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Abstract  21 

 22 

Sea spray aerosols (SSAs) have profound effects on climate and ecosystems. Furthermore, the 23 

presence of microbiota and biogenic molecules, produced by among others marine phytoplankton, in 24 

SSAs could lead to potential human health effects. Yet the exposure and effects of SSAs on human 25 

health remain poorly studied. Here, we exposed human epithelial lung cells to different concentrations 26 

of extracts of a natural sea spray aerosol (SSA), a laboratory-generated SSA, the marine algal toxin 27 

homoyessotoxin and a chemical mTOR inhibitor.  The mTOR inhibitor was included as it has been 28 

hypothesized that natural SSAs may influence the mTOR cell signaling pathway. We observed 29 

significant effects on the mTOR pathway and PCSK9 in all exposures. Based on these expression 30 

patterns, a clear dose response relationship was observed. Our results indicate a potential for positive 31 

health effects when lung cells are exposed to environmentally relevant concentrations of natural SSAs, 32 

whereas potential negative effects were observed at high levels of the laboratory SSA and the marine 33 

algal toxin. Overall, these results provide a substantial molecular evidence base for potential positive 34 

health effects of SSAs at environmentally relevant concentrations through the mTOR pathway. The 35 

results provided here suggest that SSAs contain biomolecules with significant pharmaceutical potential 36 

in targeting PCSK9. 37 

 38 

  39 
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Introduction 40 

 41 

Oceans and seas contain a variety of biogenic or naturally produced molecules that become airborne 42 

via sea spray aerosolization1-3. In addition to bacteria, which are well-known producers of biogenics, 43 

many phytoplankton species also produce a wide range of bioactive molecules such as vitamins, 44 

pigments, polyphenolics and phycotoxins4,5. The latter have primarily been studied in the context of 45 

harmful algal blooms, in which phycotoxins can be present at detrimental concentrations4,6. These 46 

toxins can through their presence in sea spray aerosols cause health effects. This has been reported 47 

for aerosolized brevetoxins which can lead to respiratory symptoms in humans during algal bloom 48 

conditions, particularly in people with asthma 7,8.  49 

 The effects of brevetoxins have been well-studied and documented. Little attention has, however, 50 

been given to the potential effects at low, environmentally relevant, concentrations in which 51 

phycotoxins may be present in sea spray aerosols (SSAs) during standard environmental conditions9. 52 

At low levels, and combined with other unidentified biogenics, these known bioactive molecules could 53 

contribute to positive health effects in coastal environments. Indeed, some of these bioactive 54 

molecules (e.g. yessotoxin10) have been targeted for their pharmaceutical or biotechnological 55 

potential11,12. Furthermore, a number of studies highlight several health promoting pathways through 56 

which airborne microbiota and biogenics from blue and green environments may have positive health 57 

effects13,14. Airborne microbiota are thought to contribute to a more effective immuno-regulation once 58 

inhaled or ingested13. Additionally, it was suggested that inhalation of low levels of microbes and 59 

parasites reduce inflammation and improve immunoregulation13,15. Biogenics, i.e. natural chemicals 60 

produced by among others plants, fungi, phytoplankton species and bacteria1,3,9, have been 61 

hypothesized to induce positive health effects via the interaction with specific cell signaling pathways 62 

(e.g. PI3K/Akt/mTORC1)14. The link between the mTOR pathway and positive health effects is 63 

supported by a large number of studies16-20 demonstrating that inhibition of this cell signaling pathway 64 

is associated with health benefits such as anti-cancer, positive cardiovascular and anti-inflammatory 65 

effects.  66 

To date, no study has focused on the general health effects of SSAs under standard coastal conditions. 67 

Here, we aimed to explore possible molecular mechanisms that could explain health effects of SSAs at 68 

different concentrations representing low environmentally relevant concentrations as well as high 69 

potential harmful concentrations. To this end, we exposed human epithelial lung cells to extracts of 70 

