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Quantum circuits for strongly correlated quantum systems
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In recent years, we have witnessed an explosion of experimental tools by which quantum systems
can be manipulated in a controlled and coherent way. One of the most important goals now is to
build quantum simulators, which would open up the possibility of exciting experiments probing var-
ious theories in regimes that are not achievable under normal lab circumstances. Here we present a
novel approach to gain detailed control on the quantum simulation of strongly correlated quantum
many-body systems by constructing the explicit quantum circuits that diagonalize their dynam-
ics. We show that the exact quantum circuits underlying some of the most relevant many-body
Hamiltonians only need a finite amount of local gates. As a particularly simple instance, the full
dynamics of a one-dimensional Quantum Ising model in a transverse field with four spins is shown
to be reproduced using a quantum circuit of only six local gates. This opens up the possibility
of experimentally producing strongly correlated states, their time evolution at zero time and even
thermal superpositions at zero temperature. Our method also allows to uncover the exact circuits
corresponding to models that exhibit topological order and to stabilizer states.

PACS numbers: 03.67.-a , 05.10.Cc

Recent advances in Quantum Information has led to
novel ways of looking at strongly correlated quantum
many-body systems. On the one hand, a great deal of
theoretical work has been made in identifying the basic
structure of entanglement in low-energy states of many-
body Hamiltonians. This has led, for example, to new
interpretations of renormalization group ideas in terms
of variational methods in classes of quantum states with
some very special local structure of entanglement [1, 2, 3],
as well as to new methods to study the low energy prop-
erties of interesting lattice Hamiltonians. On the other
hand, new experimental tools have been developed which
should allow us to simulate certain quantum many–body
systems, and thus to gain a better understanding of their
intriguing properties and potentialities. In particular,
the low temperature states corresponding to the Bose-
Hubbard model have been prepared using atoms in op-
tical lattices [4, 5], something which has triggered a lot
of attention both in the atomic physics and condensed
matter physics communities.

In this paper we propose to use a quantum com-
puter (or simulator) in a different way, such that we
not only have access to the low energy states but to the
whole spectrum for certain quantum many–body prob-
lems. Moreover, this allows one to prepare any excited
state or thermal state at any temperature, as well as the
dynamical evolution of any state for arbitrary times with
an effort which does not depend on the time, the tem-
perature, or the degree of excitation. The main idea is
to unravel a quantum circuit that transforms the whole
Hamiltonian into one corresponding to non–interacting
particles. As we will show, this will allow us to achieve
the desired goals. Moreover, the new circuit will be ef-

ficient in the sense that the number of gates only grows
polynomially with the number of particles. We will give
some examples where with current systems of 4 or 8
trapped ions it would be possible to perform a complete
simulation of a strongly interacting Hamiltonian.

We should also mention that what we are doing can be
interpreted in terms of an extension of the renormaliza-
tion group ideas [6]. There, one is interested in obtaining
a simple effective Hamiltonian which describes the low
energy physics of a given problem. This is done by a se-
ries of transformations which involve getting rid of high
energy modes. In our case, we find a unitary transfor-
mation which takes the whole Hamitonian into a simple
(non-interacting) one, and thus: (i) we do not loose the
physics of the high energy modes in the way; (ii) it can
be implemented experimentally. Of course, our method
only works exactly for the small set of integrable prob-
lems, but very similar approximate transformations can
in principle be found for any system whose effective low-
energy physics is well described by quasi-particles.

Let us start by considering the consequences of identi-
fying the quantum circuit Udis that disentangles a given
Hamiltonian H acting on n qubits in the following sense:

H = Udis H̃ U†
dis (1)

where H̃ is a non–interacting Hamitonian which, without
loss of generality, can be taken as

H̃ =
∑

i

ωiσ
z
i , (2)

with σz
i Pauli operators. We are interested in the cir-

cuits whose size only grows moderately with the number

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Ghent University Academic Bibliography

https://core.ac.uk/display/188642141?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/0804.1888v1


2

of qubits. In that case we could: (i) prepare excited
eigenstates of H, just preparing a product state and then
applying Udis; (ii) simulate the time evolution of a state,
just by using

e−itH = Udise−itH̃U†
dis . (3)

Since e−itH̃ can be simulated using n single–qubit gates,
then the whole evolution would require a fixed number of
gates, independent of the time t; (iii) similarly, the same
circuit will allow to create the thermal state exp(−βH) =
Udis exp(−βH̃)U†

dis explicitly, just by preparing a prod-
uct mixed state to start with. This is remarkable, as,
in general, there is no known scheme to create thermal
states using a (zero-temperature) quantum computer.

