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Abstract. Music that is generated by recurrent neural networks often
lacks a sense of direction and coherence. We therefore propose a two-stage
LSTM-based model for lead sheet generation, in which the harmonic
and rhythmic templates of the song are produced first, after which, in
a second stage, a sequence of melody notes is generated conditioned on
these templates. A subjective listening test shows that our approach
outperforms the baselines and increases perceived musical coherence.
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1 Lead Sheets

Lead sheets are widely used to represent the fundamental musical information
about almost any contemporary song: they contain a chord scheme, a melody
line, some navigation and repetition markers, and sometimes lyrics. They seldom
contain information about the instrumentation or accompaniment, so any band
can take a lead sheet as a guideline and make the song their own, sometimes
even by improvising over the chord schemes. In this paper we focus on generating
chords and melody lines for lead sheets from scratch.

A major difficulty in music generation is that harmony, melody and rhythm
all influence each other. For example, a melody note can change whenever the
underlying harmony changes, and vice versa. Rhythmic patterns can influence
which notes are played, and rhythm and harmony together define the overall
groove of the piece. To tackle this issue, we split the generation process into two
stages. First, we generate a harmonic progression using chord sequences, while
simultaneously picking the most appropriate rhythmic patterns. And in a second
step the melody is generated on top of this harmonic and rhythmic template.

We are, however, not the first to tackle the problem of lead sheet generation
and, in general, music generation. Briot et al. provide a recent and extensive
overview of all deep learning based techniques in this field [?]. Regarding lead
sheets specifically, Liu et al. use GAN-based models on piano roll representa-
tions, but the melody and chords are still predicted independently by different
generators [?]. Roy et al. devise a lead sheet generator with user constraints
defined by Markov models, and harmonic synchronization between melody and
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C G i ci ri mi

1 C quarter G4
2 C eighth E4
3 C eighth G4
4 C half C5
5 | | |
6 G quarter D5
7 G quarter B4
8 G half G4
9 | | |

Fig. 1: Example of a lead sheet decomposition into chords, rhythms and melodies.

chords through a probabilistic model that encodes which melody notes fit on
which chords [?]. There have also been many efforts in the past that learn to
generate chords for a given melody [?,?,?] or the other way round [?]. In this
paper we want to show that, on the one hand, a two-stage generation process
greatly improves the perceived quality of the music. And, on the other hand, we
show that melodic coherence improves when the melody generator gets to look
ahead at the entire harmonic template of the song.

We formally define a lead sheet x1:n of length n, characterized by a sequence
of chords c1:n, rhythms r1:n and melody pitches m1:n. At each time step i in the
piece, each of these quantities take some value:

x1:n = {c1:n, r1:n,m1:n} , xi = {ci, ri,mi} . (1)

In this equation, the compact xj:k notation denotes the sequence (xj , xj+1 . . . xk).
Figure ?? shows an example of this decomposition. Notice that the chords are
repeated until there is a change in harmony, thereby allowing us to model the
entire lead sheet using a single shared time scale. We also point out that there is
only one melody note per time step, which is not a severe restriction, since most
lead sheets only contain monophonic melodies. Finally, we choose to treat the
barlines as separate elements in the sequence, which is indicated by the vertical
bars in Figure ??.

2 The Wikifonia Dataset

In this paper we will make use of the Wikifonia dataset, a former public lead
sheet repository hosted by wikifonia.org. It contains more than 6,500 lead sheets
in MusicXML format, and in all sorts of modern genres. This section goes over
the different preprocessing and encoding steps that are executed on the dataset
in order to obtain a clean collection of lead sheets.

2.1 Preprocessing

Eliminate polyphony Whenever multiple notes sound at the same time, we only
retain the note with the highest pitch, as it is often the note that characterizes
the melody.
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Ignore ties Connections between two notes with the same pitch that extend
the first note’s duration are ignored. The two notes are therefore treated as two
separate notes with their original duration.

Delete anacruses Incomplete bars that often appear at the start of a piece, are
removed from all lead sheets.

Unfold repetitions Lead sheets can contain repetition and other navigation mark-
ers. If a section should be repeated, we duplicate that particular section, thereby
unfolding the piece into a single linear sequence.

Remove ornaments Since such ornaments do not contribute much to the overall
melody, we leave them out.

2.2 Data encoding and features

After preprocessing, we encode the melody, rhythm and chord symbols into
feature vectors such that they can be used as input to our generators.

Encoding rhythms We retain the 12 most common rhythm types in the dataset,
which are given in Appendix ??. We remove 184 lead sheets from the dataset
that contain other than these 12 types. Together with the representation for a
barline, we encode rhythm into a 13-dimensional one-hot vector ri.