(1) a natural SSA, (2) a SSA generated in a laboratory tank inoculated with homoyessotoxin-producing 71 

algae, (3) the pure bioactive molecule homoyessotoxin (hYTX) and (4) a chemical inhibitor of the mTOR 72 

pathway (Torkinib/PP242). We specifically selected hYTX and a hYTX producer as the effects of hYTX 73 
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in humans remain relatively unknown despite it being structurally related to brevetoxin10. In addition, 74 

yessotoxin has been reported to show potential as an anti-cancer drug10. As such, aerosols of this 75 

phycotoxin could be a source of positive health effects. The different treatments, including different 76 

dose levels per treatment, allowed us to study a range of conditions, from most realistic, i.e. natural 77 

SSA, to the simplest, i.e. a single biogenic molecule (homoyessotoxin).  78 

Results & Discussion 79 

A small set of genes is significantly differentially expressed in all treatments. We quantified the 80 

expression of 16,5654 genes and observed differential expression across all treatments. The highest 81 

number of differentially expressed (DE) genes was observed in the pure homoyessotoxin treatment, 82 

hereafter referred to as hYTX. We observed a decreasing number of differentially expressed genes in 83 

the chemical inhibitor treatment, hereafter referred to as mTOR inhibitor, the natural SSA treatment 84 

and the treatment with a SSA generated in a laboratory tank, hereafter referred to as lab SSA. We 85 

observed almost no significant DE genes in the mid and low dose levels at false discovery rates (FDR) 86 

of 0.01 and 0.05 (Figure 1A). Given the small difference between the two FDRs, the most conservative 87 

FDR was selected for further analysis. We identified two DE genes shared by all (high dose level) 88 

treatments and the mTOR inhibitor (Figure 1B).  89 

 90 

Figure 1 Differential gene expression across treatments. (a) Number of significant genes at different 91 

false discovery rates (FDR) for the different sea spray aerosols (SSA) treatments and homo-yessotoxin 92 

(hYTX). (b) Venn diagram of shared significant genes across treatments with significant genes at an FDR 93 

of 0.01. (c) Log fold change for small integral membrane protein 29 (SMIM29) and proprotein 94 
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convertase subtilisin/kexin type 9 (PCSK9) in all treatments: natural SSA in purple, lab SSA in blue, hYTX 95 

in red and mTOR inhibitor in yellow. 96 

The first gene was the small integral membrane protein 29 (SMIM 29). Little functional information on 97 

this protein is available, although it is ubiquitously expressed in at least 25 tissues21. The other gene is 98 

proprotein convertase subtilisin/kexin type 9 (PCSK9), primarily involved in lipid homeostasis and 99 

apoptosis22. For SMIM 29, we observed a similar pattern across all treatments with low gene 100 

expression values in low and mid dose levels, and a significant upregulation in all high dose level 101 

treatments and the mTOR inhibitor (Figure 1C). For PCSK9, the pattern is more complex. Again, we 102 

observed low gene expression values at low and mid dose levels. However, for the high dose levels, 103 

we observed a significant upregulation for hYTX and the lab SSA, while we observed a significant 104 

downregulation for the natural SSA treatment and the mTOR inhibitor (Figure 1C). For both PSCK9 and 105 

SMIM29 the effects of the lab SSA were similar but weaker than the effects of the hYTX itself. 106 

Furthermore, all DE genes that were significantly regulated by the lab SSA are a subset of the DE genes 107 

regulated by hYTX. This suggests that the effects of the lab SSA are most likely comparable to effects 108 

of a diluted hYTX treatment. Or, in other words, the effects of the lab SSA produced by a hYTX 109 

producing algae are weaker than the effects of hYTX itself despite containing the same amount of hYTX. 110 