The goal is thus, to identify the quantum circuits that
disentangle certain kind of Hamiltonians. Here we will
consider three kind of Hamliltonians: (i) the XY model;
(ii) Kitaev’s on the honey–comb lattice; (iii) the ones
corresponding to stabilizer states. We will concentrate in
detail in the first one, since it gives rise to quantum phase
transitions and critical phases, and thus it is perhaps the
most interesting among them. Towards the end of the
paper we will briefly explain how one can carry out the
procedure with the other two.

The circuit Udis we shall construct is surprisingly small.
For a system of n spins, the total number of gates in the
circuit scales as n2 and the depth of the circuit grows
as n logn. Then, it seems reasonable to envisage experi-
mental realizations of the quantum circuit Udis that will
allow to create e.g. the ground state of the Quantum
Ising model for any transverse field starting from a triv-
ial product state and acting only with a small number of
local gates. The very same circuit would produce excited
state, superpositions, time evolution and even thermal
states. This is, thus, a quantum algorithm that could be
run in a quantum computer to exactly simulate a differ-
ent quantum system.

The strategy to disentangle the XY Hamiltonian is
based in tracing the well-known transformation which
solves the model analytically [7, 8]. The path to fol-
low is divided in three steps: we first need to imple-
ment the Jordan-Wigner map of spins (σ) into fermions
(c), then use the Fourier transform to get fermions in
momentum space (b) and, finally, perform a Bogoliubov
transformation to completely diagonalize the system in
terms of free fermions (a). As we shall discuss in more
detail shortly, the first transformation is just a relabeling
of degrees of freedom which needs no actual action on
the system. The fermions c are just an economical way
of carrying along the degrees of freedom that are subse-
quently Fourier transformed. On the other hand, both
the Fourier and Bogoliubov transformations are real ac-
tions on the spin degrees of freedom. Thus, the structure
of the unitary transformation that takes the free theory

to the original XY system corresponds to

Udis = UFT UBog (4)

with

HIsing = H1[σ]←− H2[c]
UFT←− H3[b]

UBog←− H4[a] = H̃
(5)

Some of the pieces of the Udis transformation may have
a very simple form when view as an action on the co-
efficients of the wave function. The problem is however
nontrivial in that the Bogoliubov transformation changes
the vacuum and, hence, the problem is different than the
one of simulating a fermionic computer with a standard
quantum computer [9].

Let us detail the construction of Udis for the XY Hamil-
tonian

HXY =

n
∑

i=1

(

1 + γ

2
σx
i σ

x
i+1 +

1− γ
2

σy
i σ

y
i+1

)

+ λ

n
∑

i=1

σz
i

+
1 + γ

2
σy
1σ

z
2 . . . σ

z
n−1σ

y
n +

1− γ
2

σx
1σ

z
2 . . . σ

z
n−1σ

x
n . (6)

where γ parametrizes the X-Y anisotropy and λ rep-
resents the presence of an external transverse magnetic
field. The last two terms above are related to the correct
mapping of periodic boundary conditions between spins
to fermionic degrees of freedom and are often dropped
as they are suppressed in the large n limit. These
terms can also be substituted with the standard peri-
odic terms σx

nσ
x
1 and σy

nσ
y
1 for the even total spin-up

sector and the same terms with opposite sign in the
odd sector. The Jordan-Wigner transformation ci =
(
∏

m<i σ
z
m

)