Encoding chords A chord is described by both its root and its mode. There
are 12 possible roots (C, C], D, D], . . . , B) and we choose to convert all acci-
dentals to either no alteration or one sharp.We count 47 different modes in the
dataset, which we map to one of the following four: major, minor, diminished
or augmented. This mapping only very slightly reduces musical expressivity and
interestingness. The mapping table can be found in Appendix ??. The 12 roots
and 4 modes give 48 chord options in total, resulting in a 49-dimensional one-hot
vector ci if we include the barline.

Encoding melody The MIDI standard defines 128 possible pitches. We assign
two additional dimensions for rests and barlines, resulting in a 130-dimensional
one-hot encoded melody vector mi.

3 Recurrent Neural Network Design

As mentioned in Section ??, the lead sheet generation process happens in two
stages: in stage one the rhythm and chord template of the song is learned, and
in stage two the melody notes are learned on top of that template. We will
use separate LSTM-based models for both stages [?]; the models are trained
independently of each other, but they are combined at inference time to generate
an entire lead sheet from scratch. Figure ?? shows the complete architecture.
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Fig. 2: The RNN architecture for both stage one (left) and stage two (right). The
output dimensionality for every layer is written in each of the blocks. Whenever
two blocks appear next to each other, the (output) vectors are concatenated.

Stage one In this stage, the rhythm and chord vectors are first concatenated and
are subsequently given as inputs to two LSTM layers followed by a dense layer.
All LSTM layers have a output dimensionality of 512 states, as indicated in the
figure. The output of the dense layer is cut in two vectors, both on which we
apply a softmax nonlinearity with temperature τ , controlling the concentration
of the output distribution. This way we are effectively modeling a distribution
over the chord and rhythm symbols that come next in the sequence.

Stage two The second model will process the generated sequence of predicted
chords and rhythms. To this end, each chord and rhythm vector is again con-
catenated before being processed by two BiLSTM layers. These BiLSTM states
allow the pitch generator to look back and also ahead at the harmonic sequence,
as inspired by [?]. The dimensionality of the BiLSTM layers is 512 in both direc-
tions, adding up to a total of 1024 states. After concatenation with the previous
melody vector, the BiLSTM states are fed through another stack of two LSTM
layers. The output of the last dense layer is used to predict the next melody
note, again using a softmax nonlinearity controlled by a temperature parameter.

3.1 Optimization details

In this paper we train both stages separately; it is possible to jointly train both
models through reparameterization tricks [?], but we leave this as future work.
While training is done separately, inference of lead sheets from scratch is easily
done by feeding the output of the first model to the input of the second model.
We use a standard cross-entropy loss function on all outputs. In stage one we
sum the losses on both the chord and rhythm outputs with hyperparameter α:

Lstage 1(ĉ, r̂) = α · LCE(ĉ) + (1− α) · LCE(r̂) . (2)

In this equation, LCE(·) indicates the cross-entropy loss. In stage two the loss
function is equal to the cross-entropy loss on the melody output.

Lstage 2(m̂) = LCE(m̂) . (3)
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We use Adam with learning rate λ to optimize both models [?]. During optimiza-
tion, the training data is augmented by shifting the pitches and chords with a
random number of semitones between -12 and 12, that is, between plus or minus
one octave. This virtually increases the amount of training data by a factor of
25, thereby aiding model generalization towards less frequently appearing keys.

4 Experiments

Hyperparameters In all experiments we use a batch size of 128 sequences, each
of length 100. The learning rate λ is set fixed to 0.001. We empirically found
that a value α of 0.5 leads to good results, so we set it fixed to that value. We
also set the temperature τ slightly lower than 1 during inference of the melody,
which helps to improve the perceived quality of the generated music; we varied it
between 0.75 and 1.0 during the experiments. For the rhythm and chord patterns
a temperature of 1.0 gives the most pleasing results.

Baselines We will compare our model against two baselines:

1. An unconditioned LSTM-based model similar to the stage one model in
Figure ??, but now the melody is also concatenated to the input and out-
put. The melody is no longer conditioned on the entire chord and rhythm
sequence. We also add an extra LSTM layer, adding up to a total of three.

2. A two-stage model where the BiLSTM layers are replaced by regular LSTM
layers, so that the melody cannot look ahead at the harmonic sequence. We
keep all other parameters identical to the original model.

Subjective listening test We conducted an online listening test in which we asked
40 participants to score 12 short audio clips, each of approximately one minute
long. The following songs were included in the test1:

– 3 pieces generated by the two-stage model from scratch,
– 3 pieces generated by the two-stage model, but conditioned on the chord and

rhythm scheme of existing songs: I Have a Dream (Abba), Autumn Leaves
(jazz standard) and Colors of the Wind (Alan Menken),

– 2 pieces generated by the one-stage baseline model,
– 2 pieces generated by the two-stage baseline model,
– 2 (relatively unknown) human-composed songs: You Belong to my Heart

(Bing Crosby) and One Small Photograph (Kevin Shegog).

