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Abstract. Potential evaporation (Ep) is a crucial variable for hydrological forecast and in drought monitoring 

systems. However, multiple interpretations of Ep exist, and these reflect a diverse range of methods to calculate 

Ep. As such, a comparison of the performance of these methods against field observations in different global 

ecosystems is badly needed. In this study, we used eddy-covariance measurements from 107 sites of the 

FLUXNET2015 database, covering 11 different biomes, to parameterize and compare the main Ep  methods and 10 

uncover their relative performance. For each site, we extracted the days for which ecosystems are unstressed based 

on both an energy balance approach and on a soil water content approach. The evaporation measurements during 

these days were used as reference to validate the different methods to estimate Ep. Our results indicate that a 

simple radiation-driven method calibrated per biome consistently performed best, with a mean correlation of 0.93, 

an unbiased RMSE of 0.56 mm day-1, and a bias of -0.02 mm day-1 against in situ measurements of unstressed 15 

evaporation. A Priestley and Taylor method, calibrated per biome, performed just slightly worse, yet substantially 

and consistently better than more complex Penman, Penman-Monteith-based or temperature-based approaches. 

We show that the poor performance of Penman-Monteith based approaches relates largely to the fact that the 

unstressed stomatal conductance was assumed constant. Further analysis showed that the biome-specific 

parameters required for the simple radiation-driven methods are relatively constant per biome. This makes this 20 

simple radiation-driven method calibrated per biome a robust method that can be incorporated into models for 

improving our understanding of the impact of global warming on future global water use and demand, drought 

severity and ecosystem productivity. 

1 Introduction 

Since its introduction 70 years ago by C. W. Thornthwaite (1948), the concept of potential evaporation (Ep), 25 

defined as the amount of water which would evaporate from a surface unconstrained by water availability, has 

been widely used in different fields. It has been incorporated in numerous hydrological models dedicated to 

estimate runoff (e.g. Schellekens et al., 2017) or actual evaporation as well as in drought severity indices (Vicente-

Serrano et al., 2013;Sheffield et al., 2012). Changes in Ep have been regarded as the main driver of ecosystem 

distribution and aridity (Scheff and Frierson, 2013) and are used to estimate the influence of climate change on 30 

ecosystems based on climate models projections (e.g. Milly and Dunne, 2016).  

However, many different definitions of Ep exist, and consequently many different methods to calculate it. In recent 

years, there has been an increasing awareness of the impact of the underlying assumptions and caveats of the Ep 

methods (e.g. Sheffield et al., 2012;Kingston et al., 2009;Seiller and Anctil, 2016;Bai et al., 2016;Guo et al., 

2017;Weiß and Menzel, 2008;Milly and Dunne, 2016). Therefore, a global appraisal of the most appropriate 35 

method for assessing Ep of actual ecosystems is badly needed. Current methods disagree on the mere meaning of 
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this variable, which requires the definition of a reference system (Lhomme 1997). As such, Ep has been defined 

as either the evaporation which would occur in the given meteorological conditions if water was not limited (i) 

over open water (Shuttleworth, 1993), (ii) over a reference crop (usually a short green grass completely shading 

the ground, and either completely wet (Penman, 1963) or irrigated (Allen et al., 1998)), or (iii) over the actual 

ecosystem transpiring at a maximal rate (Brutsaert, 1982;Granger, 1989).  5 

A second source of disagreement on the definition of Ep relates to the extent of the reference system and the 

influence of the reference system on the meteorological conditions. An idealized extensive ecosystem evaporating 

at maximum rate can be expected to raise air humidity until the vapour pressure deficit tends to zero. In that case, 

evaporation is driven by a radiation (energy supply) component only. In addition, considering such an extensive 

area also avoids problems with advection and entrainment flows. Consequently, such an extensive reference 10 

system was used to define Ep by many authors (Penman, 1963;Priestley and Taylor, 1972;Brutsaert, 

1982;Shuttleworth, 1993). Others opined that the meteorological conditions should not depend on the extent of 

the reference system, by making this reference system infinitesimally small (Morton, 1983;Gentine et al., 

2011b;Pettijohn and Salvucci, 2009). Upon all this controversy, the net radiation of the reference system remains 

a point of discussion: some argue that the reference system should have the same net radiance as the actual system 15 

(e.g. Rind et al., 1990;Crago and Crowley, 2005;Granger, 1989). Yet, this is inherently inconsistent as the surface 

skin temperature reflects the surface energy partitioning. Thus, a system transpiring at potential rate has a lower 

skin temperature (Maes and Steppe, 2012) and correspondingly a lower net radiation (e.g. Lhomme, 

1997;Lhomme and Guilioni, 2006).  

As can be concluded from the above discussion, it is nearly impossible to define a correct and universally accepted 20 

definition of Ep, and the most appropriate definition should remain tied to the specific interest and application. 

Nonetheless, as different applications make use of different Ep methods, a good knowledge of the implications of 

different Ep definitions is required (Fisher et al., 2011). If considering terrestrial ecosystems, the open water 

reference system seems less informative of the available energy and the aerodynamic properties of the ecosystem 

(Shuttleworth, 1993;Lhomme, 1997). Considering that the well-watered crop system only takes climate forcing 25 

conditions into account and does not require information on land cover, it has become the universally most often 

used reference system (Lhomme, 1997) and is traditionally the preferred system when looking at the global water 

demand or drought severity (Dai, 2011). When the reference system is considered the actual ecosystem transpiring 

at maximal rate, both climate forcing conditions and ecosystem properties need to be taken into account. This is 

the preferred system when Ep is used as a means to estimate actual evaporation (Ea). This is commonly done by 30 

applying a multiplicative stress function, , varying between 0 and 1, such that Ea =  Ep (Barton, 1979). This sort 

of stress functions are used by evaporation retrieval models based on remote sensing or weather station data at 

regional or global scales (e.g. Fisher et al., 2008;Miralles et al., 2011b;Martens et al., 2017;Mu et al., 2007), and 

can be considered analogous to the  factor used in most land surface models to incorporate the effect of soil 

moisture in the estimation of surface turbulent fluxes (Powell et al., 2013). This definition of Ep based on the 35 

actual ecosystem as reference system is also preferred for global streamflow and runoff studies based on the 

Budyko approach.  

When comparing and evaluating different Ep methods, studies using a modelling approach have either (i) 

compaired the performance of  different Ep methods in hydrological models (Oudin et al., 2005a;Seiller and Anctil, 

2016;Xu and Singh, 2002;Kay and Davies, 2008) or (ii) in climate models (Milly and Dunne, 2016;Weiß and 40 
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Menzel, 2008;Lofgren et al., 2011), or (iii) used the Penman-Monteith method as the benchmark to test different 

alternative Ep formulations that require less input data (e.g. Chen et al., 2005;Sentelhas et al., 2010). Although 

these studies have their merits, it is clear that approaches in which the Ep methods are evaluated based on empirical 

data of actual measurements of evaporation should be preferred. Unfortunately, such approaches are hampered by 

limited data availability (Weiß and Menzel, 2008). Lysimeter data, probably the most precise evaporation 5 

measurements available, have been used (e.g. Pereira and Pruitt, 2004;Katerji and Rana, 2011;Yoder et al., 2005), 

but measurements are scarce and difficult to upscale to larger ecosystems. Pan evaporation data, available in larger 

volumes and at larger scales, have also been used (Donohue et al., 2010;Zhou et al., 2006;McVicar et al., 2012) 

but provide a proxy of open-water evaporation, rather than actual ecosystem potential evaporation, and also exhibit 

biases related to the location, shape and composition of the instrument (Pettijohn and Salvucci, 2009). Eddy 10 

covariance measurements, finally, are an attractive alternative, but have so far been used in a relatively limited 

number of studies focusing on local or regional scale only (Douglas et al., 2009;Li et al., 2016;Jacobs et al., 

2004;Sumner and Jacobs, 2005). 

The purpose of this article is to identify the best method to estimate Ep in different ecosystems across the globe. 