(σx
i −iσy

i )/2 is designed to transform the spin
operators into fermionic modes. This is indeed imple-
mented by the strings of spin operators which, further-
more, cancel on the Hamiltonian leading to

H2[c] =
1

2

n
∑

i=1

(

(c†i+1ci + c†ici+1)

+γ(c†ic
†
i+1 + cici+1)

)

+ λ

n
∑

i=1

c†ici , (7)

where cn+1 = c1, setting periodic boundary conditions,
and now ci, c

†
i are fermionic annihilation and creation

operators acting on the vacuum |Ωc〉 as defined by

{ci, cj} = 0 {ci, c†j} = δij ci|Ωc〉 = 0 . (8)

Thus, the Jordan-Wigner transformation takes a state of
spin 1/2 particles

|ψ〉 =
∑

i1i2...in=0,1

ψi1i2...in |i1, i2, . . . , in〉 , (9)

into a fermionic state

|ψ〉 =
∑

i1i2...in=0,1

ψi1i2...in(c
†
1)

i1 (c†2)
i2 ...(c†n)

in |Ωc〉 . (10)
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Figure 1: Structure of the quantum circuit performing the
exact diagonalisation of the XY Hamiltonian for 8 sites. The
circuit follows the structure of a Bogoliubov transformation
followed by a fast Fourier transform. Three types of gates
are involved: type-B (responsible for the Bogoliubov trans-
formation and depending on the external magnetic field λ

and the anisotropy parameter γ), type-fSWAP (depicted as
crosses and necessary to implement the anticommuting prop-
erties of fermions) and type-F (gates associated to the fast
Fourier transform). Some initial gates have been eliminated
since they only amount to some reordering of initial qubits.

The relevant point to observe is that there is no effect
on the coefficients ψi1i2...in . There are no gates to be im-
plemented on the register in order to reproduce the full
dynamics of the system, provided we retain the fact that
any further swapping of degrees of freedom will carry a
minus sign from now on. This is a remarkable simplifica-
tion in our construction.

The first non-trivial part of the quantum circuit for
the XY Hamiltonian is the one associated to the Fourier
transform which must be performed on the fermionic
modes

bk =
1√
n

n
∑

j=1

ei
2π
n

jkcj , k = −n
2
+ 1, . . . ,

n

2
. (11)

This transformation exploits translational invariance and
takes H2[c] into a momentum space Hamiltonian H3[b].
We here present the construction of this circuit in terms
of two-body local for the case where n = 2k, that is,
when a classical fast Fourier transform exists, though the
technique has general applicability. The quantum circuit
that produces the above result can be constructed in the
case of n = 8 as shown in Fig. 1.

The circuit contains two types of gates. Every crossing
of lines in the classical fast Fourier transformation cor-
responds to a fermionic swap in the quantum case, that
we represent with a crossed box in Fig. 1. The quantum
gate for this fermionic SWAP reads

USWAP =









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1









(12)

Note the minus sign whenever two ocupied modes enter
the fermionic SWAP. The UFT circuit also makes use of

a second class of gates. Those implement the change of
relative phase associated to the Fourier transform. The
construction of the explicit gates which are needed are

Fk =











1 0 0 0

0 1√
2

α(k)√
2

0

0 1√
2
−α(k)√

2
0

0 0 0 −α(k)











, (13)

with α(k) = exp(i2πk/n). The fast Fourier classical
circuit is of depth n logn. The quantum circuit needs
further fermionic swaps that makes the total number of
gates to grow as n2. More precisely, the counting of gates
in the circuit goes as follows. For a system of n = 2k

spins, the circuit needs 2k−1(2k − 1) local gates. Only
kn of them are site-dependent interacting gates, whereas
the rest correspond to fermionic SWAPs needed to ensure
the fermionic character of the effective modes handle in
the system. Let us note that the periodic boundary con-
ditions present in the system have emerged from a set of
initial free modes. It is the action of gates that builds
the appropriate boundary property in the system.