Given that the dose levels for both treatments (lab SSA and hYTX) contain the same amount of hYTX, 111 

these results suggest that (1) lab SSAs may contain additional molecules which interact with hYTX 112 

leading to weaker effects or that (2) some of the hYTX in the lab SSA is partially degraded leading to 113 

potentially weaker effects as less “pure” hYTX is available. Literature reports only briefly on the organic 114 

composition of SSAs, but suggests a large diversity in biogenic compounds23,24. PCSK9 is thought to 115 

have two major functions: (1) maintenance of lipid homeostasis by the regulation of low-density 116 

lipoprotein receptors and (2) the regulation of neural apoptosis22. In general, the overexpression of 117 

PCSK9 is associated with the dysregulation of pathways involved in the cell cycle, inflammation and 118 

apoptosis while the inhibition of PCSK9 in carcinogenic lung cells has been associated with apoptosis 119 

of these cell lines22. In mouse, a similar pattern has been observed25. Overexpression of PCSK9 was 120 

associated with multi-organ pathology and inflammation while PCSK9 deficiency was associated with 121 

protection against inflammation, organ pathology and systemic bacterial dissemation25. Based on 122 

these findings in literature and the similarities between the PCSK9 expression patterns of the mTOR 123 

inhibitor and the natural SSA, our results suggest a potential for positive health effects when lung cell 124 

lines are exposed to natural SSA. Based on the results provided here on PCSK9, we propose that SSA 125 

contain molecules with significant pharmaceutical potential in targeting PCSK926.  126 

Significant effects on the mTOR regulatory pathways differ across treatments. The biogenics 127 

hypothesis suggests that the mTOR pathway is one of the key drivers of the coastal induced health 128 
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benefit. Here both the KEGG mTOR pathway annotation27 and the molecular signature databases28, 129 

which contains a hallmark set of genes upregulated upon activation of the mTORC1 complex, were 130 

used to test this hypothesis. No significant enrichment of the KEGG mTOR pathway in any of the 131 

treatments was observed. Individual genes of the mTOR pathway, however, were significantly 132 

regulated in different high dose treatments, with the exception of the lab SSA for which no mTOR 133 

genes were differentially expressed (Table S1). We also noted significant enrichment scores of the 134 

GSEA Hallmark mTORC1 set for all high dose treatments, excluding the natural SSA, and the mTOR 135 

inhibitor (Table S2). Taking a closer look at the hallmark mTORC1 set, we concluded that the gene 136 

expression patterns differed across treatments (Figure S1). Hierarchical clustering of these patterns 137 

indicated that DE genes were in general regulated in the opposite direction for hYTX and the lab SSA 138 

versus the natural SSA and the chemical inhibitor (Figure S1). This pattern is even more prominent 139 

when focusing on the genes that contribute significantly to the enrichment score in the hallmark set 140 

for all 4 treatments (Figure 2).  141 
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 142 

Figure 2 Enrichment of the mTOR Hallmark set. (a) Heatmap for all treatments of the fold changes of 143 

genes that contribute significantly to the enrichment score for all three treatments at the highest dose 144 

and the mTOR inhibitor. Treatments: chemical inhibitor, homo-yessotoxin (hYTX), lab sea spray aerosol 145 

(SSA) and natural sea spray aerosol (SSA) at low, mid and high doses. 146 

 147 

This group of 17 genes showed completely opposite regulation patterns in the high dose hYTX versus 148 

the high dose natural SSA and the chemical inhibitor (Figure 2). The high dose laboratory SSA showed 149 

a similar but less intense and weaker regulation than the high dose pure hYTX. Overall, these results 150 

suggest that all treatments affect the mTOR pathway but the effects and the potential positive health 151 
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effects differ across treatments. Interestingly, the effects of the natural SSA closely resemble the 152 

effects of the mTOR inhibitor, but contrast with the effects of hYTX and the lab SSA. In addition, we 153 

again observed that the lab SSA caused effects in a similar direction as the pure hYTX, albeit weaker. 154 