Based on the above review, Ep is defined using the actual ecosystem evaporating at maximal rate as reference 15 

system, so Ep refers to the actual atmospheric demand for water experienced by the ecosystem. We used the most 

recent and complete eddy-covariance database available, i.e. the FLUXNET2015 archive 

(http://fluxnet.fluxdata.org/). The most frequently-adopted Ep methods are applied based on standard 

parameterizations as well as calibrated parameters per biome, and inter-compared in order to gain insights into 

the most suitable means to estimate Ep in global models.  20 

2. Material and Methods 

2.1. Selection of Ep methods 

Methods to calculate Ep can be categorized based on the amount and type of input data required. In this overview, 

we will only discuss the most frequently used or new methods that will be evaluated in our study – the readers are 

referred to Oudin et al. (2005a) or Seiller and Anctil (2016) for more extensive overviews.  25 

Methods based on radiation, temperature, wind speed and vapour pressure deficit 

The well-known Penman-Monteith equation (Monteith, 1965) expresses latent heat flux Ea (W m-2) as:  

λ𝐸a =   
𝑠 (Rn−G)+ 

ρa cpVPD

raH

𝑠+γ+ γ 
rc

raH

 =  
𝑠 (Rn−G)+ 

ρa cpVPD

raH

𝑠+γ+  
γ

𝑔𝑐 raH

  
(1) 

With  the latent heat of vaporisation (J kg-1), Ea the actual evaporation (kg m-2 s-1), s the slope of the Clausius-

Clapeyron curve relating air temperature with the saturation vapour pressure (Pa K-1), Rn the net radiation (W m-

2), G the ground heat flux (W m-2), a the air density (kg m-3),  the psychrometric constant (Pa K-1), cp the specific 30 

heat capacity of the air (J kg-1 K-1), VPD the vapour pressure deficit (Pa), raH the resistance of heat transfer to air 

(s m-1), rc the canopy resistance of water transfer (s m-1) (middle equation) and gc the canopy conductance to water 

transfer (m s-1; gc = rc
-1). While , cp, s and  are air temperature-dependent, raH is a complex function of wind 

speed, vegetation characteristics and the stability of the lower atmosphere (see Section 2.3). In most methods to 

estimate Ea or Ep, raH is considered as a simple function of wind speed.  35 
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The Penman-Monteith equation can be used for calculating Ep by adjusting rc to its minimum value (the value 

under unstressed conditions). If the reference system is the actual system, or a reference crop transpiring at 

maximal rate, rc is usually considered as a fixed, constant value larger than zero. In this study, both a universal, 

fixed value of rc (or gc) for reference crops as a biome-specific constant value will be used. If a wet canopy is 

considered, rc=0 and Eq. (1) collapses to: 5 

λ𝐸p =   
𝑠 (Rn−G)+  

ρa cpVPD

raH

𝑠+γ
  

(2) 

Eq. (2) is often referred to as the Penman (1948) method and can be re-arranged to yield λ𝐸p =   
𝑠 (𝑅𝑛−𝐺)

𝑠+𝛾
+

 
𝜌𝑎 𝑐𝑝𝑉𝑃𝐷

(𝑠+𝛾) 𝑟𝑎𝐻
, showing that Ep can be driven by a radiative (left) or an aerodynamic forcing (Brutsaert and Stricker, 

1979).  

Methods based on radiation and temperature 

In case the reference system is considered an idealized extensive area, or when radiation is much greater than 10 

atmospheric vapour deficit, the aerodynamic component of Eq. (2) tends to 0 and the whole equation collapses to 

λ𝐸p =   
𝑠 (Rn−G)

𝑠+γ
, commonly referred to as equilibrium evaporation (Slatyer and McIlroy, 1961). Priestley and 

Taylor (1972) analysed time series of open water and water-saturated crops and grasslands and found that the 

evaporation over these surfaces closely matched the equilibrium evaporation corrected by a multiplication factor 

PT: 15 

λ𝐸p =   αPT

𝑠 (Rn − G)

𝑠 + γ
 

(3) 

This formulation is known as the Priestley and Taylor equation, and usually a value of PT=1.26 is adopted, as 

estimated by Priestley and Taylor (1972) in their original experiments. In this study, we will also include a 

vegetation-specific value. Since this method does not require wind speed or VPD as input, it is one of the Ep 

methods most widely used in hydrological, remote sensing and drought models.   

Methods based on radiation 20 

Other studies such as Lofgren et al. (2011), or the more recent Milly and Dunne (2016), further simplified Eq. (3) 

to:  

λ𝐸p =   αMD (Rn − G) (4) 

In the case of Milly and Dunne (2016) this equation was applied to climate model output based on a value of 

MD=0.8. The above Eq. (4) can be easily related to the surface energy balance of the ecosystem, which is given 

by Rn − G = λE + H, with H the sensible heat flux (W m-2). On a daily scale, (Rn − G) expresses the total amount 25 

of energy available for evaporation, and the fraction of this energy that is actually used for evaporation is typically 

referred to evaporative fraction, or EF =  
λ𝐸a

(H+λ𝐸a)
=  

λ𝐸a

(Rn−G)
. From Eq. (4), it follows that the parameter MD can 

be interpreted as the EF of the unstressed ecosystem. In this study, we will test both the general value of MD=0.8 

and a biome-specific value. 
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Methods based on temperature  

Of the many empirical methods to estimate Ep, temperature-based methods have been most commonly used 

because of the availability of reliable air temperature data. For an overview of these methods, we refer to Oudin 

et al. (2005a). In this study, two methods are included. Pereira and Pruitt (2004) formulated a daily version of the 

well-known Thornthwaite (1948) equation: 5 

Teff<0 λ𝐸p = 0 (5a) 

0<Teff<26 λ𝐸p = αTh  (
10 Teff

I
)

b

 (
N

360
)  (5b) 

26<Teff λ𝐸p =  −𝑐 + 𝑑 Teff − 𝑒 Teff² (5c) 

with Teff being the effective temperature, based on maximum and minimal temperatures (see further, Section 2.5), 

Th an empirical parameter (see below), I the yearly sum of (Ta_mean/5)1.514 , with Ta_mean the mean air temperature 

for each month, N the number of daylight hours, b a parameter depending on I and c, d and e empirical constants 

(see further , Section 2.5). The general value of Th=16 is often adopted; in this study, we will also calculate and 

apply a biome-specific value. 10 

The second temperature-based method is the one proposed by Oudin et al. (2005a), after comparing 27 physically-

based and empirical methods with runoff data from 308 catchments: 

Ta<5 λ𝐸p = 0 (6a) 

Ta>5 λ𝐸p =
Re

ρa 
 
(Ta −  5)

αOu

 
(6b) 

with 𝑇𝑎  being air temperature (C), and Re top-of-atmosphere radiation (MJ m-2 day-1), depending on latitude and 

Julian day. Oudin et al. (2005a) suggested to use Ou = 100. This value will be used, next to a biome-specific 

value. A detailed description of the calibration of all Ep methods is given in Section 2.5. 15 

 

2.2. FLUXNET2015 Database 

The Tier2 FLUXNET2015 database based on half-hourly or hourly measurements from eddy-covariance sites is 

used to evaluate the estimates of Ep (http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/). Sites lacking at least 

one of the basic measurements required for our analysis (i.e. Rn, G, Ea, H, wind speed (u), friction velocity (u*), 20 

Ta and relative humidity (RH) or VPD) were not further considered. For latent heat flux, we used the data corrected 

by energy balance closure (Michel et al., 2016). For Rn and the main fluxes (G, H, Ea), medium and poor gap-

filled data were masked out according to the information provided by FLUXNET. As no quality flag was available 

for Rn measurements, the quality flag of the shortwave incoming radiation was used instead. All negative values 

for H or Ea were masked out, as these relate to periods of interception loss and condensation. Similarly, all 25 

negative values of Rn were masked out. Finally, sub-daily measurements were aggregated to daytime composites 

based on a threshold of 5 W m-2 of top-of-atmosphere incoming shortwave radiation and the first and last (half-) 

hours of the day were excluded from these aggregates; if top-of-atmosphere radiation was not available, surface 

shortwave incoming radiation was used instead. Based on these daytime values, the daytime means of s, , a were 

calculated using the parameterisation procedure described by Allen et al. (1998). We used air temperature to 30 

calculate s. Only days in which more than 30% of the data were measured directly were retained, and days with 
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rainfall (between midnight and sunset) were removed from the analyses to avoid the effects of rainfall interception. 

