prediction tools were tested:

• Reverse Search Predictor (RSP) - reverses the current block, followed by
an NSP based on this converted block.

• Complement Search Preditor (CSP) - creates the complement of the cur-
rent block, followed by an NSP based on this converted block.

However, both of these prediction tools were used in less than 0.03% of the
cases and resulted in a compression gain that was below 0.001 bits per base. Given
that these prediction tools resulted in severe efficiency drop (up to 40% slower en-
coding, compared to the current toolset), it was decided to remove these prediction
tools.

3.4 Optimization Methodology
In this section, the process of statistical analysis of the main syntax elements is
discussed, followed by the resulting definition of the binarization and the context
modelling for these elements. Based on this process, the effectiveness (i.e., the
compression ratio) of the CABAC arithmetic coder was maximized.

The optimization process consisted of two iterations and was based on two test
files12:

• The Human Y Chromosome 13

• The Arabidopsis Thaliana Genome 14

11These triplets correspond to codons or amino acids.
12Given the extensive set of configurations that have to be tested, this test set is limited to two test

files, each representing a different type of species: human and plants. The Y chromosome has been
selected as it is smallest chromosome.

13ftp://ftp.ncbi.nih.gov/genomes/H sapiens/CHR Y/
14https://www.arabidopsis.org/download files/Sequences/TAIR10 blastsets/

TAIR10 seq 20101214 updated

AFRESH 3-7

In the first iteration, the test files were encoded without CABAC. The resulting
coded bitstream decisions were then analysed in order to define the binarization
and context selection procedure for the alphabet indicator and the residue. In the
second iteration, the test files were encoded with CABAC enabled and the process
of analysis has been repeated to define the binarization and context selection for the
predictor indicator and the predictor specific parameters. Thanks to this iterative
approach, the influence of residue compression was incorporated on the predictor
selection.

Additional tests showed that, thanks to the adaptive nature of CABAC and the
design of the proposed binarizations, no changes were needed for the compres-
sion of reads. In what follows, the binarization and context modeling of the most
important syntax elements will be discussed.

3.4.1 Binarization and Context Modeling of Alphabet Indica-
tors

To find a suitable binarization for the alphabet indicator syntax element, the rea-
soning was adopted that nucleotides other than A, C, G, T may be present, due
to uncertainties introduced by sequencing machines and sequencing algorithms.
These uncertainties (especially, uncertainties denoted by the character ’N’) often
occur in bursts. It is therefore expected that, for most blocks, the alphabet indicator
will be the same as the previous block. This is confirmed by a statistical analysis,
which shows that the assumption is correct for 95.56% to 99.99% of the cases,
depending on the block size and test file.

Based on the above observation, the binarization of the alphabet indicator was
defined as the combination of a prefix and a suffix. The prefix is a flag indicating
whether or not the current alphabet is the same as in the previous block. If another
alphabet indicator is used, the suffix is appended. The suffix is used in order to dis-
cern between the remaining possible alphabets. Table 3.1 shows the binarization
scheme applied when three alphabets are configured.

alphabet index prefix suffix
current == previous NA 1
current != previous 0 0 0

1 0 1

Table 3.1: The binarization scheme for the alphabet indicator field.

In the context modeling procedure, a different context is selected for the prefix
and the suffix. The context used for the prefix is initialized with the most probable
symbol (MPS) equal to one and a probability state resembling a high degree of
certainty. The context used for the suffix is initialized with MPS equal to zero, and

3-8 CHAPTER 3

a probability state assigning equal probability to zero and one. The characteristics
of the suffix are then learned by CABAC throughout the encoding process.

3.4.2 Binarization and Context Modeling of Residue

A residue is the correction that needs to be applied to a prediction in order to gener-
ate the original block. A residue consists of two parts: error positions (represented
by a Residue Mask, i.e., a series of ones and zeros) and error corrections (i.e., a
list of nucleotides). Figure 3.4 shows an example of a double repeat prediction,
based on the nucleotide pair CG, generating the correct output block by applying
the residue.

Original Block: CGCGTCAGCTCA

Prediction: CGCGCGCGCGCG

Residue Mask: 000011100101

Error Corrections: TCATA

Reconstruction: CGCGTTAGCTCA

Figure 3.4: Example of a double repeat prediction with prediction error correction.

The error positions are binarized as a mask of length block size. For each
position in the block, a zero indicates a correct prediction and a one indicates an
incorrect prediction (see Figure 3.4). It is assumed that the number of mismatches
is lower than the number of matches (zeros), as the best prediction is selected. This
is a highly desirable property for CABAC. For context modeling of the error posi-
tions, a different context is selected per coding tool. That way, it is acknowledged
that performance of (different) predictors can vary, and as such, that it is necessary
to take into account a different (and possibly evolving) ratio between matches and
mismatches.

Figure 3.5: Visualization of a residue error correction with a diagonal orientation.

The error corrections are encoded as a sequence of corrections. For blocks us-
ing the full or extended alphabet, the fixed-length binary index of the correct letter
in the corresponding alphabet is encoded in the CABAC bypass mode. For the
majority of the blocks (that is, blocks that use the simple alphabet), a binarization
of the correct nucleotide is applied.

For ease of comprehension, consider a 2×2 square filled left to right and top to
bottom with the letters A, T, C, and G. Corrections are represented as the orienta-

AFRESH 3-9

tion of the arrow pointing from the prediction to the correction. The orientation is
either horizontal, vertical, or diagonal. Figure 3.5 shows an example of a diagonal
orientation, having G as the prediction and A as the correction.

Statistical analysis of the prediction errors that occurred in the test files gener-
ated in iteration one showed that diagonal corrections are occurring more frequent
than horizontal and vertical corrections, especially for predictions of C and G,
where probability of such correction (i.e., T, and A, respectively) is over 50%.
Therefore, a short binarization (only consisting of the prefix) has been assigned to
the diagonal orientation (Table 3.2). An additional suffix is added to select between
Horizontal and Vertical corrections.

Correction prefix suffix
Diagonal 0
Vertical 1 0
Horizontal 1 1

Table 3.2: Binarization scheme for prediction error corrections.

For context modeling, a different context is selected based on the predicted
nucleotide, as the relative frequencies of the orientations differ per nucleotide.

3.4.3 Binarization and Context Modeling of Predictor Indica-
tors

To define a suitable binarization for the predictor indicator, the encodings of the
second iteration were analysed for the relative frequency of the different predictors
and the frequency of two neighbouring blocks using the same predictor. Table 3.3
shows the resulting binarization scheme.

For the majority of the predictors (all predictors, with the exception of the split
predictors), the probability of two neighbouring blocks using the same predictor is
between 35% and 50%. In case of reads, the probability rises to more than 95%
for NSP and RCSP. Based upon these observations, a first flag is used to indicate
whether or not the predictor is the same for this and the previous block. That way,
one prefix suffices to represent the predictor for approximately 40% of the blocks,
with a peak of 95+% for high-coverage aligned reads.

Flag 1 Flag 2 Flag 3 Suffix
Same as previous 1
Encoding tools 0 1 identifier
NSP and RCSP 0 0 1 identifier
Other prediction tools 0 0 0 identifier

Table 3.3: Binarization scheme for the predictor indicator.

3-10 CHAPTER 3

From the analysis of the relative frequencies of the different predictors, it was
deducted that the encoding tools (Binary and Huffman) were used for more than
60% of the blocks, in case of assembled sequences. Therefore, a second flag is
used in the binarization scheme to indicate whether the current coding tool is part
of this group or not. For aligned reads, NSP and RCSP are typically used more
than 95% of the blocks, which leads to a high probability of the first flag being
equal to 1, hence skipping the second and third flag.

Some of the tools (e.g., Single Nucleotide Repetition, Double Nucleotide Rep-
etition, and Codon Repetition) are only used in very specific cases and are there-
fore uncommon. To separate these from the other predictors, a third flag is used.
Finally, a suffix is added to identify the predictor in each of the subgroups. A
simplified binarization scheme is shown in Table 3.3.

In the context modeling procedure, multiple context models are applied for the
first flag. The actual context model to be used is selected based on the previously
used coding tool, as one tool is more prone to repetition than the other. For the
second flag, one of two context models is selected, based on whether or not the
previous coding tool was an encoding tool. For the third flag, one of two context
models is selected, based on whether or not the previously used prediction tool was
common (i.e., NSP or RCSP). Lastly, for each suffix, a context model is provided.

During the development of AQUa (See Chapter ch4), the observation was made
that while this approach is very effective, it is not guaranteed that it will work
across all possible data sets, including data sets that result from future sequencing
technologies. Therefore, a binarization has been selected for AQUa that allows for
adaptation to different distributions.

3.5 Random Access
In this section, the effect of random access on the usage and effectiveness of
CABAC is discussed. As discussed in Chapter 2, it is impossible to discern in-
dividual symbols in an arithmetically coded bitstream. Therefore, the concept of
CABAC-encoded blocks was introduced, where each of these blocks can be de-
coded separately.

Table 3.4 shows the typical loss in compression effectiveness for different reset
window sizes, compared to the optimal size of 131,072 blocks15. From these re-
sults, it can be concluded that the choice of the CABAC reset window (and as such
the random access block size) has a minor effect on the compression effectiveness.

15The total coverage of a random access block can be calculated by
random access block size * block size.

AFRESH 3-11

CABAC reset window
4,096 16,384 65,536 131,072 262,144

Overhead 0.19% 0.16% 0.12% - 0.15%

Table 3.4: Percentage of overhead versus the optimal CABAC reset window (131,072
blocks).

3.6 Experimental Results
In this section, the experimental setup and the effectiveness of AFRESh when
encoding reads and assembled sequences are discussed.

3.6.1 Experimental Setup
To analyse the compression effectiveness for genomic reads, five test files were
used that are part of the MPEG benchmark set16. The selected files contain aligned
data in SAM/BAM format (both high and low coverage) and were converted to
FASTQ. The files with aligned reads were selected as they improve the efficiency
of the search tools, as best matches are expected to be available in close proxim-
ity. For files with non-aligned reads, it is advised to pre-process them to generate
”clusters” of similar reads. This will improve compression effectiveness and effi-
ciency as it removes the need for very large window sizes to exploit redundancies,
and ideally optimizes the read order for the prediction tools. As discussed further,
the framework AFRESh has been designed to support easy modification and ex-
tension, and is therefore not optimized for speed.
Quality scores and metadata information are ignored for the measurements for all
tested compression solutions. Details on the sequences selected can be found in
Table 3.5. All files contain the nucleotides A, C, G, T, and N.

To analyse the compression effectiveness for assembled sequences, assembled
sequences from the NCBI archive17 were used. A selection has been made that
contains all Human Chromosomes (of which ChrY has been used to configure
CABAC), and multiple genomes originating from plants and bacteria. A list of the
test files and their corresponding sizes (in number of nucleotides) can be found,
together with the compression results, in Table 3.5.

The compression tests were performed in parallel on a set of five servers, each
equipped with 2 Intel Xeon E5-2650 v3 CPUs (10 cores + 10 HT cores each) and
128GB of RAM. Each computing core was dedicated to the encoding of one test
file with one configuration (a window size/block size combination) at a time.

16http://mpeg.chiariglione.org/standards/exploration/genome-compression/database-evaluation-
genome-compression-and-storage

17ftp://ftp.ncbi.nih.gov/genomes/

3-12 CHAPTER 3

Table
3.5:

D
etailed

inform
ation

ofreads
testsetand

optim
alcom

pression
settings.

A
bbreviation

D
ataset

U
ncom

pressed
Size

C
om

pression
Param

eters
Size

(N
ucleotides)

C
overage

B
lock

Size
W

indow
Size

H
S

(H
igh)

N
A

12878
S1

159,859,872,414
52×

101
5

H
S

(L
ow

)
9827

2#49
5,646,323,600

1.75×
100

2
H

C
C

H
C

C
1954.m

ix1.n80t20
54,412,950,282

26×
101

16
M

IS
M

iSeq
E

coli
D

H
10B

110721
PF

1,976,351,850
448×

150
3

H
S

R
N

A
K

562
cytosol

L
ID

8465
TopH

at
v2

18,732,205,716
16×

76
2

AFRESH 3-13

Speed tests were performed sequentially on a workstation, equipped with an Intel
i7 4790K processor and 16GiB of RAM.

3.6.2 Reads

In this section, AFRESh will be compared to three existing algorithms: OR-
COM [6], SCALCE [5] and LFQC [4]. These algorithms are the best-performing
algorithms currently available, outperforming other state-of-the-art approaches such
as QUIP [10] and DSRC2 [11] by a significant margin. It should be noted that OR-
COM, SCALCE and LFQC do not support random access, thus allowing them to
be more effective. Indeed, they can exploit redundancy that is available across all
input data. This observation holds particularly true for SCALCE and ORCOM,
as these two tools take advantage of a two-pass approach that first analyses re-
dundancy throughout the whole input file before applying compression. However,
this two-step approach typically requires a large amount of memory and/or disk
space for temporal storage. Additionally, a single-step approach allows for ”live
encoding”. Live encoding makes it possible for the framework to act as a filter that
compresses genomic data as it is being generated.
Additionally, AFRESh is compared to two generic algorithms, both at their highest
compression setting: GNU Gzip (-best setting) and 7-Zip (LZMA ultra setting).

The configuration of AFRESh was as follows:

• The random access block size was set at 131,072 blocks. As shown in Ta-
ble 3.4, this is the optimal value.

• The block size was selected to match the length of the reads in the different
test files.

• The window size was selected based on the coverage of the reads and the
type of genome.

The actual values used for block and window size can be found in Table 3.5.
The results for the different algorithms are limited to the genomic symbols.

Quality scores and metadata information are ignored18. The compression results
for AFRESh, together with the results of the other algorithms, are shown in Ta-
bles 3.6 and 3.7. The results are expressed in bits per base (bpb), with a base
denoting a nucleotide. It can be observed that the compression rates obtained by
AFRESh range from 0.1523 bits/base for Bacteria to 1.1074 bits/base for the low-
coverage Homo Sapiens sequence. Comparing the compression results with GNU
Gzip and 7-Zip, SCALCE, and LFQC, AFRESh provides a better compression
rate for all of the test files, while additionally offering random access.

18The compression of quality scores is handled in Chapter 4

3-14 CHAPTER 3

Comparing the compression results to ORCOM, AFRESh provides a gain of
3% to 44% for Homo Sapiens (low), Cancer Cell Lines, and Bacteria. For Homo
Sapiens (high) and Homo Sapiens RNA on the other hand, the compression rate
provided by AFRESh is 30% lower. While the random access overhead can be a
cause of loss in compression effectiveness, this cannot explain such a large differ-
ence. Indeed, further analysis showed that the coverage of the reads in these files
is not equally divided.

Dataset Compression Rate (Bits per Base)
Gzip 7-Zip ORCOM SCALCE LFQC AFRESh AFRESh

(LZMA) (RAW)
HS (High) 0.4819 0.3352 0.2371 0.5330 0.4287 0.3061 0.4916
HS (Low) 1.7464 1.4158 1.9627 1.4280 1.4004 1.1074 1.6581
HCC 0.7043 0.5422 0.4553 0.6936 0.6254 0.4423 0.7064
MIS 0.2595 0.1857 0.1763 0.3101 0.2373 0.1523 0.2770
HS RNA 0.2122 0.1583 0.1187 0.1926 0.2693 0.1556 0.4121

Table 3.6: Compression results - reads (in bits per base).

Dataset AFRESh File Size
Gzip 7-Zip ORCOM SCALCE LFQC AFRESh

(LZMA) (RAW)
HS (High) -36.46% -8.66% 29.16% -42.55% -28.57% -37.72%
HS (Low) -36.59% -21.79% -43.58% -22.46% -20.93% -33.21%
HCC -37.20% -18.42% -2.85% -36.23% -29.27% -37.39%
MIS -41.30% -17.99% -13.61% -50.88% -35.82% -45.02%
HS RNA -26.71% -1.72% 31.09% -19.25% -42.24% -62.25%

Table 3.7: Compression results - reads (file size, compared to other solutions).

Especially in the last 4% of the reads, coverage is much lower19. With lower
coverage (or no mapping information), a larger window size will offer better com-
pression rates. As the window size parameter is fixed in the current version of
AFRESh, this cannot be handled efficiently. Initial simulations on the Homo Sapi-
ens (High) test file with an adaptive window size show compression gains of at
least 12%, compared to the non-adaptive version. Further, it should be noted that,
next to the additional functionality (random access), AFRESh is single-pass and as
such can only exploit redundancy based on previously processed data. Dual-pass
solutions, such as ORCOM and SCALCE, can exploit redundancy across the com-
plete input file at a cost of temporal disk storage or extensive RAM usage. Single-
pass processing, on the other hand, has the advantage to be able to compress data

19Most of these reads are actually unmapped, and as such not sorted.

AFRESH 3-15

as they are being generated. For completeness, a column has been added to Ta-
ble 3.6 and Table 3.7 that shows the actual gain using a CABAC arithmetic coder
versus raw syntax and residue storage - AFRESh (RAW). CABAC offers a gain of
between 33.21% and 62.25% across the test set.

The compression speeds, given the compression settings shown in Table 3.5,
range from 190 KiB/s to 579 KiB/s. It needs to be emphasized that during devel-
opment of AFRESh, focus was on extensibility and adaptability of the different
processing steps and readability of the code (i.e., the algorithms), not on speed.
Regarding efficiency, a practical approach will be discussed in Chapter 5.

3.6.3 Assembled Sequences
In this section, AFRESh will be compared to two generic compression algorithms,
as no solutions were identified that support compression of large assembled se-
quences without reference files. The configuration of AFRESh was as follows:

• The random access block size was set at 131,072 blocks.

• The block size was set to 132 bases. As shown in Figure 3.6, this value
offers the highest effectiveness over the different chromosomes of the human
genome.

• The window size has been set to 5 values: 1, 4, 64, 1,024 and 8,192. Each
window size will result in its own bias of effectiveness and efficiency.

• CABAC was enabled for all window sizes.

• To display the effectiveness of CABAC, the test is also run with CABAC
disabled and window size 8,192.

Table 3.8 shows the compression results for different window sizes: 1, 4, 64,
1,024, and 8,192, comparing them to both GNU Gzip (-best setting) and 7-Zip
(LZMA ultra setting). An additional column shows the compression results for a
window size of 8,192 with CABAC disabled (RAW). Looking at the window size,
it can be seen that with every increase of the window size, the compression results
improve significantly. As complexity increases linearly with the window size, a
trade-off can be selected easily, depending on the effectiveness requirements and
available computing resources.
Compared to the other solutions, it can be seen that AFRESh outperforms GNU
Gzip, even at the smallest window size, both for human genomes and other types
of genomes. Compression gains of up to 34% were seen. AFRESh outperforms
7-Zip for most of the sequences at a window size of 4 and shows high gains of
up to 16% in compression effectiveness at larger window sizes such as 1,024 and
especially at 8,192. Finally, the results show that CABAC offers an additional
compression gain of between 7% and 19% over RAW syntax storage.

3-16 CHAPTER 3

33 66 99 132

1.
5

1.
6

1.
7

1.
8

1.
9

2.
0

block_size (in #nucleotides)

co
m

pr
es

si
on

 r
at

e
(in

 b
pb

)

Figure 3.6: Boxplot of the effect of the block size on the resulting compression rate over
the different chromosomes of the human genome (in bits per base).

It needs to be noted that the Chromosome Y test file was also part of the
CABAC training set, although this is not expected to have a big influence on the
compression effectiveness. Other chromosomes, such as Chromosome 19, can be
compressed equally well and have equal gains with the usage of CABAC. Addi-
tionally, it can be observed that the compression efficiency for Chromosome Y is
also significantly better, compared to the other Chromosomes, when CABAC is
not used (i.e., AFRESh (RAW)).