The differences between the natural SSA on one hand and the pure hYTX and lab SSA on the other 155 

hand highlight that while all treatments target the mTOR pathway, their effects are opposite. This may 156 

suggest (1) that the natural SSA contains different molecules than the lab SSA and hYTX or (2) that less 157 

“pure” hYTX is available due to degradation of hYTX. Both assumptions suggest a lower bioavailability 158 

of pure hYTX, potentially leading to a lower actual dose. This is also supported by the observation that 159 

six genes of the mTOR pathway show a significant dose response effect (Table S2). The similarities in 160 

regulation of the mTOR pathway between the natural SSA and chemical inhibitor suggest that natural 161 

SSAs contain molecules that cause similar effects on the mTOR pathway as the chemical inhibitor.  162 

Significant concentration response patterns across treatments. We observed a total of 1898 genes 163 

with a significant dose response effect across the three treatments (hYTX, lab SSA and natural SSA). 164 

Based on a regression analysis and clustering, we found four clusters of dose response patterns. These 165 

clusters all show the same trend which consists of a steep dose response curve for hYTX while the lab 166 

SSA and the natural SSA show a slower increase (Figure S2). When observing gene expression patterns 167 

for the clusters across all treatments, we see the same pattern of two groups as reported in the 168 

sections above, one containing the high dose hYTX and lab SSA treatment while the other contains the 169 

remaining treatments. In three of the four clusters, the mTOR inhibitor treatment clustered together 170 

with the high dose natural SSA treatment. These clustering results suggest that the observations we 171 

have made above for the mTOR pathway and PCSK9 gene are not limited to these two observations 172 

but can be extended to all genes with a significant dose response effect. A pathway analysis highlighted 173 

four pathways that were enriched for genes with a significant dose response effect (Table S3). These 174 

pathways are the spliceosome, lysosome, steroid biosynthesis and glycogenesis. For all these 175 

pathways, we observed two major clusters (Figure 3A-D, Figures S3-6): the pattern for the highest dose 176 

hYTX was again similar to that of the highest dose lab SSA while the pattern of the natural SSA was 177 

again similar to that of the mTOR inhibitor. Again, we observed the opposite regulation of genes in 178 

these two groups for three pathways. Indeed, for the lysosome, steroid biosynthesis and glycogenesis 179 

pathways we noted an upregulation of genes with a significant dose-response effect in the high dose 180 

hYTX and the high dose lab SSA (Figure 3B-D). In contrast, for these same pathways, we observed 181 

primarily a downregulation of the same significant genes in the mid and low dose hYTX and lab SSA, as 182 

well as all natural SSA treatments and the chemical inhibitor with the exception of the low lab SSA in 183 

the glycogenis pathway. For the spliceosome, we observed significant upregulation in all treatments 184 

with exception of the low and mid hYTX and mid lab SSA (Figure 3A).  185 
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 186 

Figure 3 Dose response patterns in significant pathways. Number of significantly upregulated (>0) or 187 

downregulated (<0) genes in (A) the spliceosome, (B) the lysosome, (C) steroid biosynthesis, (D) 188 

glycogenesis for all treatments: natural sea spray aerosols (SSA) lab sea spray aerosol (SSA), 189 

homoyessotoxin (hYTX) and mTOR inhibitor. 190 

 191 

Similar to the effects in the mTOR pathway, the effects on these pathways again show a similar 192 

regulation of genes for the natural SSA and the mTOR inhibitor. For the steroid biosynthesis, these 193 

results are not surprising given the links that have already been discussed above between mTOR and 194 

lipid biosynthesis. In addition to steroid biosynthesis, the lysosome and glycogenesis also have links to 195 

mTOR. The inhibition of the mTOR pathway is known to activate protein degradation and autophagy 196 

through among others the lysosome29,30. The spliceosome has been proposed as a therapeutic target 197 