Only sites with at least 80 retained days were used for the further analysis. The global distribution of the final 

selection of sites is shown in Fig. 1 and detailed information about these sites is provided in Table S1 of the 

Supporting Information. The IGBP-classification was used to assign a biome to each tower.  

 5 

(Insert Figure 1) 

2.3. Calculation of conductance parameters 

Estimates of raH are required by the Penman and Penman-Monteith equations. The resistance of heat transfer to 

air, raH, was calculated as: 

raH =  
𝑢

𝑢∗
2

+  
1

𝑘 𝑢∗

 [ln (
𝑧0𝑚

𝑧0ℎ

) +  𝛹𝑚 (
𝑧 − 𝑑

L
) − 𝛹𝑚 (

𝑧0ℎ

L
) − 𝛹ℎ (

𝑧 − 𝑑

L
) +  𝛹ℎ (

𝑧0ℎ

L
)] 

(7) 

in which k=0.41 is the von Karman constant, z the (wind) sensor height (m), d the displacement height (m), z0m 10 

and z0h the roughness lengths for momentum and sensible heat transfer (m), respectively, L the Obukhov length 

(m), and 𝛹𝑚(𝑋) and 𝛹ℎ(𝑋) the Businger-Dyer stability functions for momentum and heat for the variable X, 

respectively. These were calculated based on the equations given by Garratt (1992) and Li et al. (2017) for stable, 

neutral and unstable conditions. Note that in neutral and stable conditions, 𝛹𝑚(𝑋) =  𝛹ℎ(𝑋) and that 𝛹𝑚 (
𝑧−𝑑

L
) −

 𝛹𝑚 (
𝑧0ℎ

L
) − 𝛹ℎ (

𝑧−𝑑

L
) + 𝛹ℎ (

𝑧0ℎ

L
) = 0. This is not the case for unstable conditions, which mostly prevail during 15 

the daytime. Daytime averages of all variables were used as input in Eq. (7). 

The sensor height z was collected individually for each tower through online and literature research, or personal 

communication with the towers' P.I. The Monin-Obukhov length L was calculated as (Li et al., 2017): 

L =
− 𝑢∗

3 ρ Ta (1 + 0.61 qa) cp

𝑘 𝑔 H
 

(8) 

with qa being the specific humidity (kg kg-1) and g=9.81 m s-2 the gravitational acceleration. 

The displacement height d and the roughness length for momentum flux z0m were estimated as a function of the 20 

canopy vegetation height (VH), as d=0.66 VH and z0m=0.1 VH (Brutsaert, 1982). The VH was estimated from the 

flux tower measurements using the approach of Pennypacker and Baldocchi (2016): 

VH =
𝑧

0.66 + 0.1 exp (
𝑘 𝑢 
𝑢∗

)
 (9) 

This equation was applied to the full (half-)hourly database and only when conditions were near-neutral (|𝑧/L| <

0.01) and when friction velocities were lower than one standard deviation below the mean of u* at each site. The 

daily VH was then aggregated by averaging out the half-hourly estimates to daily values, excluding the 20% 25 

outliers of the data, and then calculating a 30-day window moving average on the dataset, again excluding 20% 

of the data. This gave robust results for all sites. When not enough (half-)hourly vegetation height observations 

(<160) were available, the site was excluded from the analysis. An example of VH temporal development for a 

specific site is given in Fig. 2a. 

The Stanton number (defined as kB-1 = ln(z0M/z0H)) was calculated by assuming that the surface aerodynamic 30 

temperature T0 (defined by H = ρa cp
(T0− Ta)

raH
) is equal to the radiative surface temperature Ts derived from the 
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longwave fluxes (Li et al., 2017). Then, through an iterative approach, an optimal value of z0H was obtained, using 

the following equations for T0 (Garratt, 1992) and Ts (Maes and Steppe, 2012):  

T0 =  Ta + (
H

𝑘 𝑢∗ ρa cp

) [ln (
𝑧 − 𝑑

𝑧0ℎ

) −  𝛹ℎ (
𝑧 − 𝑑

L
) +  𝛹ℎ (

𝑧0ℎ

L
)] 

(10) 

Ts =  √
LWout −  (1 − ε) LWin

σ ε

4

 

(11) 

with  the Stefan-Boltzmann constant and  the surface emissivity (see further). The (half-)hourly data were used 

for this calculation. Following the approach of Li et al. (2017), only summertime data were used and only those 

measurements when H was larger than 20 W m-2 and were u* was larger than 0.01 m s-1. Summertime was defined 5 

as those months in which the maximal daily value for  is at least 85% of the maximum value for H for the time 

series at the tower (with the maximum value derived as the 98th percentile, to avoid influences from outliers). In 

addition, (half-)hourly observations with counter-gradient heat fluxes were excluded from the analysis. For each 

observation, the difference between T0 and Ts was minimized by optimizing z0H. Then, the kB-1 was calculated at 

each site based on its relation with the observed Reynolds number (Re) by fitting the following function, based 10 

on the work by Li et al. (2017): 

k B-1=a0 + a1 Rea2 (12) 

Note that Eq. (11) requires a value for , which is often assumed to be equal to 0.98 for all sites (e.g. Li et al., 

2017;Rigden and Salvucci, 2015). Under the assumption that T0=Ts,  can also be calculated separately per site. 

If H=0, it follows that T0=Ta and from Eq. (11),   

ε =  
LWout  − LWin  

σ Ta
4  −  LWin  

 
(13) 

Here,  was calculated for each site using (half-)hourly data, selecting those measurements where H was close to 15 

0 (-2<H<2 Wm-2) and excluding rainy days as well as measurements in which the albedo (calculated as 

SWout/SWin) was above 0.4, to avoid measurements of snow or ice. Negative estimates of  were filtered out, and 

the  of the site was calculated as the mean excluding the outlying 20% of the data. Equation 3 was applied both 

with a fixed  of 0.98 and with the observed , and the equation with the lowest RMSE for Eq. (12) was retained. 

An example of such a function between kB-1 and Re is shown in Fig. 2b.  20 

 

(Insert Figure 2) 

 

Finally, the canopy resistance rc (s m-1) was calculated as the residual from the Penman-Monteith equation as:  

rc =
 𝑠 (Rn − G) raH +  ρa cpVPD

γ λ𝐸a

 −  
(𝑠 +  γ) raH

γ
 

(14) 

We converted the rc estimates to canopy conductance gc (mm s-1) using gc=1000 rc
-1 and will stick to gc for the 25 

remainder of the document Note that the approach of calculating kB-1 directly requires a separate measurement of 

LWin and LWout, which was only available in 95 of the 107 selected sites. For the remaining sites, an alternative 

approach was used to calculate kB-1 consisting of estimating gc with different parameterisations for kB-1 and 

selecting the method with highest R² between gc and Ea (see Supporting Information). 
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2.4. Selection of unstressed days 

To identify a subset of measurements per eddy-covariance site in which the ecosystem was not undergoing any 

stress we included two different approaches and provided the results for both methods. A first approach was based 

on soil moisture levels. For those sites where soil moisture levels were available, the maximal soil moisture level 

for each site was determined as the 98th percentile of all soil moisture measurements. We split up the dataset of 5 

each tower in 5 classes, according to the 20th percentiles of evaporation, in order to cover unstressed evaporation 

during all seasons. Of each class, we selected those days with the highest 5% soil moisture levels, but only if these 

selected days had a soil moisture level above 75% of the maximum soil moisture level.  

As soil moisture data were not available for a large number of sites and using soil moisture data does not exclude 

days in which the functioning of the ecosystems has been affected by other kinds of biotic or abiotic stresses, a 10 

second approach for defining unstressed days was additionally applied, using an energy balance criterion. We 

calculated the EF from the daytime λEa and H values, and considered it as a direct proxy for evaporative stress 

(Maes et al., 2011;Gentine et al., 2007;Gentine et al., 2011a). The underlying hypothesis is that under unstressed 

conditions, a larger fraction of the available energy is used to evaporate. This approach is similar to the one used 

in other Ep studies on eddy-covariance or lysimeter data, in which the Bowen ratio (e.g. Douglas et al., 2009) or 15 

the ratio of λEa/(SWin + LWin) (Pereira and Pruitt, 2004) are used to define unstressed days. The unstressed record 

was comprised of all days with EF>95th percentile threshold for each particular site, or, if less than 15 days fulfilled 

this criterium, the 15 days with the highest EF. Consequently, we assume that at each site during at least 5% of 

the days the conditions are such that evaporation is unstressed and Ea reflects Ep. The measured actual evaporation 

from the identified unstressed days by either method is further referred to as Eunstr (mm day-1) and used as reference 20 

data to evaluate the different Ep methods.  

