
MULTI-DOCUMENT SUMMARIZATION BASED ON DOCUMENT
CLUSTERING AND NEURAL SENTENCE FUSION

TANVIR AHMED FUAD
Bachelor of Science, Military Institute of Science and Technology (MIST), 2015

A Thesis
Submitted to the School of Graduate Studies

of the University of Lethbridge
in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

c© Tanvir Ahmed Fuad, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS: Open Uleth Scholarship - University of Lethbridge Research Repository

https://core.ac.uk/display/188641524?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MULTI-DOCUMENT SUMMARIZATION BASED ON DOCUMENT CLUSTERING
AND NEURAL SENTENCE FUSION

TANVIR AHMED FUAD

Date of Defence: September 11, 2018

Dr. Y. Chali
Supervisor Professor Ph.D.

Dr. W. Osborn
Committee Member Associate Professor Ph.D.

Dr. J. Zhang
Committee Member Associate Professor Ph.D.

Dr. H. Cheng
Chair, Thesis Examination Com-
mittee

Associate Professor Ph.D.

Dedication

I dedicate this thesis to the almighty and my parents who inspired me at each and every

step of my life.

iii

Abstract

In this thesis, we have approached a technique for tackling abstractive text summarization

tasks with state-of-the-art results. We have proposed a novel method to improve multi-

document summarization. The lack of large multi-document human-authored summaries

needed to train seq2seq encoder-decoder models and the inaccuracy in representing multi-

ple long documents into a fixed size vector inspired us to design complementary models for

two different tasks such as sentence clustering and neural sentence fusion. In this thesis, we

minimize the risk of producing incorrect fact by encoding a related set of sentences as an

input to the encoder. We applied our complementary models to implement a full abstrac-

tive multi-document summarization system which simultaneously considers importance,

coverage, and diversity under a desired length limit. We conduct extensive experiments

for all the proposed models which bring significant improvements over the state-of-the-art

methods across different evaluation metrics.

iv

Acknowledgments

“Bismillah ir-Rahman ir-Rahim”

In the name of Allah the almighty, most Gracious, most Compassionate...

I would like to thank the almighty Allah for giving me energy and ability to complete

this thesis.

I would like to express my heartfelt thanks and sincere gratitude to my supervisor Pro-

fessor Dr. Yllias Chali for the continuous support, invaluable advice and encouragement.

His guidance helped me to explore research challenges and thinking about scientific prob-

lems profoundly. The door to Prof. Chali’s office was always open whenever I ran into a

trouble spot or had a question about my research or writing. I am very much grateful to

him.

I would also like to thank my M.Sc. supervisory committee members Dr. Wendy Os-

born, and Dr. John Zhang for their time and effort.

I also must thank University of Lethbridge for the financial and travel support. I am

also thankful to Natural Sciences and Engineering Research Council (NSERC) of Canada

discovery grant for providing me a TITAN Xp GPU machine to conduct my experiments. I

am also deeply grateful to my supervisor for the financial assistance.

A special thanks to a special sister who wished me just before my flight, who came to

the airport just to say goodbye to me. Probably, she would never read this. But still I like

her very much for being an awesome personality. Being only child of my parents I never

knew what it is like to have a sister. She gave me a heavenly feeling of having a sister. I

never had any sad feeling of not having a sister before I met her. She gifted me a Ferrari.

Just to remember her, I always carry that Ferrari with me. Wherever she is, I wish her all

v

ACKNOWLEDGMENTS

the success in her life.

I am forever thankful to my friends for their support, friendship and encouragement

which is worth more than I can express on paper. I am also thankful to those people who

made my life in Lethbridge very challenging, comfortable and enjoyable.

Acknowledging to this person will never be enough but still, I am very much grateful

to Mir Tafseer Nayeem, without whom this thesis would probably remain in imagination.

He has been and will always be more than an inspiration in my life. This page is too short

to express my gratitude towards him. In short, probably I would have to leave Lethbridge

empty handed but because of him at least I got a chance to finish this work.

Last but not the least, I am grateful to my father Md Shahidul Islam who still goes to

office by riding a bicycle just to support me and my mother Shahnaz Perveen who still does

not sleep any night just to pray to the almighty for their ungrateful son. I still can not believe

how they managed to teach me all those good things in my life.

vi

Contents

Contents vii

List of Tables x

List of Figures xi

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Thesis Overview . 2

2 Background 3
2.1 Sentence Similarity . 3

2.1.1 Cosine Similarity . 3
2.1.2 Jaccard Similarity . 4

2.2 Automatic Text Summarization: Overview of Recent Work 4
2.2.1 Extractive Summarization . 5
2.2.2 Abstractive Summarization . 6
2.2.3 Automatic Summary Evaluation 8

2.3 Word Embedding . 11
2.3.1 One-Hot Vectors . 11
2.3.2 Word2Vec . 12
2.3.3 GloVe . 15
2.3.4 FastText . 15

2.4 Multi-Sentence Compression (Sentence Fusion) 15
2.5 Sentence Fusion Evaluation . 16

2.5.1 Word-overlap based metrics . 16
2.5.2 Embedding based metrics . 17

2.6 Neural Machine Translation (NMT) . 19
2.6.1 Encoder-Decoder Framework . 21
2.6.2 Training: Maximum Likelihood Estimation (MLE) 23
2.6.3 Attention Mechanism . 24
2.6.4 Greedy 1-Best Search . 26
2.6.5 Beam Search Algorithm . 26

2.7 Recurrent Layers . 27
2.7.1 Recurrent Neural Network (RNN) 28
2.7.2 Long Short Term Memory (LSTM) 28

vii

CONTENTS

2.7.3 Gated Recurrent Unit (GRU) . 31
2.8 Transformer . 32

2.8.1 Transformer Encoder . 32
2.8.2 Transformer Decoder . 34
2.8.3 Positional Encoding . 34
2.8.4 Multi-Head Attention . 35

2.9 Summary . 35

3 Sentence Clustering 36
3.1 Text Clustering . 37
3.2 Model . 37

3.2.1 Sentence Embedding . 37
3.3 Experiments . 39

3.3.1 Datasets . 39
3.3.2 Pre-trained Word Vectors . 39
3.3.3 Experiments . 40
3.3.4 Baselines . 40
3.3.5 Results . 41

3.4 Summary . 41

4 Neural Sentence Fusion 42
4.1 Preliminaries . 43
4.2 Datasets . 43
4.3 Baselines . 45
4.4 Evaluation Metric . 45
4.5 Experimental Results . 46
4.6 Summary . 47

5 Abstractive Multi-Document Summarization 48
5.1 Sentence Ordering . 49

5.1.1 Intra-Cluster Ordering . 49
5.1.2 Inter-Cluster Ordering . 49

5.2 Abstractive Sentence Selection . 49
5.2.1 Importance . 50
5.2.2 Coverage . 50
5.2.3 Diversity . 51
5.2.4 Summary Length Limit . 51

5.3 Multi-Document Level Experiments . 53
5.3.1 Dataset . 53
5.3.2 Evaluation Metric . 53
5.3.3 Baseline Systems . 54
5.3.4 Results . 54

5.4 Summary . 56

viii

CONTENTS

6 Conclusion & Future Work 57
6.1 Conclusion . 57
6.2 Future Work . 57

Bibliography 59

A Smart Stopwords List 69

B Sample system generated summaries 73

ix

List of Tables

3.1 Results of Homogeneity and Completeness with different pre-trained word
embeddings. 41

3.2 Comparison of ACC and NMI of clustering methods on two public datasets. 41

4.1 Performance of different systems compare to our proposed Neural Sentence
Fusion (NeuFuse) model. 43

4.2 Training dataset statistics. 44

5.1 Comparison results on the DUC 2004 test set. 55
5.2 Comparison results on the Opinosis 1.0 test set. 55
5.3 Copy rate found in different data set. 55

A.1 Smart Stopwords List . 70

B.1 Randomly selected outputs for our NeuFuse model form MSR-ATC dataset
(Toutanova et al., 2016). Green Shading intensity represents new word
generation other than source input sentence words and Yellow Shading
intensity represents the morphological variation generation from the source
input sentence words. 74

B.2 Randomly selected outputs for our NeuFuse model form SFC dataset (McK-
eown et al., 2010). Green Shading intensity represents new word gener-
ation other than source input sentence words and Yellow Shading inten-
sity represents the morphological variation generation from the source input
sentence words. 74

x

List of Figures

2.1 Visualization of word to word similarity of all non-stop words from both
headlines is embedded into a word2vec space (Nayeem et al., 2017). 12

2.2 N-gram neural language model (Nayeem et al., 2017). 13
2.3 Visualization of semantic relationships, e.g. male-female, verb tense and

even country-capital relationships between words (Mikolov et al., 2013b). . 14
2.4 CBOW model (left) and Skip-gram model (right) from (Mikolov et al.,

2013b). 14
2.5 Sequence to Sequence Learning with Neural Networks (Sutskever et al.,

2014) . 20
2.6 Attention Model (Bahdanau et al., 2015) 24
2.7 Google’s Neural Machine Translation (NMT) Model (Wu et al., 2016) . . . 27
2.8 An unrolled recurrent neural network . 28
2.9 LSTM at time step t (Hochreiter and Schmidhuber, 1997) 30
2.10 GRU Gating Mechanism (Chung et al., 2014) 32
2.11 Transformer model architecture (Vaswani et al., 2017) 33
2.12 Multi-Head Attention Mechanism . 34

3.1 Proposed method to solve Multi-Doc Abstractive Summarization 36
3.2 Sentence Clustering Model . 37

5.1 Proposed final method to solve Multi-Document Summarization Model . . 48

xi

Chapter 1

Introduction

1.1 Motivation

“Text Summarization is the process of distilling the most important information from

one or more texts to produce an abridged version for a particular task and user.” (Section

23.3 of Jurafsky and Martin (2008))

“Information is what you need”- this is the motto of the Internet world. In most cases

someone needs some information at a minimum cost. The Internet consists of a huge collec-

tion of textual documents with an exponential growth rate. For a single query the Google,

Bing and Yahoo-search engines generally return thousands of links. It becomes difficult to

choose from this large scale result. Moreover, on a variety of topics, the Internet contains

millions of texts. This is the reason for data redundancy and the difficulty to extract concise

information. Sometimes users become so overwhelmed while reading large documents that

they may miss interesting or important information. These concerns lead to the develop-

ment of automatic summarization systems which focus on creating short summaries from

a single document or a related set of documents. A good summary consists of most of the

information from the original documents, while being non-redundant and grammatically

readable. There are several methods for document summarization. Extractive summariza-

tion contains sentences without any modification from the original documents. Also, with

extractive summaries, it is difficult to explain the whole thing since any modification is

restricted. On the other hand, abstractive summarization generates different words and

sentences from the original document to represent the summary. In this thesis, we have

1

1.3. THESIS OVERVIEW

proposed some novel approaches with outperforming state-of-the-art results in the area of

abstractive multi-document text summarization.

1.2 Contributions

• We have designed an unsupervised sentence clustering model which is simple, effec-

tive, and outperforms several popular clustering methods when tested on two public

datasets.

• We proposed a neural sentence fusion model. To the best of our knowledge, our work

is the first to investigate adapting neural models to the sentence fusion task.

• We developed an ILP (Integer Linear Programming) based sentence selection pro-

cess containing diverse information for given length for abstractive multi-document

summarization.

• We applied our sentence clustering, sentence fusion model and sentence selection

process to design a full abstractive multi-document summarization system and achieved

state-of-the-art results on two different datasets.

1.3 Thesis Overview

This thesis is organized as follows. In Chapter 2, we provide an overview of automatic

text summarization. We will also provide a brief introduction of the deep learning tech-

niques especially used in text summarization. In Chapter 3, we will present our model

for text clustering. Chapter 4 is devoted to our neural sentence fusion model. Chapter 5

describes our novel approaches for the abstractive multi-document sentence generation us-

ing a tensor2tensor1 based Transformer model at sentence level. Then both clustering and

fusion models are applied to the multi-document summary generation.

1https://github.com/tensorflow/tensor2tensor

2

Chapter 2

Background

To complete this work, a hierarchical model consisting of several models has been pro-

posed. To achieve this some previously implemented open source tools and models are

used. In this chapter, we will be mostly discussing about these open source tools and mod-

els and their benefits which led us to choose them for our work.

2.1 Sentence Similarity

Sentences can be similar in many aspects. Sentences can have similar structures, similar

topics or similar ideas. Many Natural Language Processing (NLP) tasks are required to be

dealt with on similar sentences. For example, question-answer related sites like Quora 2

or StackOverflow 3 may need to determine whether a similar or same question has been

asked before. There are many ways to compute similarity between two sentences based on

requirement. Here, two sentence similarity approaches are discussed.

2.1.1 Cosine Similarity

Cosine similarity4 is measured between two sentence vectors, which should be non-zero

vectors. It is basically the cosine distance between two vectors. To compute cosine similar-

ity, the sentences need to be converted first into a vector representation. This process can be

performed in various ways. This is discussed in detail later in the thesis. After converting

the sentences into vectors, the similarity between two vectors si and s j is computed using:

2https://www.quora.com/
3https://stackoverflow.com/
4https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/cosdist.htm

3

2.2. AUTOMATIC TEXT SUMMARIZATION: OVERVIEW OF RECENT WORK

cosinesimilarity(si,s j) =
si · s j

‖si‖
∥∥s j
∥∥

2.1.2 Jaccard Similarity

Jaccard similarity is computed using the Jaccard Index 5 between two sentences. Jac-

card Index is also sometimes referred as “Intersection over Union”. To compute the Jaccard

Similarity between two sentences, both sentences are represented as sets. The jaccard Sim-

ilarity of two sets A and B can be found using:

jaccardsimilarity(A,B) =
|A

⋂
B|

|A
⋃

B|

2.2 Automatic Text Summarization: Overview of Recent Work

The task of automatic document summarization aims at finding the most relevant infor-

mation in a text and presenting it in a condensed form. A good summary should retain the

most important contents of the original document or a cluster of related documents, while

being coherent, non-redundant and grammatically readable. There are two types of sum-

marization: abstractive summarization and extractive summarization. Abstractive methods

need extensive natural language generation to rewrite the sentences (Chali et al., 2017).