As mentioned in the previous section on reads, the current implementation of
the supporting framework for AFRESh has not been optimized for speed. Com-
pression speeds range from 382 KiB/s for window size 1 down to less than 1 KiB/s
for window size 8,192.

AFRESH 3-17

Ta
bl

e
3.

8:
C

om
pr

es
si

on
re

su
lts

-a
ss

em
bl

ed
se

qu
en

ce
s.

Se
qu

en
ce

N
am

e
C

om
pr

es
si

on
R

at
e

(B
its

pe
rB

as
e)

A
FR

E
Sh

Fi
le

Si
ze

R
ed

uc
tio

n
G

zi
p

7-
Z

ip
A

FR
E

Sh
G

zi
p

7-
Z

ip
A

FR
E

Sh
(C

A
B

A
C

)
(R

A
W

)
(R

A
W

)
C

on
fig

ur
at

io
n/

w
in

do
w

si
ze

-b
es

t
L

Z
M

A
1

4
64

1,
02

4
8,

19
2

8,
19

2
hs

al
t

H
uR

ef
C

hr
1

2.
39

58
1.

95
38

1.
95

79
1.

93
21

1.
85

33
1.

78
34

1.
74

41
1.

98
98

−
2
7.
2
0
%
−
1
0
.7
3
%
−
1
2.
3
5
%

hs
al

t
H

uR
ef

C
hr

2
2.

40
57

1.
97

21
1.

95
63

1.
93

63
1.

86
88

1.
80

29
1.

76
24

1.
99

63
−
2
6.
7
4
%
−
1
0
.6
3
%
−
1
1.
7
2
%

hs
al

t
H

uR
ef

C
hr

3
2.

40
77

1.
96

45
1.

95
98

1.
93

80
1.

87
00

1.
79

63
1.

75
39

1.
99

10
−
2
7.
1
5
%
−
1
0
.7
2
%
−
1
1.
9
1
%

hs
al

t
H

uR
ef

C
hr

4
2.

41
05

1.
95

50
1.

95
33

1.
93

50
1.

87
30

1.
78

75
1.

74
02

1.
97

84
−
2
7.
8
1
%
−
1
0
.9
9
%
−
1
2.
0
4
%

hs
al

t
H

uR
ef

C
hr

5
2.

40
78

1.
96

35
1.

95
72

1.
93

65
1.

87
06

1.
79

17
1.

74
92

1.
98

69
−
2
7.
3
5
%
−
1
0
.9
1
%
−
1
1.
9
6
%

hs
al

t
H

uR
ef

C
hr

6
2.

40
63

1.
95

88
1.

95
73

1.
93

55
1.

86
68

1.
78

90
1.

74
69

1.
98

69
−
2
7.
4
0
%
−
1
0
.8
2
%
−
1
2.
0
8
%

hs
al

t
H

uR
ef

C
hr

7
2.

38
71

1.
93

62
1.

94
87

1.
92

00
1.

84
28

1.
77

03
1.

72
53

1.
97

57
−
2
7.
7
2
%
−
1
0
.8
9
%
−
1
2.
6
8
%

hs
al

t
H

uR
ef

C
hr

8
2.

40
67

1.
97

15
1.

95
76

1.
93

62
1.

86
86

1.
79

68
1.

75
49

1.
99

39
−
2
7.
0
8
%
−
1
0
.9
9
%
−
1
1.
9
9
%

hs
al

t
H

uR
ef

C
hr

9
2.

39
22

1.
96

25
1.

95
08

1.
92

71
1.

85
30

1.
78

51
1.

74
54

1.
98

56
−
2
7.
0
4
%
−
1
1
.0
6
%
−
1
2.
1
0
%

hs
al

t
H

uR
ef

C
hr

10
2.

40
00

1.
96

90
1.

95
80

1.
93

51
1.

85
93

1.
79

55
1.

75
66

1.
99

77
−
2
6.
8
1
%
−
1
0
.7
9
%
−
1
2.
0
7
%

hs
al

t
H

uR
ef

C
hr

11
2.

40
14

1.
95

72
1.

96
03

1.
93

38
1.

86
16

1.
78

18
1.

74
22

1.
98

72
−
2
7.
4
5
%
−
1
0
.9
9
%
−
1
2.
3
3
%

hs
al

t
H

uR
ef

C
hr

12
2.

39
25

1.
97

78
1.

95
67

1.
92

68
1.

84
71

1.
77

32
1.

73
25

1.
98

40
−
2
7.
5
9
%
−
1
2
.4
0
%
−
1
2.
6
8
%

hs
al

t
H

uR
ef

C
hr

13
2.

41
24

1.
99

36
1.

95
31

1.
93

59
1.

87
62

1.
81

52
1.

77
24

2.
00

12
−
2
6.
5
3
%
−
1
1
.1
0
%
−
1
1.
4
3
%

hs
al

t
H

uR
ef

C
hr

14
2.

40
18

1.
96

84
1.

95
94

1.
93

53
1.

85
97

1.
78

48
1.

74
32

1.
98

94
−
2
7.
4
2
%
−
1
1
.4
4
%
−
1
2.
3
8
%

hs
al

t
H

uR
ef

C
hr

15
2.

39
31

1.
96

55
1.

95
63

1.
93

15
1.

85
18

1.
78

89
1.

74
74

1.
99

08
−
2
6.
9
8
%
−
1
1
.1
0
%
−
1
2.
2
3
%

hs
al

t
H

uR
ef

C
hr

16
2.

36
93

1.
94

39
1.

94
77

1.
91

12
1.

81
51

1.
75

33
1.

72
07

1.
98

16
−
2
7.
3
8
%
−
1
1
.4
8
%
−
1
3.
1
7
%

hs
al

t
H

uR
ef

C
hr

17
2.

35
87

1.
92

32
1.

94
87

1.
90

77
1.

79
88

1.
74

64
1.

71
28

1.
97

66
−
2
7.
3
8
%
−
1
0
.9
4
%
−
1
3.
3
4
%

hs
al

t
H

uR
ef

C
hr

18
2.

41
07

2.
00

48
1.

95
77

1.
93

94
1.

87
63

1.
81

70
1.

78
01

2.
00

62
−
2
6.
1
6
%
−
1
1
.2
1
%
−
1
1.
2
7
%

hs
al

t
H

uR
ef

C
hr

19
2.

30
83

1.
79

99
1.

93
30

1.
86

32
1.

72
32

1.
61

28
1.

55
48

1.
90

30
−
3
2.
6
4
%
−
1
3
.6
2
%
−
1
8.
3
0
%

hs
al

t
H

uR
ef

C
hr

20
2.

39
44

1.
99

12
1.

96
20

1.
93

48
1.

85
48

1.
79

97
1.

76
38

2.
00

67
−
2
6.
3
4
%
−
1
1
.4
2
%
−
1
2.
1
0
%

hs
al

t
H

uR
ef

C
hr

21
2.

39
98

2.
00

71
1.

94
81

1.
92

82
1.

86
06

1.
80

40
1.

76
79

2.
00

51
−
2
6.
3
3
%
−
1
1
.9
2
%
−
1
1.
8
3
%

hs
al

t
H

uR
ef

C
hr

22
2.

36
10

1.
94

44
1.

94
96

1.
90

74
1.

80
28

1.
74

86
1.

71
46

1.
97

89
−
2
7.
3
8
%
−
1
1
.8
2
%
−
1
3.
3
6
%

hs
al

t
H

uR
ef

C
hr

X
2.

29
24

1.
80

33
1.

86
84

1.
84

60
1.

78
00

1.
66

30
1.

60
39

1.
88

91
−
3
0.
0
3
%
−
1
1
.0
6
%
−
1
5.
0
9
%

hs
al

t
H

uR
ef

C
hr

Y
2.

27
48

1.
74

28
1.

85
07

1.
82

44
1.

74
45

1.
59

31
1.

49
90

1.
84

91
−
3
4.
1
0
%
−
1
3
.9
9
%
−
1
8.
9
4
%

Vo
lv

ox
C

ar
te

ri
2.

17
47

1.
80

94
1.

78
93

1.
78

03
1.

73
51

1.
68

21
1.

63
22

1.
83

17
−
2
4.
9
5
%
−
9
.8
0
%
−
1
0.
8
9
%

M
ic

ro
m

on
as

Pu
si

lla
2.

30
35

2.
10

66
1.

87
61

1.
84

16
1.

79
83

1.
78

40
1.

77
34

1.
95

62
−
2
3.
0
1
%
−
1
5
.8
2
%
−
9.
3
4
%

O
st

re
oc

oc
cu

s
Ta

ur
i

2.
40

32
2.

24
61

1.
96

85
1.

95
49

1.
92

90
1.

91
66

1.
90

65
2.

04
87

−
2
0.
6
7
%
−
1
5
.1
2
%
−
6.
9
4
%

M
on

or
ap

hi
di

um
N

eg
le

ct
um

2.
36

80
2.

17
33

1.
87

65
1.

86
71

1.
84

67
1.

84
19

1.
83

78
2.

00
09

−
2
2.
3
9
%
−
1
5
.4
4
%
−
8.
1
5
%

A
er

om
on

as
A

us
tr

al
ie

ns
is

2.
25

27
2.

17
81

1.
97

57
1.

95
77

1.
95

00
1.

95
58

1.
94

81
2.

09
49

−
1
3.
5
2
%
−
1
0
.5
6
%
−
7.
0
1
%

3-18 CHAPTER 3

3.6.4 Tool Selection
In the previous result sections on reads and assembled sequences, the provided
results were generated with all available tools enabled. As discussed before, it is
possible to select a subset of tools in order to exchange compression effectiveness
for a higher compression efficiency. In this section, two configurations will be
compared to the configuration that uses the complete toolset, both in effectiveness
and efficiency.

The first configuration (without HxE) is using the complete toolset, except for
the Huffman Encoding tools. Huffman Encoding is mainly used in cases where
there is a low redundancy between blocks, such as assembled sequences, un-
mapped reads, and reads of low-coverage sequencing data. It is therefore to be
expected that the effectiveness penalty will be higher for these types of data than
for reads of higher-coverage sequencing data.

The second configuration (which is a subset of the first configuration) is limited
to three tools: Binary Encoding, Normal Search Predictor, and Reverse Comple-
ment Search Predictor. Given the small size of the toolset it is expected that the
efficiency of this configuration will be significantly higher than the configuration
using the full toolset. As the Search Predictor tools are used extensively for the
coding of reads, it is expected that the effectiveness of the compression of these
data will not be affected significantly. In case of assembled sequences and un-
mapped read data, it is to be expected that effectiveness will drop significantly as
the search predictors are less effective for these data.

Figure 3.7 and Figure 3.8 show, for both configurations and for different test
files20, the effect on the effectiveness and the efficiency, respectively. The figures
confirm the expected effect on compression effectiveness. The first configuration
(without HxE) has a low effect on coding effectiveness for read data (<0.16%),
but has a higher effectivity loss of 1.1% to 1.6% for the assembled sequence ChrY
with window size 4 and 64 respectively. The total encoding times drop to between
27.8% and 95.4% of the encoding times when using the complete toolset.

The second configuration has a significantly higher effect on effectiveness and
efficiency (which is to be expected given the small set of tools). As expected, the
effect of the smaller toolset is lower on read data (between 0.70% and 2.0%, with
HS(High) as an outlier: 3.36%) than on assembled sequences (between 3.21%
and 3.93%). The total encoding times drop to between 12.41% and 44.9% of the
encoding times when using the complete toolset.

20For reads: HS(Low), HCC, HS RNA, MIS, and HS(High). For assembled sequences: ChrY at
window sizes 4 and 64.

AFRESH 3-19

0,0%

0,5%

1,0%

1,5%

2,0%

2,5%

3,0%

3,5%

4,0%

4,5%

HS (Low) HCC HS RNA MIS HS (High) ChrY-4 ChrY-64

Lo
ss

 in
 E

ff
ec

ti
ve

n
e

ss
 v

s
Fu

ll
To

o
ls

et
 (

in
 %

)

without HxE BE, NSP & RCSP

Figure 3.7: Loss in compression effectiveness, compared to the complete toolset.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

HS (Low) HCC HS RNA MIS HS (High) ChrY-4 ChrY-64

En
co

d
in

g
Ti

m
e

(i
n

 %
 o

f
En

co
d

in
g

Ti
m

e
w

it
h

 F
u

ll
To

o
ls

et
)

without HxE BE, NSP & RCSP

Figure 3.8: Total encoding time, compared to the complete toolset.

3-20 CHAPTER 3

3.7 Support for new Sequencing Technologies
As discussed in Section 1.1.2.3, a new generation of sequencing technologies is
appearing: single-molecule sequencing. These single-molecule sequencing tech-
nologies generate significantly longer reads of variable length (up to 150,000 bases
or even longer). Additionally, these technologies show a higher occurrence of in-
dels.

As the compression framework currently processes the data in blocks of a
fixed length, adaptations are required to support variable read lengths. A straight-
forward approach would be to store the read lengths in a separate data stream and
split the reads to their respective lengths during decoding in a post-processing step.
However, this approach is expected to be sub-optimal for coding effectiveness as
a block can contain data of multiple reads and reads can be stored across multi-
ple blocks. Therefore, it would be advised to refactor the existing framework (and
coding tools) to adapt the block size to the size of the reads. In case of longer reads,
it would also be advised to allow for the splitting of reads in order to increase the
prediction performance of the different coding tools.

To improve coding effectiveness for data with a higher occurrence of indels,
additional (search prediction) tools should be designed that allow for insertion or
deletion of bases.

AFRESH 3-21

3.8 Conclusions and Original Contributions
In this chapter, AFRESh, a solution for compression of genomic data, built on top
of the framework proposed in Chapter 2, was discussed. The designed alphabets,
prediction tools, and encoding tools are discussed, together with the binarizations
of the parameters and the residue generated by the framework and its coding tools.
The designed binarizations (and the subsequent processing using CABAC) result
in a compression effectiveness gain of up to 19% for assembled sequences and up
to 62% for reads when compared with raw syntax and residue storage.
Thanks to the combination of specifically designed alphabets, purpose-built cod-
ing tools and binarizations, AFRESh outperforms common solutions, such as GNU
Gzip, with a compression effectiveness improvement of up to 41% for reads and
34% for assembled sequences. When compared to state-of-the-art 7-Zip compres-
sor, AFRESh still offers a compression effectiveness improvement of up to 22%
for reads and up to 16% for assembled sequences. For reads, the proposed frame-
work outperforms specialized compressors such as SCALCE by up to 51%, LFQC
by up to 42%, and ORCOM by up to 44% in terms of compression effectiveness.
These results show that, given a properly designed set of coding tools, a block-
based compression solution with a set of alphabets and competing coding tools
can outperform generic and specialized compressors by a significant margin when
compressing nucleotidic data, while offering support for random access.

AFRESh is available for download at https://github.com/tparidae/AFresh.

3-22 CHAPTER 3

References
[1] D. Lipman et al, ”Rapid and Sensitive Protein Similarity Searches”, Science,

New Series, vol. 227, no. 4693, pp. 1435-1441, 1985.

[2] F. Hach et al., ”DeeZ: reference-based compression by local assembly”, Na-
ture Methods, vol. 11, no. 11, pp. 1082-1084, 2014.

[3] M. H.-Y. Fritz et al., ”Efficient storage of high throughput DNA sequencing
data using reference-based compression”, Genome Research, Vol. 21, no. 5,
pp. 734-740, 2011.

[4] S. Pathak et al., ”LFQC: a lossless compression algorithm for FASTQ files”,
Bioinformatics, vol. 31, no. 20, pp. 3276-3281, 2015.

[5] F. Hach et al., ”SCALCE: boosting sequence compression algorithms using
locally consistent encoding”, Bioinformatics, vol. 28, no. 23, pp. 3051-3057,
Sep. 2012.

[6] S. Grabowski et al., ”Disk-based compression of data from genome sequenc-
ing”, Bioinformatics, vol. 31, no. 9, pp. 1389-1395, 2014.

[7] S. Saha et al., ”ERGC: an efficient referential genome compression algo-
rithm”, Bioinformatics, vol. 31, no. 21, pp. 3468–3475, Feb. 2015.

[8] I. Ochoa et al., ”iDoComp: a compression scheme for assembled genomes”,
Bioinformatics, vol. 31, no. 5, pp. 626-633, 2014.

[9] A. Cornish-Bowden, ”Nomenclature for incompletely specified bases in nu-
cleic acid sequences: recommendations 1984”, Nucleic Acids Research, Vol.
13, No. 9, pp. 3021-3030, 1985.

[10] D. C. Jones et al., ”Compression of next-generation sequencing reads aided
by highly efficient de novo assembly.” Nucleic Acids Research, vol. 40, no.
22, 2012.

[11] U. Roguski and S. Deorowicz, ”DSRC 2–Industry-oriented compression of
FASTQ files.”, Bioinformatics, vol. 30, no. 15, pp. 2213-2215, 2014.

4
AQUa: Compression of Quality Scores

4.1 Introduction

AQUa is a compression solution for quality scores associated with nucleotides.
These are the data that are contained in line 4 of each read in FASTQ1 files (see
Figure 4.12). To enable effective compression of quality scores, the coding frame-
work presented in Chapter 2 has been extended with a quality score alphabet, and
a set of prediction and encoding tools. To encode the resulting data (i.e., syntax
elements) using CABAC, a set of binarizations and contexts have been designed.
First, an overview is provided of existing approaches for the compression of qual-
ity scores. Subsequently, the designed coding tools are discussed, followed by the
discussion of the used binarizations and the approaches used for context model-
ing. Finally, the effect of random access block granularity and search window size
on coding effectiveness is discussed, followed by an analysis of the compression
performance offered by AQUa.

4.2 Related Work

In general, there are two different categories of quality score compressors: com-
pressors using a lossless approach and compressors using a lossy approach. While
lossy quality score compression is a promising technique for significantly im-

1FASTQ is an extension of the FASTA file format, with added support for quality scores.
2For reading comfort, Figure 1.10 is repeated here.

4-2 CHAPTER 4

Line 1: @SRR001666.1 EAS149:136:FC806VJ:2:2104:1543:19393
Line 2: GATTTGGCGGTTCAAGAGCAGTATCGATCATAATAGTATAATCCATTT
Line 3: +SRR001666.1 EAS149:136:FC806VJ:2:2104:1543:19393
Line 4: EEDEEDEDCCDDDCCBA><>>>>>>>>====<<<888976333#####

Line 1: @SRR001666.1 EAS139:136:FC706VJ:2:5:1000:12850
Line 2: GATTTGGCGGTTCAAGAGCAGTATCGATCATAATAGTATAATCCATTT
Line 3: +SRR001666.1 EAS139:136:FC706VJ:2:5:1000:12850
Line 4: IIIIIIIIHFGFFEEDDCDDDCBBA>>>><<88887778776666665

Figure 4.1: Example of two reads in a FASTQ data file.

proving the effectiveness of compression, it is still a highly sensitive topic in
real-world application domains. In particular, the loss in accuracy for the qual-
ity scores is feared to influence the outcome of genomic data analysis. However,
initial research on the effect of lossy compression of quality scores on variant call-
ing algorithms3 [1] [2] shows that lossy compression, with tools such as QVZ4 [3],
RBlock and Pblock [4] can maintain, and in some cases even improve, variant call-
ing performance. Additionally, the MPEG standardization committee proposed a
framework for the evaluation of the impact of lossy compressors on human genome
variant calling [5], aiding researchers in estimating the effects of lossy compres-
sion algorithms on variant calling. However, given the early status of lossy quality
score compression performance measurement, it was decided to optimize for loss-
less compression. Nevertheless, the user has, as with other lossless solutions, the
freedom to apply a lossy transformation to the input data before lossless compres-
sion.