2.5. Calculation and calibration of the different Ep methods  

An overview of the different methods to calculate Ep is given in Table 1. If possible, a reference crop, standard 

and biome-specific version of each method is calculated. The reference crop version calculates Ep for the reference 

crop, with the estimated outgoing radiation and other properties of the reference crop. The standard version 25 

considers the radiation and other properties of the actual crop but uses the non-biome-specific parameters of the 

reference crop. The biome-specific version considers the radiation and other properties of the actual crop and 

applies a calibration of the key parameter (Table 1) of each method. This calibration values per biome is based on 

the mean value of this key parameter of the unstressed dataset for each tower, averaged out per biome.  

To estimate the radiation and crop properties of the reference crop versions, the equations described by Allen et 30 

al. (1998) were used and G was considered to be 0. Rn was calculated as:  

Rn=SWin (1-ref) + LW*  (15) 

with ref=0.23 (Allen et al., 1998) and LW* being the net longwave radiation, calculated after Allen et al. (1998; 

Eq. (39), Chapter 3) based on minimal and maximal daily temperature, actual vapour pressure and relative 

shortwave radiation.  

In the case of the reference crop version of the Penman-Monteith equation (Eq. (1)), the FAO-56 (Food and 35 

Agricultural Organization) method was used as described by Allen et al. (1998), with gc_ref fixed as 14.49 mm s-1 

(corresponding with rc_ref= 69 s m-1) and using Eq. (15) to calculate Rn. The standard version of the Penman-

Monteith equation used observed (Rn, G, VPD) and calculated (s, , a, raH) daytime values as described in Section 
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2.2. in Eq. (1), and assumed gc_ref = 14.49 mm s-1. The biome-specific version was calculated with the same data 

but used a biome-dependent value of gc. First, for each individual site, the unstressed gc was calculated as the 

mean of the gc values of the unstressed record (see Section 2.4). The mean value per biome gc_ref was then 

calculated from these unstressed gc values. Regarding the Penman method (Eq. (2)), the reference crop and 

standard versions were calculated using the same input data as for the Penman-Monteith methods, and as gc = ∞ 5 

(rc=0), no biome-specific version was calculated.  

The reference crop version of the Priestley and Taylor method is calculated from Eq. (3) with Rn from Eq. 15, s 

and  from the FAO-56 calculations, and with PT = 1.26. The standard version uses the same value for PT but 

the observed daytime values for Rn and G. The biome-specific version followed a calibration of PT similar to the 

gc_ref calculation. For each site, the unstressed PT was calculated as the average PT, obtained by solving Eq. (3) 10 

for PT, of the unstressed dataset. Finally, the mean per biome was calculated and used in the Ep estimation. 

Regarding the method by Milly and Dunne (2017) (Eq. (4)), the reference crop, standard and biome-specific 

calculation were calculated accordingly, with Rn from Eq. (15) for the reference crop version, MD=0.8 for the 

reference crop and standard version, and a calibrated MD per biome type for the biome-specific version.  

For Thornthwaite's and Oudin’s methods (Eq. (5)), only a standard and a biome-specific version were calculated. 15 

The standard version uses αTh = 16. In the biome-specific version, this parameter was again calculated per site 

as the mean value of the unstressed records (e.g. Xu and Singh, 2001;Bautista et al., 2009) and then averaged per 

biome. The effective temperature Teff was calculated as Teff = 0.36 (3Tmax − Tmin) (Camargo et al., 1999). The 

parameter b was calculated as 𝑏 =  (6.75 10−7I3)– (7.71 10−7I2) +  0.0179I +  0.492 and the parameters c, d 

and e in Eq. (5c) are -415.85, 32.24 and 0.43, respectively. Finally, for Oudin’s temperature-based method,Ou = 20 

100 was taken for the standard version (Eq. (6)). In the biome-specific version, this value was recalculated by 

calculating Ou for the unstressed records through Eq. (6), calculating the mean Ou per site and finally the biome-

dependent Ou. Altogether, this exercise yielded a total of 15 different methods to estimate Ep whose specificities 

are documented in Table 1. 

 25 

(Insert Table 1) 

3. Results 

3.1. Key parameters per biome 

We first focus on the parameter estimates of the unstressed record of the energy balance criterion (Section 2.4). 

Of the full dataset, 107 flux sites meet all the selection criteria (At least 80 days without rainfall and good quality 30 

measurements of radiation and main fluxes and at least 160 vegetation height observations, see Sections 2.2 and 

2.3). Despite considerable variation within each biome, statistically significant differences are observed among 

biomes for all of the key parameters of the unstressed records (see Sect. 2.3), although these differences are only 

marginally significant in the case of gc_ref (p=0.017 – see Table 2). Overall, croplands (CRO) are characterised by 

a higher measured Eunstr, translated in the highest gc_ref,PT, MD, Th and the lowest Ou of all biomes. Deciduous 35 

broadleaf forest (DBF) and evergreen broadleaf forest (EBF) also have high gc_ref,PT, MD, Th but low Ou, 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-682
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 12 February 2018
c© Author(s) 2018. CC BY 4.0 License.



10 

 

while savannah ecosystems (Woody savannah (WSA), Savannah (SAV) and Open shrublands (OSH)) are 

characterised by lower Eunstr and lower gc,PT, MD, Th and higher Ou.  

Only five sites (DE-KLI and IT-BCi, croplands; CA-SF3, OSH; AU-Rig, grassland (GRA) and AU-Wac, 

evergreen broadleaf forest) have mean values of PT higher than 1.26 (Table 2). In contrast, 27 sites, of which 9 

croplands, have a mean value of MD above 0.80 and 42 sites have mean gc_ref above 14.49 mm s-1. Wetlands 5 

(WET) are located in tropical, temperate as well as in arctic regions, explaining the large standard deviation of 

PT and RB (Table 2).  

Next, the effect of the climate forcing variables on Eunstr and on the key parameters gc_ref, PT and MD is 

investigated. Fig. 3 gives the distribution of the correlations between the climate forcing variables and Eunstr, gc_ref, 

PT and MD of the unstressed records at each site. We did not include Th or Ou because temperature-based 10 

methods did not perform well (see next Section). Eunstr is strongly positively correlated with Rn, Ta and VPD, but 

less with u (Fig. 3a, Table 3).  

Across all sites, the correlation between gc_ref and the forcing variables was not significantly different from zero 

against any climate variable. Nevertheless, gc_ref was significantly negatively correlated with Tair and with VPD in 

40 and 45% of the flux tower sites, respectively (Table 3, Fig. 3b). The two parameters PT and particularly MD 15 

correlated much less to any climate variable across all sites (Table 3b). Consequently, the distributions of the 

correlations of the climate forcing variables with MD are peaking around zero (Fig. 3c): MD is hardly influenced 

by Rn, and is overall not dependent on u, Ta, [CO2], or VPD in most sites (Fig. 3c, Table 3).   

 

(Insert Table 2) 20 

(Insert Table 3) 

(Insert Figure 3) 

 

3.2. Evaluation of different Ep methods  

We first list the results of the analysis using the energy balance criterion for selecting the unstressed records 25 

(Section 2.4). The scatterplots of measured Eunstr versus estimated Ep based on the 15 different methods are shown 

in Fig. 4 for a total of six sites belonging to different biomes. Despite the overall skill shown by the different Ep 

methods, considerable differences can be appreciated. In general, reference crop methods (PMr, Per, PTr, MDr) 

overestimate Eunstr and only two methods, MDB and PTB, match the measured Eunstr closely.  