Therefore, the research community is focusing more on extractive summaries, which se-

lects salient (important) sentences from the source document without any modification to

create a summary. The abstractive techniques which are traditionally used are sentence

compression, syntactic reorganization and lexical paraphrasing. Summarization is classi-

fied as single-document or multi-document based on the number of source documents. The

5https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/jaccard.htm

4

2.2. AUTOMATIC TEXT SUMMARIZATION: OVERVIEW OF RECENT WORK

information overlap between the documents from the same topic makes the multi-document

summarization more challenging than the task of summarizing single documents. However,

in case of multi-document summarization where source documents usually contain similar

information, the extractive methods would produce redundant summary or biased towards

specific source document (Nayeem and Chali, 2017a).

2.2.1 Extractive Summarization

Over the past few decades, several extractive approaches have been proposed for auto-

matic summary generation that combine a number of machine learning, graph-based and

optimization techniques. Computing sentence importance for text summarization, LexRank

(Erkan and Radev, 2004) and TextRank (Mihalcea and Tarau, 2004) are graph-based meth-

ods. The RegSum system (Hong and Nenkova, 2014) employs a supervised model for pre-

dicting word importance. Instead of greedily adding sentences to form a summary, treating

multi-document summarization as a submodular maximization problem has proven suc-

cessful by Lin and Bilmes (2011). The most widely used practice is to formulate the prob-

lem as integer linear programming (ILP). Therefore, concept-based ILP (Gillick and Favre,

2009; Nayeem and Chali, 2017a) has been proposed where the goal is to maximize the

sum of the weights of the concepts (usually implemented as bigrams) that appear in the

summary. Unfortunately, none of the above systems consider the coherence of the final

extracted summary.

In the very recent works using a neural network, Cheng and Lapata (2016) proposed

an attentional encoder-decoder and Nallapati et al. (2017) used a simple recurrent network

based sequence classifier to solve the problem of extractive summarization. However, they

are limited to single document settings, where sentences are implicitly ordered according

to the sentence position in the original document. Parveen and Strube (2015) and Parveen

et al. (2015) proposed graph-based techniques to tackle coherence, which is also limited

to single document summarization. A multi-document summarization system was recently

5

2.2. AUTOMATIC TEXT SUMMARIZATION: OVERVIEW OF RECENT WORK

proposed by Wang et al. (2016), that combines both coherence and informativeness but this

system is limited to syntactic linkages between named entities.

2.2.2 Abstractive Summarization

Abstractive summarization is generally much more difficult. It involves sophisticated

techniques for meaning representation, content organization, sentence compression, sen-

tence fusion and paraphrasing. There has been significant interest on compressive document

summarization that attempts to compress original sentences to form a summary (Clarke and

Lapata, 2006, 2008; Filippova, 2010) as a first intermediate step towards abstractive summa-

rization. Compressive summarization techniques include sentences which are compressed

from original sentences without further modifications other than word deletion. Sentence

compression involving two or more sentences is called MSC (Multi-Sentence Compres-

sion). Most of the previous MSC approaches rely on the syntactic parsing to build the

dependency tree for each related sentence in a cluster for producing grammatical compres-

sions (Filippova and Strube, 2008). Unfortunately, syntactic parsers are not available for

all the languages. As an alternative, word graph-based approaches that only require a POS

(Parts of Speech) tagger and a list of stopwords have been proposed by Filippova (2010).

A directed word graph is constructed in which nodes represent words and edges represent

the adjacency between words in a sentence. Hence, compressed sentences are generated

by finding the k-shortest paths in the word graph. Boudin and Morin (2013) improved

Filippova’s approach by re-ranking the fusion candidate paths according to keyphrases to

generate more informative sentences. However, grammaticality is sacrificed in order to

improve informativity in these works (Nayeem and Chali, 2017b; Nayeem et al., 2017).

Banerjee et al. (2015) proposed an abstractive multi-document summarization system

using the sentence fusion approach of Filippova (2010) combined with Integer Linear Pro-

gramming (ILP) sentence selection. Following Banerjee et al. (2015)’s work, several recent

approaches have been proposed with slight modifications. Multiword Expressions (MWE)

6

2.2. AUTOMATIC TEXT SUMMARIZATION: OVERVIEW OF RECENT WORK

was exploited by ShafieiBavani et al. (2016) to produce more informative compressions.

Recently, Tuan et al. (2017) included syntax factors along with Banerjee et al. (2015) to

improve performance. However, all of the above mentioned systems try to produce com-

pressions by copying the source sentence words, without any paraphrasing in the process.

Recently end-to-end training with encoder-decoder neural networks have achieved huge

success for abstractive summarization. These systems have adopted techniques such as

encoder-decoder with attention (Bahdanau et al., 2015; Luong et al., 2015) neural network

models from the field of machine translation to model the sentence summarization task.

Rush et al. (2015) was the first to use neural sequence-to-sequence learning in the headline

generation task from a single document. Unfortunately, this line of research under the term

sentence summarization (Rush et al., 2015), which can generate only a single sentence,

somewhat misleadingly called text summarization in some follow-up research works (Nal-

lapati et al., 2016; Chopra et al., 2016; Suzuki and Nagata, 2017; Zhou et al., 2017; Ma et al.,

2017; Nayeem et al., 2018). There are some limitations to the above mentioned models, one

of which is the produced output is also very short (about 75 characters). Similar to head-

line generation, their model produces ungrammatical sentences during generation. How-

ever, there are some recent attempts which use the CNN/DailyMail corpus (Hermann et al.,

2015) as supervised training data to generate a multi-sentence summary from a single doc-

ument (See et al., 2017; Li et al., 2017b; Paulus et al., 2017; Narayan et al., 2018a,b; Chali

et al., 2017). The recent abstractive summarization models actually produce compressed

summaries by deleting the words from a single source document, with no direct paraphras-

ing being involved in the process. Hence, no new words were generated which are different

form the source document words (other than morphological variation), which is pointed out

by their own experimental results. Very recently, some researchers employ a neural net-

work based framework to tackle the summarization problem in a multi-document setting

(Yasunaga et al., 2017; Li et al., 2017a). However, Yasunaga et al. (2017)’s work is limited

to extractive summmarization while Li et al. (2017a)’s work is limited to compressive sum-

7

2.2. AUTOMATIC TEXT SUMMARIZATION: OVERVIEW OF RECENT WORK

mary generation using an ILP based model, and there is no explicit redundancy control in

the summary side. Unfortunately, full abstractive summarization in a multi-document set-

ting still lacks satisfactory solutions due to the lack of large multi-document summarization

datasets needed to train the computationally expensive sequence-to-sequence models. In

this paper, we tackle this issue in an unsupervised way using deep representation learning.

2.2.3 Automatic Summary Evaluation

To determine the quality of a machine generated summary by comparing it against a

reference or a set of reference summaries (generally human-annotated) ROUGE (Lin, 2004)

(Recall-Oriented Understudy for Gisting Evaluation)6 is an automatic tool used widely for

this purpose. There are 4 different ROUGE metrics - namely ROUGE-N (1,2,3,4), ROUGE-

L, ROUGE-W, and ROUGE-S.

• ROUGE-N A summary evaluation which measures unigram (one word), bigram (two

word), trigram (three word) and higher order n-gram overlap.

• ROUGE-L measures the longest matching sequence of words using the LCS (Longest

Common Sub-sequence).

• ROUGE-W For evaluating ROUGE-W, different weights are assigned to consecutive

in-sequence matches in the LCS.

• ROUGE-S If there is any pair of words in the sentence order which allows for ar-

bitrary gaps, this is used to evaluate ROUGE-S. Sometimes, it is called skip-gram

co-occurrence. For example, skip-bigram measures the overlap of word pairs that

can have a maximum of two gaps in between words7. As an example, for the phrase

“cat in the hat” the skip-bigrams would be “cat in, cat the, cat hat, in the, in hat, the

hat”.
6ROUGE package link: http://www.berouge.com
7http://www.rxnlp.com/how-rouge-works-for-evaluation-of-summarization-tasks/

8

2.2. AUTOMATIC TEXT SUMMARIZATION: OVERVIEW OF RECENT WORK

The most commonly used among the above mentioned measures for multi-document

summarization research is ROUGE-N. The number of overlapping n-grams is counted to

evaluate between the system summary and human written reference summaries. ROUGE-N

can be defined as follows:

ROUGE-N =
∑S∈R ∑gn∈SCountmatch(gn)

∑S∈R ∑gn∈SCount(gn)

where,

n is the length of the n-gram,

gn is the maximum number of n-grams co-occurring in a candidate summary and

Countmatch(gn) is the set of reference summaries (Lin, 2004).

While evaluating, if multiple reference summaries are used, a pairwise summary-level

ROUGE-N score is computed between a candidate system generated summary, s and every

human annotated reference, ri from the reference set, R = {r1,r2, . . . ,rn}. The maximum

among the summary-level ROUGE-N scores is the final ROUGE-N score. It can be de-

scribed as follows:

ROUGE-Nmulti = argmaxi (ROUGE-N(ri,s))

For example:

System Summary (system generated): A man with a helmet painted red is riding a

blue motorcycle.

Reference Summary (human annotated): A man with a helmet is riding a blue mo-

torcycle.

If uni-grams are considered only, the number of overlapping words between the system

summary and reference summary is 10. However, we can actually compute the precision

and recall using the overlap of words to get a good quantitative value. Recall in terms

of ROUGE simply means how much of the reference summary the system summary is

9

2.2. AUTOMATIC TEXT SUMMARIZATION: OVERVIEW OF RECENT WORK

acquiring. If the individual words are considered only, the recall can be computed as:

ROUGE-1 (recall) =
num o f overlapping words

total words in re f erence summary
=

10
10

= 1.0

It can be easily identified, that all the words in the human annotated reference summary

have been captured by the machine generated system summary. However, a machine gen-

erated summary (system summary) can be extremely long, if it captures all of the words

from the human annotated reference summary. In the system summary most of the words

may be useless, which results in a summary with redundancy and repetitive information.

Here, precision8 is required. Precision is defined as how much of the system summary was

actually relevant or needed. For the same example, precision is measured as:

ROUGE-1 (precision) =
num o f overlapping words

total words in system summary
=

10
12

= 0.83

This means, that 10 out of the 12 words in the system summary were relevant. Let us

assume, the following system summary instead of the previous example:

System Summary 2 (machine generated): A man with a helmet painted red is riding

a blue motorcycle down the road.

The Precision is:

ROUGE-1 (precision) =
10
15

= 0.66

The precision score has now decreased. The reason behind this is, a few redundant

words appeared in the system summary. When we try to generate summaries that are con-

cise in nature, the precision is really crucial . Therefore, the best way is to compute both

the Precision and Recall. Sometimes, the system summaries are forced to be concise given

some constraints (such as length limit constraint). Then using just the recall should be

sufficient since precision is of less concern in this case. In this thesis, the limited length re-

8http://text-analytics101.rxnlp.com/2017/01/how-rouge-works-for-evaluation-of.html

10

2.3. WORD EMBEDDING

call measure is only reported in our experiment. Moreover, the performance has also been

reported in terms of ROUGE-SU4, where S means skip-bigram (match 2 non contiguous

words with other words in between) allowing rephrasing and sentence reorganization. As

the ROUGE score is supposed to evaluate abstractive summaries, its a good measure. For

other in between words, U4 has been used which means maximum of 4 unigram words are

allowed within a skip-bigram.

2.3 Word Embedding

Word embedding is a process of vector representation of words. It is a popular method

used in many natural language processing applications, such as document classification,

text summarization and question answering.

2.3.1 One-Hot Vectors

Before building the above applications, the similarity between two words, sentences or

even paragraphs has to be measured. Through a vector space model, the one-hot vector is

a representation of all the words. The vector representation has the corresponding entry

in the vector for each word as 1 (presence), and all other entries as 0 (absence). The size

of the dictionary or vocabulary will be the length of one-hot vectors. Cosine similarity9

on one-hot vectors is not capable of capturing semantic information when documents say

exactly same thing in entirely different words. Let us consider these two following news

examples:

• Obama speaks to the media in Illinois

• The President greets the press in Chicago

These two sentences do not have any word in common (except for the stopwords such

as the and in, which is not so important for measuring semantic similarity). According to

9https://en.wikipedia.org/wiki/Cosine similarity

11

2.3. WORD EMBEDDING

Figure 2.1: Visualization of word to word similarity of all non-stop words from both head-
lines is embedded into a word2vec space (Nayeem et al., 2017).

the one-hot vectors representation, their cosine distance would be maximal. To measure

their semantic similarity properly, further information is needed, which can be learned us-

ing large amounts of data through machine learning models (Kusner et al., 2015). Figure

2.1 taken from Kusner et al. (2015) visualizes the word to word similarity of the example

headlines.

2.3.2 Word2Vec

In distributional semantics, vector space models have been used since the 1990s for esti-

mating continuous representations of words Latent Dirichlet Allocation (LDA) (Blei et al.,

2003) and Latent Semantic Analysis (LSA) (Landauer et al., 1998) are two such examples.

The term “Word Embedding” was first introduced in Bengio et al. (2003) where a word em-

bedding model was proposed by training a neural language model. The language models

build the joint probability P(w1, . . . ,wT) of a sentence, where wi represents the ith word in

the sentence. In the language model, higher probabilities are assigned to grammatical and

meaningful sentences, and lower probabilities are assigned to meaningless sentences. For

example, let us assume that we are searching for something on the Internet using Figure

12

2.3. WORD EMBEDDING

Figure 2.2: N-gram neural language model (Nayeem et al., 2017).

2.210, if we write “How long is a”, the search engines would suggest the next word “foot-

ball”. The reason behind this is the probability according to the language model among all

words in the target vocabulary of “How long is a football” is very high.