in cancer cells to inhibit mTOR, which led to autophagy31. Specifically, depletion of small nuclear 198 

ribonucleoprotein polypeptide E (SNRPE) led to reduced cell viability in lung cancer cell lines. Here, we 199 

observed in addition to dose response effects for the spliceosome, also a significant downregulation 200 

of SNRPE in the highest hYTX treatment but not in any of the other treatments (Table S4). Overall, the 201 

pathways with significant dose response effects can all be indirectly linked to the mTOR pathway, 202 

suggesting that the effects here are a consequence of the effects on the mTOR pathway, which most 203 

likely induce a cascade of events and interactions with other pathways.  204 

Significant effects unique to hYTX and sea spray aerosols. While we have focused on similarities 205 

between effects of our experimental treatments and the mTOR inhibitor, we also observed effects 206 

unique to these treatments. We observed the differential expression of three genes shared by all high 207 

dose treatments. These genes are stearoyl-CoA desaturase (SCD), cytochrome P450 family 1 subfamily 208 
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B member 1 (CYP1B1) and peptidyl arginine deiminase 3 (PADI3). For SCD, we observed a pattern 209 

similar to that of the PCSK9 expression, i.e. exposure to the natural SSA led to downregulation while 210 

exposure to the lab SSA and hYTX led to upregulation (Figure 4A). This can be attributed to the 211 

functions of these genes (i.e. SCD, PCSK9), as both are involved in lipid biosynthesis. Furthermore, 212 

research has already indicated links between the mTOR pathway and the lipid homeostasis32, including 213 

the effects on SCD and other genes after exposure to mTOR inhibitors32. Evidence points to sterol 214 

regulatory element binding transcription factor 1 (SREBF1) through which the regulation of lipogenesis 215 

by mTOR is achieved32. This gene was significantly regulated by the natural SSA, but not by any of the 216 

other treatments.  217 

 218 

Figure 4 Differential gene expression in hYTX and sea spray aerosol treatments. Log fold change for 219 

(A) stearoyl-CoA desaturase (SCD), (B) cytochrome P450 family 1 subfamily B member 1 (CYP1B1) and 220 

(C) peptidyl arginine deiminase 3 (PADI3) for all treatments: natural sea spray aerosol (SSA) in purple, 221 

lab sea spray aerosol (SSA) in blue, homoyessotoxin (hYTX) in red and mTOR inhibitor in yellow. 222 

 223 

For CYP1B1 and PADI3, we observed a pattern similar as for SMIM29, in which all treatments resulted 224 

in significant upregulation (Figure 4B-C). The first is commonly involved in the metabolism of 225 

xenobiotics and could play a role in metabolizing some of the biogenic molecules. Literature has also 226 

reported a relation between CYP1B1 and SCD in lipid homeostasis in liver cells33, although the extent 227 

of this relation in lung cells remains unclear. Overexpression of CYP1B1 has also been reported in lung 228 

cell lines through the aryl hydrocarbon receptor34, but no significant effects for this receptor were 229 

observed in any treatment of our study(Table S4). This suggests that the overexpression of CYP1B1 is 230 

more likely related to the regulation of SCD. Lastly, we observed a significant upregulation of PADI3 in 231 

all three high dose treatments (hYTX, lab SSA and natural SSA). PADI3 is generally not expressed in lung 232 

cells21 and is primarily expressed in epidermis cells and keratinocytes35. Its function in lung cell lines 233 

remains unclear. Overall, we observe here differential expression of genes linked to the mTOR pathway 234 

in all three high dose treatments (natural SSA, lab SSA, and hYTX). Most likely, the effects on these 235 

genes are caused by the primary effects on the mTOR pathway. Furthermore, these effects while linked 236 
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to the mTOR pathway, are not observed with the mTOR inhibitor. This suggests that the effects of 237 

these experimental treatments (natural SSA, lab SSA, and hYTX) extend beyond the inhibition of mTOR 238 