 30 

(Insert Figure 4)  

 

Table 4 gives the mean correlation per biome for each method. The results are very consistent and reveal that the 

highest correlations for nearly all biomes are obtained with the standard and biome-specific radiation-based 

method (MDs and MDb), closely followed by the standard and biome-dependent Priestley and Taylor method (PTs 35 

and PTb). Temperature-based methods have the lowest overall mean correlation as well as lower mean correlations 

per biome. Note that the correlations are the same for the standard and biome-specific version in the case of 

Priestley and Taylor (PTs and PTb), Milly and Dunne (MDs and MDb) and Oudin (Ous and Oub) (Table 4) – this 
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is to be expected, as the only difference between the standard and biome-specific version of these methods is their 

key parameters (PT, MD, Ou) which are multiplicative (see Eqs. 3, 4 and 6). Differences are however reflected 

in their unbiased Root Mean Square Error (unRMSE) and mean bias– see Tables 5 and 6. The biome-specific 

versions of the radiation-based method (MDb) and of the Priestley and Taylor method (PTb) have consistently the 

lowest unRMSE for all biomes. Though the difference between these two methods is small, MDb is performing 5 

slightly better. The standard Penman method (Pes) has the highest unRMSE. All reference crop methods (PMr, 

Per, PTr, MDr) have mean unRMSE above one, and the temperature-based methods (Ths, Ous, Thb, Oub) also have 

relatively high unRMSE. Finally, bias estimates are given in Table 6. Again, MDb is overall the best performing 

method (mean bias closest to 0), closely followed by the PTb method. Both methods have consistent low bias 

among all biomes, except for wetlands. Most reference crop methods (PMr, Per, PTr, MDr) as well as Pes 10 

overestimate Ep in all biomes.  

 

(Insert Table 4) 

(Insert Table 5) 

(Insert Table 6) 15 

 

The use of soil moisture content as criterion to select unstressed days (see Sect. 2.4) is explored. In total, 62 sites 

have soil water content data and meet the other selection criteria documented in Section 2.2. The results of this 

analysis are given in Tables S2-S4 of the supporting section. To allow for a fair comparison, the same statistics 

have also been computed for just the same 62 tower sites with the energy balance-criterion (Tables S5-S7). Using 20 

the soil moisture criterion, the correlations are overall lower and the results of the mean correlation, unRMSE and 

biases are less consistent. However, the overall performance ranking of the different models remains similar: PTb 

is the best performing method with overall the highest mean correlation (R=0.84) and the lowest unRMSE (0.78 

mm/day) and the bias closest to zero (-0.04), closely followed by the MDb method, with R=0.81, unRMSE=0.89 

and a mean bias of -0.12.  25 

So far, all flux sites were used to calibrate the key parameters (Table 2) and those same sites were also used for 

the evaluation of the different methods. This was done to maximise the sample size; however, to test for possible 

overfitting, we also repeat the analysis after separating calibration and validation samples. For each biome, two-

thirds of the sites were randomly selected as calibration sites, and one third as validation sites. The key parameters 

were then calculated from the calibration subset, and applied to estimate Ep of the biome-specific methods of the 30 

validation subset. This procedure was repeated 100 times and the mean correlation, unbiased RMSE and bias per 

biome were calculated. These results are provided in Tables S8-S10, and show no substantial differences in overall 

correlation, unRMSE and bias of each method.  

4 Discussion 

4.1 Comparison of criteria to define unstressed days 35 

We prioritised the energy balance over the soil moisture criterion to select unstressed days, because it can be 

applied to sites without soil moisture measurements and because it implicitly allowed the exclusion of days in 

which the ecosystem is stressed for reasons other than soil moisture availability (e.g. insect plagues, phenological 
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leaf-out, fires, heat and atmospheric dryness stress, nutrient limitations). In addition, surface soil moisture can be 

a poor indicator of water stress, as rooting depth can vary and is not accurately measured, and different plants may 

exhibit various strategies and responses to water stress (Miralles et al., 2011a;Douglas et al., 2009;Powell et al., 

2006;Martínez-Vilalta et al., 2014).  

This is confirmed by our results: sampling unstressed days based on the energy balance-based criterion resulted 5 

in higher correlations (Table S5 vs Table S2) between Ep and Eunstr for all methods and in lower unRMSE, with 

the exception of the temperature-based methods (Table S6 vs Table S3). However, the soil moisture criterion 

provides an independent check of the results and confirms the superior performance of the PTb and MDb methods. 

In the following sections, discussions are therefore focused primarily on the results of the energy balance method. 

4.2 Estimation of key ecosystem parameters 10 

The biome-specific values of the key parameters in Table 2 were within the range of values used in reference crop 

and standard application of the models (Table 1), with the exception of PT, which was typically lower. Other 

studies also found PT values far below 1.26 but within the range of our study, mainly for forests (e.g. Komatsu, 

2005;Shuttleworth and Calder, 1979;Viswanadham et al., 1991;Eaton et al., 2001) but also for tundra (Eaton et 

al., 2001) or grassland sites (Katerji and Rana, 2011) – see McMahon et al. (2013) for an overview. Our results 15 

and these studies demonstrate that the standard level of PT=1.26 is close to the upper threshold of evaporation 

and will overestimate Ep at most sites (Table 5).  

4.3 Performance of the Penman-Monteith method  

The poor performance of the PMr, PMs and PMb methods was relatively unexpected. Because the Penman-

Monteith method incorporates the effects of air temperature, humidity, radiation and wind, it is often considered 20 

superior (e.g. Sheffield et al., 2012), and is even used as reference method to evaluate other methods (e.g. 

Sentelhas et al., 2010;Xu and Singh, 2002;Oudin et al., 2005b). However, in studies estimating Ea, in which  gc is 

adjusted so it reflects the actual rather than potential situation, the Penman-Monteith method has already been 

shown to perform worse than other, simpler methods, such as the Priestley and Taylor method (e.g. Michel et al., 

2016;Ershadi et al., 2014). Its performance depends on the reliability of the wide range input data required, and 25 

on the methods used to derive raH and gc (Seiller and Anctil, 2016;Singh and Xu, 1997;Dolman et al., 2014). In 

our case, the strict procedure followed to select the samples of 107 eddy-covariance datasets (see Sect. 2.2) 

ensured that all relevant variables were available, and that these meteorological measurements could be considered 

of high quality. Hence, in our analysis, poor input quality is unlikely to be the cause of low performance.  

We believe that the underlying assumption of a constant gc_ref under no stress typically adopted by PM methods 30 

(PMr, PMs, PMb) when estimating Ep, is a more likely explanation of the poor performance. PM was the only 

method of which the biome-specific calibration did not improve its performance. This is partially because of the 

large variation in gc_ref-values between the different flux sites of the same biome type (Table 2). In addition, of all 

the key parameters, gc_ref  values had the largest mean relative standard deviation of the unstressed datasets of the 

individual sites (results not shown). Canopy conductance of the unstressed dataset was significantly negatively 35 

correlated with VPD in 45% of the sites (Fig. 3b, Table 3). The relationship between gc and VPD for two such 

sites is illustrated in Fig. 5. It is clear that the gc data of unstressed days (red dots) are among the highest gc values 

for a given VPD, illustrating the validity of the energy balance method. However, it is also clear that gc of these 
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unstressed days decreases sharply with increasing VPD. As a consequence, their mean value, used to later 

calculate gc_ref per biome type, is highly influenced by the local VPD and is not necessarily a representative value 

for this ecosystem.  

The dependence of gc on VPD (e.g. Sumner and Jacobs, 2005;Granier et al., 2000;Jones, 1992;Novick et al., 2016) 

has been well studied and incorporated in most conventional stomatal or canopy conductance models (e.g. 5 

Leuning, 1995;Jarvis, 1976;Ball et al., 1987). Yet, out of practical reasons, gc_ref is usually taken as a constant in 

Ep-methods using the Penman-Monteith approach, with the PMr as best illustration. Our data confirm that stomata 

close when VPD increases, even in unstressed conditions. As such, the VPD-dependence of gc smoothens the 

impact of VPD in the Penman-Monteith equation: if VPD gets high, gc becomes very low, limiting the impact of 

VPD on Ea (Eq. 1). Assuming a constant gc value overestimates the influence of VPD (and wind speed) on Ep. 10 

Schymanski and Or (2017) recently pointed at a possible error in the Penman-Monteith formulation at leaf scale 

and claimed that a similar issue is present at the ecosystem scale application of the Penman-Monteith method. In 

that case, a second key parameter needs to be added, relating to the whether leaves are amphi-, epi- or 

hypostomatous. As Eq. 1 is the standard equation used in all Ep methods, we choose not to incorporate this 

correction (or, we assumed that the canopy can be represented as a big leaf with no latent and heat flux exchange 15 

at the lower part, a standard assumption of the Penman-Monteith equation). However, even if this correction 

would be incorporated, the assumption of a constant gc value would lead to similar issues ad would likely make 

the PM-methods less performant.  