To create high-dimensional (50 to 300 dimensional) representations of words in an un-

supervised manner from a large amount of text, Word2vec (Mikolov et al., 2013b,a) is the

most popular of the word embedding models for learning word embeddings . As illustrated

in Figure 2.3, Word2Vec embeds words in a continuous vector space where semantically

similar words are placed as nearby points to each other. Recently, it was shown that the word

vectors are able to capture many linguistic regularities. For example, vector arithmetic oper-

ations [vector(“Paris”) - vector(“France”) + vector(“Italy”)] implement a vector that is very

close to vector(“Rome”), and [vector(“king”) - vector(“man”) + vector(“woman”)] is close

to vector(“queen”)11. Mikolov et al. (2013b) defined two architectures for learning word

10Figure collected from http://book.paddlepaddle.org/04.word2vec/, this figure is under
https://creativecommons.org/licenses/by-sa/4.0/

11https://code.google.com/archive/p/word2vec/

13

2.3. WORD EMBEDDING

Figure 2.3: Visualization of semantic relationships, e.g. male-female, verb tense and even
country-capital relationships between words (Mikolov et al., 2013b).

Figure 2.4: CBOW model (left) and Skip-gram model (right) from (Mikolov et al., 2013b).

embeddings, the Continuous Bag-of-Words model (CBOW) and the Skip-Gram model.

Continuous Bag-of-Words model (CBOW): Unlike a language model that can only

base its predictions on past words, the CBOW model predicts the current word based on the

N words both before and after it. When N=2, the model is as the Figure 2.4 (left).

Skip-gram model: Instead of using the surrounding words, skip-gram uses the centre

word to predict the surrounding words as can be seen in Figure 2.4 (right).

14

2.4. MULTI-SENTENCE COMPRESSION (SENTENCE FUSION)

2.3.3 GloVe

Unlike word2vec, GloVe12 (Pennington et al., 2014) takes advantage of two primary

families of word vectors- global matrix factorization methods (e.g. LSA (Landauer et al.,

1998)) and local context window based methods (e.g. skip-gram (Mikolov et al., 2013b)).

Moreover, word2vec is a prediction based model, whereas GloVe is a count based model.

GloVe builds a co-occurrence matrix for the entire corpus first, then factorizes it to yield

matrices for word vectors and context vectors.

2.3.4 FastText

Compared to other word embeddings FastText (Mikolov et al., 2018) is very new with

very good results. FastText uses a hierarchical classifier instead of a flat structure, which

is organized in a tree in the different categories. The depth in the tree of very frequent

categories is therefore smaller than for infrequent ones, leading to further computational

efficiency. A text is represented using FastText by a low dimensional vector, obtained by

summing vectors corresponding to the words that appear in the text. A low dimensional

vector is associated with each word of the vocabulary in FastText. This hidden representa-

tion is shared among all classifiers for different categories, which allows information about

words learned for one category to be used by other categories. These kind of representations

is called a bag of words which ignores word order.

2.4 Multi-Sentence Compression (Sentence Fusion)

Multi-sentence compression (MSC) can be a useful solution for the summarization

problem. It usually takes a group of related sentences and produces an output sentence

through merging the sentences about the same topic, retaining the most important informa-

tion and still maintaining the grammaticality of the generated sentence. MSC (originally

called sentence fusion by Barzilay and McKeown (2005)) is a text-to-text generation pro-

12https://github.com/stanfordnlp/GloVe

15

2.5. SENTENCE FUSION EVALUATION

cess in which a novel sentence is produced as a result of summarizing a set of similar

sentences. On the other hand, lexical paraphrasing aims at replacing some selected words

with other similar words while preserving the meaning of the original text. A good lexi-

cal substitution for a target word needs to be semantically similar to the target word and

compatible with the given context (Melamud et al., 2015). For example, the sentence “Jack

composed these verses in 1995” could be lexically paraphrased into “Jack wrote these lines

in 1995” without altering the sense of the initial sentence.

2.5 Sentence Fusion Evaluation

This section describes the set of automatic metrics which can be useful for sentence

fusion evaluation. At first word-overlap metrics are considered and then embedding-based

metrics are presented. In every case, given multiple references, the similarity between the

prediction and all the references are computed one-by-one, and then the maximum value is

selected. After that, the average score is computed for the entire corpus.

2.5.1 Word-overlap based metrics

BLEU

The BLEU metric (Papineni et al., 2002) compares n-grams between the candidate sen-

tence and the references. At the corpus-level, the BLEU score is computed using modified

precision, which can be described as follows:

pn =

∑
C∈{Re f erences}

∑
n−gram∈C

Ctclip(n−gram)

∑
C′∈{Re f erences′}

∑
n−gram′∈C′

Ctclip(n−gram′)

where, {References} are the candidate output produced by the system and Ctclip is the

clipped count for n-gram which is the number of times the n-gram, is common to the can-

didate answer and the reference answer clipped by the maximum number of occurrences of

16

2.5. SENTENCE FUSION EVALUATION

the n-gram in the reference answer. The BLEU-N score is defined as:

BLEU-N = BP exp(
N

∑
n

ωn log(pn))

where N represents the maximum length of the n-grams, ω is a weighting that is some-

times uniform and BP is a brevity penalty.

METEOR

The METEOR metric (Banerjee and Lavie, 2005) was first proposed as an evaluation

metric which evaluates more effectively at the sentence level. Before computing METEOR

score, at first, an alignment between the system generated sentence and the reference sen-

tence is mapped using each uni-gram in the system generated sentence to 0 or 1 uni-gram

in the reference sentence. The alignment is based on not only exact matches but aslo stem,

synonym, and paraphrase matches. Based on the mapping, uni-gram precision and recall

are computed. Then the METEOR score is computed which can be described as follows:

METEOR = Fmean(1− p)

where, Fmean is the harmonic mean between precision and recall with weight for recall

9 times a high as weight for precision, and p is the penalty.

2.5.2 Embedding based metrics

There are another set of metrics where the cosine similarity is computed between the

embeddings of the system generated sentence and the reference sentence instead of relying

on word overlaps.

Skip-Thought

The Skip-Thought model (Kiros et al., 2015) uses a recurrent network to encode a given

sentence into an embedding, to train in an unsupervised way and then decoded to pro-

17

2.5. SENTENCE FUSION EVALUATION

duce the preceding and following sentences. The model was trained using the BookCorpus

dataset (Zhu et al., 2015). The pre-trained model13 shared by the author was used in this

thesis.

Embedding average

This metric is computed using a sentence-level embedding by averaging the embeddings

of the words composing the sentence. It can be described as follows:

eC =
∑w∈C ew

|∑w′∈C ew′|
.

where, vectors ew, represents the embeddings for words w in system generated sentence C.

Vector extrema

Vector extrema (Forgues et al., 2014) is computed in sentence-level embedding by col-

lecting the most extreme value of the embeddings of the words. It can be described as

follows:

erd =

maxw∈C ewdif ewd > |minw′∈C ew′d|

minw∈C ewdotherwise.

where, d is an index over the dimensions of embedding and C is the system generated

sentence.

Greedy matching

Greedy matching does not compute a sentence embedding but a similarity score directly

between a candidate C and a reference r (Rus and Lintean, 2012). This similarity score is

13https://github.com/ryankiros/skip-thoughts

18

2.6. NEURAL MACHINE TRANSLATION (NMT)

computed as follows:

G(C,r) =
∑w ∈C maxŵ∈r cos sim(ew,wŵ)

|C|

GM(C,r) =
G(C,r)+G(r,C)

2
. (2.1)

In other words, each word in the candidate sentence is greedily matched to a word in the

reference sentence based on the cosine similarity of their embeddings. The score is an

average of these similarities over the number of words in the candidate sentence. The same

score is computed by reversing the roles of the candidate and reference sentences and the

average of the two scores gives the final similarity score.

2.6 Neural Machine Translation (NMT)

The process of translating from the source language to the target language is called

Machine Translation (MT). The input language to the machine translation system is known

as the source language, and the output language is known as the target language. In short,

machine translation is the task of conversion of a sequence of words in the source language

into a sequence of words in the target language. It is one of the most important and well

known research topics in the field of Natural Language Processing (Neubig, 2017).

For early automatic MT systems, Statistical Machine Translation (SMT) techniques

have been used (Brown et al., 1993). But these statistical machine translation models

posses many shortcomings. Pre-processing techniques of SMT heavily relies on processes

like word alignment, word segmentation and tokenization, rule-extraction and syntactic

parsing. However, the problem is that human designed features cannot cover all possible

linguistic variations and cannot use all global features14. The recent development of deep

learning provides new and better solutions compared to previous approaches to these afore-

14http://book.paddlepaddle.org/08.machine translation/

19

2.6. NEURAL MACHINE TRANSLATION (NMT)

Figure 2.5: Sequence to Sequence Learning with Neural Networks (Sutskever et al., 2014)

mentioned problems of SMT. Neural Machine Translation (NMT) (Sutskever et al., 2014)

does not require any pre-designed features. The goal of NMT is to design a fully trainable

model where every component is tuned based on a large-scale training corpora in order to

maximize its performance.

Considering a sequence of words as the most raw representation of a sentence, a fully

trainable NMT model M starts from a raw representation of a source sentence and finishes

by generating a raw representation of a target sentence. In a fixed numbered of vocabulary,

each word in a sequence is represented by its integer index. In the English words vocabulary

V , which is sorted according to their frequency of appearance in a training corpus, the very

first frequent word is represented as an integer 1. Also given, X = (x1,x2, . . . ,xN) a source

sentence, and Y = (y1,y2, . . . ,yM) a target sentence where, N±M (Sutskever et al., 2014).

The NMT model M attempts to find an output sequence Y that maximizes the conditional

probability of Y given an input sequence X :

arg max
Y∈V

P(Y|X)

The sequence-to-sequence network (seq2seq) has become very popular in the NLP

community to solve the problem of NMT (Sutskever et al., 2014; Bahdanau et al., 2015).

For example, according to the Figure 2.5, we have “ABC” as the input, and “WXYZ” as

the output. The two sequences are different in lengths. So the question is, how does seq2seq

solve that problem of different sequence lengths? The solution is: two different models are

developed, which consists of two separate recurrent neural networks called Encoder and

20

2.6. NEURAL MACHINE TRANSLATION (NMT)

Decoder respectively.

2.6.1 Encoder-Decoder Framework

The Encoder-Decoder framework (Cho et al., 2014b) solves the mapping of a sequence

to another sequence, for sequences with different lengths. The encoder turns a source se-

quence of words into a fixed size feature vector, which is then decoded by a decoder as a

target sequence by maximizing the predictive probability. Both the encoder and the decoder

are typically implemented via a simple Recurrent Neural Network (RNN), Long Short Term

Memory (LSTM) or Gated Recurrent Unit (GRU).

Encoder

Encoding a sequence consists of three steps where a sentence as a sequence through an

encoder:

1. Considering one-hot vector representation of a word where each word xi in the source

x = {x1,x2, . . . ,xN} is represented as a vector wiε{0,1}|V | , i = 1,2, . . . ,N where wi

has same number of dimension as the vocabulary |V |, and has an element of one

at the location corresponding to the location of the word in the dictionary and zero

elsewhere.

2. There are two problems with the one-hot vector representation.

• The dimension is very large of each individual word vector .

• It is very difficult to capture semantic relationship between words in a source

sentence. That is why, it is very useful to convert the one-hot vector into a

low-dimensional semantic space as a dense vector with fixed dimensions. For

instance, si =Cwi for the i-th word, with CεRK×|V | as the projection matrix and

K is the dimensionality of the word embedding vector and |V | is the size of the

fixed vocabulary.

21

2.6. NEURAL MACHINE TRANSLATION (NMT)

3. The source sequence of words is then encoded using RNN:

hi =∅θ (hi−1,si)

where, h0 is a zero vector, ∅θ is a non-linear activation function (e.g. sigmoid, ReLU,

tanh), and h = {h1, . . . ,hN} is the sequential encoding of the first N words from the

input source sequence. After the last word’s continuous vector sN is projected, the

RNNs internal state hn represents a summary of the whole source sentence.

Decoder

The goal of the decoder is to maximize the probability of the next possible correct word

in the target language sequence. The main way of building the decoder is:

1. At each time step i, given a summary vector (or encoding vector) c of the source

sentence sequence, the i-th word ui, the hidden state zi, the next hidden state zi+1 are

computed as:

zi+1 = φθ (c,ui,zi)

where φθ is a non-linear activation function and c = qh is the context vector of the

source sentence sequence, c can be described as c = hT .ui which denotes the ith

word from the target language sequence and u0 denotes the beginning of the target

language sequence, which indicates the beginning of the decoding. Lastly, z0 is an all

zero vector and zi is the RNN hidden state at time step i.

2. Calculating the probability pi+1 for the (i+ 1)-th word in the target language se-

quence is described as:

p(ui+1|u<i+1,x) = so f tmax(Wszi+1 +bz)

22

2.6. NEURAL MACHINE TRANSLATION (NMT)

where, Wszi+1 + bz scores each possible words in the vocabulary |V | and then the

scores are normalized using softmax, which converts the scores into probability pi+1

for the i+1-th word in the whole target sequence.

3. The cost is computed according to pi+1 and ui+1.

4. Repeat the steps 1-3, until all the words have been processed which usually termi-

nated by a < eos > token.

2.6.2 Training: Maximum Likelihood Estimation (MLE)

After developing the neural translation model, the model needs to be trained using par-

allel data. The previously described encoder-decoder model uses Maximum log-likelihood

estimation (MLE)15 which is a common statistical technique for training. Let us consider a

parallel corpus D, where each sample in the corpus is a pair (Xn,Y n) of source and target

sentences. Each sentence is a sequence of integer indices based on the vocabulary set V ,

which is equivalent to a sequence of one-hot vectors. Multiplying an one-hot vector with an

embedding matrix is equivalent to taking the ith column of the matrix, where the ith element

of the one-hot vector is 1. Given any pair from the corpus, the NMT model can compute

the conditional log-probability of Y n given Xn: logP(Y n|Xn,θ), where, θ is the training

parameter and we can describe the log-likelihood of the whole training corpus as,

Lt(θ) = ∑
(x,y)∈D

log P(Y|X;θ)

P(Y|X;θ) = ∏
t=1

P(yt |y1:t−1,X)

The generation process of machine translation is to process the source sentence into

a sentence in the target language according to a pre-trained model. In the decoding step,

15https://en.wikipedia.org/wiki/Maximum likelihood estimation

23

2.6. NEURAL MACHINE TRANSLATION (NMT)

Figure 2.6: Attention Model (Bahdanau et al., 2015)

there are different strategies for generating next word in the output sequence such as greedy

search and beam search.