In the domain of lossless quality score compression, both generic solutions,
such as GNU Gzip and 7-Zip, as well as specialized quality score compressors,
such as SCALCE5 [6] and QVZ6 [3], are used. For lossless quality score compres-
sion, SCALCE uses a 3-rd order arithmetic encoder, which uses the 3 previously
encoded quality scores to select a context. As a result, this approach assumes that
for all reads the quality scores behave in a similar way and ignores information
such as the position of a quality score within a read. QVZ, on the other hand, uses
a two-pass approach where it defines a Markov model by its transition probabili-
ties, based on empirical analysis of the entire data set, and uses them to design a
codebook. This codebook contains a set of values indexed by position and previ-
ous value. In the second pass, the data set is then compressed using this codebook

3I.e., algorithms that identify variants (mutations) of a base on a given position, indicating e.g.,
sensitivity for certain diseases.

4Quality Values Zip
5Sequence Compression Algorithms using Locally Consistent Encoding
6QVZ also supports lossy compression.

AQUA 4-3

and using an adaptive arithmetic encoder which uses a separate model (context)
for each position (within a read) and previous value. It is clear that such an ap-
proach will typically result to higher compression ratios than a single-pass solution
using a similar approach (but not using an analysis step), but will result in higher
complexity, more data access, and memory or storage usage.

Other lossless compressors, such as CARGO7 [7], offer a hybrid solution, in
which the genomic data are split into different ”types” of data, followed by com-
pression of these different types of data based on (a set of) generic compressors.

While all state-of-the-art solutions provide a significant gain in compression
effectiveness, when compared to RAW storage (e.g., in FASTQ), they all lack sup-
port for random access and/or require pre-processing. As discussed in Chapter 2, a
modern genomic data format should support at least random access and can benefit
of a coding mode that can be used for live encoding.

4.3 Coding Tools
This section discusses the different coding tools that were designed to compress
the input quality scores. Three of these tools have been adopted from the AFRESh
framework, discussed in Chapter 3: the Single Nucleotide Repetition, and the Nor-
mal and Hierarchical Normal Search Predictors; the other tools have been designed
specifically for the compression of quality scores. Each of the quality score spe-
cific tools focuses on dealing with a different type of redundancy within a set of
quality scores, both between the quality scores of a specific read and between the
quality scores of successive reads. All proposed tools generate a prediction for the
quality scores, either per position or for all positions of a read at once. To confirm
or correct the predictions, a residue is generated and stored per position.

4.3.1 DFC - Difference Coder

The difference coder is a prediction tool that uses the quality score at the previous
position as a prediction for the current quality score. In other words, the residue
is the difference between two consecutive quality scores. As a result, this pre-
dictor exploits the observation that the difference between neighbouring scores is
typically small. However, sequencing technologies that are prone to small error
bursts, with larger differences between neighbouring scores, will not benefit from
this coding tool as larger differences are costly to represent (for more detail on
how differences are represented, see Section 4.4.2). To encode the first quality
score of a read, the difference coder uses the first quality score of the previous read
as a prediction. If there is no previous read available, the prediction is equal to the
quality score represented by the ASCII character ’E’, based upon the observation

7Compressed ARchiving for GenOmics

4-4 CHAPTER 4

that the first quality scores of a read are typically high. This tool is mainly applied
to reads where differences between neighbouring scores are small, but existing8.

4.3.2 ADFC - Average Difference Coder
The average difference coder generates a prediction based on the average value of
all previous quality scores within the current read:
Predictioni = Average([q0, qi−1]) for i = [0, read size− 1]

Compared to DFC, ADFC will better handle single-score peaks as the peak will
only affect one score prediction (the peak score itself) instead of two ((1) the dif-
ference between the peak score and its predecessor and (2) the difference between
the peak score and its successor). The encoding of the first quality score is equal to
the encoding of the first quality score by DFC. This tool is mainly applied to reads
where difference between neighbouring scores are small, but short spikes occur
within the read.

4.3.3 CVP - Convolutional Predictor
The convolutional predictor generates 32 predictions by applying a set of 32 (con-
volutional) filters to a combination of previously encoded quality scores at the
same or neighbouring positions from the three previous reads. As a result, this
predictor exploits positional redundancies. The predictor will select the filter that
provides the best prediction, based on the cost of the error correction (encoded in
Signed Exponential Golomb notation, which is discussed in Section 5.1).

Table 4.1 shows the matrix containing all 32 available filters. The rows indi-
cate the quality scores to which the filter is applied, whereas the columns indicate
the operator used. For those combinations that are used, the mode number is in-
dicated in the matrix. The quality scores are indicated as Qi,j , with i being the
position of the read (i is the read to be encoded) and j the position within the read
(0-based). Square brackets indicate a range. For example, [i − 3, i − 1] contains
all reads between (and including) i − 3 and i − 1 (which relates to the previous
three reads). As an example, Mode 8 will calculate the Mean value of the quality
scores Q[i−2,i−1],j , which are the scores at position j in the two previously en-
coded reads. Filters that are using invalid positions j will ignore these positions.
Filters that are using unavailable reads are discarded. The filters are based on one
of five operators, applying these operators to the input values in order to generate
a prediction for each position in the read. These operators are:

• Mean - returns the average value;

• Median - returns the median value, thus ignoring outliers (e.g., local uncer-
tainties in a read);

8If all (or most) quality scores within a read are of the same value, the SRP predictor will be used.

AQUA 4-5

• Weighted Mean - returns a weighted combination of the input values. These
weights are adapted per input value, based on the distance to the position of
which the value is to be calculated.

• Min - returns the lowest value; and

• Max - returns the highest value.

This tool is applied to reads that show similar behaviour to the previous reads
(according to one of the 32 models).

Min Max Mean Weighted Median
Mean

Q[i−2,i−1],j - - 8 17 -
Q[i−2,i−1],j−1 - - 9 18 -
Q[i−2,i−1],j+1 - - 10 19 -
Q[i−3,i−1],j 0 2 11 20 26
Q[i−3,i−1],j−1 - 3 12 21 27
Q[i−3,i−1],j+1 - 4 13 22 28
Qi−1,[j−1,j+1] - 5 14 23 29
Q[i−2,i−1],[j−1,j+1] 1 6 15 24 30
Qi−1,[j−1,j+1],Qi−2,j - 7 16 25 31

Table 4.1: The 32 filters that are used by the CVP coding tool.

4.3.4 SRP - Single Repeat Predictor

The single repeat predictor is a tool based on the SRP tool in AFRESh, generating
a prediction for the full read that consists of the repetition of one specific quality
score. This predictor is especially useful for reads with stable quality scores (i.e.,
reads that contain many identical scores, such as reads that are completely unreli-
able, or scores that are fluctuating closely around a certain score). In contrast with
the SRP tool in AFRESh, the base quality score (i.e., the score that is used as a
prediction) is stored as the difference between the first quality score of the read
and the quality score that appears the most in the previous read. In case of a tie,
the lowest quality score is selected. This tool is applied to reads that contain a
high number of one quality score, possibly extended with a high number of quality
scores that are close to this quality score.

4.3.5 AVP - Average Predictor

The average predictor generates a prediction based on the average value of the
previous quality score in the same read and the co-located value in the previous

4-6 CHAPTER 4

read. The quality score at the beginning of the read is calculated based on the first
two values of the previous read. This tool is applied to reads that show similar
behaviour to the previous read, but contain quality scores that are typically offset
by a small value that can be corrected by using the previously encoded quality
score in the current read.

4.3.6 NSP - Normal Search Predictor

The normal search predictor is based on the NSP tool in AFRESh; it selects, within
a search window, the contingent chunk of quality scores of length read size that
has the lowest cost of signaling the prediction errors when used as a prediction for
the current chunk. This chunk of quality scores can start at any position (not only
at read borders). The currently encoded read is assumed to be appended to the
search window; it can, as such, be used as a prediction, as long as at least one
quality score is predicted from the search window. This tool is applied to reads for
which a read can be found with which it shares a large contingent chunk of quality
scores.

4.3.7 HNSP - Hierarchical Normal Search Predictor

The hierarchical normal search predictor is based on the NSP tool in AFRESh;
it applies the NSP prediction tool to the first half and the second half of the read
separately. Splitting the reads increases the likeliness of finding a better prediction,
at the cost of having to signal an additional pointer. This tool is applied to reads
for which no read can be found with which it shares a large contingent chunk,
but where for each half a separate read can be found with which it shares a large
contingent chunk of quality scores.

4.3.8 Removed Coding Tools

As discussed previously, three coding tools have been migrated from AFRESh to
AQUa. The other tools have been removed:

• Double Nucleotide Repetition (DNR) - double quality score repetitions
over a longer region are rare.

• Codon Repetition (CoR) - there is no concept of codons in quality scores
and triple quality score repetitions over a longer region are rare.

• (Hierarchical) Reverse Complement Search Prediction (HRCSP/RCSP)
- there is no concept of complements in quality scores.

• Huffman Coding (HxE) - the usage frequency of the H1E coding tool was
below 0.06%, except for test file 05 where H1E is used for more than 3%

AQUA 4-7

of the blocks. Additionally, the largest gain in compression effectiveness
across the test set is below 0.0005%. Therefore, it was decided to remove
H1E. The higher order Huffman coding tools (H2E and H3E) were almost
never used and hence were removed too.

4.4 Binarization and Context Modeling
This section discusses the different binarizations that were designed and used to
represent the parameters and the residues of the different coding tools. Compared
to AFRESh, binarization and context modeling of residual data have been adapted
to support the full range of quality score values. Furthermore, binarization and
context modeling of the parameters of the reused coding tools have been adapted,
as well as binarization and context modeling of the coding tool identification pa-
rameter. Finally, binarization and context modeling of the parameters of the novel
coding tools, as presented in this chapter, have been added. The binarizations and
the contexts have been created by analysing the test files from Table 4.4. This
test set consists of both low- and high-coverage files with a fixed-length read size,
generated with Illumina HiSeq and MiSeq sequencers and, in case of file 23, an
artificially mixed file. All binarizations were selected based on the distribution of
the values of the syntax elements to be encoded. When a syntax element comes
with varying distributions across different files, binarizations are selected that help
CABAC to adapt to the specific characteristics of the different files.

4.4.1 Value Representations
Five different representations are used for the parameters and the residual values:

• Binary representation [8];

• Truncated Unary representation [8];

• Unsigned Exponential Golomb representation [9];

• Signed Exponential Golomb representation [10]; and

• Signed Truncated Exponential Golomb (STEG) representation [8].

The Binary representation corresponds to a base-2 representation, with a length y

for value x.
The Truncated Unary representation of value x consists of x 1-bits, followed by
a 0-bit. When x is equal to the maximum value, the trailing 0-bit is discarded. The
first column of Table 4.2 shows a number of example truncated unary representa-
tions.
The Unsigned Exponential Golomb representation of value x consists of a suf-

4-8 CHAPTER 4

Value Truncated Unary Unsigned Exponential Golomb
0 0 1
1 10 010
2 110 011
3 1110 00100
...
9 1111111110 0001010
10 1111111111 0001011

Table 4.2: Examples of the Truncated Unary and Unsigned Exponential Golomb binary
representations.

fix based on the Binary representation of x+ 1 and a prefix of 0-bits of length =

suffix length− 1. The second column of Table 4.2 shows a number of example
Unsigned Exponential Golomb representations.
The Signed Exponential Golomb representation is an extension of the Unsigned
Exponential Golomb representation, adding support for negative values by map-
ping a value x ≤ 0 onto the value −2 ∗ x and a value x > 0 onto the value
2 ∗ x − 1. Table 4.3 provides a number of example representations for Signed
Exponential Golomb.
The Signed Truncated Exponential Golomb encoding consists of three parts:

• a Truncated Unary representation;

• an Unsigned Exponential Golomb representation; and

• a one-bit Binary representation.

The Truncated Unary representation is used to represent all values x where x ≤ y,
with y a fixed value. The Unsigned Exponential Golomb representation is used to
represent the value of |x| − y, provided that |x| ≥ y. The Binary representation is
used to signal the sign of x.

Value Signed Exponential Golomb
0 1
1 010
-1 011
2 00100
... ...

Table 4.3: Examples of the Signed Exponential Golomb binary representation.

AQUA 4-9

4.4.2 Binarization and Context Modeling of Residue

Given that a coding tool is selected based on its effectiveness, it is assumed that
the prediction of that coding tool is highly accurate. As a result, the prediction
errors are expected to be sparse and to be typically small and centered around
zero, with zero being highly likely. Therefore, in a first step, a residual mask with
length block size is generated, which indicates for each position whether the
value is correct (zero) or not (one). For each of the positions where the residual
mask is one, the correction is stored. Corrections are not stored as the binary rep-
resentation of the correct quality score (which would cost a fixed d(log2(x+ 1)e)
bits, with x being the size of the quality score alphabet), but as a difference value
prediction - actual quality score. This difference value is encoded
by making use of a Signed Exponential Golomb binary representation, where all
residual values x > 0 are replaced by x − 1, given that the residual value zero
does not occur (by definition of the residual mask). This binarization is used for
all coding tools, with the exception of DFC.

The context modeling of the residual mask uses three contexts per coding tool,
so to be able to handle the possible difference in prediction accuracy of each of
these tools. One of the three contexts (ctx0, ctx1, and ctx2) is selected per quality
score, based on the prediction accuracy of the coding tool for the previously en-
coded quality scores in the read. A correct prediction will select a prior context;
an incorrect prediction will select the next context. For example, when a correct
prediction was making use of ctx1, ctx0 will be selected for the following quality
score; in case of an incorrect prediction, ctx2 will be selected. The contexts are
initialized with decreasing probability values (states).
For context modeling of the residual corrections, a context is provided for each bit
position of the Signed Exponential Golomb representation. To further improve the
context modeling, this set of contexts per bit position is provided per possible qual-
ity score. As a result, the arithmetic coder can adapt to the different distributions
that can be expected based on the predicted quality score. At start-up, contexts are
initialized to a fixed set of states, based upon the expected relative frequencies of
residual corrections for each of the given predicted quality scores.

The residue of the DFC coding tool (i.e., the differences between sequential
quality scores) shows a significantly different distribution, compared to the residue
of the other coding tools, and as such, requires a slightly different approach for
binarization. Figure 4.2 shows the minimum, average, and maximum occurrence
of the residue values across the different test files for the DFC coding tool. It
can be seen that, while there is a clear Laplacian distribution around the center
(zero, or perfect prediction), there are smaller spikes around other position values
within the range of [−10,+10]. The positions of these spikes differ between test
files. Therefore, the residual values should be encoded differently. To effectively

4-10 CHAPTER 4

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%
-3

8
-3

5
-3

2
-2

9
-2

6
-2

3
-2

0
-1

7
-1

4
-1

1 -8 -5 -2 1 4 7 1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

%
 O

C
C

U
R

R
E

N
C

E

RESIDUAL DIFFERENCE

max

min

average

Figure 4.2: Minimum/average/maximum occurrence of the DFC coding tool residue
values.

encode the DFC residual values, STEG encoding is used, with y = 10. This
representation is also used for the encoding of motion vectors by the H.264/AVC
video coding standard.
For context modeling of the residual values produced by the DFC coding tool, a
context is provided for each bit position of the representation. As with the context
modeling of the residual corrections of the other tools, this set of contexts per bit
position is provided per possible quality score. Each of the contexts is initialized
with the equi-probable state.

4.4.3 Binarization and Context Modeling of CVP Mode

The CVP tool needs to signal which filter (mode) was used during encoding. Fig-
ure 4.3 shows, for each mode, the minimum, maximum, and median usage across
the test files for these blocks for which the most effective tool was CVP, sorted by
decreasing usage. Given the geometric distribution, the selected filter is signaled
using the Unsigned Exponential Golomb representation9.
For context modeling of the signaling of the selected filter, a context is provided
per bit position in the Unsigned Exponential Golomb representation. Each of the
contexts is initialized with the equi-probable state.

9The filter is signaled with a value in the range [0,31], from most probable filter to least probable
filter. E.g., filter 2 will be represented by 0, filter 7 by 1, and filter 6 by 31 (See Figure 4.3).

AQUA 4-11

0%

5%

10%

15%

20%

25%

30%

35%

40%
2 7 0

2
6

3
0 5

2
9

1
5 1

2
7

1
1

1
4

2
4

2
8

2
3

3
1

1
2

2
5

1
3

2
0

1
6

2
1 8

2
2 4

1
7 3 9

1
0

1
8

1
9 6

%
 U

S
A

G
E

FILTER NR

min

median

max

Figure 4.3: Usage of the different CVP modes (min/median/max), sorted by decreasing
usage.

4.4.4 Binarization and Context Modeling of NSP and HNSP
Pointers

The NSP and HNSP tools need to signal the pointer to the best prediction within a
search window. As these pointer values are equally distributed, a standard Binary
representation of length dlog2(min(window size,actual window size)+
1)e is being used, with actual window size being the size of the window at
encoding time. As an example, in case of encoding read 3, only read 1 and read 2
are available as a reference. Hence, signaling the pointer to the different reads in
the window can be done by making use of a single bit10.
The binarization of the pointer is processed by the bypass arithmetic coding en-
gine, assuming an equi-probable distribution.

4.4.5 Binarization and Context Modeling of Coding Tool Iden-
tification

Figure 4.4-4.7 show the usage of the different coding tools for a number of test
files (See Table 4.4), across a set of window sizes. As can be seen in the
aforementioned figures, the usage of the different coding tools can significantly
differ amongst different files and settings: e.g., the DFC encoding tool is used in
the majority of the cases for file 02, but less so for the other files, and is even not
used for file 05. Furthermore, the NSP tool is used in the majority of the cases for
file 05 at larger window sizes, but is hardly used for smaller window sizes. To be

10For simplicity, this example assumes NSP and HNSP are only capable of searching at positions
that start at a block border.

4-12 CHAPTER 4

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 16 32 64 128 256 512 1024

%
 U

S
A

G
E

WINDOW SIZE

DFC

NSP

CVP

SRP

AVP

HNSP

ADFC

Figure 4.4: Coding tool usage for test file 02.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 16 32 64 128 256 512 1024

%
 U

S
A

G
E

WINDOW SIZE

DFC

NSP

CVP

SRP

AVP

HNSP

ADFC

Figure 4.5: Coding tool usage for test file 05.

able to adapt to these different usage statistics, the coding tools are identified by a
Truncated Unary representation for their identification number.
For context modeling, a context is provided for each bit position of the Truncated
Unary representation. Each of the contexts is initialized with the equi-probable
state. Given the adaptivity of CABAC, the contexts will adapt to the actual coding
tool usage for each specific file.

AQUA 4-13

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 16 32 64 128 256 512 1024

%
 U

S
A

G
E

WINDOW SIZE

DFC

NSP

CVP

SRP

AVP

HNSP

ADFC

Figure 4.6: Coding tool usage for test file 10.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 16 32 64 128 256 512 1024

%
 U

S
A

G
E

WINDOW SIZE

DFC

NSP

CVP

SRP

AVP

HNSP

ADFC

Figure 4.7: Coding tool usage for test file 23.

4-14 CHAPTER 4

4.5 Random Access

In this section, the effect of random access on the usage and effectiveness of
CABAC is discussed. As discussed in Chapter 2, it is impossible to discern in-
dividual symbols in an arithmetically coded bitstream. Therefore, the concept of
CABAC-encoded blocks was introduced, where each of these blocks can be de-
coded separately.

To measure the effect of the random access block size on the compression
effectiveness, the reset frequencies were set to the powers of 2 within the range
[32, 768− 1, 048, 576]. The total coverage of a random access block can be calcu-
lated by random access block size * block size. For example, for
test file 10, given a read length of 76 and given the tested range of [32, 768 −
1, 048, 576], the reset frequency results in a random access block size of 2.49 to
79.69 megascores (million scores). For test file 16, with a read length of 150, ran-
dom access block sizes range from 4.92 to 157.29 megascores, with the same test
range.