but are related to or initiated by the effects on the mTOR pathway. 239 

Differences in dose level lead to a different regulation of the same significant genes and pathways 240 

across treatments. The results of gene set and pathway enrichments as well as individual genes 241 

highlight that the effects are primarily mediated or linked through the mTOR pathway (Figure 5). Here, 242 

we studied both a natural and a lab SSA, as well as the effects of pure hYTX as potential key biogenic 243 

molecule in natural SSAs. While we observed similar pathways, and to some extent, similarly affected 244 

genes across these different treatments, the regulation was not necessarily the same. The hYTX and 245 

the lab SSA showed a similar pattern across all pathways and genes, while differences were observed 246 

with the natural SSA and the chemical inhibitor. These differences could be related to the differences 247 

in doses. The high dose treatment for both hYTX and lab SSA of 0.5 µg liter-1 is an extreme case scenario, 248 

reflecting concentrations in water during harmful algal blooms (supportive information 1.2). The 249 

environmental (background) concentrations of hYTX in water and air have not been previously 250 

reported but are expected to lie between the low and mid dose levels based on estimates of cell counts 251 

of hYTX producers and hYTX production per cell (supportive information 1.2). As such, it is clear that 252 

there is a switch in effects where at high doses hYTX and lab SSAs can cause negative effects while the 253 

regulation of pathways and genes is the opposite at low and mid doses, suggesting positive health 254 

effects at environmentally relevant (background) concentrations. A direct comparison can only be 255 

made with the lab SSA in terms of total aerosols by using the cation sodium as a proxy for 256 

aerosolization36. We observed that the lab SSA dose levels are 2.8 µg Na+ well-1, 0.06 µg Na+ well-1 and 257 

0.00006 µg Na+ well-1 while the natural SSA dose levels, due to the smaller sample size, were 0.6 µg 258 

Na+ well-1, 0.14 µg Na+ well-1 and 0.014 µg Na+ well-1 (section 1.2). As such, the highest dose for the 259 

natural SSA contains only 20% of the amount of aerosols in the high dose lab SSA treatment. This 260 

supports the assumptions made above that exposure to environmentally relevant concentrations of 261 

marine biogenics, sampled from the environment, can lead to positive health effects at 262 

environmentally relevant concentrations. In addition, we observed similar patterns of gene expression 263 

for the mTOR inhibitor and the highest natural SSA treatment.  264 

Overall, our results support the biogenesis hypothesis postulated by Moore14 that marine airborne 265 

biogenics interact with the mTOR pathway potentially leading to health benefits. We report significant 266 

effects on the mTOR pathway in all treatments, though differences in regulation of this pathway were 267 

observed. Furthermore, significant genes and enriched pathways across treatments all interact with 268 

mTOR, indicating that marine biogenics trigger a cascade of events through interaction with the mTOR 269 

pathway (Figure 5).Thus, the effects of marine airborne biogenics are not limited to the mTOR pathway 270 
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but include a cascade of genes and pathways involved in different metabolic processes (e.g. steroid 271 

biosynthesis, lysosome) with key links to mTOR (Figure ). 272 

 273 

Figure 5 Molecular effects of marine aerosolized biogenics. A schematic representation of the 274 

molecular effects of sea spray aerosols observed within this study. Pathways are represented by 275 

ellipses, genes are represented by rectangles. Solid blue arrows represent interactions with a solid 276 

evidence base, dashed arrows represent hypothetical interactions observed, Ͱ represent inhibition. 277 

Methods 278 

Culturing of A549 cells. Adenocarcinoma alveolar basal cell lines (A549) were maintained in Dulbecco’s 279 

Modified Eagle Medium (DMEM), supplemented with 10% fetal bovine serum and 5000 units.mL-1 280 

penicillin-streptomycin at 37°C, 5% CO2 and >95% relative humidity. Confluent cell cultures (after 2-3 281 

days) were passaged via trypsination (0.5% trypsin-EDTA) and split in a ratio 1:6. 282 