2.6.3 Attention Mechanism

1. It does not seem reasonable to encode all the information for a sentence with a fixed

dimensional vector representation regardless of the length of the sentence. In theory,

algorithms like LSTMs should be able to deal with this. But in practice long-range

dependency issues still occur problems due to the vanishing gradient problem16.

2. While processing a source input sentence, the model generally pays more attention or

concentration to the parts in the source sentence which is more relevant to the output

translation, which is currently in the decoding stage. However, in the source sentence,

the focus changes in process of the translation. With a fixed dimensional vector, all

the words from the source sentence are treated equally. This is unreasonable in any

circumstances. That is why, Bahdanau et al. (2015) proposed attention mechanism

for the very first time in NMT (see Figure 2.6), which is able to decode based on

16https://www.quora.com/What-is-the-vanishing-gradient-problem

24

2.6. NEURAL MACHINE TRANSLATION (NMT)

different parts of the context sequence to address the difficulty of feature learning for

long sentences17. With an attention mechanism, it is not required anymore to encode

the full source input sentence into a fixed-length vector. Instead, the model allows

the decoder to attend (focus on) the different parts of the source sentence at each time

step of the output generation process. In the case of a decoder with attention, the zi+1

is computed as:

zi+1 = φθ (ci,ui,zi)

During each time step in the decoder, instead of using a fixed context, a distinct

context vector ci is used for processing word yi. In short, This context vector ci is the

weighted sum of the RNN hidden states (h j) of the encoder. The weight ai j which

denotes the strength of attention of the ith word in the target language sentence to the

jth word in the source sentence.

ci =
N

∑
j=1

ai jh j

ai = [ai1,ai2, . . . ,aiN]

ai j =
exp(ei j)

∑
N
k=1 exp(eik)

ei j = align(zi,h j)

where, align is an alignment model that computes the fitness between the ith word

in the target language sentence and the jth word in the source sentence. In the con-

ventional alignment model hard alignment is used, which means each word in the

target language corresponds to one or more words from the target language sentence.

17http://book.paddlepaddle.org/08.machine translation/

25

2.6. NEURAL MACHINE TRANSLATION (NMT)

On the other hand, if any word in source input sentence is related to any word in the

target language output soft alignment is used, where the strength of the relation or

attention is a real number computed via the alignment model. It completely depends

on the problem whether to use a hard or soft alignment model.

2.6.4 Greedy 1-Best Search

Greedy 1-Best output is very useful in machine translation if we simply require the

best output according to the model. The greedy 1-best search, calculates probability pt at

every time step, then the word is selected which gives the highest probability (1-best), and

use it to predict the next word in the sequence (Neubig, 2017). Due to local optimum, a

greedy search is not guaranteed to be able to find the output with the highest probability.

Considering the n-best words at each time step of the decoder can be a solution to this

problem.

2.6.5 Beam Search Algorithm

Beam Search18 is a heuristic search algorithm which explores a graph by expanding

it to find the most probable node in a limited set. It is used when the probable solution

is significantly large for the applications such as machine translation, speech recognition

and natural language processing. It is very useful if there is not enough memory to use for

considering all the possible solutions.

Using a breadth first search algorithm (BFS)19, beam search builds a search tree and

sorts the nodes according to a heuristic cost (sum of the log probability of the generated

words) at each level of the tree. The beam search is almost similar to the greedy search,

but instead of considering only the 1-best word, it considers b best words at each time step,

where b is the width of the beam size(sometimes called beam search size). Thus, in the

next level, b best nodes with highest scores are expanded. Through this process the space

18https://en.wikipedia.org/wiki/Beam search
19https://en.wikipedia.org/wiki/Breadth-first search

26

2.7. RECURRENT LAYERS

Figure 2.7: Google’s Neural Machine Translation (NMT) Model (Wu et al., 2016)

and time requirements are reduced significantly. However, in case of beam search, there

is also no guarantee of a global optimum solution. When decoding, if the end-of-sentence

token < eos > is generated the search process generally stops or the maximum length of

the sentence is reached.

The Figure 2.7 is an example of the Google’s recent machine translation framework

which uses almost all the techniques described.

2.7 Recurrent Layers

Recurrent layers are powerful algorithms used in artificial intelligence and are especially

useful for processing sequential data like written natural language. Recurrent networks

based on recurrent layers are different from feed-forward networks because they include a

feedback loop. For example, if a network is trained using some words letter by letter, and is

asked to guess each subsequent letter, the very first letter of any word will help to determine

what the recurrent network thinks the second letter and after letters will be. Although some

data, like images, do not seem to be sequential, still they can be learned as sequences when

fed into a recurrent network. There are several different layers such as RNN, LSTM and

GRU. we will be summarizing the most useful layers next.

27

2.7. RECURRENT LAYERS

Figure 2.8: An unrolled recurrent neural network

2.7.1 Recurrent Neural Network (RNN)

In a traditional neural network, we assume that all the inputs and outputs are not de-

pendant on each other. But for many tasks it is not a good idea. If we want to predict the

next word in a sentence we need to know which words came before it. Recurrent neural

networks are generally good for data where there is a relation between previous inputs and

the current input in a sequence. As Natural Language Processing (NLP) is a classical prob-

lem on sequential data, the RNNs have shown great success in many NLP tasks in the last

few years, such as language modeling, syntax parsing, image captioning, dialog generation,

machine translation, summarization and question answering.

As shown in Figure 2.820, by unfolding an RNN at the tth time step, the network takes

two inputs: the tth input vector ~xt (Normally, the embedded input word goes through an

RNN as e(~xt) at every time step) and the hidden state from the last time-step ~ht−1. From

those, it computes the hidden state of the current time-step ~ht . This process is repeated until

all inputs are processed in sequence. Considering the RNN as function f , the formulation

is:

~ht = f (~xt , ~ht−1)

2.7.2 Long Short Term Memory (LSTM)

One of the essential properties of RNNs is that they are able to connect previous infor-

mation to the present situation. Sometimes, we only need to look at recent information to

20http://colah.github.io/posts/2015-08-Understanding-LSTMs

28

2.7. RECURRENT LAYERS

describe the present situation. For example, consider a language model trying to predict

the last word based on the previous ones in a sentence “How long is a football match”. We

actually do not need any further context, the next word is going to be match. In such cases,

where the gap between the relevant information and the place that it is needed is small,

RNNs can learn to use the past information. In contrast, we try to predict the last word of

the sentence “I grew up in Bangladesh, I can speak fluent Bengali”. Recent information

suggests that the next word is probably the name of a language, but if we want to narrow

down which language, we need some context of Bangladesh, which is further back from

the last word. Unfortunately, as that gap grows, RNNs become unable to learn to connect

the information21.

Long Short Term Memory networks (LSTMs) (Hochreiter and Schmidhuber, 1997) are

a special kind of RNN, capable of avoiding the long-distance dependencies problem (Ben-

gio et al., 1994). They work exceptionally well, and have been widely used on a large

variety of NLP problems recently.

In comparison to the structure of a RNN, an LSTM includes a memory cell c, an input

gate i, a forget gate f and an output gate o. These gates and memory cells have the ability

to avoid the long term dependencies problem. We can formulate the LSTM denoted as a

function f , as follows:

ht = f (xt ,ht−1)

Where, f contains following formulations from (Hochreiter and Schmidhuber, 1997),

21http://colah.github.io/posts/2015-08-Understanding-LSTMs/

29

2.7. RECURRENT LAYERS

Figure 2.9: LSTM at time step t (Hochreiter and Schmidhuber, 1997)

it = σ(Wxixt +Whihh−1 +Wcict−1 +bi) (2.2)

ft = σ(Wx f xt +Wh f hh−1 +Wc f ct−1 +b f) (2.3)

ct = ft� ct−1 + it� tanh(Wxcxt +Whchh−1 +bc) (2.4)

ot = σ(Wxoxt +Whohh−1 +Wcoct +bo) (2.5)

ht = ot� tanh(ct) (2.6)

In the above equations, it , ft ,ct ,ot stand for input gate, forget gate, memory cell and

output gate respectively. W and b are model parameters, tanh is the hyperbolic tangent,

and � denotes an element-wise product operation as shown in Figure 2.9.

30

2.8. TRANSFORMER

2.7.3 Gated Recurrent Unit (GRU)

GRU (Cho et al., 2014b) is related to a LSTM, but both uses a different gating mecha-

nism to prevent the long-distance dependencies problem. GRUs are relatively new, have a

less complex structure, train faster, are computationally more efficient and perform better

than a LSTM on less training data (Chung et al., 2014). The GRU also controls the flow of

information like the LSTM unit, but without having to use a memory unit, and combines

the forget and input gates into a single “update gate”. GRU just exposes the full hidden

content without any control (Cho et al., 2014b).

A GRU layer is quite similar to a LSTM layer, the following equations are for a single

GRU layer (Cho et al., 2014b):

z = σ(xtU z + st−1W z)

r = σ(xtU r + st−1W r)

h = tanh(xtUh +(st−1� r)W h)

st = (1− z)�h+ z� st−1

In the above equations, a GRU has two gates, a reset gate r, and an update gate z. Intu-

itively, the reset gate determines how to combine the new input with the previous memory,

and the update gate defines how much of the previous memory to keep as shown in Figure

2.10.

For all recurrent units the general formulation is,

ht = Recurrent(xt ,ht−1)

where Recurrent is a unit which can be a simple RNN, GRU or LSTM.

31

2.8. TRANSFORMER

Figure 2.10: GRU Gating Mechanism (Chung et al., 2014)

2.8 Transformer

Like most NMT models, the Transformer (Vaswani et al., 2017) is also based on the

popular encoder-decoder structure. The difference between the transformer and any other

NMT model is that, it is entirely based on attention mechanisms and dot-products, contain-

ing fully connected layers for both the encoder and the decoder sides. The model follows the

actual architecture for a standard encoder-decoder model but the most commonly used re-

current layers in encoder-decoder architectures are replaced by the mult-head self-attention.

In short, this model is cheaper computationally than any other NMT models.

2.8.1 Transformer Encoder

A Transformer’s encoder is composed of a stack of N = 6 identical layers. Each layer

consists of two sub-layers. The first one is a multi-head self-attention mechanism, and

the second layer is a simple layer which is a position-wise fully connected feed-forward

network. Followed by layer normalization, a residual connection is employed around each

of the two sub-layers. The output of each sub-layer is LayerNorm(x+Sublayer(x)), where

Sublayer(x) represents the function implemented by the sub-layer itself. To operate these

residual connections properly, all sub-layers in the architecture, along with the embedding

32

2.8. TRANSFORMER

Figure 2.11: Transformer model architecture (Vaswani et al., 2017)

33

2.8. TRANSFORMER

Figure 2.12: Multi-Head Attention Mechanism

layers, produce outputs of dimension dmodel = 512.

2.8.2 Transformer Decoder

Like the encoder, the decoder is also composed of a stack of N = 6 identical layers. In

addition to the two sub-layers in each encoder layer, the decoder adds a third sub-layer,

which executes a multi-head attention mechanism over the output of the encoder side. Like

the encoder, followed by layer normalization, residual connections are employed around

each of the sub-layers. The self-attention sub-layer in the decoder stack is also modified to

prevent positions from attending to subsequent positions.

2.8.3 Positional Encoding

Since the transformer model contains no recurrence or no convolution, to ensure the use

of the order of the sequence by the model, we require some additional information about

the relative or absolute position of the tokens in the sequence. To perform this, positional

encodings are added to the input embeddings at the end of the encoder and decoder stacks.

The positional encodings holds the same dimension dmodel as the embeddings, as a result

the two can be summed.

34

2.9. SUMMARY

2.8.4 Multi-Head Attention

Instead of performing a single attention function with dmodel dimensional keys, values

and queries, it has been found beneficial to linearly project the queries, keys and values h

times with different, learned linear projections to dq, dk and dv dimensions, respectively.

On each of these projected versions of queries, keys and values the attention function is

then performed in parallel, yielding dv-dimensional output values. These are concatenated,

resulting in the final values. Recently, multi-head attention22 based models are gaining

popularity among the researchers of Natural Language Processing (NLP).

2.9 Summary

Through the chapter, the necessary background information is presented and recent re-

lated works in research are discussed. As a background, solid understanding of the terms

i.e. summary evaluation, word embedding, Recurrent Neural Network (RNN), Neural Ma-

chine Translation (NMT), tensor2tensor, encoder decoder framework, beam search decoder

and transformer is necessary, as the proposed method is heavily depended on these con-

cepts. From the perspective of a computational linguists, this chapter explains this terms

along with necessary details.

22Figure 2.12 taken from https://mchromiak.github.io/articles/2017/Sep/12/Transformer-Attention-is-all-
you-need/

35

Chapter 3

Sentence Clustering

Multi document summarization has been a popular problem in Natural Language Process-

ing (NLP) field. To solve this problem, our proposed method is given in Figure 3.1. At the

very beginning, all the similar documents are merged in order to solve multi-doc summa-

rization. Then the merged document is clustered. In this chapter, the clustering process is

explained. Other processes are explained in the following chapters.

Figure 3.1: Proposed method to solve Multi-Doc Abstractive Summarization

36

3.2. MODEL

3.1 Text Clustering

Text clustering is a challenging problem due to its sparseness of text representation as

most words only occur once in a text (Aggarwal and Zhai, 2012). As a result, the Term

Frequency-Inverse Document Frequency (TF-IDF) measure will not work well. In order to

address this problem, we use word embedding and deep neural network architectures for

better representation of text and hence propose an unsupervised sentence clustering model.

Extensive experimental results demonstrate that the proposed model is simple, effective,

and outperforms several popular clustering methods when tested on two public datasets.

GRU

𝒘𝟏

𝒉𝟎 GRU GRU

𝒘𝟐 𝒘𝟑

. . . .

GRU

𝒉𝑳

𝒘𝑳

Hierarchical
Sentence Clustering

𝑺𝒊

. . . .
𝑺𝟏 𝑺𝟐 𝑺𝒊 𝑺𝒏.