Figure 4.8 shows the loss in compression effectiveness for a set of random
access block sizes, compared to a random access block size of 1,048,576. For
each of the test files and for a window size of 16 reads. From these results, it can
be concluded that the choice of the CABAC reset window (and as such, the random
access block size) has a minor effect on the compression effectiveness. For most
test files, the overhead is lower than 0.5%, even with random access block sizes
of 32k reads. For files 10, 06, and 23, the overhead is, even at the small random
access block size, limited to 3.42%, 3.02%, and 1.96% respectively, with overhead
decreasing rapidly for larger random access block sizes.

0,00%

0,50%

1,00%

1,50%

2,00%

2,50%

3,00%

3,50%

4,00%

32K 65K 131K 262K 512K

O
V

E
R

H
E

A
D

RANDOM ACCESS BLOCK SIZE

2

5

6

07_01

07_02

10

16

23

Figure 4.8: Overhead of smaller random access sizes versus the largest random access
size (window size 16).

AQUA 4-15

C
od

e
Fi

le
na

m
e

#Q
ua

lit
y

Sc
or

es
R

ea
d

L
en

gt
h

02
N

A
12

87
8

S1
.b

am
15

9,
85

9,
87

2,
41

4
10

1
05

98
27

2#
49

.b
am

5,
64

6,
32

3,
60

0
10

0
06

N
A

21
14

4.
ch

ro
m

11
.IL

L
U

M
IN

A
.b

w
a.

G
IH

.lo
w

co
ve

ra
ge

.2
01

30
41

5.
ba

m
1,

01
4,

76
8,

00
0

10
0

07
01

E
R

R
17

43
10

1.
FA

ST
Q

20
,9

65
,5

26
,1

67
10

1
07

02
E

R
R

17
43

10
2.

FA
ST

Q
20

,9
65

,5
26

,1
67

10
1

10
K

56
2

cy
to

so
l

L
ID

84
65

To
pH

at
v2

.b
am

16
,5

11
,9

33
,4

32
76

16
M

iS
eq

E
co

li
D

H
10

B
11

07
21

PF
.b

am
1,

97
6,

35
1,

85
0

15
0

23
H

C
C

19
54

.m
ix

1.
n8

0t
20

.b
am

95
,1

81
,9

10
,9

58
10

1

Ta
bl

e
4.

4:
D

et
ai

le
d

in
fo

rm
at

io
n

of
th

e
qu

al
ity

sc
or

e
te

st
se

t.

4-16 CHAPTER 4

4.6 Experimental Results
This section discusses the experimental setup and the effectiveness of the proposed
framework when encoding the quality scores of reads.

4.6.1 Experimental Setup

To investigate the effectiveness of lossless compression of quality scores, a diverse
set of eight test files has been selected from the benchmark set used by MPEG for
the analysis of quality score compression 11. The subset only contains fixed-length
reads (as variable-length reads are currently not supported) and files that are larger
than 1 GiB. Table 4.4 gives a more detailed overview of the test files selected.

The BAM input files have first been converted to the FASTQ file format. These
files were then used for testing the different approaches towards quality score
compression. In case of the generic compression tools, a filtered version of the
aforementioned FASTQ files was used, only containing the quality scores. To im-
prove the processing speed of the whole benchmark set with the AQUa compres-
sion framework (especially for the larger test files, combined with larger window
sizes), the files were split into smaller files of 2,621,440 reads, a multiple of all
tested CABAC random access windows. This results in a slightly larger output
size due to the extra headers and footers, but this overhead is negligible (<= 21

bytes per output file). The compression tests were performed in parallel on a set
of five servers, each equipped with 2 Intel Xeon E5-2650 v3 CPUs (10 cores +
10HT cores each) and 128GB of RAM. Each computing core was dedicated to
the encoding of one small test file of 2,621,440 reads, using one encoder config-
uration (block size, window size, random access block size) at a
time. Speed tests were performed sequentially on a workstation, equipped with an
Intel i7 4790K processor and 16GB of RAM.

4.6.2 Window Size

This section discusses the effect of the window size on the compression effective-
ness and compression speed. Figure 4.9 shows the relative compressed size of the
different test files for different window sizes, compared to a window size of one
read. It can be seen that, for some files, increasing the window sizes offers gains
in compression effectiveness (e.g., > 7.5% for test file 05), while others gain less
than 1%, even for window sizes of 1,024 reads. This indicates that redundancy
between the quality scores of different reads is higher for some test files (e.g., 05)
than others (e.g., 10). This is confirmed by the evolution of the total usage of the
NSP and HNSP coding tools for the different test files. As shown in Figure 4.5,

11http://mpeg.chiariglione.org/standards/exploration/genome-compression/updated-database-
evaluation-genomic-information-compression

AQUA 4-17

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

3 16 32 64 128 256 512 1024

F
IL

E
 S

IZ
E

 C
O

M
P

A
R

E
D

 T
O

 W
IN

D
O

W
 S

IZ
E

 1

WINDOW SIZE

02

05

06

07_01

07_02

10

16

23

Figure 4.9: Total compressed size, compared to a window size of one read.

the total usage of the NSP and HNSP coding tools for test file 05 increases signif-
icantly with larger window sizes (to up to 92.45% at window size 1,024). For test
file 10, the total usage of these coding tools increases significantly slower, with a
total usage of 23.3% at window size 1,024. Finally, the artificially generated test
file 23 shows a gain in compression effectiveness between window sizes 2 and 16,
followed by losses in compression effectiveness for larger window sizes (within a
range of < 1%).

The compression speed for window sizes 1 to 512 ranges from 5 KiB/s for
window size 1,024 to 488 KiB/s for window size 1 (7-Zip processes around 748
KiB/s on the test equipment, using 2 threads). While the compression speed does
not drop linearly (a 60× speed drop with a 512× larger window), it is still clear
that window sizes should be selected carefully for an optimal trade-off between
compression effectiveness and compression speed.
It needs to be emphasized that during development of AQUa, focus was on ex-
tensibility and adaptability of the different processing steps and readability of the
code (i.e., the algorithms), and not on speed. Speedwise, a practical approach will
be discussed in Chapter 5.

4.6.3 Compression Results
In this section, the compression effectiveness of AQUa is compared to the com-
pression effectiveness of the commonly used single-pass (generic) algorithms GNU
Gzip (-fast and -best setting) and 7-Zip (LZMA setting), the state-of-the-art single-
pass algorithm SCALCE, and finally, the state-of-the-art dual-pass algorithm QVZ.

4-18 CHAPTER 4

The configuration of the framework was as follows:

• the random access block size was set at 1,048,576 blocks;

• the block size was selected in such a way that it matches the length of the
reads in the different test files; and

• the window size was set to 1, 3, 16, 32, 64, 128, 256, 512, and 1,024. Win-
dow size 1 is the minimal window size, whereas window size 3 is the mini-
mal size that enables all modes of the CVP tool.

The compression results for AQUa, together with the results obtained for the other
single-pass algorithms, are shown in Table 4.5. The results are expressed in bits
per score (bps), with score being one quality score value.
Comparing the best compression results of AQUa for each of the test files with
the commonly used GNU Gzip tool, shows a better compression rate for all of
the test files, with file sizes being 21.67% to 38.49% smaller than GNU Gzip at
the fastest setting, and being 13.69% to 22.46% smaller than GNU Gzip at the
best setting, while additionally offering random access. Comparing the results of
AQUa with the more advanced 7-Zip compressor at the Ultra settings (with 4GB
random access blocks), AQUa achieves mixed results, ranging from 3.41% larger
files to 6.48% smaller files, while additionally offering random access.

As explained in Section 7.3 and as shown in Figure 4.9, the compression ef-
fectiveness of AQUa can be improved significantly by increasing the window size
in case of files with higher redundancy between reads, such as file 05. It is for
these test files that 7-Zip is performing better than AQUa. Comparing the results
of AQUa with the purpose-built single-pass algorithm SCALCE, AQUa offers a
better compression rate for all of the test files, with file sizes being 13.26% to
21.14% smaller than SCALCE, while additionally offering random access.

Table 4.6 shows the compression results for AQUa, compared to the 2-pass
QVZ algorithm. As can be expected, the analysis step (and the lack of random
access support) allows the QVZ algorithm to offer higher compression effective-
ness. However, for test file 23, AQUa offers a better compression rate. These
results show that a dual-pass solution can offer (but does not guarantee) a higher
compression effectiveness. It should be noted that, while AQUa does not support
dual-pass compression, input data can be pre-processed (e.g., applying a sorting
algorithm) before it is processed by the AQUa compressor, effectively processing
input files in two passes. The latter observation holds particularly true for file 05:
the compression gain when enlarging the search window (see Figure 4.9), together
with the increasing usage of NSP and HSNP when enlarging the search window
(see Figure 4.5), shows that a reshuffle of the input data can provide high effectiv-
ity gains.

AQUA 4-19

D
at

as
et

C
om

pr
es

si
on

R
at

e
(b

its
pe

rq
ua

lit
y

sc
or

e)
A

Q
U

a
Fi

le
Si

ze
vs

A
Q

U
a

SC
A

L
C

E
G

zi
p

G
zi

p
7-

Z
ip

SC
A

L
C

E
G

zi
p

G
zi

p
7-

Z
ip

-f
as

t
-b

es
t

L
Z

M
A

-f
as

t
-b

es
t

L
Z

M
A

02
2.

55
3.

02
3.

53
2.

98
2.

56
-1

8.
37

%
-3

8.
49

%
-1

6.
96

%
-0

.1
8%

05
3.

65
4.

24
4.

62
4.

26
3.

52
-1

6.
25

%
-2

6.
64

%
-1

6.
66

%
+3

.4
1%

06
3.

71
4.

20
4.

51
4.

24
3.

80
-1

3.
26

%
-2

1.
67

%
-1

4.
22

%
-2

.4
0%

07
01

2.
86

3.
29

3.
76

3.
26

2.
82

-1
4.

85
%

-3
1.

38
%

-1
3.

69
%

+1
.4

7%
07

02
2.

67
3.

12
3.

62
3.

08
2.

65
-1

6.
96

%
-3

5.
86

%
-1

5.
45

%
+0

.6
4%

10
2.

81
3.

30
3.

79
3.

29
2.

92
-1

7.
43

%
-3

4.
88

%
-1

7.
12

%
-3

.8
1%

16
3.

05
3.

51
3.

95
3.

48
3.

06
-1

5.
19

%
-2

9.
52

%
-1

4.
14

%
-0

.4
9%

23
2.

68
3.

25
3.

69
3.

29
2.

86
-2

1.
14

%
-3

7.
54

%
-2

2.
46

%
-6

.4
8%

Ta
bl

e
4.

5:
C

om
pr

es
si

on
re

su
lts

-s
in

gl
e-

pa
ss

co
m

pr
es

so
rs

.

4-20 CHAPTER 4

Dataset Compression Rate AQUa File Size vs
(bits per quality score)
AQUa QVZ QVZ

02 2.55 2.16 +18.17%
05 3.65 2.73 +33.47%
06 3.71 3.39 +09.24%
07 01 2.86 2.39 +20.08%
07 02 2.67 2.23 +19.81%
10 2.81 2.64 +06.42%
16 3.05 2.58 +18.03%
23 2.68 2.69 -00.38%

Table 4.6: Compression results - dual-pass QVZ compressor.

4.7 Tool Selection

In the previous result section, the provided results were generated with all available
tools enabled. As discussed before, it is possible to select a subset of tools in order
to exchange compression effectiveness for a higher compression efficiency. In this
section, three configurations will be compared to the configuration that uses the
complete toolset, both in effectiveness and efficiency. The results discussed here
are based on the quality scores of the first million reads of each file in the test set
(see Table 4.4).
The first configuration (DFC/DFT only) is using only the difference coding tools.
Given the low complexity of these tools, it is expected that encoding efficiency will
be significantly higher, compared to the full toolset. Window sizes don’t have an
effect on the efficiency and effectiveness of these tools, hence it is to be expected
that the loss in effectiveness and the gain in compression efficiency will grow with
higher window sizes. The second configuration (no NSP/HNSP) is using all cod-
ing tools, except for the search-based tools (NSP and HNSP). Given the slightly
higher complexity of the additional tools, it is to be expected that encoding effi-
ciency will be lower than the first configuration, but still significantly higher than
the configuration with the full toolset. Window sizes don’t have an effect on the
efficiency and effectiveness of these tools (except for window size 1, where CVP
limits the set of modes that can be used to 8), hence it is to be expected that the
loss in effectiveness and the gain in compression efficiency will grow with window
sizes, especially with window sizes larger than 1612. The third configuration (no
HNSP) is using all coding tools, except for the hierarchical search prediction tool
(HNSP). Given that HNSP is the most complex predictor, it is to be expected that

12CVP will enable all modes, and hence reach maximum compression effectiveness, with a window
size larger or equal to three. With the used set of window sizes, this means that all modes are enabled
for window size 16 or larger.

AQUA 4-21

removing HNSP will significantly improve compression efficiency, especially with
higher window sizes. Figure 4.10 and Figure 4.11 show, for all configurations and
for different test files at four window sizes, the effect on the coding effectiveness
and efficiency, respectively. The figures confirm the expected effect on compres-
sion effectiveness. The first configuration (DFC/DFT only) has a low effect on
coding effectiveness at smaller window sizes, compared to the configuration with
the full toolset enabled. At window size 1, the loss in coding effectiveness is be-
tween 0.05% and 2.13%. At window size 16, the loss in coding effectiveness is
between 0.22% and 9.78%. At larger window sizes (256 and 1024), the loss in
coding effectiveness rises to between 0.32% to 12.39%.
At window size 1, the total encoding times drop to between 23.04% and 29.41% of
the encoding time with the full toolset enabled and drop further to between 0.09%
and 0.20% of the encoding time (at window size 1024), which illustrates the high
complexity of the search tools.
The second configuration (no NSP/HNSP) has, as expected, a lower effect on cod-
ing effectiveness. At window size 1 (which enables only 8 modes in CVP), the
loss in effectiveness, compared to the configuration with the full toolset enabled,
is between 0.02% and 1.34%. At window size 16, the loss in coding effectiveness
is between 0.15% and 5.34%. At larger window sizes (256 and 1024), the loss in
coding effectiveness is between 0.21% and 8.08%.
At window size 1, the total encoding times drop to between 44.61% and 68.30% of
the encoding time with the full toolset enabled and drop further to between 0.23%
and 0.54% of the encoding time at window size 1024.
Finally, the third configuration (no HNSP) demonstrates that HNSP is highly com-
plex (disabling HNSP at window sizes 16 or higher, lowers the encoding time to
around 50% of the encoding time with HNSP enabled) and offers limited gains in
effectiveness (between 0.00% and 0.28% for window size 1 and between 0.13%
and 1.91% for window size 1024). From these results it can be concluded that
HNSP should only be enabled in cases where maximum compression effective-
ness is required.

4.8 Support for new Sequencing Technologies

During and after the development of AQUa, significant changes have been intro-
duced to how quality scores are generated and handled. Illumina first presented
so-called 8-binning, which limited the set of quality scores to 8 values [11]. This
process has then further been refined and currently the NovaSeq 6000 sequencer
produces only four different quality scores [12].
Given that these quality scores are within the range of the quality scores alpha-
bet in AQUa, AQUa will be able to compress these data. However, to effectively
compress the data created using these sets of quality scores, a new alphabet should

4-22 CHAPTER 4

be added to AQUa that supports only these values as this would make the coding
of differences and of residue significantly more efficient. With this new alpha-
bet, the different scores of the NovaSeq 6000 quality scores (2, 12, 23, 37) will
be represented internally by the values 0, 1, 2, 3 hence resulting is smaller values
for differences between quality scores (E.g., for DFC/DFT), lower values for the
residue for prediction tools, and better predictions when using the CVP coding
tool.
Variable length reads can be handled with the same approaches as discussed in
Section 3.7.
Other characteristics of the single-molecule sequencing methods, such as quality
drops, can be handled using the existing coding tools.

AQUA 4-23

0
,0

0
%

2
,0

0
%

4
,0

0
%

6
,0

0
%

8
,0

0
%

1
0

,0
0

%

1
2

,0
0

%

1
4

,0
0

%

1

16

256

1024

1

16

256

1024

1

16

256

1024

1

16

256

1024

1

16

256

1024

1

16

256

1024

1

16

256

1024

1

16

256

1024

0
2

0
5

0
6

0
7

_0
1

0
7

_0
2

1
0

1
6

2
3

Loss in Effectiveness vs Full Toolset (in %)

Te
st

 S
et

 a
n

d
 W

in
d

o
w

 S
iz

e

D
FC

/D
FT

 o
n

ly
n

o
 N

SP
/H

N
SP

n
o

 H
N

SP

Fi
gu

re
4.

10
:

Lo
ss

in
co

m
pr

es
si

on
ef

fe
ct

iv
en

es
s,

co
m

pa
re

d
to

th
e

co
m

pl
et

e
to

ol
se

t.

4-24 CHAPTER 4

0
,0

0
%

1
0

,0
0

%

2
0

,0
0

%

3
0

,0
0

%

4
0

,0
0

%

5
0

,0
0

%

6
0

,0
0

%

7
0

,0
0

%

8
0

,0
0

%

9
0

,0
0

%

1

16

256

1024

1

16

256

1024

1

16

256

1024

1

16

256

1024

1

16

256

1024

1

16

256

1024

1

16

256

1024

1

16

256

1024

0
2

0
5

0
6

0
7

_0
1

0
7

_0
2

1
0

1
6

2
3

Encoding Time (in % of Encoding Time with Full Toolset)

Test Set an
d

 W
in

d
o

w
 Size

D
FC

/D
FT o

n
ly

n
o

Search
 n

o
 H

xE
-H

N
SP

Figure
4.11:

Totalencoding
tim

e,com
pared

to
the

com
plete

toolset.

AQUA 4-25

4.9 Conclusions and Original Contributions
In this chapter, AQUa, a compression solution for quality scores, built on top of
the framework proposed in Chapter 2, was discussed. The designed coding tools
are discussed, together with the binarizations of the parameters and the residue
generated by the framework and its coding tools. The combination of purpose-
built coding tools, together with the selected binarizations of the parameters and
the residue, result in AQUa outperforming the commonly used single-pass com-
pression format GNU Gzip and the purpose-built compression format SCALCE by
producing output files that are 13.69% to 38.49% and 13.26% to 21.14% smaller,
respectively, while still supporting random access. When compared to the state-
of-the-art generic compressor 7-Zip (using the LZMA Ultra setting), the proposed
framework produces files that are either larger (up to 3.41%) or smaller (up to
6.48%), while still offering random access. Compared to the dual-pass state-of-
the-art QVZ compression tool, the proposed framework produces files that are
6.42% to 33.47% larger, except for one file where the proposed framework outper-
forms QVZ by a small margin of 0.38%, showing that a dual-pass solution may
offer a higher compression effectiveness, although such behaviour is not guaran-
teed.
These results show that, given a properly designed set of coding tools, a block-
based single-pass compression solution can outperform generic and specialized
compressors when compressing quality scores, while offering support for random
access.

AQUa is available for download at https://github.com/tparidae/AQUa.

4-26 CHAPTER 4

References
[1] C. Kozanitis et al., ”Compressing Genomic Sequence Fragments Using Slim-

Gene.”, Journal of Computational Biology, vol. 18, no. 3, pp. 401413, 2011.

[2] Ochoa I. et al, ”Effect of lossy compression of quality scores on variant call-
ing”, Briefings in Bioinformatics, Vol. 18, no. 2, pp. 183-194, 2017.