Let us note that the way entanglement builds up in
the system is made apparent in the circuit in Fig. 1.
For instance, when the system is divided in two sets with
four contiguous qubits in each one all bipartite entangle-
ment is transmited through four f-SWAP gates. This is
the minimum number of gates necessary to generate the
known maximum entanglement along time evolutions.
Thus, no circuit with less gates relating both half chains
could provide an exact solution.

The final step to achieve a full disentanglement of the
XY Hamiltonianin corresponds to a Bogoliubov transfor-
mation . The momentum-dependent mixture of modes is
disentangled using

ak = cos(θk/2)bk − i sin(θk/2)b†−k

θk = arccos





−λ+ cos
(

2πk
n

)

√

(

λ− cos
(

2πk
n

))2
+ γ2 sin2

(

2πk
n

)



 .(14)

This transformation preserves the anticommutation rela-
tions. Within the operators ak, the original Hamiltonian
can now be expressed as

H4[a] =

n/2
∑

k=−n/2+1

ωka
†
kak (15)

ωk =

√

(

λ− cos

(

2πk

n

))2

+ γ2 sin2
(

2πk

n

)

.(16)

The Hamiltonian is clearly a sum of noninteracting terms
and its spectrum is equivalent to the completely local
spin 1/2 Hamiltonian H̃ =

∑

i ωiσ
z
i . Let us note that

the above Bogoliubov transformation only mixes pairs of
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Figure 2: Complete quantum circuit that reproduces all the
dynamical properties of the Quantum Ising Hamiltonian in a
external magnetic field with four spins. Note that some initial
and final reordering gates could be sparsed in an experimental
realization.

modes. The precise gate that produces such disentangle-
ment corresponds to

Bk =









cos θk 0 0 i sin θk
0 1 0 0
0 0 1 0

i sin θk 0 0 cos θk









(17)

with θk given by Eq. (14). This completes the construc-
tion of the circuit that underlies the XY-Hamiltonian.

Let us now discuss the simplest non-trivial experi-
ment that can take advantage of the circuit we have con-
structed. We can take γ = 1, which reduces the system
to the quantum Ising chain in a magnetic transverse field
λ. This theory exhibits a quantum phase transition for
λ = 1 in the n → ∞ limit. Here, instead, we can con-
sider a system of n = 4 qubits. Experimentally, the four
qubits should be prepared in the initial |0000〉 or |0001〉
state, depending whether λ ≤ 1 or λ > 1 (different valid
variants of the circuit we are presenting change the way
the system must be prepared or the angles appearing in
the Bogoliubov transformation). Then, the set of gates
depicted in the circuit in Fig.2 should be operated with
a choice of the parameter λ in the only non-trivial Bo-
goliubov B gate. To be precise, the angle can be seen to
correspond to Eq. 14. We can further suppress unnec-
essary initial and final fermionic swaps since they just
correspond to a relabeling of qubits that can be taken
care of without actual actions on the system. Actually,
only six gates would be needed to recreate the full dy-
namics of the Ising model for four qubits! After running
the circuit, the state of the system would then be the
ground state of the Ising Hamiltonian for that value of
the external magnetic field. It would then be possible to
measure e.g. the correlator 〈σx

i σ
x
j 〉, for all i = 1, 2, 3, 4

and j 6= i. This process could be done over a scan of the λ
parameter and scan the magnetization 〈σx〉 for any qubit
as well as a measure of three- and four-body correlations
functions.

We may finally take a larger view on the underlying
structure of the circuits we have presented. The ba-
sic idea is that those integrable systems whose solutions
make use of the Jordan-Wigner transformation will have
a unitary circuit that disentangles the dynamics with

gates of the type

Vij = eiα(c
†

i
cj+h.c.) , Wij = eiα(cicj+h.c.) . (18)

In our case, the Fourier transform can be written in terms
of V -gates, whereas the Bogoliubov transformation needs
W -gates. These type of gate can further be expressed in
terms of local unitaries because Vij = V x

ijV
y
ij with

V x
ij = eiασ

x
i σ

z
i+1...σ

z
j−1σ

x
j (19)

V y
ij = eiασ

y

i
σz
i+1...σ

z
j−1σ

y

j , (20)

and, similarly, Wij =W x
ijW

y
ij , with

V x
ij = eiασ

x
i σ

z
i+1...σ

z
j−1σ

x
j (21)

V x
ij = eiασ

x
i σ

z
i+1...σ

z
j−1σ

x
j (22)

Then, all these gates can be implemented using B-type,
F-type and fermionic SWAP gates, as described previ-
ously.