Figure 3.2: Sentence Clustering Model

3.2 Model

3.2.1 Sentence Embedding

A sentence is a sequence of words S = (w1,w2,,wL), where L is the length of the

sentence. We chose to encode a sentence using bi-directional GRUs (Cho et al., 2014a).

The GRU (Cho et al., 2014a) achieves similar performance as an LSTM (Hochreiter and

Schmidhuber, 1997) but it is faster, computationally efficient and can improve performance

37

3.2. MODEL

on long sequences. In the simplest uni-directional case, while reading input symbols from

left to right, a GRU learns the hidden annotations ht at time t using:

ht = GRU(ht−1,e(wt)) (3.1)

where, ht ∈ IRn encodes all content seen so far at time t which is computed from ht−1 and

e(wt). Here, e(wt) ∈ IRm is the m-dimensional embedding of the current word wt . We can

use any pre-trained word vectors as input to the GRUs.

In our work, we apply bi-directional GRUs (bi-GRUs), which we found achieve better

results consistently than single directional GRUs. As shown in Figure 3.2, Bi-GRU pro-

cesses the input sentence in both forward and backward direction with two separate hidden

layers calculated with GRUs. It obtains the forward hidden states (
−→
h1 , . . . ,

−→
hL) and the

backward hidden states (
←−
h1 , . . . ,

←−
hL). For each position t, we simply concatenate both the

forward and backward states into the final hidden state:

ht =
−→
ht ⊕
←−
ht (3.2)

where, the operator ⊕ indicates concatenation.
−→
ht is calculated using equation 3.2 and

←−
ht is calculated using the following equation.

←−
ht = GRU(

←−−
ht+1,e(wt)) (3.3)

where,
−→
h0 is initialized as a zero vector, and the output sentence embedding xi for the

sentence Si is the last hidden state:

Si = xi = hL (3.4)

Inspired from Murtagh and Legendre (2014), we use a hierarchical clustering algorithm

38

3.3. EXPERIMENTS

with a complete linkage criteria. This algorithm proceeds incrementally, starting with each

sentence considered as a cluster, and merging pairs of similar clusters after each step using

a bottom up approach. The complete linkage criteria determines the metric used for the

merge strategy, which calculates largest distance between a sentence in one cluster and a

sentence in the other candidate cluster. In building the clusters, we use the cosine similarity

between the sentence embeddings obtained from equation 3.4. We set a similarity threshold

(τ = 0.5) to stop the clustering process by using a hold out dataset SICK23 of SemEval-

2014 (Marelli et al., 2014) for getting optimal performance. If we cannot find any cluster

pair with a similarity above the threshold (τ = 0.5), the process stops, and the clusters are

released.

3.3 Experiments

3.3.1 Datasets

In our work, following datasets have been used.

• StackOverflow24 We use the challenge data published in Kaggle.com25. This dataset

consists of 3,370,528 samples from July 31st, 2012 to August 14, 2012. In our ex-

periments, we randomly select 20,000 question titles from 20 different tags.

• SearchSnippets26 This dataset was constructed from the different predefined phrases

of web search transaction results of 8 different domains (Phan et al., 2008).

3.3.2 Pre-trained Word Vectors

The word embeddings are low dimensional vector representations of words such as

word2vec (Mikolov et al., 2013b) and GloVe (Pennington et al., 2014) which recently

gained much attention in various natural language processing tasks. Recently, Bojanowski

23http://clic.cimec.unitn.it/composes/sick.html
24https://github.com/jacoxu/StackOverflow
25https://www.kaggle.com/c/predict-closed-questions-onstack- overflow/download/train.zip
26http://jwebpro.sourceforge.net/data-web-snippets.tar.gz

39

3.3. EXPERIMENTS

et al. (2017) propose a simple method named fastText to learn word representations by

taking into account sub-word information. All these are already explained in Chapter 2.

3.3.3 Experiments

We conduct extensive experiments for our model (HierGRU) on two public datasets

with these word embeddings which is presented in Table 3.1. We evaluate the performance

using Homogeneity (each cluster contains only members of a single class) and Complete-

ness (all members of a given class are assigned to the same cluster) from Rosenberg and

Hirschberg (2007). As seen from Table 3.1, fastText performs very well when the number

of clusters are large compare to other embeddings.

3.3.4 Baselines

Following baselines have been considered to compare our model’s performance:

• K-means (Wagstaff et al., 2001) on original keyword features which are weighted

with Term Frequency-Inverse Document Frequency (TF-IDF).

• Spectral Clustering (Belkin and Niyogi, 2001) uses Laplacian Eigenmaps (LE) and

subsequently employ K-means algorithm on weighted Term Frequency (TF) of a

word in a sentence.

• Average Embedding: We take the pre-trained word embeddings (Bojanowski et al.,

2017) of all the non stopwords in a sentence and take the weighted vector average

according to the term-frequency (TF) of a word in a sentence then run K-means on it.

• STCC (Xu et al., 2015) integrate the ability of convolutional filters to capture local

features for high-quality text representation into a self-taught learning framework

(Zhang et al., 2010) to cluster short texts.

• STC-2 (Xu et al., 2017) incorporate some semantic features and learn non-biased

deep text representation in an unsupervised manner using self-taught Convolutional

40

3.4. SUMMARY

Table 3.1: Results of Homogeneity and Completeness with different pre-trained word em-
beddings.

Word
Embedding

StackOverflow SearchSnippets

Homogeneity (%) Completeness (%) Homogeneity (%) Completeness (%)

Word2Vec 26.3 26.3 57.7 58.7
GloVe 44.1 47.0 62.3 58.8

fastText 66.6 70.0 57.0 57.6

Table 3.2: Comparison of ACC and NMI of clustering methods on two public datasets.

Method
StackOverflow SearchSnippets

ACC (%) NMI (%) ACC (%) NMI (%)
K-means (Wagstaff et al., 2001) 20.31 15.64 33.77 21.40

Spectral Clustering (Belkin and Niyogi, 2001) 27.55 21.03 63.90 48.44
Average Embedding 37.22 38.43 64.63 50.59

STCC (Xu et al., 2015) 51.13 49.03 77.09 63.16
STC-2 (Xu et al., 2017) 51.20 49.09 77.08 62.99

HierGRU + GloVe 54.5 48.8 81.0 60.3
HierGRU + fastText 81.2 65.0 82.5 64.7

Neural Networks (CNN).

3.3.5 Results

We present our experimental results compared to different simple and state-of-the-art

baselines in Table 3.2. We evaluate clustering performance using the accuracy (ACC) and

the normalized mutual information metric (NMI) (Cai et al., 2005). According to Table

3.2, our model achieves the best clustering performance on all the metrics for both datasets

using fastText word embeddings.

3.4 Summary

Our clustering method has been explained in this chapter along with state-of-the art

results. To achieve this result we have proposed a novel method. In the following chapter

our proposed neural fusion model is discussed.

41

Chapter 4

Neural Sentence Fusion

Multi-sentence compression (MSC) usually takes a group of related sentences and produces

an output sentence through the merging of sentences about the same topic. MSC is a text-

to-text generation process in which a novel sentence is produced as a result of summarizing

a set of similar sentences, this process was originally called sentence fusion (Barzilay and

McKeown, 2005). The recent success of neural sequence-to-sequence (seq2seq) models

provide an effective way for text generation. This achieved huge success in the case of

abstractive sentence summarization which can perform deletion based compression from a

single source sentence (Rush et al., 2015; Nallapati et al., 2016; Chopra et al., 2016; Suzuki

and Nagata, 2017; Zhou et al., 2017; Ma et al., 2017). Moreover, there are some recent

attempts which uses the CNN/Daily Mail corpus (Hermann et al., 2015) as a supervised

training data to generate multi-sentence summary from a single document using neural ar-

chitectures (See et al., 2017; Li et al., 2017b; Paulus et al., 2017; Fan et al., 2017). In this

work, we investigate applying the seq2seq encoder-decoder models to the MSC task. Our

task is completely different from them, our model takes a related ordered set of sentences

and produces an output sentence by fusing or merging the input sentences instead of en-

coding a single sentence or a document. To the best of our knowledge, our work is the first

work to investigate adapting a neural encoder-decoder models to the sentence fusion task.

42

4.2. DATASETS

Table 4.1: Performance of different systems compare to our proposed Neural Sentence
Fusion (NeuFuse) model.

Dataset Models BLEU METEOR CR Copy Rate GMS EACS

SFC
Filippova (2010) 42.07 34.10 57.57 99.84 84.3 88.94

Boudin and Morin (2013) 44.64 35.12 37.95 100 80.0 86.79
NeuFuse sent (ours) 61.39 38.49 66.93 90.30 90.37 92.81

MSR-ATC
Filippova (2010) 40.95 35.91 67.04 99.91 85.31 88.47

Boudin and Morin (2013) 43.74 36.62 41.00 100 82.15 90.76
NeuFuse sent (ours) 52.49 37.48 69.96 86.28 89.67 93.97

4.1 Preliminaries

Given a related set of source sentences about a same topic X = (X1,X2,,XN), our

model learns to predict its abstractive multi-sentence compression target Y =(y1,y2, ...,yM),

where N > 1 and M < |X1|+ |X2|+ ...+ |XN |. In this work, we use the Transformer model

(Vaswani et al., 2017) which has shown significant improvements over state-of-the-art mod-

els for a wide variety of applications, such as machine translation, parsing, and image cap-

tioning. The Transformer follows the overall architecture for a standard encoder-decoder

model, replacing the complex recurrent or convolutional layers most commonly used in

encoder-decoder architectures with multi-headed self-attention. The natural ability of a

multi-head attention mechanism to jointly attend to similar phrases from different posi-

tions of a sequence makes this an ideal choice for our model. We use the implementation

provided by the authors27. We keep the exact same settings which was suggested for sum-

marization.

4.2 Datasets

Training Set: Neural seq2seq encoder-decoder models are usually trained with lots of

human-generated references. However, there are very few gold reference available for the

multi-sentence compression task, such as those provided by McKeown et al. (2010) and

Toutanova et al. (2016), both of which are largely insufficient for training our Neural Sen-

tence Fusion model. Therefore, we use the CNN/DailyMail corpus (Hermann et al., 2015)

27https://github.com/tensorflow/tensor2tensor

43

4.3. BASELINES

Table 4.2: Training dataset statistics.

Dataset Total Generated Sample Average Source Length Average Target Length Average Source to Target ratio
CNN-DailyMail 680367 23.25 12.71 3.05

to automatically construct our training set. It has been extensively used as supervised train-

ing data to generate a multi-sentence summary from a single document (See et al., 2017;

Li et al., 2017b; Paulus et al., 2017; Narayan et al., 2018a,b; Fan et al., 2017; Celikyilmaz

et al., 2018). The CNN/DailyMail dataset (Hermann et al., 2015) contains almost 312K

documents, each with 3-4 highlight sentences that summarize the contents of the article.

We take each highlight sentence and map it with the document sentences using word over-

lap based Jaccard Similarity. We set a similarity threshold (t = 0.25) by using a hold out

dataset SICK28 of SemEval-2014 (Marelli et al., 2014). We take only the many-to-one

mappings which involves multiple source source sentences from a document and filter out

the rest. Our resulting training set contains 680,367 pairs of multiple source sentence to

one target sentence pairs. Table 4.2 shows in-detail the statistics of the generated training

data from the CNN-DailyMail corpus (Hermann et al., 2015) .

SFC Test Set: We use the human generated sentence fusion dataset released by McKe-

own et al. (2010). This dataset consists of 300 English sentence pairs taken from newswire

clusters accompanied by human-produced sentence fusions rewrites. We filtered the sen-

tences which have no main verbs. The resulting set contains 296 pairs of sentences.

MSR-ATC Test Set: Toutanova et al. (2016) introduced a manually-created, multi-

reference dataset for abstractive sentence and short paragraph compression. It contains ap-

proximately 6,000 source texts with multiple references accompanied by up to five crowd-

sourced rewrites. We filtered out the pairs which contain only single source sentence. We

obtained 2,405 multiple source sentence pairs with five human reference variations for our

testing.

28http://clic.cimec.unitn.it/composes/sick.html

44

4.4. EVALUATION METRIC

4.3 Baselines

Most of the previous MSC approaches rely on the syntactic parsing to build the depen-

dency tree for each related sentence in a cluster for producing grammatical compressions

(Filippova and Strube, 2008). Unfortunately, syntactic parsers are not available for every

language. As an alternative, word graph-based approaches that only require a POS tagger

and a list of stopwords have been proposed first by Filippova (2010). A directed word graph

is constructed in which nodes represent words and edges represent the adjacency between

words in a sentence. Hence, compressed sentences are generated by finding the k-shortest

paths in the word graph. Boudin and Morin (2013) improved Filippova (2010)’s approach

by re-ranking the fusion candidate paths according to keyphrases. However, they reported

that the generated sentences were missing important information and were not perfectly

grammatical. With the exceptions of Filippova (2010) and Boudin and Morin (2013), we

did not find any recent competitive baseline for this specific task to compare with our model.

4.4 Evaluation Metric

We evaluate our system automatically using various automatic metrics as described

below.

BLEU (Papineni et al., 2002) is the most commonly used metric for the Machine Trans-

lation evaluation. BLEU relies on exact matching of n-grams and has no concept of syn-

onymy or paraphrasing. We used the implementation provided in NLTK29 considering up

to 4-gram matching.

METEOR (Denkowski and Lavie, 2014) uses a combination of both precision and re-

call in the METEOR metric. Furthermore, the alignment is based on exact token matching,

followed by WordNet synonyms, stemmed tokens and look-up table paraphrases.

Compression Ratio (CR) is a measure of how terse a compression is and is given in the

following equation. A compression ratio of zero implies that the source sentence is fully

29https://github.com/nltk/nltk/tree/develop/nltk/translate

45

4.6. SUMMARY

uncompressed.

Compression Ratio (CR) =
#tokdel

#tokorig

Copy Rate: We define copy rate as how many tokens are copied to the abstract sentence

from the source sentence without paraphrasing in the following equation. Lower copy rate

score means more paraphrasing is involved in the abstract sentence. Copy rate of 100%

means no paraphrasing is involved in the process.