[3] Malysa G. et al., ”QVZ: lossy compression of quality values”, Bioinformatics,
Vol. 31, no. 19, pp. 3122-3129, 2015.

[4] Canovas R. et al., ”Lossy compression of quality scores in genomic data”,
Bioinformatics, Vol. 30, no. 15, pp. 2130-2136, 2014.

[5] Alberti C. et al., ”An Evaluation Framework for Lossy Compression of
Genome Sequencing Quality Values”, Data Compression Conference (DCC)
proceedings, pp. 223-230, 2016.

[6] Hach F. et al., ”SCALCE: boosting sequence compression algorithms using
locally consistent encoding”, Bioinformatics, Vol. 28, no. 23, pp. 3051-3057,
2012.

[7] Roguski L. et al., ”CARGO: effective format-free compressed storage of ge-
nomic information, Nucleic Acids Research, Vol. 44, no. 12, pp. e114, 2016.

[8] D. Marpe, H. Schwarz, and T. Wiegand, ”Context-based adaptive binary arith-
metic coding in the H.264/AVC video compression standard”, IEEE Trans.
Circuits Syst. Video Technol. IEEE Transactions on Circuits and Systems for
Video Technology, vol. 13, no. 7, pp. 620-636, 2003.

[9] J. Teuhola, A compression method for clustered bit-vectors, Information Pro-
cessing Letters, vol. 7, pp. 308-311, Oct. 1978.

[10] M. Wien, ”High efficiency video coding: coding tools and specification.”
Berlin: Springer, 2015.

[11] ”Reducing Whole-Genome Data Storage Footprint”,
http://www.illumina.com/documents/products/whitepapers/
whitepaper datacompression.pdf

[12] ”NovaSeq 6000 System Quality Scores and RTA3 Software”,
https://www.illumina.com/content/dam/illumina-marketing/documents/
products/appnotes/novaseq-hiseq-q30-app-note-770-2017-010.pdf

5
Standardization: MPEG-G

5.1 Introduction

During the development of the AFRESh and AQUa frameworks for the com-
pression of nucleotides and quality scores, development of an MPEG (Moving
Picture Experts Group) standard for the representation, compression, and man-
agement of genomic data was initialized: MPEG-G [1]. The goal of this stan-
dardization effort1 is to provide an alternative to the current de facto standards
FASTA/FASTQ [2] and SAM/BAM (Sequence Alignment Map/Binary Alignment
Map) [3]. MPEG-G will provide improved effectiveness, additional functionalities
(such as built-in support for random access across multiple axes), and standardized
processes for the conversion of data in FASTA/FASTQ and SAM/BAM to MPEG-
G.
As discussed in Section 1.1.7, the major advantage of standardization is interoper-
ability. In other words, standardization ensures that software and hardware solu-
tions that are standard-compliant can handle all data stored in a standard-compliant
bitstream.
As with other MPEG standards, such as the H.264/AVC [4] and H.265/HEVC [5]
video coding standards, the MPEG-G standard will be defined by a (set of) de-
coding syntaxes and processes which can be used by the decoder to access (and
decode) the content of each standard-compliant bitstream. This approach allows
encoder designers to develop their own encoding algorithms (as long as the output

1This effort is performed within the ISO/IEC working group ISO/IEC JTC1 SC20/WG11.

5-2 CHAPTER 5

is standard-compliant), with their own algorithms and priorities.
In this chapter, a solution will be introduced and discussed for the compression of
the heterogeneous set of data streams that are generated in the MPEG-G standard.
This solution has been developed as a simplified, more practical, version of the
AFRESh (see Chapter 3) and AQUa (see Chapter 4) coding solutions. The main
differences between this solution and AFRESh and AQUA are that:

• the alphabet concept has been replaced by parsing parameters;

• random access has been removed from the coding level, as this feature will
be provided by a separate part of the MPEG-G standard; and

• the set of coding tools has been replaced by pipelines consisting of transfor-
mation algorithms and binarizations, which can be set on a per-stream basis.
This feature enables support for the large set of different, heterogeneous data
streams that are described as the inputs to MPEG-G.

The solution introduced in this chapter offers the following features:

• input data flexibility - the input data can be parsed according to multiple
representations;

• dual-pass coding- the input data can be processed in two passes: pass 1
for data analysis (e.g., for look-up table generation), pass 2 for the actual
encoding;

• flexible configuration to optimize coding effectiveness - the parsed input
data is coded through a pipeline consisting of a (set of) transformation algo-
rithm(s) and a (set of) binarization process(es);

• a unified decoding syntax - the parameters required for decoding the output
is described in a syntax. This syntax has been proposed, and has been used,
as a base for the MPEG-G coding syntax [6];

• a flexible coding solution - the coding solution allows for easy adaptation
to future developments in data pre-processing and representation.

First, an overview will be provided of the different parts of the MPEG-G coding
standard, followed by the different data streams that are provided as an input to the
coding solution. Subsequently, the proposed coding solution is presented (from an
encoder point of view), including an extensive discussion of the different processes
that are part of the coding solution. To illustrate the configuration of the different
processes in the encoding process, an example will be provided. Following this
example, an extensive analysis of the coding effectiveness and efficiency of the
proposed solution will be provided. To illustrate the flexibility of the syntax, two
sets of configurations (modes) have been designed: fast mode (high efficiency, low

STANDARDIZATION: MPEG-G 5-3

effectiveness), and slow mode (low efficiency, high effectiveness). Both modes
will be compared to the state-of-the-art generic compressor 7-Zip (with LZMA
ultra settings). In short, the decoding syntax that has been proposed as a decoding
syntax for the coding solution of MPEG-G is presented and discussed.

5.2 MPEG-G

The MPEG-G standard is a standard to unify the representation, compression, and
management of genomic data. This standard is currently being developed within
MPEG2. Besides the capability to represent all data that can be contained within
the FASTA/FASTQ and SAM/BAM file formats, the standard aims to provide ad-
ditional capabilities such as random access in multiple dimensions, incremental
updates, signaling of encryption mechanisms, and a transport and storage format.
The MPEG-G standard consists of five parts, each providing a subset of the capa-
bilities or supportive technologies and processes:

• Part 1: Transport and Storage of Genomic Information [ISO/IEC 23092-1];
MPEG-G Part 1 defines the storage and transport file formats used for the
exchange of data generated using the technologies defined in Part 2. Part
1 defines, amongst others, the required syntax and technologies to support
random access.

• Part 2: Coding of Genomic Information [ISO/IEC 23092-2]; MPEG-G Part
2 defines the syntax, pre-processing processes, and compression technolo-
gies used for the coding of genomic information.

• Part 3: Genomic Information Metadata and Application Programming In-
terfaces (APIs) [ISO/IEC 23092-3]; MPEG-G Part 3 defines the syntax and
semantics for the metadata and APIs for genomic information representa-
tion.

• Part 4: Reference Software [ISO/IEC 23092-4]; MPEG-G Part 4 provides
reference software that can be used to perform conformance testing (Part
5) on the data that are generated by software and/or hardware, according to
Part 1, Part 2, and Part 3.

• Part 5: Conformance Testing [ISO/IEC 23092-5]; MPEG-G Part 5 provides
the description of a test process which allows creators of MPEG-G software
to check conformance with the standard as defined in Part 1, Part 2, and Part
3.

2The standard will be released January 2019.

5-4 CHAPTER 5

The technologies and syntax discussed in this chapter have been presented as a
solution (and acted as a starting point) for Part 2 of the MPEG-G standard: coding
of genomic information. All research discussed below is represented in the current
version of Part 2 of the MPEG-G standard (i.e., as described in the ISO/IEC CD
23092-2 document [7]), and will as such be representative for the performance of
the MPEG-G standard.
In the current stage of the MPEG-G standard, Part 2 offers (compared to this solu-
tion) the following adaptations and extensions:

• additional binarizations;

• two additional transformation algorithms;

• support for layered transformations;

• compression of Lookup tables;

• signaling of external dependencies;

• revised syntax, to support the signaling of the data required for technolo-
gies proposed by other participants that cannot be mapped onto the original
syntax, as discussed in this section;

• algorithms for lossy quality score generation and read tokenization.

5.2.1 Descriptor Streams
In this section, the set of data streams (so-called descriptor streams) is discussed
that acts as an input for the coding solution that is discussed in the following sec-
tions.
In [8], C. Alberti et al. proposed a set of descriptor streams that supports the rep-
resentation of the information contained in FASTA/FASTQ and SAM/BAM files.
For each type of data (e.g., read length information, quality scores), a separate
descriptor stream is defined that contains a representation of these data, hence cre-
ating a heterogeneous set of data streams. These data streams can be categorized,
according to their origin, into three categories: sequence reads (i.e., all data linked
to nucleotidic data, and mapping of these data), quality scores, and read names
(i.e., metadata, including information on the content and/or sequencing process
used to generate reads).

STANDARDIZATION: MPEG-G 5-5

The set of proposed descriptor streams contains (per category):

• Sequence Reads:

– Pairing information (PAIR) - contains information regarding the (rel-
ative) position of the two segments in a read pair;

– Read Mapping Position information (POS) - contains the position
to which a read is mapped in the reference;

– Insertions, Deletions, and Substitution Position information (INDP,
RFTP, and SNPP) - contains a list of positions in a read at which
CIGAR operations (see Section 1.1.3.2) need to be performed for the
read to map it onto the reference3;

– Insertions, Deletions, and Substitution Type description (INDT,
RFTT, and SNPT) - contains the parameters for the CIGAR opera-
tions that are signaled in the INDP, RFTP, and SNPP descriptor streams4;

– Read Length information (LEN) - contains the length of each read,
in case of variable read lengths.5;

– Reference Type information (RTYPE) - identifies the subset of de-
scriptors that is used to encode an unmapped read or unmapped read
pair;

– Strand information (RCOMP) - identifies the strand on which the
read is mapped;

– Substitution Type information (SUBTYPE)6;

– Soft and Hard Clip information (INDC) - contains information on
clipped bases: their position in the read and the list of nucleotides.7;

– Read Flag information (TFL)8;

– Unmapped Reads (UREADS) - contains the reads that are unmapped,
these reads are represented in plain format (i.e., in ASCII code).

• Quality Scores:

– Quality Values (QVIndex and QVCodebookIdentifier) - contains
the quality scores for each nucleotide;

3The INDP and SNPP descriptor streams are deprecated and are now replaced by one single stream
MMPOS.

4These INDT and SNPT descriptor streams are deprecated and are now replaced by one single
stream MMTYPE.

5In the current version of the MPEG-G standard, the name of this descriptor stream has been
changed to RLEN.

6This descriptor stream is deprecated and has been integrated into the MMTYPE descriptor stream.
7In the current version of the MPEG-G standard, the name of this descriptor stream has been

changed to CLIPS.
8this descriptor stream is deprecated and is now replaced by the FLAGS stream

5-6 CHAPTER 5

• Read Names:

– Tokens (TOKEN) - contains a tokenized version of the read names;

The subdivision in descriptor streams facilitates random access at the level of the
data type and offers the option to apply different compression solutions to the
different data types.
Within this chapter, the focus will be on data contained in the descriptors of the
sequence reads. Quality scores and read names can be coded with the proposed
coding format. However, these descriptor streams allow for significant gains in
compression effectiveness by encoding the data lossy (in case of quality scores) or
by exploiting the fixed syntax in read names9.

5.2.2 Data Classes
Besides descriptor streams, an additional dimension of random access is offered,
based upon the type of mapping onto the reference of the read this data is corre-
sponding to. To facilitate this random access dimension, the information in the
descriptor streams are split in multiple descriptor streams (one for each type of
mapping).
Six different classes were defined, based upon the corresponding mapping type:

• P-Class - reads matching perfectly to the reference sequence;

• N-Class - reads containing mismatches of type N only;

• M-Class - reads containing substitution mismatches only;

• G-Class - reads containing substitution mismatches, indel mismatches and
soft clips;

• U-Class - unmapped reads;

• HM-Class - read pairs where only one read is mapped10.

9There is no syntax described in the FASTA/FASTQ and SAM/BAM specifications. However,
some manufacturers and/or genomic archives defined a fixed syntax for read names, as discussed in
Section 1.1.4.

10This class has been added in a later stage. Therefore, test files were not available for the experi-
mental results (see Section 5.6).

STANDARDIZATION: MPEG-G 5-7

5.3 Random Access within MPEG-G
As discussed in Section 5.2.1 and Section 5.2.2, the data contained in an MPEG-
G dataset is split into different descriptor streams and classes. Additionally, the
dataset can be split per genomic region. Splitting the data (and hence supporting
random access) across these three dimensions offers significant efficiency gains
for many applications.

As an example, to analyse gene expression, one can count the number of reads
for a specific region by only accessing, decoding and processing the POS descrip-
tor streams (and RLEN descriptor streams in case of variable length reads) that
correspond to the genomic region of interest. With the data contained in these de-
scriptor streams one can calculate the coverage for each genomic position within
the region of interest. It is clear that this is a significantly smaller set of data that
needs to be decoded (and transmitted or read from storage).

Another example is SNP-calling. For SNP-calling, it is sufficient to analyse
those parts of the data that map onto the genomic region of interest and contain
perfectly mapped reads (P-class) or reads that map with mismatches (M-class and
G-class). From all the descriptor streams of these classes, one only needs the POS
descriptor streams to identify the positions of the reads and the SNPP and SNPT
streams to respectively calculate the exact position of the mismatch and the type
of the mismatch. From the P-class, only the POS descriptor stream (and the RLEN
descriptor stream) are needed, to calculate the coverage at the mismatch positions.

5.4 Encryption, Privacy & Integrity
MPEG-G provides built-in support for signaling encryption, privacy and integrity
information. This information can be signaled for different levels of the MPEG-
G file, down to the level of a block (i.e., data corresponding to a given genomic
region, of a given data class and of a given data stream) and up to the level of a
complete dataset.

5-8 CHAPTER 5

5.5 Proposed Coding Solution
In this section, the coding solution that has been proposed as a baseline for the
MPEG-G coding solution for descriptor streams will be discussed. An overview
will be provided of the different processes that are part of the coding solution.
As discussed in Section 5.2.1, the descriptor streams that form the input to the
MPEG-G coding solution are heterogeneous: each descriptor stream has its own
combination of alphabet (ranging from small alphabets (e.g., [0-4]) to large alpha-
bets (e.g., [0-232])), inter-value dependencies, and probability distributions that
can be exploited. Furthermore, these dependencies and probability distributions
can vary significantly between descriptor streams of the same type, depending on
the used sequencing technologies, sequencing parameters (such as coverage) and
processing pipelines.
Therefore, a novel coding solution has been designed, based upon the CABAC and
binarization layers of the AFRESh and AQUa framework, that offers an (extensi-
ble) set of transformations and binarizations11, and multiple approaches for context
selection, allowing the coding solution (and other implementations of the proposed
syntax and processes) to select its preferred approach to coding the different de-
scriptor streams. Figure 5.1 displays the different steps of the coding process, as
implemented in the proposed coding solution and described in the corresponding
syntax (see Section 5.7). In this section, the different steps will be discussed (from
an encoder point of view), including the different parameters that are set for each
step, followed by an example encoding process. The corresponding syntax will be
discussed in Section 5.7.

5.5.1 Input Data Parsing
In step 1 of Figure 5.1, the input descriptor streams are parsed as described in the
descriptor stream specifications in [8], as such creating a sequence of values12.
In case of complex descriptor streams, such as pair descriptors, the different syn-
tax elements are split into separate streams13, which are named substreams. Each
substream contains one type of data, both in semantic sense (e.g., nucleotides or
positions) as in representation sense (e.g., 8-bit bytes or 32-bit integers).

After parsing the input descriptor stream, each substream that has been gener-
ated by the input parsing step is provided to the value transformation step (step 2
in Figure 5.1).

11In the current status of MPEG-G, new binarizations have been added by other contributors.
12It is not obligatory to decode the input descriptor streams according to the description. E.g., an

encoder can decide to parse a descriptor stream consisting of 32-bit integer values as 8-bit byte values.
13It is not obligatory to split complex descriptor streams into their substreams14. E.g., an encoder

can decide to parse the complex descriptor stream as a single substream and apply, e.g., Longest Match
transformation.

STANDARDIZATION: MPEG-G 5-9

(1) Input Data Parsing

(2) Value Transformation

(3) Value Binarization (4) Context Selection

(5) Encoding

Figure 5.1: The different steps used by the proposed coding solution for MPEG-G.

5.5.2 Value Transformation

Step 2 in Figure 5.1 is the transformation step. In this step, a transformation can
be applied to the values in the substream15. In the proposed coding solution, five
different transformation types are defined:

• Look-up table transformation - each value in the input substream is re-
placed by a value that is represented in a look-up table. This look-up table
is described in the header and can be:

– zero-order - each value is replaced by a value using one fixed look-up
table (i.e., independent of previous values); or

15Transformation is an optional process. If transformation is not required, the input substream will
be provided to the next processing step unaltered.

5-10 CHAPTER 5

– first-order - each value is replaced by a value, using a look-up table
that is selected based on the previous value.

• Differential transformation - each value in the input substream is replaced
by the arithmetic difference with the previous value. The initial previous
value is assumed equal to 0x00 or its equivalent in the representation of the
input data (e.g., 0x00000000 in case of 32-bit integer values).

• Equality transformation - each value in the input substream is replaced by
a maximum of two values, each in a separate substream:

– The first substream contains 1-bit equality flags, indicating if the value
is equal to the previous value in the substream (1) or not (0).

– If the equality flag in the first substream is equal to 0 (i.e., the input
value is different from the previous value), the correct value is stored
in the second substream. Values larger than the previous value are
replaced by the value value-1 as the equality flag indicates that the
value is not equal to the previous value.

The two substreams generated by this transformation are then processed sep-
arately in next processing steps.

• Previous Read transformation - this transformation is a variation on the
Equality transformation that can for instance be used in case of unmapped
reads, where the reference value is not the previous value but the value
read size values ago. In other words, the value that was at the same
position as the current value but in the previously encoded read.

• Longest Match transformation - a sequence of values in the input is re-
placed by two values. The two values are stored across three different sub-
streams:

– The first substream contains length values, representing the length of
the match.

– If the length value in the first bitstream is equal to 0 or 1, no match
longer than one value has been found and the value is stored in the
second substream.

– Else, a pointer to the matching sequence in the previously encoded
values (the range of encoded values can be limited to a given
window size) is stored in the third substream.

After the transformation step, the substream(s) created in this processing step are
provided to the binarization step (step 3 in Figure 5.1).

STANDARDIZATION: MPEG-G 5-11

5.5.3 Value Binarization
Step 3 in Figure 5.1 is the binarization step. In this step, each input value is trans-
formed into a set of bits (called bins). To generate this set of bins, six binarization
processes are available16:

• Binary [9] - each input value is represented by its 2-base (i.e., binary) rep-
resentation using a defined number of bits (cLength). Table 5.1 shows the
Binary binarization for input value 3 for a cLength value of 2 and 4.

• Truncated Unary [9] - each input value N is represented by N 1-values
followed by a 0. If N is equal to a defined maximal value (cMax), the trailing
0-value is discarded. Table 5.2 shows the Truncated Unary binarization for
input values 0 to 3 with cMax equal to 3.

• Exponential Golomb [10] - each input value N is represented by a prefix
and a suffix. The suffix is equal to the binary representation of N+1, whereas
the prefix is represented by a sequence of 0-bits with a length equal to the
length of the suffix minus 1. Table 5.3 shows the Exponential Golomb bina-
rization for input values 0 to 8.

• Signed Exponential Golomb [11] - each input value N is mapped onto a
positive number. This number is then binarized using Exponential Golomb.
Negative input values N (N<=0) are mapped onto −2*N, whereas positive
input values (N>0) are mapped onto 2*N+1. Table 5.4 shows the Signed
Exponential Golomb binarization for values -4 to +4.