Apart from the VPD-dependence, taking a constant gc-value in the Penman-Monteith method also ignores the 

effect of increasing CO2 levels on gc. As a result, Milly and Dunne (2016) found that the Penman-Monteith 20 

methods with constant gc overpredicted Ep in models predicting future water use. Incorporating a VPD and CO2 

calibration of gc in the Penman-Monteith equation is outside the scope of this study, but can be an interesting 

approach to further improve Ep calculations. However, it would make the model even more complex and require 

more empirical input data. Likewise, taking a wet canopy as reference in the Penman method (gc = ∞ or rc=0), not 

only severely overestimates Ep (Table 6) but also overestimates the influence of VPD and wind speed on Ep. 25 

 

(Insert Figure 5)  

 

4.4 Possible issues with PTb and MDb methods 

The simpler Priestley and Taylor and radiation-based methods came forward as the best methods for assessing Ep 30 

with both criteria to define unstressed days. Both PTb and MDb are attractive from a modelling perspective, as 

they require a minimum of input data. However, this simplicity can also hold risks. The Priestley and Taylor 

method has been criticised for the implicit assumptions, which are also present in the MDb-method. For instance, 

by not incorporating wind speed explicitly, it is assumed that the effect of wind speed on Ep is somehow embedded 

within PT (or MD).Yet, several studies indicate that wind speeds are decreasing (‘stilling’) globally (McVicar et 35 

al., 2008;McVicar et al., 2012;Vautard et al., 2010). McVicar et al. (2012) also reported an associated decreasing 

trend in observed pan evaporation worldwide as well as in Ep calculated with the PMr method. As Priestley and 

Taylor methods do not incorporate effects of wind speed McVicar et al. (2012) argued that these should not be 

used in climate models.  
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A separate question is whether more complex Ep methods that incorporate the effects of wind speed or VPD do 

this correctly; the above-mentioned issues about the fixed parameterisation of the Penman-Monteith methods for 

estimating Ep indicate that this is typically not the case. In addition, both Penman methods showed a relatively 

poor performance and severely overestimated Eunstr (Tables 4 and 6; S2 and S4).   

Regarding the non-consideration of wind speed by simpler methods, our records shows a limited effect of u on Ea 5 

and Ep, even when considering larger temporal scales. Of the 16 flux towers with at least 10 years of evaporation 

data, we calculated the yearly average Ea as well as the annual mean climatic variables. Yearly averages were 

calculated from monthly averages, which on their turn were calculated if at least three daytime measurements 

were available. Despite a relatively large mean standard deviation in yearly average u of 7.0%, yearly average u 

was not significantly correlated with the Ea in any of these sites. In contrast, yearly average net radiation was 10 

positively correlated with evaporation for seven of the 16 sites, with comparable mean standard deviation in annual 

Rn (8.5%). Moreover, looking at a daily scale and at Ep, neither MD nor PT were heavily influenced by wind 

speed (Fig. 3c, d, Table 3). Hence, the implicit assumption of the independence of PT and MD on wind speed 

temporal variability seems legitimate. In fact, given the fact that MD was hardly affected by any climatic variable, 

and given the relatively small range in MD values within each biome (Table 2), it appears that MD is a robust 15 

biome property that can be used in the upscaling of these methods for their global application. The robustness of 

MD as biome property is furthermore confirmed by the analysis with independent calibration and validation sites, 

which hardly affected the unRMSE and bias (Tables S9-10). All the well performing methods, and particularly 

the two best methods (MDb and PTb), rely heavily on (Rn-G) (Eqs. 2 and 3). In Section 3.2, all Ep calculations 

used (Rn-G) obtained during unstressed conditions. The question is whether Ep can also be calculated correctly 20 

using the observed (Rn-G) when the ecosystems are not unstressed. As mentioned in Section 1, while several 

authors argued that the net radiation of the reference system should be the one measured for the actual ecosystem 

(e.g. Rind et al., 1990;Crago and Crowley, 2005;Granger, 1989), others considered only incoming shortwave and 

longwave radiation as forcing variables and outgoing longwave and shortwave radiation as ecosystem responses 

(e.g. Lhomme, 1997;Lhomme and Guilioni, 2006). Despite practical implications, it is clear that Ts - hence, 25 

outgoing longwave radiation - is lower when ecosystems have higher evaporation and are less stressed (Maes and 

Steppe, 2012). Therefore, it appears appropriate not to use the shortwave or longwave outgoing radiation, or G, 

to compute Ep, but to use values of , Ts and G that reflect unstressed conditions for estimating (Rn-G). A method 

to derive these variables based on flux tower data of the unstressed datasets is presented in the Section S2 of the 

supporting information. However, as this method requires a large amount of input data, it is not practically 30 

applicable at global scale. Comparing Ep obtained with this correct method with Ep calculated with the actual (Rn-

G) reveal that the latter method underestimates Ep with 8.2 ± 10.1%. There are no significant differences between 

biomes, but the distribution of the underestimation is left-skewed: although the median underestimation is 5.5%, 

the underestimation was larger than 10% in 22% of the sites (Fig. 6).  

The main reason for this underestimations is the difference between Ts of the actual and of the unstressed system, 35 

which accounted for 65% of the underestimation. If the unstressed Ts is estimated as the mean of Ta and the actual 

Ts, Ep can be calculated with the MDb method as 

𝐸p =   αMD ((1 − α) SWin +  ε LWin − 0.5 ε LWout −  0.5 ε σ Ta
4 −  G) (16) 
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This approach results in a slight mean underestimation of Ep of 2.6 ± 5.8%, but with a mean median value at -

0.1% (Fig. 6). Given the low error and the straightforward calculation, we recommend this method to calculate Ep 

at global scales.  

 

(Insert Figure 6) 5 

Conclusion 

Based on a large sample of eddy-covariance sites, we demonstrated that simple energy-driven methods calibrated 

per biome type can estimate Ep with a higher accuracy than more complex Penman-Monteith approaches. This 

was consistent across all 11 biomes represented in the database, and for two different criteria to identify unstressed 

days, based on soil moisture and evaporative fraction thresholds. Our analyses also showed that using the net 10 

radiation corrected for unstressed soil moisture conditions, allows to palliate an underestimation of Ep in energy-

driven methods, and confirmed that the key parameters required to apply the higher-performance energy-driven 

methods are relatively insensitive to climate forcing or CO2 levels. This makes these methods robust for 

incorporation into global hydrological, drought or climate models. Finally, we conclude that Penman-Monteith 

methods for estimating Ep should only be prioritised if the maximum stomata conductance is calculated 15 

dynamically. 

Data availability  

The FLUXNET2015 dataset can be downloaded from http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/. We 

provided the main script for calculating potential evaporation with the different method as well as the daily flux 

data of one site (AU-How), for which permission of distribution was granted. For further questions, we ask 20 

researchers to contact the corresponding author (wh.maes@ugent.be). 
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Table 1. Overview of the different Ep methods used in this study and their calculation.  