Copy Rate =
|Sorig∩Sabs|
|Sabs|

Furthermore, we also use the Embedding Average Cosine Similarity (EACS) and the

Greedy Matching Score (GMS)30 from Sharma et al. (2017) to measure the abstractiveness

of our generated outputs which have a stronger correlation with human reference.

4.5 Experimental Results

We report the performance of our system when compared with the baselines in terms

of different evaluation metrics in Table 4.1. Our model jointly improves the information

coverage (BLEU, GMS) and complete abstractiveness (METEOR, Copy Rate, EACS) with

a balanced compression ratio(CR). The copy Rate scores of other baseline systems clearly

indicate the fact that they are performing completely deletion-based compression with no

new words or words with morphological variation being generated in the process. We

present some randomly selected outputs generated by our model for both the datasets in

Appendix B : Supplemental Material.

30https://github.com/Maluuba/nlg-eval

46

4.6. SUMMARY

4.6 Summary

Our proposed neural sentence fusion method has been explained in this chapter. This

method also achieved state-of-the art results. In the next chapter multi-document summa-

rization method is explained. Since our proposed method is a hierarchical method, in the

next chapter we show the procedure to combine the clustering and fusion method to solve

multi-doc summarization.

47

Chapter 5

Abstractive Multi-Document
Summarization

We use our sentence clustering technique to group related sentences from the document set

on a given topic. We then order the clusters and the sentences inside the clusters using a

heuristic sentence ordering technique. For each cluster of related ordered sentences, we

use our neural sentence fusion model to generate fused abstractive versions of the multiple

related sentences extracted form the document set. Finally, we use our ILP based abstractive

sentence selection mechanism to select the best subset of sentences which simultaneously

considers importance, coverage and diversity under a desired length limit. The overall

process is presented in this chapter.

Cluster 1 Cluster 2 Cluster n

Abstractive
Sentence
Selection

Output
Summary (𝑳)

Multi-Document
Set

Neural
Fusion

Neural
Fusion

Neural
Fusion

Sentence
Clustering

Figure 5.1: Proposed final method to solve Multi-Document Summarization Model

48

5.2. ABSTRACTIVE SENTENCE SELECTION

5.1 Sentence Ordering

One crucial step in generating a coherent summary is to order the sentences in a logi-

cal manner to increase the readability. A wrong order of sentences can convey an entirely

different idea to the reader of the summary and also make it difficult to understand. In a

single document, summary information can be presented by preserving the sentence posi-

tion from the original document. In multi-document summarization, we can not directly

use the sentence position as the sentences are coming from multiple documents. Therefore

we implement two cluster ordering techniques that reorder clusters based on the original

position of the sentences in the documents.

5.1.1 Intra-Cluster Ordering

The sentences {S1,S2, ..,Si, ..,Sn} in any cluster Ci are assigned a normalized score. For

example, the normalized score of Si is computed as the ratio of the original position of the

sentence to the total number of sentences in document Di (here, Si belongs to document

Di). We then pass this ordered related set of sentences to our neural sentence fusion model.

5.1.2 Inter-Cluster Ordering

When ordering two different clusters, the cluster that has the lower score obtained by

averaging the normalized scores of all the sentences in that particular cluster is ranked

higher than the others.

5.2 Abstractive Sentence Selection

In this work, we use the concept-based ILP framework introduced by Gillick and Favre

(2009) with some suitable changes to select the best subset of sentences. This approach

aims to select sentences that cover as many important concepts as possible, while ensuring

the summary length is within a given budgeted constraint. We propose an ILP based sen-

tence selection mechanism which integrates three important measures namely importance,

49

5.2. ABSTRACTIVE SENTENCE SELECTION

coverage, and diversity to extract the sentences for the summary under a certain length

limit.

5.2.1 Importance

One of the basic requirements of a good summary is that it should contain the most

important information across multiple documents. To model this property, we use bi-grams

as concepts. Bi-grams are the phrases that represent the main topics of a document. Sen-

tences containing the most relevant phrases are important for the summary generation. We

assign a weight to each bi-gram using its document frequency. Bi-grams consisting of two

stop-words or one punctuation mark are pruned. Let wi be the weight of bi-gram i and bi a

binary variable that indicates the presence of bi-gram i in the extracted sentences. We try to

maximize the weight of the bi-grams in all the selected sentences for summary generation

as follows,

Simp = ∑
i

wibi (5.1)

5.2.2 Coverage

A good summary has the capability to cover most of the important aspects of a document

set. To formulate this, we select at most one sentence from the cluster of related sentences

to increase the information coverage from the document side. In order to ensure at most one

sentence per cluster in the extracted sentences we add an extra constraint in our overall ILP

formulation using the following equation, where gc is a cluster of sentences that corresponds

to the set of similar sentences, S j:

∑
j∈gc

s j ≤ 1, ∀gc (5.2)

50

5.2. ABSTRACTIVE SENTENCE SELECTION

5.2.3 Diversity

Maximizing diversity in the summary is another basic requirement in any summariza-

tion task. We define the degree of diversity of a generated summary by measuring the

dissimilarity among the selected sentences. Let the generated summary be Y and |Y | is the

total number of sentences in the summary. We compute Sdiv as the mean of the pairwise

dissimilarities among the selected sentences.

Sdiv =
1

|Y | (|Y |−1) ∑
i∈Y

∑
j∈Y

d(Si,S j) (5.3)

where d(. , .) is the dissimilarity function calculated by

d (Si,S j) = 1−
Si ·S j

||Si|| ||S j||
(5.4)

Intuitively, the more diverse (or more dissimilar) the selected sentences to each other,

the higher the diversity. The right part of the equation is simply the 1−cosineSimilarity(Si,S j).

5.2.4 Summary Length Limit

One of the essential properties of text summarization systems is the ability to generate

a summary with a fixed length, which has a common commercial use case (e.g., 160 to 300

characters for search result and news article summarization by news aggregators, especially

on mobile devices). All the recent models for document summarization either extractive or

abstractive do not consider this issue at all in the case of multi-document summarization.

Recently, Kikuchi et al. (2016) propose four methods in order to tackle this issue. Two of

them are based on different decoding procedures without model architecture modification.

The other two are learning-based (i.e., the models take the desired length information as

input and encode it into the model architecture). However, their model is limited to the

headline generation task, where models generate a single sentence headline of a document.

51

5.2. ABSTRACTIVE SENTENCE SELECTION

Very recently, Fan et al. (2017) presented a neural model that enables users to specify a

desired length in order to control the shape of the final summaries which is only limited

to single document summarization. In this thesis, we address this issue in multi-document

setting, our model can generate summaries given a desired length.

Finally, we propose an ILP formulation which considers the above mentioned aspects

in the context of multi-document summarization. The ILP problem is then solved exactly

using an off-the-shelf ILP solver31. The final summaries are generated by assembling the

optimally selected sentences. Let l j be the number of words in sentence j, s j be a binary

variable that indicates the presence of sentence j in the extracted sentence set and L be the

length limit for the summary. Let Occi j indicate the occurrence of bi-gram i in sentence j.

The final ILP formulation is:

Maximize : Simp +Sdiv (5.5)

Sub ject to : ∑
j

l js j ≤ L (5.6)

s jOcci j ≤ bi, ∀i, j (5.7)

∑
j

s jOcci j ≥ bi, ∀i (5.8)

∑
j∈gc

s j ≤ 1, ∀gc (5.9)

bi ∈ {0,1} ∀i (5.10)

31We use Gurobi, http://www.gurobi.com

52

5.3. MULTI-DOCUMENT LEVEL EXPERIMENTS

s j ∈ {0,1} ∀ j (5.11)

We try to maximize the importance score as well as the diversity in the output summary

sentences, while avoiding repetition of those bi-grams and staying under the maximum

number of words allowed for the summary. We select at most one sentence from the cluster

of related sentences to increase the information coverage from the document point of view.

In this process, we extract the optimal combination of sentences as the output summary.

5.3 Multi-Document Level Experiments

In this section our multi-document level experiments have been discussed.

5.3.1 Dataset

We consider the generic multi-document summarization dataset provided from the Doc-

ument Understanding Conference (DUC 2004)32 which is one of the main benchmark

dataset in the multi-document summarization containing 50 document clusters. The Opinosis

(Ganesan et al., 2010) is another dataset consisting of short user reviews in 51 different top-

ics collected from TripAdvisor, Amazon, and Edmunds.

5.3.2 Evaluation Metric

We evaluate our summarization system using ROUGE33 (Lin, 2004) on DUC 2004

(Task-2, Length limit (L) = 100 Words) and Opinosis 1.0 (L = 15 Words). However,

ROUGE scores are unfairly biased towards lexical overlap at the surface level. Taking this

into account, we also evaluate our system with a recently proposed metric ROUGE-SU4.

We report limited length recall performance for both the metrics, as our system generated

summaries are forced to be concise through some constraints (such as a length limit con-

straint). Therefore, we considered using just the recall since precision is of less concern in

32http://duc.nist.gov/duc2004/
33ROUGE-1.5.5 with options: -n 2 -m -u -c 95 -x -r 1000 -f A -p 0.5 -t 0

53

5.4. SUMMARY

this scenario. We perform ablation experiments with our model having only Extract with a

desired limit and our extract, abstract and select framework with a bigger lenth limit on the

extractive side.

5.3.3 Baseline Systems

The summaries generated by the baseline LexRank (Erkan and Radev, 2004) and the

state-of-the-art extractive summarizers Submodular (Lin and Bilmes, 2011) and RegSum

(Hong and Nenkova, 2014) on the DUC 2004 dataset were collected from Hong et al.

(2014). In the case of ILPSumm34 (Banerjee et al., 2015) and PDG* (Yasunaga et al.,

2017), we use the author provided implementation to generate a summary from their model.

For the Opinosis 1.0 dataset, we use an open source implementation of TextRank(Mihalcea

and Tarau, 2004)35. Moreover, we use the author provided implementation for the Opinosis

(Ganesan et al., 2010) and Biclique (Muhammad et al., 2016) to generate summaries.

5.3.4 Results

According to the Table 5.1 & 5.2, our multi-document level model achieves the best

summarization performance on all the ROUGE metrics for both the datasets. However, the

ROUGE scores are unfairly biased towards lexical overlap at the surface level. Therefore,

we are unable to measure the abstractiveness property. Taking this into account, we use the

document level EACS (Sharma et al., 2017) which considers word embeddings to compute

the semantic similarity of the words. Moreover, we verify the copy rate scores of the human

summary and our system generated summary with the source documents. According to

Table 5.3, our system generated summary is very close to human references in terms of

both EACS and Copy Rate scores.

34https://github.com/StevenLOL/AbTextSumm
35https://github.com/davidadamojr/TextRank

54

5.4. SUMMARY

Table 5.1: Comparison results on the DUC 2004 test set.

DUC 2004

Models R-1 R-2 R-SU4

LexRank (2004) 35.95 7.47 12.48
Submodular (2011) 39.18 9.35 14.22

RegSum (2014) 38.57 9.75 13.81
ILPSumm (2015) 39.24 11.99 14.76

PDG* (2017) 38.45 9.48 13.72
NAMDS (2018) 36.7 7.83 12.4

NeuFuse multidoc (ours) 41.92 12.22 15.59

Table 5.2: Comparison results on the Opinosis 1.0 test set.

Opinosis 1.0

Models R-1 R-2 R-SU4

TextRank (2004) 27.56 6.12 10.53
Opinosis (2010) 32.35 9.13 14.35
Biclique (2016) 33.03 8.96 14.18

NeuFuse multidoc (ours) 43.98 17.31 22.19

Table 5.3: Copy rate found in different data set.

Dataset
Copy Rate

EACS
Human

Summary
System

Summary
DUC 2004 76.22 88.01 95.46

Opinosis 1.0 69.58 70.48 88.28

55

5.4. SUMMARY

5.4 Summary

In this chapter, our final approach is explained, which is a combination of previous

chapters. Also in this chapter, a data diversity driven sentence selection approach has been

explained which is also within limited length. Finally, this chapter concludes with explain-

ing our approach to solve multi-document summarization method. Our system achieves

state-of-the-art result. In the next chapter, overall work and future direction of this work are

discussed.

56

Chapter 6

Conclusion & Future Work

6.1 Conclusion

We have developed a hierarchical approach in this thesis to solve multi-document sum-

marization. In our approach we have developed techniques to solve both clustering and sen-

tence fusion. The combined operation of these techniques achieve a state-of-the-art result.

We implemented an ILP-based sentence selection along with our own ranking algorithm

for abstractive multi-document summarization. We have conducted both sentence level and

document level experiments in which competitive results are achieved. For sentence level

tasks, our approach has been applied to several datasets and compared with several newly

proposed methods. We have also evaluated our approach at the document level and for that

the Document Understanding Conference (DUC) 2004 datasets along with ROUGE evalua-

tion are used. We have also conducted our experiment in with the Opinosis 1.0 dataset. Our

experiments demonstrate that our approach have achieved significant improvements over

several latest best performances.

6.2 Future Work

Though the results we obtained have already shown the effectiveness of the proposed

hierarchical approach, it could be further improved in a number of ways:

• Our clustering approach is completely unsupervised. This could also be done in

supervised way using tensor2tensor.

57

6.2. FUTURE WORK

• Our encoder-decoder model can be modified to encode a full document or to some

extent a document set with our model.

• Our Neural Sentence Fusion model could be further modified to document level so

that a single model performs both fusion and summarization.

• Our proposed model can be extended to produce a summary for different groups of

people.

58

BIBLIOGRAPHY

References
Charu C. Aggarwal and ChengXiang Zhai. 2012. A Survey of Text Clustering Algorithms,

Springer US, Boston, MA, pages 77–128. https://doi.org/10.1007/978-1-4614-3223-44.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine transla-
tion by jointly learning to align and translate. In ICLR 2015.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An automatic metric for mt eval-
uation with improved correlation with human judgments. In Proceedings of the
ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Transla-
tion and/or Summarization. Association for Computational Linguistics, pages 65–72.
http://www.aclweb.org/anthology/W05-0909.