• Truncated Exponential Golomb [9] - each input value N is represented by
(a set of) 1 or 2 binarizations. Input values smaller than or equal to a given
value cMax are represented by their Truncated Unary binarization. Input
values larger than or equal to cMax are represented by the Truncated Unary
binarization of cMax, combined with the Exponential Golomb binarization
of the input value minus cMax. Table 5.5 shows the Truncated Exponential
Golomb binarization for values 0 to 4 with cMax equal to 2.

• Signed Truncated Exponential Golomb [9] - each input value N is
represented by their Truncated Exponential Golomb representation of
Abs(input value) and a sign bit, if the input value is not equal to 0. Ta-
ble 5.6 shows the binarization of values -4 to +4.

16This is comparable to the list of binarizations in Chapter 4, with the addition of Truncated Expo-
nential Golomb and using the parameter names as used in the MPEG-G Part 2 specification.

5-12 CHAPTER 5

value cLength binarization
3 2 11
3 4 0011

Table 5.1: The Binary binarization for input value 3 for different values of cLength.

value binarization
0 0
1 10
2 110
3 111

Table 5.2: The Truncated Unary binarization for values 0 to 3 (cMax=3).

value binarization
prefix suffix

0 1
1 0 10
2 0 11
3 00 100
4 00 101
5 00 110
6 00 111
7 000 1000
8 000 1001

Table 5.3: The Exponential Golomb Binarization for values 0 to 8.

value mapped value binarization
prefix suffix

0 0 1
1 1 0 10
-1 2 0 11
2 3 00 100
-2 4 00 101
3 5 00 110
-3 6 00 111
4 7 000 1000
-4 8 000 1001

Table 5.4: The Signed Exponential Golomb binarization for values -4 to 4 and their
corresponding mapping for Exponential Golomb.

STANDARDIZATION: MPEG-G 5-13

value Binarization
Truncated Unary Exponential Golomb

0 0
1 10
2 11 1
3 11 010
4 11 011

Table 5.5: The Truncated Exponential Golomb binarization for values 0 to 4 (cMax=2).

value Binarization
Truncated Unary Exponential Golomb Flag

-4 11 011 1
-3 11 010 1
-2 11 1 1
-1 10 1
0 0
1 10 0
2 11 1 0
3 11 010 0
4 11 011 0

Table 5.6: The Signed Truncated Exponential Golomb binarization for values -4 to +4
(cMax=2).

To allow for effective compression, the combination of transformation (see Sec-
tion 5.5.2) and binarization should be selected in such a way that the value of each
bin is as predictable as possible. A high predictability for each bin allows for high
effectiveness of the arithmetic coder (as discussed in Section 2.5) in the encoding
step (Step 5).

5-14 CHAPTER 5

5.5.4 Context Selection
Step 4 in Figure 5.1 is the context selection step. In this step, the context sets that
will be used during the encoding step (Step 5 in Figure 5.1) are identified. Each
context set contains the contexts required to encode one input value (using the
mapping discussed further in this section). The goal of the context selection step
is to switch between context sets in a fixed manner (e.g., based on the previous
value), so to allow each context set to adapt to the probability distribution of a
subset of input values. In this section, the concept of contexts sets and how the
contexts in these context sets are mapped onto the different types of binarizations
will be discussed. Subsequently, an overview will be provided of the different
context set selection processes.

5.5.4.1 Context Sets

Within this framework, contexts are grouped into context sets. Each context set
contains the contexts that are needed to support the encoding of one input value in
its binarized representation.
Each bit (bin) in a binarization is identified by its position in the binarization (rep-
resented by the value binIdx), where the first bin is identified with binIdx = 0,
the second bin with binIdx = 1,...
Each separate context of a context set is identified by a ctxIdx, where the first
context is identified with ctxIdx = 0, the second context with ctxIdx = 1,...
Depending on the selected binarization, different context sets are defined:

• In case of Binary Binarization, each bin is encoded using a separate con-
text, where ctxIdx = binIdx. This is especially beneficial in cases where
large representations (e.g., 16-bit code words) are used to encode (mainly)
smaller values. In this case, the leading bins can be encoded efficiently.

• In case of Truncated Unary Binarization, each bin is encoded using a sep-
arate context, so ctxIdx = binIdx. This approach allows for an additional
layer of modeling, as each input value of the Truncated Unary Binarization
is represented by an additional bin. In other words, the context that is for
instance applied to the third bin of a Truncated Unary representation models
the probability of the input value being 3 when the input value is not 0, 1, or
2.

• In case of (Signed) Exponential Golomb, the first prefix length +
1 bins are encoded with ctxIdx = binIdx. The rest of the suffix bins are
encoded in bypass mode. In this mode, the bins are processed by the arith-
metic coder with the assumption that all symbols have an equal probability.
In bypass mode, no context adaptation is performed and bins are encoded
assuming an equal probability distribution between 0 and 1.

STANDARDIZATION: MPEG-G 5-15

• For Flags (as in Table 5.6), the bin is encoded with ctxIdx = 0.

• In case of (Signed) Truncated Exponential Golomb, each of the subsec-
tions (Truncated Unary, Exponential Golomb, and Flag) are encoded with
their respective context sets, as discussed above.

At the start of the coding of a data stream, all contexts are initialized with a value
representing an equal probability for all symbols. The adaptivity of CABAC will
result in a quick adaptation to the actual probabilities. This approach was se-
lected as the optimal values for each context can vary widely between different
substreams. To allow for codec initialization, the MPEG-G standard will offer the
possibility to define initialization values.

5.5.4.2 Context Set Selection

In some cases, it might be beneficial to be able to select a separate context set
based upon previous data, e.g., the previous value or the sequence number
(value sequence number) of the value. To select a specific context set, three
methods are provided by the proposed coding solution:

• Single Context Set: each input value is encoded using the same context set;

• Context Set Cycle selection: given N context sets, each value is encoded
with context set value sequence number % N;

• Value-based Context Set selection: given N context sets, each value is
encoded with context set Min((transformed)previous value,N).

5.5.4.3 CABAC Encoding

The final step of the proposed coding solution is the CABAC encoding step. In
this step, the bins of the binarizations in step 3 are encoded, using the contexts
that have been selected in step 4. This encoding is performed using CABAC, as
previously described in Section 2.5.

5-16 CHAPTER 5

5.5.5 Example: *RCOMP
To clarify the workings of the process discussed in Section 5.5, an example will
now be given. This example is based on the *RCOMP descriptor stream types,
due to their simplicity. As described in [8], The RCOMP-type descriptor streams
consist of bytes representing strand information. The bytes represent one of four
values:

• 0x00: both reads are located on the forward strand;

• 0x01: the first read is located on the forward strand, the second read on the
reverse strand;

• 0x02: the first read is located on the reverse strand, the second read on the
forward strand;

• 0x03: both reads are located on the reverse strand.

% of values
0 0.18%
1 49.95%
2 49.85%
3 0.03%

Table 5.7: Zero-order frequency distribution for the RCOMP descriptor stream for test file
02.

0 1 2 3
0 8.64% 3.3% 87.73% 0.33%
1 0.31% 0.81% 98.84% 0.05%
2 0.01% 99.39% 0.6% 0.0%
3 1.95% 5.24% 81.24% 11.57%

Table 5.8: First-order frequency distribution for the RCOMP descriptor stream for test file
02 (rows: previous value, columns: current value).

Table 5.7 shows the zero-order distribution of the values in the RCOMP de-
scriptor stream for test file 02 from the benchmarking set, used for MPEG-G (see
Table 5.10 for an overview of the benchmarking set). Table 5.7 shows that values 1
and 2 are the most-prevalent values in the descriptor stream, with an almost equal
distribution between both values, hence indicating that no significant gains can be
made using 0-order compression algorithms17.

17Except by limiting the representation to two bits, the minimum required number of bits to represent
four different values.

STANDARDIZATION: MPEG-G 5-17

However, when observing the first-order distribution of the values in the RCOMP
descriptor stream (as shown in Table 5.8), it can be observed that values can be
predicted based upon the previous input value with accuracies of more than 81%.
Hence, a solution that uses 1-order LUT transformation (i.e., a look-up table is
selected for each input value, based upon the previous value) is expected to pro-
vide significant effectiveness improvements, when compared to 0-order coding.
Table 5.9 shows the look-up tables that were generated, based on the frequency
information in Table 5.8, with value 0 being the input value with the highest fre-
quency (given a certain previous value) and value 3 being the input value with the
lowest frequency.

After selection of the transformation, a binarization has to be adopted. In case
of *RCOMP descriptor streams, Truncated Unary binarization offers the best com-
pression performance. Given the different frequency distributions of the trans-
formed values, for the different previous values, it was furthermore decided to
provide a set of context sets of size four, using value-based context set selection.
As a result, the contexts are adapted to the specific frequency distributions per
previous value.

0 1 2 3
0 1 2 0 3
1 2 1 0 3
2 2 0 1 3
3 3 2 0 1

Table 5.9: Lookup tables to be used for the discussed example (rows: previous value,
columns: current value).

It should be noted that not all data streams containing *RCOMP descriptor
information show the same statistical behaviour. Hence, this set of transforma-
tion, binarization, and context selection configurations can be suboptimal for these
streams. However, in this case an encoder can select (and signal) a different set of
configurations. This is the strength of a standard that only has a specification of
the decoder, allowing the encoder to select the optimal settings.

5-18 CHAPTER 5

Table
5.10:

O
verview

ofthe
benchm

arking
setas

proposed
in

[8]
(U

=
U

nm
apped).

ID
O

riginalFilenam
e

D
escription

02
N

A
12878

S1.bam
H

um
an

W
G

S,high
coverage

(53x),Illum
ina

02U
18

N
A

12878
S1.bam

H
um

an
W

G
S,high

coverage
(53x),Illum

ina
03

N
A

12878.pacbio.bw
a-sw

.20140202.bam
H

um
an,m

edium
coverage

(8.4x),Pacbio
05

9827
2#49.bam

H
um

an
W

G
S,low

coverage
(2.3x),Illum

ina
05U

15
9827

2#49.bam
H

um
an

W
G

S,low
coverage

(2.3x),Illum
ina

07
C

hr1
E

R
R

174310
1.fastq.gz

H
um

an
W

G
S,L

ow
coverage,Illum

ina
07

C
hr2

E
R

R
174310

2.fastq.gz
H

um
an

W
G

S,L
ow

coverage,Illum
ina

07U
15

E
R

R
174310

{1-2}.fastq.gz
H

um
an

W
G

S,L
ow

coverage,Illum
ina

08-m
131003

m
131003

Pacbio
08-m

131004
m

131004
Pacbio

09
sam

ple
2-10

sorted.bam
high

coverage
(274x),Ion

Torrent
10

K
562

cytosol
L

ID
8465

TopH
at

v2.bam
R

N
A

-Seq,m
edium

coverage
(16x)

20-M
H

1-1
M

H
0001

081026
clean.1.fq.gz

m
etagenom

ics
(hum

an
gut),Illum

ina
20-M

H
1-2

M
H

0001
081026

clean.2.fq.gz
m

etagenom
ics

(hum
an

gut),Illum
ina

20-M
H

2-1
M

H
0002

081203
clear.1.fq.gz

m
etagenom

ics
(hum

an
gut),Illum

ina
20-M

H
2-2

M
H

0002
081203

clear.2.fq.gz
m

etagenom
ics

(hum
an

gut),Illum
ina

20-M
H

3-1
M

H
0003

081203.clean.1.fq.gz
m

etagenom
ics

(hum
an

gut),Illum
ina

20-M
H

3-2
M

H
0003

081203.clean.2.fq.gz
m

etagenom
ics

(hum
an

gut),Illum
ina

18
D

ue
to

externalfactors,a
partofthe

contentoftestfiles
02,05,and

07
has

been
stored

in
a

separate
”unm

apped”
file.

STANDARDIZATION: MPEG-G 5-19

5.6 Experimental Results

In this section, the experimental setup is discussed, as well as the effectiveness
and efficiency of the proposed coding solution. For analysis ofthe effectiveness
and efficiency, the solution is compared to the LZMA ultra setting of the state-of-
the-art generic compressor 7-Zip. First, the experimental setup will be described,
including the benchmarking test set as provided by the MPEG-G standardization
committee. Subsequently, the effectiveness and efficiency will be discussed for
sets of configurations (”fast mode” and ”slow mode”) using the complete bench-
marking set (see Table 5.10), followed by an analysis per descriptor stream type
and an analysis per test file. The benchmarking set consists of multiple types of
libraries (Human WGC, metagenomics, RNA-Seq data) sequenced with multiple
technologies (Illumina HiSeq, Pacbio, IonTorrent), and containing different levels
of coverage. Finally, the memory usage of the proposed coding solution will be
analysed and discussed.

5.6.1 Experimental Setup

To analyse the compression effectiveness (compression ratio) and efficiency (pro-
cessing speed) of the proposed coding solution for the compression of the differ-
ent descriptor stream types (as discussed in Section 5.2.1), a diverse benchmark-
ing set consisting of 16 files19 has been selected by the MPEG-G standardization
group [8]20. An overview of this benchmarking set can be found in Table 5.10.
This benchmarking set exists of a variety of test files: files with high and low
coverage, files with fixed and variable read lengths, and files with short reads and
extremely large reads. To offer the reader an impression of the sizes of the differ-
ent files and descriptor streams, the total file sizes per test file and per descriptor
stream type are shown in Figure 5.2 and Figure 5.3, respectively. The total size of
the benchmarking set is 36.81 GiB.
The compression tests were performed on a workstation, equipped with an Intel
i7 4790K processor and 16GB of RAM. The test files were stored on a Samsung
850 Pro SSD. The results of the efficiency tests are based on the fastest of five
runs21. A run starts before reading input data, and ends after all output data has
been written to disk. The tests are performed both for encoding and decoding and
both for the proposed coding solution and 7-Zip.

19The term file, represents a set of descriptor streams that are generated from one input file (i.e., a
BAM file or a FASTQ file).

20During a further stage in standardization, some of the descriptor streams and classes have been
adapted. However, it is to be expected that, given the configurability of the proposed coding solution
and the resemblance to the original descriptor streams, the proposed coding solution will offer similar
effectiveness and efficiency when applied to these streams.

21Given that each test run is an exact repetition of instructions, this allows to filter out delays caused
by I/O or external processes.

5-20 CHAPTER 5

To keep the efficiency tests manageable, 7-Zip was configured to run in two par-
allel threads22. The proposed coding solution was tested single-threaded as the
coding solution has not been designed for multithreaded processing. Given the
large set of descriptor streams, combined with the splitting of descriptor streams
in random access blocks in real-life applications, it is assumed that encoders can
process a significant amount of data streams in parallel, if multithreaded operation
is required.

0

1

2

3

4

5

6

7

8

9

10

11

U
n

co
m

p
re

ss
e

d
 F

ile
 S

iz
e

 (
*1

0
9

B
yt

e
)

Figure 5.2: Uncompressed file size per test file.

5.6.2 Compression Results

In this section, the compression effectiveness and efficiency of the proposed cod-
ing solution is compared to the compression effectiveness and efficiency of the
generic 7-Zip compressor at LZMA Ultra settings (dictionary size: 64MB, word
size: 64 bits, 2 threads). The results are generated for two sets of configurations
with a different trade-off between effectiveness and efficiency, called fast mode
(low effectiveness, high efficiency) and slow mode (high effectiveness, low effi-
ciency). As discussed in Section 5.5.2, the difference between these two modes
is based on the use of Longest Match transformation for some descriptor streams
in slow mode. The configurations and technologies used for the results discussed
in this section, are all supported in the current version of the MPEG-G standard.

22The maximum number of threads that can be used by LZMA. LZMA2 provides support for more
simultaneous threads but requires significantly more memory.

STANDARDIZATION: MPEG-G 5-21

0

1

2

3

4

5

6

7

8

U
n

co
m

p
re

ss
ed

 F
ile

 S
iz

e
 (

*
1

0
9

B
yt

e)

Figure 5.3: Uncompressed file size per descriptor stream type.

Therefore, these results are representative for the effectiveness and efficiency that
can be expected from MPEG-G.

5.6.2.1 Compression Results per Encoding Mode

Figure 5.4 shows the compressed size (for the complete benchmarking set) for 7-
Zip and the two modes of the proposed coding solution: 7-Zip reduces the input
files to 22.25% of the original file size, fast mode to 21.97%, and slow mode to
20.99%.
Additionally, Figure 5.5 shows that both fast (1,471 seconds, or 25,62 MiB/s)
and slow mode (4,066 seconds, or 9.27 MiB/s), both single-threaded, are signifi-
cantly faster than 7-Zip (24,957 seconds, or 1.51 MiB/s when performed using 2
threads)23.
Figure 5.6 shows that at decoding side, fast mode (1,375 seconds, or 27.43 MiB/s)
and slow mode (1,342 seconds24, or 28.10 MiB/s) are significantly slower than
7-Zip (426 seconds, or 88.56 MiB/s).
When comparing the encoding and decoding efficiency of the fast mode, it is clear
that the complexity of the encoding and decoding processes is almost symmetri-
cal. The main difference in speed is caused by the analysis needed to create a

23It should be noted that the presented solution contains only limited optimizations (especially, when
compared to the highly-optimized 7-Zip). In particular, it is expected that the Longest Match transfor-
mation can be significantly optimized for efficiency, as it is currently using a non-optimized search
operation.

24Slow mode offers a higher decoding speed, which will be discussed in Section 5.6.2.2.

5-22 CHAPTER 5

look-up table. The difference between encoding and decoding efficiency in slow
mode is higher due to the significantly higher complexity of the Longest Match
transformation.

0%

5%

10%

15%

20%

25%
%

 o
f

o
ri

gi
n

al
 s

iz
e

7-Zip proposed fast proposed slow

Figure 5.4: Output file size for the complete benchmarking set per encoding mode,
compared to 7-Zip.

0

50

100

150

200

250

300

350

400

450

To
ta

l E
n

co
d

in
g

Ti
m

e
(m

in
u

te
s)

7-Zip (2 threads) proposed fast proposed slow

Figure 5.5: Total encoding time for the complete benchmarking set per encoding mode,
compared to 7-Zip.

5.6.2.2 Compression Results per Descriptor Stream Type

Figure 5.8 shows the compressed size per descriptor stream type (for all test files
combined) for 7-Zip and split per compression mode (fast mode and slow mode for
the proposed coding solution, and LZMA ultra mode for 7-Zip). In this figure, it
is clearly shown that some SNPT and SNPP descriptor streams can be compressed
with a much higher effectiveness by using slow mode (i.e., with Longest Match

STANDARDIZATION: MPEG-G 5-23

0

5

10

15

20

25

To
ta

l D
ec

o
d

in
g

Ti
m

e
(m

in
u

te
s)

7-Zip proposed fast proposed slow

Figure 5.6: Total decoding time for the complete benchmarking set per encoding mode,
compared to 7-Zip.

transformation). However, the total compressed size for these descriptor streams
is still larger than the total size of 7-Zip.

For some files of the descriptor stream types INDP, INDT, SNPP, SNPT and
NMIS, the original configuration, as used in fast mode, has also been replaced by
an encoder configuration using Longest Match transformation, hence providing
a higher effectiveness for these descriptor stream types when compared to fast
mode25. In case of NMIS, MLEN, PLEN, and RFTP descriptor streams, 7-Zip
outperforms the proposed coding solution by a small margin.

In case of UREADS, containing unmapped reads, the results are based on input
files that have been reordered, without reordering the compressed size of UREADS
is 15.7% larger (9.0% larger for 7-Zip). An overview of the compression gain per
test set by reordering is shown in Figure 5.7.