Experimental procedure. Confluent cell cultures were trypsinized and transferred in 3mL fresh DMEM 283 

to Nunc 6-well multiplates at a density of 320,000 cells.well-1. After seeding, cells were incubated for 284 

10 hours at 37°C, 5% CO2 and >95% relative humidity to stimulate growth and adherence to the 285 

surface. Then, cells were subjected to one of five treatments: (1) negative control, (2) an extract of a 286 

natural SSA sample from the seashore, (3) an extract of a laboratory generated SSA, 287 

(4) homoyessotoxin, (5) a chemical inhibitor of the mTOR pathway, i.e. Torkinib or PP242 288 

(LC Laboratories). The multiwell plates were then incubated for another 43 hours at identical 289 

conditions prior to RNA extraction. The negative control treatment also contained 2% methanol to 290 
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exclude a solvent effect as all other treatments were extracted, diluted or dissolved in methanol. The 291 

chemical inhibitor treatment consisted of 0.3 µM of Torkinib or PP242. The natural sea spray aerosol 292 

sample was collected on a Whatman QM-A Quartz Microfiber filter at the waterline close to Ostend, 293 

Belgium (51°14’27”N, 2°56’10”E) by sampling for 46 minutes at a flow of 10 L min-1, which corresponds 294 

to the minute ventilation of an average human in rest (9-10 L min-1)37,38. During sampling, the wind 295 

direction was 0.7 ± 3.1 ° (North), speed was 15.0 ± 0.6 m s-1, indicating white cap SSA production. The 296 

detailed sampling and extraction procedure is described in supportive information 1.1. The lab SSA 297 

was obtained by inoculating a marine aerosol reference tank39 with 106 cells L-1 of Protoceratium 298 

reticulatum, a hYTX producer (SCCAP K-1474), and collecting the generated SSA on a Whatman QM-A 299 

Quartz Microfiber filter at a flow of 10 L min-1 for 16 hours to obtain sufficient material for further 300 

experiments and analysis. The detailed procedure is described in supportive information 1.1. Filters of 301 

the natural SSA and lab SSA were extracted following the same methanol extraction procedure. 302 

Certified reference material of hYTX was commercially obtained (National Research Council Canada) 303 

as a liquid with a concentration of 5µM hYTX dissolved in methanol. This reference material was further 304 

diluted in methanol to obtain the following dose levels: 0.5 µg L-1 (high), 0.01 µg L-1 (mid), 0.00001 µg 305 

L-1 (low). Concentrations of hYTX in the lab SSA were measured using ultra-high-performance liquid 306 

chromatography high-resolution Orbitrap mass spectrometry following procedures as reported by 307 

Orellana et al. (2014)40. To allow an optimal comparison between the hYTX treatment and the lab SSA, 308 

the lab SSA dose levels were determined based on the measured hYTX in these samples and the same 309 

dose levels as the hYTX treatment were selected (0.5 µg L-1 (high), 0.01 µg L-1 (mid), 0.00001 µg L-1 310 

(low)). For natural SSA, low, mid and high doses were determined by comparing the total alveolar 311 

surface with the cell surface available in a single well (9.6 cm²) and comparing the sample collection 312 

duration (46 min) and experimental exposure duration (43 h), see supportive information 1.2. We 313 

selected a low dose that represents the same exposure as the amount of inhaled SSA during the 314 

sampling period at the seashore but extended over an 43 h exposure period and normalized to the cell 315 

surface in a single well (detailed calculations are reported in supportive information, section 1.2). The 316 

mid and high dose represent a 10x and 40x concentration of the low dose level. These levels were 317 

specifically chosen to adhere to environmentally realistic (background) concentrations. The mid dose 318 

level (10x concentration) was based on the hypothesis of increased minute ventilation during physical 319 

exercise which is reported to vary between 70-100 L min-1 for both continuous and intermittent 320 

exercise38,41,42. The high dose level (40x concentration) was selected based on the hypothesis of 321 

increased aerosolization (i.e. improved wind conditions) as well as activities at the shore line or at sea 322 