Siddhartha Banerjee, Prasenjit Mitra, and Kazunari Sugiyama. 2015. Multi-document ab-
stractive summarization using ilp based multi-sentence compression. In Proceedings
of the 24th International Conference on Artificial Intelligence. AAAI Press, IJCAI’15,
pages 1208–1214. http://dl.acm.org/citation.cfm?id=2832415.2832417.

Regina Barzilay and Kathleen R. McKeown. 2005. Sentence fusion for
multidocument news summarization. Comput. Linguist. 31(3):297–328.
https://doi.org/10.1162/089120105774321091.

Mikhail Belkin and Partha Niyogi. 2001. Laplacian eigenmaps and spectral
techniques for embedding and clustering. In Proceedings of the 14th In-
ternational Conference on Neural Information Processing Systems: Natural
and Synthetic. MIT Press, Cambridge, MA, USA, NIPS’01, pages 585–591.
http://dl.acm.org/citation.cfm?id=2980539.2980616.

Y. Bengio, P. Simard, and P. Frasconi. 1994. Learning long-term dependen-
cies with gradient descent is difficult. Trans. Neur. Netw. 5(2):157–166.
https://doi.org/10.1109/72.279181.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. 2003.
A neural probabilistic language model. J. Mach. Learn. Res. 3:1137–1155.
http://dl.acm.org/citation.cfm?id=944919.944966.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent dirichlet allocation. J.
Mach. Learn. Res. 3:993–1022. http://dl.acm.org/citation.cfm?id=944919.944937.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching
word vectors with subword information. Transactions of the Association for Computa-
tional Linguistics 5:135–146. https://transacl.org/ojs/index.php/tacl/article/view/999.

Florian Boudin and Emmanuel Morin. 2013. Keyphrase extraction for n-best reranking
in multi-sentence compression. In Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies. Association for Computational Linguistics, Atlanta, Georgia, pages 298–
305. http://www.aclweb.org/anthology/N13-1030.

59

BIBLIOGRAPHY

Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della Pietra, and Robert L. Mercer.
1993. The mathematics of statistical machine translation: Parameter estimation. Com-
put. Linguist. 19(2):263–311. http://dl.acm.org/citation.cfm?id=972470.972474.

Deng Cai, Xiaofei He, and Jiawei Han. 2005. Document clustering using locality
preserving indexing. IEEE Trans. on Knowl. and Data Eng. 17(12):1624–1637.
https://doi.org/10.1109/TKDE.2005.198.

Asli Celikyilmaz, Antoine Bosselut, Xiaodong He, and Yejin Choi. 2018. Deep Commu-
nicating Agents for Abstractive Summarization. In Proceedings of the NAACL 2018 -
Conference of the North American Chapter of the Association for Computational Lin-
guistics.

Yllias Chali, Moin Tanvee, and Mir Tafseer Nayeem. 2017. Towards abstractive multi-
document summarization using submodular function-based framework, sentence com-
pression and merging. In Proceedings of the Eighth International Joint Conference on
Natural Language Processing, IJCNLP 2017, Taipei, Taiwan, November 27 - December
1, 2017, Volume 2: Short Papers. pages 418–424. https://aclanthology.info/papers/I17-
2071/i17-2071.

Jianpeng Cheng and Mirella Lapata. 2016. Neural summarization by extracting sentences
and words. In Proceedings of the 54th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers). Association for Computational Linguistics,
Berlin, Germany, pages 484–494.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. 2014a.
On the properties of neural machine translation: Encoder–decoder approaches pages
103–111. http://www.aclweb.org/anthology/W14-4012.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. 2014b. Learning phrase represen-
tations using rnn encoder–decoder for statistical machine translation. In Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguistics, Doha, Qatar, pages 1724–1734.
http://www.aclweb.org/anthology/D14-1179.

Sumit Chopra, Michael Auli, and Alexander M. Rush. 2016. Abstractive sentence summa-
rization with attentive recurrent neural networks. In Proceedings of the 2016 Confer-
ence of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. Association for Computational Linguistics, San Diego,
California, pages 93–98. http://www.aclweb.org/anthology/N16-1012.

Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. 2014. Em-
pirical evaluation of gated recurrent neural networks on sequence modeling. CoRR
abs/1412.3555. http://arxiv.org/abs/1412.3555.

James Clarke and Mirella Lapata. 2006. Models for sentence compression: A compari-
son across domains, training requirements and evaluation measures. In Proceedings of

60

BIBLIOGRAPHY

the 21st International Conference on Computational Linguistics and the 44th Annual
Meeting of the Association for Computational Linguistics. Association for Computa-
tional Linguistics, Stroudsburg, PA, USA, ACL-44, pages 377–384.

James Clarke and Mirella Lapata. 2008. Global inference for sentence compression: An in-
teger linear programming approach. Journal of Artificial Intelligence Research 31:399–
429.

Michael Denkowski and Alon Lavie. 2014. Meteor universal: Language specific translation
evaluation for any target language. In Proceedings of the Ninth Workshop on Statistical
Machine Translation. Association for Computational Linguistics, Baltimore, Maryland,
USA, pages 376–380. http://www.aclweb.org/anthology/W14-3348.

Günes Erkan and Dragomir R. Radev. 2004. Lexrank: Graph-based lexical centrality as
salience in text summarization. J. Artif. Int. Res. 22(1):457–479.

Angela Fan, David Grangier, and Michael Auli. 2017. Controllable abstractive summariza-
tion. arXiv preprint arXiv:1711.05217 .

Katja Filippova. 2010. Multi-sentence compression: Finding shortest paths in word graphs.
In Proceedings of the 23rd International Conference on Computational Linguistics. As-
sociation for Computational Linguistics, Stroudsburg, PA, USA, COLING ’10, pages
322–330. http://dl.acm.org/citation.cfm?id=1873781.1873818.

Katja Filippova and Michael Strube. 2008. Sentence fusion via dependency graph com-
pression. In Proceedings of the Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational Linguistics, Stroudsburg, PA, USA,
EMNLP ’08, pages 177–185. http://dl.acm.org/citation.cfm?id=1613715.1613741.

Gabriel Forgues, Joelle Pineau, Jean-Marie Larchevêque, and Réal Tremblay. 2014. Boot-
strapping dialog systems with word embeddings. In Nips, modern machine learning
and natural language processing workshop. volume 2.

Kavita Ganesan, ChengXiang Zhai, and Jiawei Han. 2010. Opinosis: A graph-based
approach to abstractive summarization of highly redundant opinions. In Proceed-
ings of the 23rd International Conference on Computational Linguistics. Association
for Computational Linguistics, Stroudsburg, PA, USA, COLING ’10, pages 340–348.
http://dl.acm.org/citation.cfm?id=1873781.1873820.

Dan Gillick and Benoit Favre. 2009. A scalable global model for summarization. In Pro-
ceedings of the Workshop on Integer Linear Programming for Natural Langauge Pro-
cessing. Association for Computational Linguistics, Stroudsburg, PA, USA, ILP ’09,
pages 10–18. http://dl.acm.org/citation.cfm?id=1611638.1611640.

Karl Moritz Hermann, Tomáš Kočiský, Edward Grefenstette, Lasse Espeholt, Will Kay,
Mustafa Suleyman, and Phil Blunsom. 2015. Teaching machines to read and com-
prehend. In Proceedings of the 28th International Conference on Neural Information
Processing Systems - Volume 1. MIT Press, Cambridge, MA, USA, NIPS’15, pages
1693–1701. http://dl.acm.org/citation.cfm?id=2969239.2969428.

61

BIBLIOGRAPHY

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural compu-
tation 9(8):1735–1780.

Kai Hong, John Conroy, Benoit Favre, Alex Kulesza, Hui Lin, and Ani Nenkova. 2014.
A repository of state of the art and competitive baseline summaries for generic news
summarization. In Proceedings of the Ninth International Conference on Language
Resources and Evaluation (LREC’14). European Language Resources Association
(ELRA), Reykjavik, Iceland, pages 1608–1616. ACL Anthology Identifier: L14-1070.

Kai Hong and Ani Nenkova. 2014. Improving the estimation of word importance for news
multi-document summarization. In Proceedings of the 14th Conference of the Euro-
pean Chapter of the Association for Computational Linguistics. Association for Com-
putational Linguistics, Gothenburg, Sweden, pages 712–721.

Yuta Kikuchi, Graham Neubig, Ryohei Sasano, Hiroya Takamura, and Manabu Okumura.
2016. Controlling output length in neural encoder-decoders. In Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics, Austin, Texas, pages 1328–1338.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S. Zemel, Antonio Torralba,
Raquel Urtasun, and Sanja Fidler. 2015. Skip-thought vectors. In Proceed-
ings of the 28th International Conference on Neural Information Processing Sys-
tems - Volume 2. MIT Press, Cambridge, MA, USA, NIPS’15, pages 3294–3302.
http://dl.acm.org/citation.cfm?id=2969442.2969607.

Matt J. Kusner, Yu Sun, Nicholas I. Kolkin, and Kilian Q. Weinberger. 2015. From word
embeddings to document distances. In Proceedings of the 32Nd International Con-
ference on International Conference on Machine Learning - Volume 37. JMLR.org,
ICML’15, pages 957–966. http://dl.acm.org/citation.cfm?id=3045118.3045221.

Thomas K Landauer, Peter W Foltz, and Darrell Laham. 1998. An introduction to latent
semantic analysis. Discourse processes 25(2-3):259–284.

Piji Li, Wai Lam, Lidong Bing, Weiwei Guo, and Hang Li. 2017a. Cascaded attention
based unsupervised information distillation for compressive summarization. In Pro-
ceedings of the 2017 Conference on Empirical Methods in Natural Language Process-
ing. Association for Computational Linguistics, Copenhagen, Denmark, pages 2081–
2090. https://www.aclweb.org/anthology/D17-1221.

Piji Li, Wai Lam, Lidong Bing, and Zihao Wang. 2017b. Deep recurrent generative decoder
for abstractive text summarization. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing. Association for Computational Linguistics,
Copenhagen, Denmark, pages 2091–2100. https://www.aclweb.org/anthology/D17-
1222.

Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries. In
Stan Szpakowicz Marie-Francine Moens, editor, Text Summarization Branches Out:

62

BIBLIOGRAPHY

Proceedings of the ACL-04 Workshop. Association for Computational Linguistics,
Barcelona, Spain, pages 74–81.

Hui Lin and Jeff Bilmes. 2011. A class of submodular functions for document summariza-
tion. In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies - Volume 1. Association for Computational
Linguistics, Stroudsburg, PA, USA, HLT ’11, pages 510–520.

Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. 2015. Effective approaches
to attention-based neural machine translation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP). Association for Computational Linguistics, Lisbon, Por-
tugal, pages 1412–1421.

Shuming Ma, Xu Sun, Jingjing Xu, Houfeng Wang, Wenjie Li, and Qi Su. 2017. Improving
semantic relevance for sequence-to-sequence learning of chinese social media text sum-
marization. In Proceedings of the 55th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers). Association for Computational Linguistics,
Vancouver, Canada, pages 635–640. http://aclweb.org/anthology/P17-2100.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa Bentivogli, Raffaella Bernardi, and
Roberto Zamparelli. 2014. A sick cure for the evaluation of compositional distribu-
tional semantic models. In Proceedings of the Ninth International Conference on Lan-
guage Resources and Evaluation (LREC’14). European Language Resources Associa-
tion (ELRA), Reykjavik, Iceland.

Kathleen McKeown, Sara Rosenthal, Kapil Thadani, and Coleman Moore. 2010. Time-
efficient creation of an accurate sentence fusion corpus. In Human Language Technolo-
gies: The 2010 Annual Conference of the North American Chapter of the Association
for Computational Linguistics. Association for Computational Linguistics, Los Ange-
les, California, pages 317–320. http://www.aclweb.org/anthology/N10-1044.

Oren Melamud, Omer Levy, and Ido Dagan. 2015. A simple word embedding model for
lexical substitution. In Proceedings of the 1st Workshop on Vector Space Modeling
for Natural Language Processing. Association for Computational Linguistics, Denver,
Colorado, pages 1–7. http://www.aclweb.org/anthology/W15-1501.

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bringing order into texts. In Dekang Lin
and Dekai Wu, editors, Proceedings of EMNLP 2004. Association for Computational
Linguistics, Barcelona, Spain, pages 404–411. http://www.aclweb.org/anthology/W04-
3252.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013a. Efficient estima-
tion of word representations in vector space. CoRR abs/1301.3781. http://dblp.uni-
trier.de/db/journals/corr/corr1301.htmlabs-1301-3781.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski, Christian Puhrsch, and Armand Joulin.
2018. Advances in pre-training distributed word representations. In Proceedings of the
International Conference on Language Resources and Evaluation (LREC 2018).

63

BIBLIOGRAPHY

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean.
2013b. Distributed representations of words and phrases and their composition-
ality. In Proceedings of the 26th International Conference on Neural Informa-
tion Processing Systems. Curran Associates Inc., USA, NIPS’13, pages 3111–3119.
http://dl.acm.org/citation.cfm?id=2999792.2999959.

Azam Sheikh Muhammad, Peter Damaschke, and Olof Mogren. 2016. Summariz-
ing online user reviews using bicliques. In Proceedings of the 42Nd International
Conference on SOFSEM 2016: Theory and Practice of Computer Science - Vol-
ume 9587. Springer-Verlag New York, Inc., New York, NY, USA, pages 569–579.
https://doi.org/10.1007/978-3-662-49192-846.

Fionn Murtagh and Pierre Legendre. 2014. Ward’s hierarchical agglomerative clustering
method: Which algorithms implement ward’s criterion? J. Classif. 31(3):274–295.
https://doi.org/10.1007/s00357-014-9161-z.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017. Summarunner: A recurrent neural
network based sequence model for extractive summarization of documents. In Proceed-
ings of the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017,
San Francisco, California, USA.. pages 3075–3081.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos, Ça glar Gulçehre, and Bing Xiang.
2016. Abstractive text summarization using sequence-to-sequence rnns and beyond.
CoNLL 2016 page 280.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata. 2018a. Ranking Sentences for Extrac-
tive Summarization with Reinforcement Learning. In Proceedings of the NAACL 2018
- Conference of the North American Chapter of the Association for Computational Lin-
guistics.