Figure 5.9 and Figure 5.10 show the total time needed to encode all test files,
divided per descriptor stream, and the resulting encoding speed in MiB/s (at input
side), respectively. In case of SNPP and SNPT test files, 7-Zip is significantly
faster than slow mode, as Longest Match is applied in this case26; in all other
cases, the proposed coding solution is between 1.39 times and 26.99 times faster.

Figure 5.11 and Figure 5.12 show the total time needed to decode all test files
and the resulting decoding speed in MiB/s (at output side), divided per descriptor
stream.

In almost all cases, the observations on decoding speed in Section 5.6.2.1 are
confirmed. Only in the cases of MLEN, NRCOMP, and NTFL descriptor streams
is 7-Zip outperformed by the proposed coding solution. Additionally, the decoding

25In case of NMIS the gain is limited, hence not visible in the figure.
26It is expected that the Longest Match transformation can be significantly optimized for efficiency,

as it is currently using a non-optimized search operation.

5-24 CHAPTER 5

0%

5%

10%

15%

20%

25%

02U 05U 07U 20-MH1-1 20-MH1-2 20-MH2-1 20-MH2-2 20-MH3-1 20-MH3-2

C
o

m
p

re
ss

io
n

 g
ai

n
: s

o
rt

e
d

 v
s

u
n

so
rt

ed
 (

in
 %

)

Figure 5.7: Compression gain by sorting UREADS descriptor streams per test set.

time for those modes that are (partly) encoded with the Longest Match transforma-
tion (i.e., INDT, INDP, NMIS, SNPP, and SNPT) is (significantly) lower. This is
caused by the lower amount of values that have to be unbinarized and decoded us-
ing CABAC. Indeed, instead of processing each value separately, Longest Match
transformation typically only has to decode one position value and one length
value per length number of values. This is mainly visible in the file types with
larger uncompressed sizes, such as INDP, SNPP, and SNPT. This speed improve-
ment is the cause of the speed difference between slow and fast mode that has been
observed in Section 5.6.2.1.

5.6.2.3 Compression Results per Test File

Figure 5.13 shows the compressed size per test file (for all descriptor streams com-
bined) and split per compression mode (fast mode and slow mode for the proposed
coding solution, and LZMA ultra mode for 7-Zip). For each of the test files, both
encoding modes provide a higher effectiveness than 7-Zip, except for test file 10
(especially for fast mode, which does not use the Longest Match transformation).

Figure 5.15 shows that for all test files (except 10 in slow mode, due to the use of
the Longest Match transformation) both fast and slow mode (single-threaded) are
significantly faster than 7-Zip (running 2 threads).
Figure 5.17 shows that for all test files, decoding is significantly faster with 7-Zip.

STANDARDIZATION: MPEG-G 5-25

0
%

5
%

1
0

%

1
5

%

2
0

%

2
5

%

3
0

%

3
5

%

4
0

%

4
5

%

5
0

%

% of original size

7
-Z

ip
p

ro
p

o
se

d
 f

as
t

p
ro

p
o

se
d

 s
lo

w

Fi
gu

re
5.

8:
O

ut
pu

tfi
le

si
ze

fo
r

th
e

co
m

pl
et

e
be

nc
hm

ar
ki

ng
se

tp
er

de
sc

ri
pt

or
st

re
am

ty
pe

,c
om

pa
re

d
to

7-
Zi

p.

5-26 CHAPTER 5

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

Total Encoding Time (minutes)

7
-Zip

 (2 th
read

s)
p

ro
p

o
sed

 fast
p

ro
p

o
sed

 slo
w

Figure
5.9:

Totalencoding
tim

e
for

the
com

plete
benchm

arking
setper

descriptor
stream

type,com
pared

to
7-Zip.

STANDARDIZATION: MPEG-G 5-27

02
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

Encoding Speed (MiB/s)

7
-Z

ip
 (

2
 t

h
re

ad
s)

p
ro

p
o

se
d

 f
as

t
p

ro
p

o
se

d
 s

lo
w

Fi
gu

re
5.

10
:

E
nc

od
in

g
sp

ee
d

fo
r

th
e

co
m

pl
et

e
be

nc
hm

ar
ki

ng
se

tp
er

de
sc

ri
pt

or
st

re
am

ty
pe

,c
om

pa
re

d
to

7-
Zi

p.

5-28 CHAPTER 5

0 1 2 3 4 5 6Total Decoding Time (minutes)

7
-Zip

p
ro

p
o

sed
 fast

p
ro

p
o

sed
 slo

w

Figure
5.11:

Totaldecoding
tim

e
for

the
com

plete
benchm

arking
setper

descriptor
stream

type,com
pared

to
7-Zip.

STANDARDIZATION: MPEG-G 5-29

0

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

Decoding Speed (MiB/s)

7
-Z

ip
p

ro
p

o
se

d
 f

as
t

p
ro

p
o

se
d

 s
lo

w

Fi
gu

re
5.

12
:

D
ec

od
in

g
sp

ee
d

fo
r

th
e

co
m

pl
et

e
be

nc
hm

ar
ki

ng
se

tp
er

de
sc

ri
pt

or
st

re
am

ty
pe

,c
om

pa
re

d
to

7-
Zi

p.

5-30 CHAPTER 5

0
%

5
%

1
0

%

1
5

%

2
0

%

2
5

%

3
0

%

3
5

%

4
0

%

4
5

%

% of original size

7
-Zip

p
ro

p
o

sed
 fast

p
ro

p
o

sed
 slo

w

Figure
5.13:

O
utputfile

size
for

the
com

plete
benchm

arking
setper

testfile,com
pared

to
7-Zip.

STANDARDIZATION: MPEG-G 5-31

0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

Total Encoding Time (minutes)

7
-Z

ip
 (

2
 t

h
re

ad
s)

p
ro

p
o

se
d

 f
as

t
p

ro
p

o
se

d
 s

lo
w

Fi
gu

re
5.

14
:

To
ta

le
nc

od
in

g
tim

e
fo

r
th

e
co

m
pl

et
e

be
nc

hm
ar

ki
ng

se
tp

er
te

st
fil

e,
co

m
pa

re
d

to
7-

Zi
p.

5-32 CHAPTER 5

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

Encoding Speed (MiB/s)

7
-Zip

 (2
 th

read
s)

p
ro

p
o

sed
 fast

p
ro

p
o

sed
 slo

w

Figure
5.15:

E
ncoding

speed
(in

M
iB

/s)for
the

com
plete

benchm
arking

setper
testfile,com

pared
to

7-Zip.

STANDARDIZATION: MPEG-G 5-33

0123456 Total Decoding Time (minutes)

7
-Z

ip
p

ro
p

o
se

d
 f

as
t

p
ro

p
o

se
d

 s
lo

w

Fi
gu

re
5.

16
:

To
ta

ld
ec

od
in

g
tim

e
fo

r
th

e
co

m
pl

et
e

be
nc

hm
ar

ki
ng

se
tp

er
te

st
fil

e,
co

m
pa

re
d

to
7-

Zi
p.

5-34 CHAPTER 5

0

5
0

1
0

0

1
5

0

2
0

0

2
5

0

Decoding Speed (MiB/s)

7
-Zip

p
ro

p
o

sed
 fast

p
ro

p
o

sed
 slo

w

Figure
5.17:

D
ecoding

speed
(in

M
iB

/s)for
the

com
plete

benchm
arking

setper
testfile,com

pared
to

7-Zip.

STANDARDIZATION: MPEG-G 5-35

5.6.3 Memory Usage
In this section, the memory usage of the proposed coding solution will be com-
pared to the memory usage of 7-Zip.
To encode data with 7-Zip in LZMA at ultra settings, a maximum of 709 MiB is
required27. As the proposed coding solution is designed in Java, it is hard to mea-
sure the actual memory requirements. Therefore, an estimation will be provided,
based on a worst-case scenario.
The memory usage by the proposed solution can be divided into multiple parts:

• input symbol - the symbol that is to be encoded next. The largest supported
input symbol size is 32 bits;

• previous input symbol - in case of differential or equality transformation,
the value of the previous input symbol. The size of this symbol is equal
to the size of the input symbol;

• binarization - the binarized representation of the input symbol or its
transformation. The longest binarization is a Signed Truncated Exponential
Golomb representation, which can contain a 32-bit Truncated Unary part, a
31-bit Exponential Golomb28 part, and a 1-bit Sign Flag, resulting in a total
size of 64 bits;

• context sets - the context sets that are required to encode the binarized rep-
resentations. Each context is represented by one byte. The largest context
set is the context set that is applied to Signed Truncated Exponential Golomb
binarizations: 32 bytes for the truncated unary part, 16 bytes for the Expo-
nential Golomb part29, and 1 byte for the Sign Flag, resulting in a total size
of 49 bytes per context set. Multiple context sets can be available during
encoding. During the experimental results, the number of context sets has
been limited to five, resulting in a maximum size of 485 bytes;

• look-up table - the set of key-value pairs that is used for look-up table trans-
formation. The largest look-up table that was created during the experimen-
tal results was 63,360 bytes long30;

• search window - in case of Longest Match transformation and previous
read transformation, the previous N encoded input symbols are stored
in memory. The largest search window is 32,768 bytes long;

27LZMA2, which offers better multithreading performance thanks to the support for more than 2
parallel encoding threads, requires 4413 MiB.

28The length of an Exponential Golomb binarization is always odd.
29In case of Exponential Golomb coding, the suffix is encoded using bypass mode, i.e., without the

usage of contexts.
30This is with hard-coded keys. In the current standard, hard-coded keys are replaced by an index in

the look-up table, hence lowering the required memory to store the look-up table.

5-36 CHAPTER 5

• CABAC arrays - the set of arrays that contain information on next states,
renormalization,... and are used to improve CABAC processing speed. This
set of arrays has a total size of 352 bytes;

• coding-specific data - e.g., program code and speed optimizations (e.g.,
pre-calculated tables for binarization).

Based on the worst-case sizes of each of these parts, one can derive that the max-
imum memory usage for encoding a descriptor stream (i.e., for integer values,
using Signed Truncated Exponential Golomb binarization, with 5 context sets and
the largest LUT that was identified in the experimental results together with the
CABAC-specific arrays) is below 64 KiB. This memory usage needs to be ex-
tended with the coding-specific data. However, it is expected to be significantly
less than the additional 708 MiB that would be required to match the memory us-
age of 7-Zip.
In case of longest match transformation, the maximum memory usage is even
lower as there is no LUT to be stored in memory and the maximum search window
size is 32,768 bytes long.

STANDARDIZATION: MPEG-G 5-37

5.7 Proposed Decoding Syntax

In this section, the decoding syntax will be discussed that has been proposed as a
baseline for the MPEG-G descriptor stream coding. This decoding syntax is based
upon the syntax that has been used for the experimental results in Section 5.6.
The main difference is to be found in the way the multiple substreams in com-
plex descriptor streams are stored. The software used for the experimental results
processes the values of the different substreams in the order of appearance in the
input descriptor stream (interleaved). However, this approach required multiple
decoding syntaxes with only minor differences. Hence, a generic decoding syntax
was designed and proposed for substreams31, which will be discussed in the next
Section32.

5.7.1 Encoding Parameters Signaling Syntax

In this section, an overview is given of the syntax that has been designed to sig-
nal the information required at the decoder side to decode the compressed data
streams. Table 5.11 shows the proposed syntax in the same layout as used by the
HEVC video coding standard [12]. For each of the syntax elements in this table,
the semantics are described in the corresponding subsection.

5.7.1.1 Syntax Semantics

file size signals the length of the decoded bitstream in bytes. The decoder uses this
value to identify when decoding of the bitstream is finished.

wordsize minus1 signals the number of bytes (minus 1) used for the represen-
tation of decoded values. E.g., if wordsize minus1 is 0, each decoded value
will be represented as one byte.

binarization id indicates which binarization scheme is used. Table 5.12 shows the
list of values for binarization id and their corresponding binarization type.
The description of the different binarization types can be found in Section 5.5.3.

cMax signals the cMax parameter as used for Truncated Unary, and (Signed)
Truncated Exponential Golomb binarization (see Section 5.5.3).

31The decoding syntax that has been proposed [6], contained an error that was discovered during the
adaptation of the syntax to support the representation of the technologies by other contributors. This
error has been fixed in this section.

32In the MPEG-G standard, the interleaving process is described per complex descriptor stream.
33u(x) defines the representation of the syntax element. u(x) identifies this representation as an

unsigned binary representation of length x.

5-38 CHAPTER 5

encoding parameters(){
file size u(64)33

wordsize minus1 u(8)
binarization id u(8)
if (binarization id==0 || binarization id==3 || binarization id==5){

cMax u(8)
}
full repetition flag u(1)
if (!full repetition flag){
diff coding enabled flag u(1)
equality enabled flag u(1)
lut enabled flag u(1)
if (lut enabled flag){
read lut() See 5.7.2
second layer lut enabled flag u(1)
if(second layer lut enabled flag){
for(int i=0;i<main lut size;i++){
read lut() See 5.7.2
}
}
}
context set size u(8)
context cycle size u(8)
}

Table 5.11: Proposed syntax for signaling of the encoder parameters.

full repetition flag signals if the bitstream contains a continuous repetition of a
single value.

diff coding enabled flag signals if the data are transformed using the differen-
tial transformation (see Section 5.5.2).

equality enabled flag signals if the data are transformed using the equality trans-
formation (see Section 5.5.2).

lut enabled flag signals if the data are transformed using the zero-order look-up
table transformation (see Section 5.5.2).

read lut() parses a look-up table. The syntax for read lut() is described in
Section 5.7.2.

STANDARDIZATION: MPEG-G 5-39

binarization id Type of Binarization
0 Truncated Unary
1 Exponential Golomb
2 Binary
3 Truncated Exponential Golomb
4 Signed Exponential Golomb
5 Signed Truncated Exponential Golomb

Table 5.12: Values of binarization id and their corresponding binarizations

second layer lut enabled flag signals if the data are transformed using the first-
order look-up table transformation (see Section 5.5.2).

context set size signals how many different context sets are needed for decod-
ing. One context set is a set of contexts, which are used to decode one value (see
Section 5.5.4).

context cycle size signals the size of the cycle in which context sets are selected.
If context cycle size is equal to 1, only one context set will be used. If
context cycle size is equal to 2, values at odd positions will be encoded
with context set 1, values at even positions with context set 2.

5.7.2 Lookup Table Signaling Syntax

read lut(){
lut size u(24)
value length in bits u(8)
for(i=0;i<lut size;i++){
key[i] u(dLog2(lut size+1)e)
value[i] u(value length in bits)
}
}

Table 5.13: Proposed syntax for signaling of a look-up table.

5.7.2.1 Syntax Definitions

lut size indicates the amount of key-value pairs that are encoded in the look-up
table (LUT).

5-40 CHAPTER 5

value length in bits indicates the number of bits that are used to encode the val-
ues.

key[i] is the i-th element in the table of keys.

value[i] is the i-th element in the table of values.

STANDARDIZATION: MPEG-G 5-41

5.8 Support for new Sequencing Technologies
During the development of the technologies described in this Chapter and the fur-
ther adaptations and extensions that form MPEG-G, design choices were made in
such a way that data produced by all emerging sequencing technologies can be
represented using MPEG-G. Each syntax element and each descriptor stream has
been designed to support values that would result from these emerging sequencing
technologies and evolutions in the output of existing technologies. Examples are
the support for the signaling of ultra-long reads (in case of the RLEN descriptor
stream) and extensions for access unit start and stop positions to 64 bit for large
files, if required.
Additionally, the workflow described in this Chapter has been designed in such a
way that it can be configured extensively. This approach is expected to allow for
adaptation to properties of the data created by different current and future sequenc-
ing technologies.

5-42 CHAPTER 5

5.9 Conclusions and Original Contributions
In this chapter, a coding solution (and its corresponding syntax) is discussed that
has been proposed as the baseline for the compression of genomic data within
the MPEG-G standardization ad-hoc group and has been selected as the starting
point for this standard. This coding solution has been developed from a simpli-
fied, more practical, version of the AFRESh and AQUa coding solutions and has
been extended with features such as, input data flexibility and an extensive coding
flexibility, in order to support effective compression of the heterogeneous types of
input data, processed by MPEG-G.
The effectiveness and efficiency of the coding solution have been analysed for two
different configuration sets (fast mode, offering high efficiency and low effective-
ness, and slow mode, offering high effectiveness and low efficiency) and compared
to the LZMA ultra settings of the state-of-the-art generic compressor 7-Zip. In
slow mode, the complete MPEG-G benchmarking set is compressed to 20.99% of
its original file size. In fast mode, the file size is reduced to 21.97%. As a compar-
ison, 7-Zip LZMA with ultra settings compresses the benchmarking set to 22.25%
of its original file size. Additionally, with the proposed solution, which is not
optimized for efficiency and running in single-threaded mode, the whole bench-
marking set can be compressed in 1,471 or 4,066 seconds in fast mode and slow
mode, respectively, whereas 7-Zip encodes the same benchmarking set in 24,957
seconds (or 16.97 and 6.14 times slower). To decode the complete benchmarking
set, 7-Zip needs 426 seconds, which is significantly shorter than fast mode (1,374
seconds) and slow mode (1,341 seconds).
Besides the significantly higher time efficiency, the proposed solution requires a
significantly lower amount of memory. 7-Zip requires a maximum of 709 MiB of
memory, the proposed solution less than 64 KiB (excluding coding-specific data,
such as program code and potential speed optimizations such as pre-calculated ta-
bles for binarization).
In the final part of the chapter, the syntax that is derived from this coding solution
and that has been proposed (and selected) as a baseline for the MPEG-G descriptor
stream coding is presented and described.

The coding solution discussed in this chapter is available for download at
https://github.com/tparidae/MPEG-G-proposal.

STANDARDIZATION: MPEG-G 5-43

References
[1] https://mpeg.chiariglione.org/standards/mpeg-g

[2] P. J. A. Cock et al., ”The Sanger FASTQ file format for sequences with quality
scores, and the Solexa/Illumina FASTQ variants”, Nucleic Acids Research,
Vol. 38, No. 6, pp. 1767-1771, 2010.

[3] H. Li et al., ”The Sequence Alignment/Map format and SAMtools”, Bioinfor-
matics, Vol. 25, No. 16, pp. 2078-2019, 2009.

[4] T. Wiegand et al, ”Overview of the H.264/AVC Video Coding Standard”, IEEE
Transactions on Circuits and Systems for Video Technology, Vol. 13, No. 7,
pp. 560-576, 2003.

[5] G. J. Sullivan, ”Overview of the High Efficiency Video Coding (HEVC) Stan-
dard”, IEEE Transactions on Circuits and Systems for Video Technology, Vol.
22, No. 12, pp. 1649-1668, 2012.

[6] Paridaens T. et al, ”Proposal for decoding process of MPEG-
G descriptor streams”, MPEG input document m41595,
http://wg11.sc29.org/doc end user/current document.php?id=60309&
id meeting=172 (restricted access)

[7] ISO/IEC JTC1/SC29/WG11, ”CD ISO/IEC 23092-2 Coding of Genomic
Information”, https://mpeg.chiariglione.org/standards/mpeg-g/genomic-
information-representation/study-isoiec-cd-23092-2-coding-genomic , 2017.

[8] Alberti C. et al, ”Core Experiments on Genomic Infor-
mation Representation”, MPEG output document N17143,
http://wg11.sc29.org/doc end user/current document.php?id=60680&
id meeting=172 (restricted access)

[9] D. Marpe, H. Schwarz, and T. Wiegand, ”Context-based adaptive binary arith-
metic coding in the H.264/AVC video compression standard”, IEEE Trans.
Circuits Syst. Video Technol. IEEE Transactions on Circuits and Systems for
Video Technology, vol. 13, no. 7, pp. 620-636, 2003.