 

 

Key 

parameter Rn raH Ta 

RH or 

VPD N 

   SW* LW*     

Penman-Monteith gC_ref (mm 

s-1) 

      

PMr Reference 

crop  

14.49 FAO-56  

(=0.23) 

FAO-56 

f(Tmax,Tmin, SW, 

SWTOA, ea) 

208 u2m
-1 From 

Tmax,Tmin 

From 

RHMax, 

RHMin 

FAO-56 

PMs Standard  14.49 measured measured calculated Daytime 

mean 

Daytime 

mean 

 

PMb Biome-

specific 

Biome-

specific 

measured measured calculated Daytime 

mean 

Daytime 

mean 

 

Penman gC_ref (mm 

s-1) 

      

Per Reference 

crop 

∞ (rc_ref = 0) FAO-56  

(=0.23) 

FAO-56 

f(Tmax,Tmin, SW, 

SWTOA, ea) 

208 u2m
-1 From 

Tmax,Tmin 

From 

RHMax, 

RHMin 

 

Pes Standard ∞ (rc_ref = 0) measured measured calculated Daytime 

mean 

Daytime 

mean 

 

Priestley and 

Taylor 
PT (-) 

      

PTr Reference 

crop  

1.26 FAO-56  

(=0.23) 

FAO-56 

f(Tmax,Tmin, SW, 

SWTOA, ea) 

    

PTs Standard  1.26 measured measured calculated Daytime 

mean 

Daytime 

mean 

 

PTB Biome-

specific 

Biome-

specific 

measured measured calculated Daytime 

mean 

Daytime 

mean 

 

Milly and Dunne RB (-) 
      

MDr Reference 

crop  

0.8 FAO-56  

(=0.23) 

FAO-56 

f(Tmax,Tmin, SW, 

SWTOA, ea) 

    

MDs Standard  0.8 measured measured calculated Daytime 

mean 

Daytime 

mean 

 

         

MDB Biome-

specific 

Biome-

specific 

measured measured calculated Daytime 

mean 

Daytime 

mean 

 

Thorntwaite Th (-) 
      

Ths Standard 16 
   

From 

Tmax,Tmin 

 
Measured 

Thb Biome-

specific 

Biome-

specific 

   
From 

Tmax,Tmin 

 
Measured 
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Oudin ou 
      

Ous Standard 100 
   

Daily 

mean 

  

Oub Biome-

specific 

Biome-

specific 

   
Daily 

mean 

  

N=number of daylight hours; Tmax, Tmin, RHmax and RHmin the maximum and minimum daily air temperature or RH; 

SW* and LW* are net shortwave and net longwave radiation; SWTOA is the shortwave incoming radiation at the top 

the atmosphere; FAO-56 refers to the methodology described by Allen et al. (1998) 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-682
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 12 February 2018
c© Author(s) 2018. CC BY 4.0 License.



23 

 

Table 2. Overview of the difference of the key parameters (gc_ref, PT, MD, Th and Ou) during 

unstressed conditions per biome. The energy balance method was used for defining unstressed days 

(See section 2.4, see Table 1 for definition of key parameters). The p value of the ANOVA test is 

given, as well as the mean ± standard deviation for each biome. Letters in subscript indicate 

statistically significant differences (Tukey post hoc test, p<0.05). The number of sites per biome is 5 
given between brackets.  

 

gc_ref  

(mm s-1) 
PT (-) MD (-) Th (-) Ou (-) 

p (ANOVA) 0.017 0.004 <0.001 <0.001 <0.001 

CRO (10) 38.3 ± 23.0 1.15 ± 0.14a 0.86 ± 0.09a 38.7 ± 14.5ab 77.0 ± 27.8b 

GRA (20) 30.5 ± 40.2 1.02 ± 0.16ab 0.74 ± 0.12ab 30.4 ± 13.9ab 103.2 ± 38.9ab 

DBF (15) 32.6 ± 27.4 1.09 ± 0.14ab 0.80 ± 0.08ab 33.3 ± 7.8ab 70.5 ± 18.0ab 

EBF (9) 42.0 ± 36.6 1.09 ± 0.15ab 0.74 ± 0.05a 53.1 ± 16.8a 95.5 ± 22.9ab 

ENF (26) 28.4 ± 52.1 0.89 ± 0.26ab 0.62 ± 0.09ab 40.3 ± 16.7ab 92.0 ± 21.8ab 

MF (4) 10.0 ± 7.1 0.88 ± 0.23b 0.64 ± 0.13b 26.1 ± 3.6ab 138.2 ± 91.6ab 

CSH (2) 8.5 ± 3.9 0.90 ± 0.10ab 0.64 ± 0.15ab 41.4 ± 13.7ab 130.3 ± 36.1a 

WSA (5) 8.4 ± 3.4 0.95 ± 0.09ab 0.70 ± 0.10ab 33.8 ± 6.4ab 104.6 ± 19.7ab 

SAV (6) 7.8 ± 3.7 0.87 ± 0.14ab 0.68 ± 0.15b 35.0 ± 4.1ab 147.1 ± 63.9ab 

OSH (5) 4.3 ± 2.0 0.79 ± 0.11b 0.58 ± 0.09ab 31.3 ± 11.2ab 147.7 ± 61.8ab 

WET (5) 20.0 ± 14.1 1.03 ± 0.47ab 0.75 ± 0.11ab 17.8 ± 13.3b 638.6 ± 1230.1ab 

CRO=cropland; DBF=Deciduous Broadleaf Forest; EBF=Evergreen Broadleaf Forest; 

ENF=Evergreen Needle Forest; MF=Mixed Forest; CSH=Closed Shrubland; WSA=Woody 

Savanna; SAV=Savanna; OSH=Open Shrubland; GRA=Grasslands; WET=Wetlands 
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Table 3. Influence of climate forcing variables on Eunstr and selected key parameters (gc_ref, PT, 

MD). (left) Mean ± 1 standard deviation of the correlations of Eunstr, gc, PT and MD against the 

climate forcing variables, and (right) number of sites (out of total = 107) with significant 

negative/positive correlations between Eunstr, PT, gc_ref and MD and the climate forcing variables. 

Based on unstressed days only defined using the energy balance criterion. 5 

 Mean ± 1 standard deviation of the correlations  

Number of sites with significant 

negative/positive correlations

  Eunstr gc_ref PT MD 
 

Eunstr gc_ref PT MD 

Wind 0.13 ± 0.26 0.03 ± 0.25 0.12 ± 0.31 0.01 ± 0.22 
 

6/26 4/13 11/30 5/6 

Tair 0.60 ± 0.24* -0.22 ± 0.29 -0.21 ± 0.34 -0.02 ± 0.28 
 

0/93 43/0 43/5 16/13 

VPD 0.64 ± 0.20* -0.27 ± 0.27 -0.11 ± 0.31 -0.01 ± 0.28 
 

0/93 48/0 31/10 15/11 

Rn 0.90 ± 0.08* -0.05 ± 0.25 -0.13 ± 0.30 -0.10 ± 0.31 
 

0/106 17/3 33/5 30/14 

[CO2] -0.16 ± 0.30 -0.01 ± 0.23 -0.03 ± 0.22 -0.03 ± 0.25 
 

34/5 7/5 9/4 12/4 

*significantly different from 0 
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Table 4. Mean correlations per biome between the measured Eunstr and the different Ep methods. 

The methods with the highest correlation per biome are highlighted in bold and underlined. Based 

on unstressed days only defined using the energy balance criterion. 

 

 5 

  

Ref. crop Standard Biome Ref. crop Standard Ref. crop Standard Biome Ref. crop Standard Biome Standard Biome Standard Biome

CRO (10) 0.84 0.91 0.90 0.76 0.81 0.86 0.96 0.96 0.82 0.96 0.96 0.77 0.77 0.74 0.74

GRA (20) 0.79 0.87 0.87 0.77 0.84 0.82 0.93 0.93 0.80 0.94 0.94 0.55 0.54 0.55 0.55

DBF (15) 0.78 0.87 0.88 0.79 0.85 0.78 0.91 0.91 0.75 0.91 0.91 0.57 0.56 0.57 0.57

EBF (9) 0.88 0.89 0.88 0.86 0.85 0.87 0.91 0.91 0.83 0.90 0.90 0.71 0.79 0.57 0.57

ENF (26) 0.89 0.90 0.91 0.88 0.86 0.90 0.95 0.95 0.88 0.95 0.95 0.77 0.79 0.76 0.76

MF (4) 0.90 0.93 0.93 0.90 0.93 0.90 0.94 0.94 0.88 0.93 0.93 0.79 0.75 0.74 0.74

CSH (2) 0.90 0.94 0.93 0.89 0.90 0.90 0.95 0.95 0.89 0.95 0.95 0.80 0.78 0.75 0.75

WSA (5) 0.76 0.78 0.78 0.73 0.73 0.80 0.89 0.89 0.79 0.90 0.90 0.41 0.41 0.46 0.46

SAV (6) 0.79 0.82 0.81 0.77 0.79 0.83 0.91 0.91 0.81 0.91 0.91 0.52 0.52 0.56 0.56

OSH (5) 0.72 0.80 0.78 0.64 0.78 0.79 0.90 0.90 0.77 0.90 0.90 0.54 0.53 0.56 0.56

WET (5) 0.87 0.81 0.76 0.87 0.66 0.79 0.83 0.83 0.68 0.85 0.85 0.50 0.45 0.61 0.61

Overall (107) 0.83 0.87 0.87 0.81 0.83 0.84 0.92 0.92 0.81 0.93 0.93 0.62 0.63 0.63 0.63

Radiation, Temperature, VPD Radiation, Temperature Radiation Temperature

OudinPenmanPenman-Monteith Priestley and Taylor Milly and Dunne Thornthwaite
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Table 5. Unbiased Root Mean Square Error (UnRMSE) (in mm day-1) for the Ep methods per biome. 