The method we have presented here can be extended to
solve other quantum systems of relevance. Let us sketch
two specific cases. First, we focus on the 2-dimensional
Kitaev Hamiltonian on the honeycomb lattice [10]. That
Hamiltonian is particularly interesting because its ground
state exhibits nontrivial topological features and can nev-
ertheless be solved exactly using a mapping to free Majo-
rana fermions. The construction of the quantum circuit
diagonalizing the Hamiltonian can be constructed in the
same way as for the Ising Hamiltonian. The only differ-
ence is that, due to the mapping of one spin 1/2 to two
fermions or 4 Majorana fermions, ancilla’s have to be
used in the quantum circuit; but these can again simply
be disentangled at the end. A second example of system
whose exact circuit can be obtained corresponds to the
case of stabilizer states [11]. This class of states is par-
ticularly interesting from the point of view of condensed
matter theory as it encompasses the toric code state and
all the so–called string net states as arising in the context
of topological quantum order [12]. The related quantum
Hamiltonian is a sum of commuting terms, each term
consisting of a product of local Pauli operators. Such
a Hamiltonian can always be diagonalized by a quantum
circuit only consisting of Clifford operations [13]. In prin-
ciple, those gates can be highly nonlocal, and in the case
of Hamiltonians exhibiting topological quantum order,
one can rigorously prove that the quantum circuit has a
depth that scales linearly in the size of the system [14].
A nice measure of the complexity of a particular class
of stabilizer states would be to characterize the minimal
depth of the quantum circuit creating this Hamiltonian.

A more challenging task is to find the quantum circuit
that diagonalizes Hamiltonians that can be solved using
the Bethe ansatz. As the corresponding models are in-
tegrable, a quantum circuit is guaranteed to exist that
maps the Hamiltonian to a sum of trivial local terms.
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Such a procedure would be very interesting and lead to
the possibility of measuringing correlation functions that
are very hard to calculate using the Bethe ansatz solu-
tion.

In conclusion, we have shown that certain relevant
Hamiltonians describing strongly correlated quantum
systems can be exactly diagonalized using a finite-depth
quantum circuit. We have produced the explicit con-
struction of such a circuit that opens up the possibility of
experimental realizations of strongly correlated systems
in controlled devices.

Methods. We here illustrate the technique use to con-
struct individual quantum gates in the XY. We consider
the example of a fast Fourier transform of four qubits.
The explicit transformations of modes in Eq. (11)

bk =
(

c0 + e−i2π 2k
4 c2

)

+ e−i2π k
4

(

c1 + e−i2π 2k
4 c3

)

(23)

where it is made apparent that modes 0 and 2 first mix in
the same way as 1 and 3, and then a subsequent mixing
takes place. The first step corresponds to

c′0 = c0 + c2 c′1 = c1 + c3

c′2 = c0 + e−iπc2 c′3 = c1 + e−iπc3 (24)

This the reason why the circuit in Fig. 2 carries two
identical gates in the first part of the Fourier transform.
Similarly, further mixtures will take place after some
fermionic swaps are operated.

To uncover the actual gate needed for the circuit, we
consider the wave function made of the modes involve

|ψ〉 =
∑

i,j=0,1

A′
ij

(

c
′†
0

)i (

c
′†
2

)j

|00〉

=
1

∑

i,j=0

Aij

(

c†0 + c†2

)i (

c†0 + eiπc†2

)j

|00〉 . (25)

Expanding this last equation and working in the basis
|00〉, |01〉, |10〉, |11〉, the coefficients of the wave function
are rearrange by the transformation A′ = UA with









1 0 0 0
0 1√

2
1√
2

0

0 1√
2
− 1√

2
0

0 0 0 −1









. (26)
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