[10] J. Teuhola, A compression method for clustered bit-vectors, Information
Processing Letters, vol. 7, pp. 308-311, Oct. 1978.

[11] M. Wien, ”High efficiency video coding: coding tools and specification.”
Berlin, DE: Springer, 2015.

[12] ITU-T, ”High efficiency video coding”, Rec. ITU-T H.265, April 2013

6
Conclusions and Future Work

6.1 Summary
The past decade has seen several (r)evolutions in Deoxyribo Nucleic Acid (DNA)
sequencing (i.e., reading). Each of these technologies resulted in faster and cheaper
sequencing of DNA. Therefore, the use of DNA sequencing has increased signifi-
cantly, as previous limitations (speed and cost) have been overcome. Many appli-
cations (e.g., personalized medicine, Genome-Wide Association Studies (GWAS),
and studies of outbreaks of diseases) have now (or will soon) come within reach
of more people and (medical) research institutes.
However, with the rising popularity of DNA sequencing, new issues can be iden-
tified regarding the storage and transmission of the resulting data. As an example,
one human genome can require several hundreds of gigabytes of storage space.
This poses a challenge for institutions that want (or are required) to store/archive
genomic data or need to work with large sets of genomes for (medical) research.
Additionally, transmission of one such human genome can still take hours or days,
even over fast broadband networks. As a result, transmission of such large amounts
of genomic data is typically handled by shipping hard drives through a courier ser-
vice.
In this dissertation, several compression solutions have been presented that have
been designed with a focus on improved effectiveness and functionalities, such as
random access. All solutions have been presented to the MPEG-G standardization
committee (in ISO/IEC working group ISO/IEC JTC1 SC29/WG11). The final so-
lution has been selected as the starting point (for processes, syntax, effectiveness,

6-2 CONCLUSION

and efficiency) for the coding part of MPEG-G.

6.1.1 Coding Framework
In this dissertation, a coding framework has been introduced that has been de-
signed to form the baseline for compression solutions for nucleotidic information
and quality scores. This framework provides important features for the storage,
management, and compression of large data files (inspired by the storage, man-
agement, and compression of media files), whilst offering key features for research
purposes (such as easy extensibility and configurability). The main features of the
coding framework are:

• single-pass encoding - input data are processed in one pass, hence enabling
features such as live streaming during sequencing or encoding, and limiting
memory and storage requirements by voiding the need for temporal storage
of analysis data or pre-processing data;

• stand-alone, no-reference encoding - input data are compressed without
any external reference, hence voiding the need for exchange and manage-
ment of references, and limiting encoding complexity by voiding analysis
of the reference;

• random access - data encoded with the coding framework are stored in
random access blocks with a minimal impact on coding effectiveness. Each
random access block can be decoded separately, hence voiding the need to
transmit complete data sets when only a subset of the data is needed.

• flexible configuration - the framework can be configured along several di-
mensions to select a trade-off point between efficiency and effectiveness.
The user can identify the symbol alphabet(s) and coding tool(s) to be used,
set the granularity of the random access blocks, and other parameters such
as size of the search window and blocks.

• extensibility - the framework can be extended easily with additional input
and output file formats, symbol alphabets, and coding tools.

6.1.2 AFRESh and AQUA
Starting from the presented coding framework, two coding solutions have been
designed: AFRESh for nucleotidic information and AQUa for quality scores.

6.1.2.1 AFRESh

The main extensions added to the coding framework by AFRESh are a set of three
symbol alphabets and nine coding tools, designed to exploit redundancies within

CONCLUSION 6-3

nucleotidic information (reads and assembled sequences). The coding tools can
be split into two major categories: encoding tools and prediction tools. Encoding
tools convert input blocks (a sequence of multiple input values, i.e., nucleotides)
into a (fixed or adaptive) binary representation. Prediction tools generate a pre-
diction and create correction information (residue). The output data of the cod-
ing tools are then converted into bit sequences (binarizations) using tailor-made
binarization processes. These binarizations are then processed through Context-
Adaptive Binary Arithmetic Coding (CABAC). During the coding process, each
of the coding tools is applied. Subsequently, the coding tool offering the highest
effectiveness is used.
When compared to generic data compressors (Gzip and the state-of-the-art 7-Zip),
AFRESh offers an effectiveness improvement of up to 41% for reads and 34%
for assembled sequences, and up to 22% for reads and 16% for assembled se-
quences, when compared to Gzip and 7-Zip, respectively. When compared to
specialized compressors, AFRESh offers an effectiveness improvement of up to
51% (SCALCE), 42% (LFQC), and 44% (ORCOM). Additionally, none of these
generic and state-of-the-art compressors support random access, a feature that is
deemed very valuable.

6.1.2.2 AQUa

The main extensions added by AQUa are a symbol alphabet for quality scores and
a set of seven coding tools. Four of these coding tools are tailor-made for the
coding of quality scores; three are inherited from AFRESh. The output data of
the coding tools are then converted into binarizations, using binarization processes
built on top of the binarization processes that are used in the H.265/HEVC video
coding standard. These binarizations are then processed through Context-Adaptive
Binary Arithmetic Coding (CABAC).
When compared to the generic compressor Gzip and the purpose-built compres-
sion format SCALCE, AQUa offers an effectiveness improvement of up to 38.49%,
and 21.14%, respectively, while still supporting random access. When compared
to the generic state-of-the-art compressor 7-Zip, AQUa offers an effectiveness that
is slightly lower (up to 3.41%) or slightly higher (up to 6.48%), while still support-
ing random access.
Compared to the dual-pass state-of-the-art quality score compressor QVZ, AQUa
has an effectiveness which is lower (6.42% to 33.47%). However, for one test
file, AQUa outperforms QVZ by 0.38%, while offering support for random ac-
cess and processing the data in one pass (without pre-analysis or pre-processing).
This shows that, as expected, a dual-pass coding solution typically offers a higher
compression effectiveness, although such behaviour is not guaranteed.

6-4 CONCLUSION

6.1.3 MPEG-G Standardization

During the development of the AFRESh and AQUa frameworks for the compres-
sion of nucleotides and quality scores, development of an MPEG (Moving Picture
Experts Group) standard for the representation, compression, and management of
genomic data was initialized: MPEG-G. The goal of this standardization effort1

is to provide an alternative to the current de facto standards FASTA/FASTQ and
SAM/BAM (Sequence Alignment Map/Binary Alignment Map). MPEG-G will
provide improved effectiveness, additional functionalities (such as built-in support
for random access), and standardized processes for the conversion of data in FAS-
TA/FASTQ and SAM/BAM to MPEG-G.
The major advantage of standardization is interoperability. In other words, stan-
dardization ensures that software and hardware solutions that are standard-compliant
can handle all data stored in a standard-compliant bitstream.
In a first step, a coding solution has been designed to compress the data streams
for the MPEG-G standard. This coding solution, which is presented in this dis-
sertation, is based upon the coding framework that was used as a base layer for
AFRESh and AQUa. As random access will be handled in a higher layer of the
MPEG-G standard, this feature has been removed. On the other hand, the frame-
work has been extended with support for multiple representations of input data,
data transformations (allowing encoders to use analysis information, e.g., through
look-up tables), and a unified decoding syntax for signaling input, transformation,
binarization, and context selection parameters. Other key features, such as flexible
configuration, have been preserved (or extended), hence allowing users to optimize
the encoding process for each type of input.
The coding solution consists of four configurable processes: data input, transfor-
mation, binarization, and context set selection. In the data input step, the input
data is processed in one of three different granularities. In the transformation step,
the input data can be transformed using one of six transformation algorithms (or
none, i.e., passing through the input data). The output of the transformation step is
then processed by the binarization step, which offers six different binarization al-
gorithms. In the final step, a set of contexts is selected for processing the binariza-
tions with CABAC. This selection can be performed using one of three presented
context selection algorithms.
To provide the decoder with the information needed for decompression, a decoder
syntax has been designed. This decoder syntax has been proposed to the MPEG-G
standardization committee and acts as a baseline for the coding part of the MPEG-
G compression standard.
When comparing the coding solution with 7-Zip across the MPEG-G benchmark-
ing set, the coding solution offers a higher effectiveness (reduction to 21.97% of

1This effort is performed within the ISO/IEC working group ISO/IEC JTC1 SC20/WG11.

CONCLUSION 6-5

the original file size in fast mode, 20.99% in slow mode, compared to 22.25% for
7-Zip). Additionally, the coding solution (which has not been implemented for
optimal efficiency and is only executed in single-threaded mode) offers encoding
efficiency improvements over 7-Zip (in dual-threaded modus) of 6.14 times (slow
mode), and 16.96 times (fast mode).
Another important feature offered by the coding solution is the limited amount of
memory required to store (temporary) values during encoding/decoding: a maxi-
mum of 64 KiB is required during the encoding/decoding of the complete MPEG
benchmarking set for the storage of all transformation data (e.g., look-up tables,
search windows), input (input value), intermediate (transformation and binariza-
tion), and output data, and context sets and arrays required for CABAC. As a
comparison, the total memory required for 7-Zip (in the tested LZMA ultra con-
figuration) is 709 MiB for encoding and 66 MiB for decoding.

6.2 Contributions
The work presented in this dissertation consists of the following contributions:

• A generic coding framework for genomic data, inspired by technologies
used for media compression, with support for random access, flexible con-
figuration, and extensibility.

• Use of Context-Adaptive Arithmetic Coding for the coding of other data
than video.

• AFRESh, a coding solution, based on the generic coding framework, for nu-
cleotidic information (reads and assembled sequence). This solution offers
gains in compression effectiveness of up to 41% for reads and 34% for as-
sembled sequences (compared to generic data compressors), and up to 51%,
when compared to specialized compressors. Additionally, the coding so-
lution offers a solution for random access, which is not available in other
compressors.

• AQUa, a coding solution, based on the generic coding framework, for qual-
ity scores. This solution offers gains in compression effectiveness of up to
39% (compared to generic data compressors). Compared to a two-pass state-
of-the-art compressor, effectiveness is between 6% to 33% lower, which
is to be expected given the two-pass approach. Additionally, AQUa offers
random access, does not require additional memory/storage for the storage
of analysis information, and even outperforms the two-pass state-of-the-art
compressor by 1% for one test file.

• A coding solution, and corresponding syntax, has been derived from the
AFRESh and AQUa solutions and has been extended with the technologies

6-6 CONCLUSION

needed for the compression of the different (heterogeneous) data streams
within the MPEG-G standard. This coding solution offers a compressed
output size of down to 20.99% of the original size (compared to 22.25% for
7-Zip, using LZMA ultra settings). Additionally, the encoding times are up
to 16.96 times smaller than the 7-Zip compressor, with the same settings,
and memory usage is significantly lower (64KiB vs 709 MiB).

CONCLUSION 6-7

6.3 Future Work
The work presented in this dissertation presents several opportunities for addi-
tional research. These opportunities can be divided into two categories: further
improvements in data compression and representation, and applications based on
the MPEG-G standard.

6.3.1 Data Compression and Representation

During the discussion of the AFRESh solution in Chapter 3, it was clear that in
the case of low-coverage sequencing files and unmapped reads, AFRESh is less
effective than the two-pass solution ORCOM. Therefore, it would be interesting
to investigate the integration of an (optional) two-pass solution. For AFRESh, a
significant compression gain is to be expected from using the ORCOM binning
process as a pre-processor as the output of this process is a set of bins that con-
tain reads that share a contingent chunk of nucleotides. The effect of the bin-wise
sorting process should also be investigated, as it could further improve the com-
pression effectiveness. If the output of this approach is as expected, this technol-
ogy might be a strong candidate technology for integration in a future standard
(MPEG-G v2), especially for the descriptor stream that contains the unmapped
reads: UREADS.

Another potential synergy with MPEG-G can be found in the framework that
has been used for AQUa and AFRESh2. This would require the extension of the
framework with support for the different data types that are used in the descriptor
streams. Additionally, the concept of blocks will have to be revised to support ran-
dom access based on genomic positions. The main incentive to move back to the
original framework would be the concept of coding tool set(s). While this concept
has a negative effect on coding efficiency, it allows a coding solution to adapt to the
different characteristics of (and within) the different descriptor streams. Ideally, a
solution consists of a complementary set of coding tools for each of the different
descriptor streams. And more importantly, this approach allows for easy exten-
sion with (and analysis of) new and/or specialized coding tools and as such en-
able worldwide development of such tools. This approach has been proven highly
successful with video coding standards such as H.264/AVC and H.265/HEVC. It
might be beneficiary to extend the concept of coding tools, when compared to the
coding tools used in Chapter 3 with transformations and variable binarizations.

A third opportunity to improve the effectiveness of the current MPEG-G stan-
dard can be found in new coding technologies. More specifically, machine learning

2Note that a simplified version of this framework has been selected as a baseline for the current
MPEG-G standard. However, to further improve coding effectiveness, it might be required to return to
the original framework with competing coding tools.

6-8 CONCLUSION

technologies such as convolutional auto encoders, which can act as data compres-
sors, or (online and offline) neural networks that generate predictions are interest-
ing solutions to be investigated.

Besides these coding improvements for MPEG-G, it is clear that some types of
data that are generated in sequencing and analysis processes are not supported by
the current representations in MPEG-G. The main missing type of data is the data
that are stored in Variant Calling Format (VCF) files and its significantly larger
variant: genomic Variant Calling Format (gVCF). These files contain information
on variant calling, which is generated at the end of a typical analysis chain. These
data are, as with FASTA/FASTQ and SAM/BAM, stored in a highly-ineffective,
human-readable way and contain data that are expected to be representable in an
effective way with the current coding approaches used in MPEG-G.

6.3.2 MPEG-G Applications
Given the current state of the MPEG-G standard (DIS, or Draft International Stan-
dard), it is clear that the focus should be on promoting the MPEG-G standard and
its capabilities. Without general adoption of the standard, development of applica-
tions and research on improved effectiveness, efficiency, and functionality will be
limited.
A first step towards adoption of a standard is the availability of encoders, decoders,
and data management solutions. In a second step (which can be performed in paral-
lel with the first step), existing sequencing and analysis chains need to be adapted
and optimized for use with MPEG-G. These adaptations and optimizations can
then be used to demonstrate the effect of MPEG-G on the speed of analysis, the
storage footprint and bandwidth usage.

6.3.2.1 Encoders, Decoders, & Data Management

Given the MPEG-G standard specification, it is relatively easy to design and im-
plement a standard-compliant decoder and even encoder. However, designing an
effective and efficient encoder does require a significant amount of research and
development. The results of this effort can be significant, as demonstrated by the
evolution of video quality and compression speed of H.264/AVC and H.265/HEVC
video encoders since their original design. It is therefore to be expected that sig-
nificant amounts of research will be performed for implementations, in order to
allow for differentiation. Interesting research topics are:

• Optimization of the creation process for descriptor streams from FASTA/-
FASTQ or SAM/BAM files. E.g., what is the optimal threshold to apply
reference adaptation to optimize the effectiveness of storing mismatches?
What is the most efficient approach to generate all descriptor streams, e.g.,
through parallelization?

CONCLUSION 6-9

• Optimization of the coding efficiency by e.g., parallel processing of the dif-
ferent descriptor streams and random access units?

• Analysis of the effect of the size of access units (i.e., the size of the genomic
range contained within an access unit) on compression effectiveness and
on the applications. And how can we minimize any negative effect. E.g.,
If small access units are preferred, how can we optimize the effectiveness?
E.g., by using context initialization, selecting different coding parameters, or
disabling certain transformations with significant overhead, such as Lookup
Tables?

• Analysis of the effect of the different transformations and binarizations on
the coding effectiveness and efficiency. What is the effectiveness cost of
disabling certain transformations and binarizations in order to limit the pro-
cessing and memory requirements at the decoder or encoder side?

• Optimization of coding efficiency by limiting the set of coding configura-
tions that are tested during encoding (per descriptor stream). This should
result in heuristics for the selection of (near-)optimal coding configurations,
potentially depending on the type of input data or on the selected coding
configurations in previous access units.

• Efficient adaptation of data contained within an MPEG-G data file. Exam-
ples of such adaptations are the conversion from lossless quality scores to
lossy quality scores and more complex adaptations such as efficiently up-
dating all descriptor streams when changing the reference sequence (e.g, to
a newer version of the reference).

Besides encoders and decoders, solutions are required that support the storage,
management and exchange of the data. These solutions need to support the random
access functionality of the MPEG-G standard, combined with the encryption, pri-
vacy, and integrity functionality. To enable data exchange, solutions are required
that allow for identifying the requested data and its storage location and allow for
transmitting/streaming these data. Existing standards, such as the MPEG-21 Bi-
nary Syntax Description Language (BSDL) for format-agnostic and fast adaptation
of files and MPEG-DASH for the streaming of data, are existing enablers for these
functionalities. Once these functionalities are supported, a reliable service can be
offered to users to be used in their sequencing and analysis chains.
In multimedia, the advent of these technologies enabled a multitude of services and
technologies that are highly popular and would not be possible without the con-
tinuous process of improving and extending standards: YouTube, Netflix, Hulu,
Amazon, streaming on broadcasters’ websites, TV distributors that offer hundreds
of channels, video/audio recording using smartphones,...

6-10 CONCLUSION

6.3.2.2 Sequencing & Analysis Chains

Provided that encoders, decoders, and data management solutions are available, a
significant set of optimizations can be integrated into a range of applications used
in sequencing & analysis chains:

• Genome browsers can benefit significantly from the random access func-
tionality on genomic region, data type, and class level. This enables limiting
data transmission to only these data that are required for the selected view.

• An analysis chain can benefit significantly from the concept of descriptor
streams. This concept allows tools, such as assembly tools, to add mapping
information (e.g., mapping position, mismatches, and indels) without the
need for compression the complete data set.

• MPEG-G allows for random access on genomic region, data type, and class
level. This offers opportunities to speed up many processes. However, these
new processes need to be analysed and tested for reliability. Some examples
of such processes are:

– Selection of incorrect mappings for re-assembly. This process can be
limited to the selection of reads of class M (and the reads in class G that
contain mismatches) with more mismatches than a given threshold and
perform the re-assembly. All other types of reads will not be accessed
and decoded.

– Detection of potential contaminations. This process can be limited to
the reads that are contained in the unmapped reads descriptor stream.
Potentially, this might also require the analysis of those reads that have
a mapping with a large number of mismatches.

– Gene expression analysis. This process can be limited to the descriptor
streams that contain the mapping position and (optional) read length
data.

– SNP calling. This process can be limited to the selection of reads of
class M (and the reads in class G that contain mismatches) and the
reads of class P. SNP calling very sensitive to any change in the com-
plete sequencing and analysis chain. Therefore, the acceptance of this
process will require extensive analysis and proven reliability.

• Remote analysis tools can benefit from the random access functionality as
they can access the data in the order required and only need to transmit (and
decode) the data that are required. This approach can help lowering the
duration of an analysis.

CONCLUSION 6-11

To enable adoption of the MPEG-G standard, it is clear that quantification of
the gains provided by MPEG-G for genome browsing, local analysis, and remote
analysis is highly important, as well as the analysis of its effect on the output of
the analysis chain.

6.3.3 The Future of Sequencing
One can wonder what the future of sequencing will bring. Will there be a se-
quencing technology that is able to sequence a whole genome, transcriptome,
metagenome,... in one go, with 100% reliability? Will this minimize the data to
be stored, due to the lack of quality scores and 1x coverage? Will this technology
become so cheap that it will become a daily practice to e.g., sequence and analyse
a persons’ genome or, in case of single-cell genomics, multiple sequencing and
analysis processes a day, one for each cell type? Will we then store all these data?

What is clear is that the amount of data that will be generated will be of an
unimaginable size. This will pose challenges for storage and will probably ask for
creative measures and require an analysis of which data really need to be archived
and which not.