(e.g. swimming, sailing, windsurfing,..,..). Detailed procedure is described in the supportive 323 

information, section 1.2. 324 
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RNA extraction, library preparation and sequencing. RNA was extracted using the Qiagen RNEasy kit 325 

following the manufacturer’s instructions including DNAse digestion. After RNA extraction, the 326 

concentration and quality of the total extracted RNA was checked by using the 'Quant-it ribogreen RNA 327 

assay' (Life Technologies, Grand Island, NY, USA) and the RNA 6000 nano chip (Agilent Technologies, 328 

Santa Clara, CA, USA), respectively. Subsequently, 250 ng of RNA was used to perform an Illumina 329 

sequencing library preparation using the QuantSeq 3' mRNA-Seq Library Prep Kits (Lexogen, Vienna, 330 

Austria) according to manufacturer's protocol. During library preparation 14 PCR cycles were used. 331 

Libraries were quantified by qPCR, according to Illumina's protocol 'Sequencing Library qPCR 332 

Quantification protocol guide', version February 2011. A High sensitivity DNA chip (Agilent 333 

Technologies, Santa Clara, CA, US) was used to control the library's size distribution and quality. 334 

Sequencing was performed on a high throughput Illumina NextSeq 500 flow cell generating 75 bp single 335 

reads. 336 

Data analysis. Per sample, on average 7.5 x 106 ± 1.6 x 106 reads were generated. First, these reads 337 

were trimmed using cutadapt43 version 1.15 to remove the “QuantSEQ FWD” adaptor sequence. The 338 

trimmed reads were mapped against the Homo sapiens GRCh38.89 reference genome using STAR44 339 

version 2.5.3a. The RSEM45 software, version 1.3.0, was used to generated the count tables. 340 

Differential gene expression analysis between groups of samples was performed using edgeR46. Genes 341 

with less than 1 cpm in less than 4 samples were discarded, resulting in 16,546 quantifiable genes. 342 

Read counts were normalized using trimmed mean of M-values (TMM) followed by a pairwise 343 

comparison of treatments with the negative and positive control using an exact test46. Significantly 344 

differentially expressed (DE) genes were called at a false discovery rate of 0.01. Significant enrichment 345 

of KEGG pathways27 with DE genes was done using a fisher test and called at an adjusted p-value level 346 

of 0.01. Benjamini-Hochberg adjustment was used to account for multiple testing. Gene set 347 

enrichment analysis (GSEA) was conducted to detect enrichment in hallmark gene sets and genetic and 348 

chemical perturbations gene sets of the molecular signature database28. Enriched gene sets were 349 

identified at a false discovery rate of 0.01. A dose response analysis was performed with the maSigPro47 350 

R package for each of the three treatments of algal toxins. In a first step a general linear model was 351 

built with the 3 treatments, the 3 concentrations and the square of each of the 3 concentrations. 352 

Statistical testing was done using the log-likelihood ratio statistic. Genes with a FDR < 0.05 were 353 

considered significantly differential. In a second step, for each significant differentially expressed gene, 354 

an optimized regression model was created using stepwise backward regression. Exclusion of the 355 

quadratic term from the model was performed using a regression ANOVA, testing if the regression 356 

coefficients differ from 0 at a significance level of 0.05. Afterwards the goodness of fit, R², of each 357 
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optimized regression model was computed. Genes with a goodness of fit greater than 0.8 were used 358 

in a hierarchical cluster analysis based on the correlation between the regression models of the genes. 359 

Data availability. Raw and processed sequencing reads are deposited in GEO and available under 360 

accession number: GSE113144.  361 
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