As stated in Section ??, a lead sheet only encodes the basic template of a song,
and it ideally needs to be played by a real musician. We therefore gave all lead
sheets to a semi-professional pianist; the pianist stayed true to the sheet music,
but was free to create an accompaniment that suited the piece. In our regards,
this evaluation method reflects best how a lead sheet, produced by an AI model,
would in practice be used and experienced by musicians and listeners.

1 Listen to the audio clips at https://users.ugent.be/~cdboom/music
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Model Pleasing Z̄ Coherence Z̄ Turing Z̄

One-stage −0.23 ± 0.34 −0.24 ± 0.31 −0.22 ± 0.29
Two-stage, without BiLSTM −0.04 ± 0.35 −0.07 ± 0.33 −0.09 ± 0.33
Two-stage, with BiLSTM −0.01 ± 0.36 0.01 ± 0.34 −0.02 ± 0.34

Two-stage, with existing chords 0.15± 0.37 0.09 ± 0.36 0.13± 0.36

Human-composed songs 0.03 ± 0.34 0.13± 0.36 0.13± 0.34

Table 1: Results of the subjective listening experiments. We report averaged
Z̄-scores for each of the questions, along with the standard deviations.

The audio clips were presented to each user in randomized order. For each
clip we asked the user to rate on a scale of 1 to 5 how much he likes the piece,
if the melody is musically coherent, and whether the piece is composed by a
computer (1) or a human (5). We also asked the user to indicate if he recognizes
the piece. Since each user has his own rating bias and spread [?,?], we converted
the ratings for each user to a standardized Z score between −0.5 and 0.5:

Zc,u =
Rc,u − µu

maxc′ Rc′,u −minc′ Rc′,u
. (4)

In this formula, Rc,u is the rating of user u for clip c, µu is the average rating of
user u, and Zc,u is the associated standardized score. Table ?? reports the average
Z̄ score across the audio clips for each of the three questions in the survey, along
with the standard deviation. A negative score means that the ratings are below
average overall, and a positive score indicates an overall above-average rating.

We observe that the scores are, by far, better for the two-stage models com-
pared to the unconditioned one-stage model. This shows that first sampling a
harmonic and rhythmic sequence, and conditioning the melody on top of this
sequence, is more beneficial than sampling all quantities simultaneously. Next
to this, we also notice that adding the BiLSTM layers improves the score for all
three questions. And although by a small margin, we can conclude that the musi-
cal quality improves when the melody generator can look ahead in the harmonic
sequence. When we condition the melody generator on an existing chord and
rhythm scheme, it is remarkable that the human-composed and AI-composed
songs perform almost on par. The AI-composed songs are even considered most
pleasing. Related to this observation, 4 participants indicated having recognized
a piece from the two-stage model, 5 recognized a piece that was generated based
on existing chords, and 3 participants recognized a human-composed song.

Finally, we also want to point out that the standard deviations are very
substantial, which shows that there is a high level of disagreement between the
reviewers. It is however interesting to point out that the standard deviation
is slightly higher for better performing models. This might indicate that there
is more consensus on what it means for music to sound ‘badly’, but that the
definition of ‘good’ music is more subjective and person-dependent.
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5 Conclusion

We have proposed a two-stage LSTM-based model to generate lead sheets from
scratch. In the first stage, a sequence of chords and rhythm patterns is generated,
and in the second stage the sequence of melody notes is generated conditioned
on the output of the first stage. We conducted a subjective listening test of
which the results showed that our approach outperformed the baselines. We can
therefore conclude that conditioning helps the quality of the generated music,
and that this approach can be explored further in the future.
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A Mode Mapping for Chords

In Table ?? we show how different chord modes are mapped to one of the fol-
lowing four options: major, minor, diminished or augmented.

Original mode Mapped mode Original mode Mapped mode
6 major major-6-9 major
7 major major-7 major
9 major major-9 major
augmented augmented major-minor major
augmented-7 augmented minor minor
augmented-9 augmented minor-11 minor
diminished diminished minor-13 minor
diminished-7 diminished minor-6 minor
dominant major minor-7 minor
dominant-11 major minor-7-b5 diminished
dominant-13 major minor-9 minor
dominant-7 major minor-major minor
dominant-9 major minor-major-7 minor
half-diminished diminished power major
major major sus2 major
major-13 major sus4 major
major-6 major sus4-7 major

Table 2: Chord modes are mapped to one of four options.

B Rhythm types

Table ?? provides an overview of the twelve rhythmic figures that are used.

Textual description Musical symbol

32nd note ˇ “*
32nd dotted note ˇ “* ‰

16th note ˇ “)
8th triplet note

3ˇ “==
8th note ˇ “(

quarter triplet note
3ˇ “

8th dotted note ˇ “( ‰
quarter note ˇ “

quarter dotted note ˇ “‰
half note ˘ “

half dotted note ˘ “‰
whole note ¯

Table 3: The rhythm types that are considered in this paper.