The methods with the lowest UnRMSE per biome are indicated in bold and are underlined. Based 

on unstressed days only defined using the energy balance criterion. 

 

 5 

  

Ref. crop Standard Biome Ref. crop Standard Ref. crop Standard Biome Ref. crop Standard Biome Standard Biome Standard Biome

CRO (10) 1.16 0.79 1.04 1.60 2.88 1.27 0.62 0.58 1.21 0.57 0.55 1.24 1.24 1.29 1.27

GRA (20) 1.22 0.70 0.81 1.75 1.04 1.40 0.58 0.47 1.13 0.44 0.44 1.07 1.03 1.05 1.04

DBF (15) 1.14 0.88 0.89 1.21 1.36 1.29 0.75 0.72 1.20 0.72 0.72 1.41 1.42 1.37 1.32

EBF (9) 0.84 0.62 0.93 1.07 1.33 1.09 0.75 0.59 0.96 0.55 0.54 1.04 0.98 1.15 1.14

ENF (26) 0.98 0.78 0.99 1.20 14.89 1.26 0.84 0.52 1.09 0.59 0.50 0.94 0.91 0.96 0.97

MF (4) 1.23 0.69 0.69 1.58 1.11 1.64 0.86 0.58 1.26 0.64 0.59 1.11 1.03 1.03 0.99

CSH (2) 0.82 0.59 0.59 0.98 0.92 1.12 0.75 0.48 0.91 0.55 0.49 0.90 0.96 0.83 0.81

WSA (5) 1.15 0.93 0.80 1.41 1.68 1.27 0.67 0.52 1.00 0.53 0.51 1.10 1.10 0.99 0.99

SAV (6) 1.22 1.02 0.83 1.53 1.88 1.39 0.76 0.52 1.07 0.58 0.52 1.22 1.21 1.10 0.97

OSH (5) 1.37 0.73 0.63 1.94 0.92 1.63 0.67 0.43 1.28 0.48 0.44 1.12 1.03 0.90 0.80

WET (5) 1.27 1.25 1.38 1.38 4.14 1.72 1.28 1.13 1.91 1.14 1.10 2.20 2.29 1.65 2.01

Overall (107) 1.11 0.80 0.91 1.41 4.86 1.34 0.75 0.57 1.16 0.60 0.56 1.16 1.14 1.12 1.11

OudinPenman-Monteith Penman Priestley and Taylor ThornthwaiteMilly and Dunne
Radiation, Temperature, VPD Radiation, Temperature Radiation Temperature
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Table 6. Mean bias (in mm day-1) for the Ep methods per biome. The best performing method per 

biome is indicated in bold and is underlined. Based on unstressed days only defined using the energy 

balance criterion. 

 

 5 

  

Ref. crop Standard Biome Ref. crop Standard Ref. crop Standard Biome Ref. crop Standard Biome Standard Biome Standard Biome

CRO (10) 1.14 -0.49 0.84 2.83 2.64 2.20 0.47 -0.01 1.43 -0.24 0.12 -0.65 -0.59 -1.62 -0.62

GRA (20) 2.65 0.53 1.16 4.37 1.90 3.69 1.11 0.02 2.57 0.22 -0.10 -0.14 -0.44 -0.61 -0.73

DBF (15) 0.30 -0.48 0.89 1.30 2.63 1.81 0.94 -0.06 0.74 -0.13 -0.15 -1.94 -2.03 -2.44 -0.71

EBF (9) 0.70 0.04 0.95 1.39 1.74 1.39 0.79 0.16 0.79 0.17 -0.13 -0.83 -0.27 -0.53 -0.36

ENF (26) 1.28 0.45 1.23 2.03 1.04 2.06 1.17 -0.05 1.88 0.90 0.02 -0.15 -0.05 -0.73 -0.54

MF (4) 2.22 0.65 0.30 3.31 2.04 3.26 1.46 -0.07 2.53 0.87 -0.04 0.73 0.19 -0.01 -0.99

CSH (2) 1.01 0.49 0.00 1.61 1.79 1.46 1.10 -0.04 0.92 0.51 -0.14 0.18 0.39 0.14 -0.56

WSA (5) 2.67 1.16 0.17 3.68 3.88 3.63 1.42 -0.03 2.33 0.40 -0.22 -0.14 -0.23 -0.20 -0.39

SAV (6) 2.56 1.30 0.31 3.57 3.78 3.34 1.47 -0.15 2.21 0.54 -0.13 0.03 0.00 0.40 -0.93

OSH (5) 4.32 1.68 0.37 6.20 2.73 5.08 2.00 0.10 3.89 1.15 0.00 1.13 0.84 0.81 -0.44

WET (5) 2.34 1.28 1.74 4.17 4.51 3.45 2.00 1.04 3.29 1.43 1.12 1.42 0.29 -0.52 -2.79

Overall (107) 1.69 0.40 0.93 2.88 2.21 2.67 1.14 0.04 1.92 0.45 0.00 -0.38 -0.45 -0.80 -0.72

Radiation, Temperature, VPD Radiation, Temperature Radiation Temperature

OudinPenman-Monteith Penman Priestley and Taylor Milly and Dunne Thornthwaite
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Figure 1. Location of the flux sites used in this study per biome. CRO=cropland; DBF=Deciduous 

Broadleaf Forest; EBF=Evergreen Broadleaf Forest; ENF=Evergreen Needle Forest; MF=Mixed 

Forest; CSH=Closed Shrubland; WSA=Woody Savannah; SAV=Savannah; OSH=Open 5 
Shrubland; GRA=Grasslands; WET=Wetlands. 
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Figure 2. (a) Vegetation height dynamics in time (grey dots: half-hourly measurements; dark grey 

lines: daily mean vegetation height; red line: 30-day moving average (i.e. the final vegetation height 

dataset). (b) Relation between the Stanton number (kB-1) and the Reynolds number (Re). Both plots 

correspond to the woody savannah site of Santa Rita Mesquite (Arizona, USA).  5 

a. b. 
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Figure 3. Histograms of correlations between the climate forcing variables and selected key 

parameters (a) Eunstr (b) gc_ref, (c) PT and (d) MD measured in all flux tower sites. Based on 

unstressed days only defined using the energy balance criterion.  
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Figure 4. Scatterplot of the measured Eunstr versus Ep calculated with the different methods. The 

discontinuous line is the 1:1 line. Based on unstressed days only defined using the energy balance 

criterion.  5 
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Figure 5. Canopy conductance gc as a function of vapour pressure deficit (VPD) of the regular and 

the unstressed datasets of two flux sites, (a) the evergreen needle forest Niwot Ridge Forest and (b) 

the open savannah woodland site Santa Rita Creosote. 

  5 
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Figure 6. The error in the estimate of Ep of two empirical methods to calculate unstressed (Rn-G). 15 
The first empirical method simply take the actual (Rn-G) as input, the second method corrects the 

actual (Rn-G) with Ta (Eq. (16)). Negative values indicate an underestimation of the empirical 

methods. Full vertical lines indicate the mean and dotted vertical lines the median values of each 

method. 
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