Shashi Narayan, Nikos Papasarantopoulos, Shay B. Cohen, and Mirella Lapata. 2018b.
Neural extractive summarization with side information. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence.

Mir Tafseer Nayeem and Yllias Chali. 2017a. Extract with order for coherent multi-
document summarization. In Proceedings of TextGraphs@ACL 2017: the 11th Work-
shop on Graph-based Methods for Natural Language Processing, Vancouver, Canada,
August 3, 2017. pages 51–56. https://aclanthology.info/papers/W17-2407/w17-2407.

Mir Tafseer Nayeem and Yllias Chali. 2017b. Paraphrastic fusion for abstractive multi-
sentence compression generation. In Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, CIKM 2017, Singapore, November 06 - 10,
2017. pages 2223–2226. https://doi.org/10.1145/3132847.3133106.

Mir Tafseer Nayeem, Tanvir Ahmed Fuad, and Yllias Chali. 2018. Abstractive unsuper-
vised multi-document summarization using paraphrastic sentence fusion. In Proceed-
ings of the 27th International Conference on Computational Linguistics. Association for
Computational Linguistics, pages 1191–1204. http://aclweb.org/anthology/C18-1102.

64

BIBLIOGRAPHY

Mir Tafseer Nayeem et al. 2017. Methods of sentence extraction, abstraction and ordering
for automatic text summarization. Master’s thesis, Lethbridge, Alta.: Universtiy of
Lethbridge, Department of Mathematics and Computer Science.

Graham Neubig. 2017. Neural machine translation and sequence-to-sequence models: A
tutorial. CoRR abs/1703.01619. http://arxiv.org/abs/1703.01619.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: A
method for automatic evaluation of machine translation. In Proceedings of the
40th Annual Meeting on Association for Computational Linguistics. Association
for Computational Linguistics, Stroudsburg, PA, USA, ACL ’02, pages 311–318.
https://doi.org/10.3115/1073083.1073135.

Daraksha Parveen, Hans-Martin Ramsl, and Michael Strube. 2015. Topical coherence for
graph-based extractive summarization. In Proceedings of the 2015 Conference on Em-
pirical Methods in Natural Language Processing. Association for Computational Lin-
guistics, Lisbon, Portugal, pages 1949–1954.

Daraksha Parveen and Michael Strube. 2015. Integrating importance, non-redundancy and
coherence in graph-based extractive summarization. In Proceedings of the 24th Interna-
tional Conference on Artificial Intelligence. AAAI Press, IJCAI’15, pages 1298–1304.

Romain Paulus, Caiming Xiong, and Richard Socher. 2017. A deep reinforced model for
abstractive summarization. CoRR abs/1705.04304.

Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove: Global vec-
tors for word representation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Association for Computational
Linguistics, Doha, Qatar, pages 1532–1543. http://www.aclweb.org/anthology/D14-
1162.

Xuan-Hieu Phan, Le-Minh Nguyen, and Susumu Horiguchi. 2008. Learning to classify
short and sparse text & web with hidden topics from large-scale data collections. In
Proceedings of the 17th International Conference on World Wide Web. ACM, New York,
NY, USA, WWW ’08, pages 91–100. https://doi.org/10.1145/1367497.1367510.

Andrew Rosenberg and Julia Hirschberg. 2007. V-measure: A conditional entropy-based
external cluster evaluation measure. In Proceedings of the 2007 Joint Conference on
Empirical Methods in Natural Language Processing and Computational Natural Lan-
guage Learning (EMNLP-CoNLL). http://www.aclweb.org/anthology/D07-1043.

Vasile Rus and Mihai Lintean. 2012. A comparison of greedy and optimal assessment
of natural language student input using word-to-word similarity metrics. In Pro-
ceedings of the Seventh Workshop on Building Educational Applications Using NLP.
Association for Computational Linguistics, Stroudsburg, PA, USA, pages 157–162.
http://dl.acm.org/citation.cfm?id=2390384.2390403.

65

BIBLIOGRAPHY

Alexander M. Rush, Sumit Chopra, and Jason Weston. 2015. A neural attention model
for abstractive sentence summarization. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing. Association for Computational
Linguistics, Lisbon, Portugal, pages 379–389.

Abigail See, Peter J. Liu, and Christopher D. Manning. 2017. Get to the point: Sum-
marization with pointer-generator networks. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
Association for Computational Linguistics, Vancouver, Canada, pages 1073–1083.
http://aclweb.org/anthology/P17-1099.

Elaheh ShafieiBavani, Mohammad Ebrahimi, Raymond K. Wong, and Fang Chen. 2016.
An efficient approach for multi-sentence compression. In Proceedings of The 8th Asian
Conference on Machine Learning. PMLR, The University of Waikato, Hamilton, New
Zealand, volume 63 of Proceedings of Machine Learning Research, pages 414–429.
http://proceedings.mlr.press/v63/ShafieiBavani24.html.

Shikhar Sharma, Layla El Asri, Hannes Schulz, and Jeremie Zumer. 2017. Rele-
vance of unsupervised metrics in task-oriented dialogue for evaluating natural
language generation. arXiv preprint arXiv:1706.09799 https://www.microsoft.com/en-
us/research/publication/relevance-unsupervised-metrics-task-oriented-dialogue-
evaluating-natural-language-generation/.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence learning with
neural networks. CoRR abs/1409.3215. http://arxiv.org/abs/1409.3215.

Jun Suzuki and Masaaki Nagata. 2017. Cutting-off redundant repeating generations for
neural abstractive summarization. In Proceedings of the 15th Conference of the Eu-
ropean Chapter of the Association for Computational Linguistics: Volume 2, Short
Papers. Association for Computational Linguistics, Valencia, Spain, pages 291–297.
http://www.aclweb.org/anthology/E17-2047.

Kristina Toutanova, Chris Brockett, Ke M. Tran, and Saleema Amershi. 2016. A dataset
and evaluation metrics for abstractive compression of sentences and short paragraphs.
In Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, Austin, Texas, pages 340–350.

Dung Tran Tuan, Nam Van Chi, and Minh-Quoc Nghiem. 2017. Multi-sentence Com-
pression Using Word Graph and Integer Linear Programming, Springer International
Publishing, Cham, pages 367–377. https://doi.org/10.1007/978-3-319-56660-332.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems 30, Curran As-
sociates, Inc., pages 5998–6008. http://papers.nips.cc/paper/7181-attention-is-all-you-
need.pdf.

66

BIBLIOGRAPHY

Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan Schrödl. 2001. Con-
strained k-means clustering with background knowledge. In Proceedings of
the Eighteenth International Conference on Machine Learning. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, ICML ’01, pages 577–584.
http://dl.acm.org/citation.cfm?id=645530.655669.

Xun Wang, Masaaki Nishino, Tsutomu Hirao, Katsuhito Sudoh, and Masaaki Nagata. 2016.
Exploring text links for coherent multi-document summarization. In Proceedings of
COLING 2016, the 26th International Conference on Computational Linguistics: Tech-
nical Papers. The COLING 2016 Organizing Committee, Osaka, Japan, pages 213–223.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva
Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,
Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang,
Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2016. Google’s neural machine translation sys-
tem: Bridging the gap between human and machine translation. CoRR abs/1609.08144.
http://arxiv.org/abs/1609.08144.

jiaming Xu, peng wang, guanhua tian, bo xu, jun zhao, fangyuan wang, and hongwei hao.
2015. Short text clustering via convolutional neural networks. In Proceedings of the
1st Workshop on Vector Space Modeling for Natural Language Processing. Association
for Computational Linguistics, pages 62–69. https://doi.org/10.3115/v1/W15-1509.

Jiaming Xu, Bo Xu, Peng Wang, Suncong Zheng, Guanhua Tian, Jun Zhao, and Bo Xu.
2017. Self-taught convolutional neural networks for short text clustering. Neural Net-
works 88:22 – 31. https://doi.org/https://doi.org/10.1016/j.neunet.2016.12.008.

Michihiro Yasunaga, Rui Zhang, Kshitijh Meelu, Ayush Pareek, Krishnan Srinivasan, and
Dragomir Radev. 2017. Graph-based neural multi-document summarization. In Pro-
ceedings of the 21st Conference on Computational Natural Language Learning (CoNLL
2017). Association for Computational Linguistics, Vancouver, Canada, pages 452–462.
http://aclweb.org/anthology/K17-1045.

Dell Zhang, Jun Wang, Deng Cai, and Jinsong Lu. 2010. Self-taught hashing for fast
similarity search. In Proceedings of the 33rd International ACM SIGIR Conference
on Research and Development in Information Retrieval. ACM, New York, NY, USA,
SIGIR ’10, pages 18–25. https://doi.org/10.1145/1835449.1835455.

Jianmin Zhang, Jiwei Tan, and Xiaojun Wan. 2018. Towards a neural network approach to
abstractive multi-document summarization. CoRR abs/1804.09010.

Qingyu Zhou, Nan Yang, Furu Wei, and Ming Zhou. 2017. Selective encoding for
abstractive sentence summarization. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers).
Association for Computational Linguistics, Vancouver, Canada, pages 1095–1104.
http://aclweb.org/anthology/P17-1101.

67

BIBLIOGRAPHY

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Tor-
ralba, and Sanja Fidler. 2015. Aligning books and movies: Towards story-like visual
explanations by watching movies and reading books. In Proceedings of the 2015 IEEE
International Conference on Computer Vision (ICCV). IEEE Computer Society, Wash-
ington, DC, USA, ICCV ’15, pages 19–27. https://doi.org/10.1109/ICCV.2015.11.

68

Appendix A

Smart Stopwords List

69

A. SMART STOPWORDS LIST

Table A.1: Smart Stopwords List

a contain hers nine some very
a’s containing herself no somebody via
able contains hi nobody somehow viz
about corresponding him non someone vs
above could himself none something w
according couldn’t his noone sometime want
accordingly course hither nor sometimes wants
across currently hopefully normally somewhat was
actually d how not somewhere wasn’t
after definitely howbeit nothing soon way
afterwards described however novel sorry we
again despite i now specified we’d
against did i’d nowhere specify we’ll
ain’t didn’t i’ll o specifying we’re
all different i’m obviously still we’ve
allow do i’ve of sub welcome
allows does ie off such well
almost doesn’t if often sup went
alone doing ignored oh sure were
along don’t immediate ok t weren’t
already done in okay t’s what
also down inasmuch old take what’s
although downwards inc on taken whatever
always during indeed once tell when
am e indicate one tends whence
among each indicated ones th whenever
amongst edu indicates only than where
an eg inner onto thank where’s
and eight insofar or thanks whereafter
another either instead other thanx whereas
any else into others that whereby
anybody elsewhere inward otherwise that’s wherein
anyhow enough is ought thats whereupon
anyone entirely isn’t our the wherever

70

A. SMART STOPWORDS LIST

anything especially it ours their whether
anyway et it’d ourselves theirs which
anyways etc it’ll out them while
anywhere even it’s outside themselves whither
apart ever its over then who
appear every itself overall thence who’s
appreciate everybody j own there whoever
appropriate everyone just p there’s whole
are everything k particular thereafter whom
aren’t everywhere keep particularly thereby whose
around ex keeps per therefore why
as exactly kept perhaps therein will
aside example know placed theres willing
ask except knows please thereupon wish
asking f known plus these with
associated far l possible they within
at few last presumably they’d without
available fifth lately probably they’ll won’t
away first later provides they’re wonder
awfully five latter q they’ve would
b followed latterly que think would
be following least quite third wouldn’t
became follows less qv this x
because for lest r thorough y
become former let rather thoroughly yes
becomes formerly let’s rd those yet
becoming forth like re though you
been four liked really three you’d
before from likely reasonably through you’ll
beforehand further little regarding throughout you’re
behind furthermore look regardless thru you’ve

71

A. SMART STOPWORDS LIST

being g looking regards thus your
believe get looks relatively to yours
below gets ltd respectively together yourself
beside getting m right too yourselves
besides given mainly s took z
best gives many said toward zero
better go may same towards
between goes maybe saw tried
beyond going me say tries
both gone mean saying truly
brief got meanwhile says try
but gotten merely second trying
by greetings might secondly twice
c h more see two
c’mon had moreover seeing u
c’s hadn’t most seem un
came happens mostly seemed under
can hardly much seeming unfortunately
can’t has must seems unless
cannot hasn’t my seen unlikely
cant have myself self until
cause haven’t n selves unto
causes having name sensible up
certain he namely sent upon
certainly he’s nd serious us
changes hello near seriously use
clearly help nearly seven used
co hence necessary several useful
com her need shall uses
come here needs she using
comes here’s neither should usually
concerning hereafter never shouldn’t uucp
consequently hereby nevertheless since v
consider herein new six value
considering hereupon next so various

72

Appendix B

Sample system generated summaries

73

B. SAMPLE SYSTEM GENERATED SUMMARIES

Table B.1: Randomly selected outputs for our NeuFuse model form MSR-ATC dataset
(Toutanova et al., 2016). Green Shading intensity represents new word generation other
than source input sentence words and Yellow Shading intensity represents the morpholog-
ical variation generation from the source input sentence words.

MSR-ATC

Input Sentences Thank you for requesting material from the American Association of Kidney Patients.
We hope you find the enclosed material beneficial.

Reference (best) Thanks for requesting American Association of Kidney Patients materials.
We hope it is beneficial.

System Output The American Association of Kidney Patients aim to use the enclosed material.

Input Sentences Will the administration live up to its environmental promises ?
Can we save the last of our ancient forests from the chainsaw ?

Reference (best) Will the administration live up to its environmental promises to save our ancient
forests?

System Output Officials could save the last of our ancient forests from the chainsaw.

Table B.2: Randomly selected outputs for our NeuFuse model form SFC dataset (McK-
eown et al., 2010). Green Shading intensity represents new word generation other than
source input sentence words and Yellow Shading intensity represents the morphological
variation generation from the source input sentence words.

SFC

Input Sentences

Daschle, the former Senate Democratic leader, said he would have not been able to
operate with the full faith of Congress and the American people. “This work will
require a leader who can operate with the full faith of Congress and the American

Daschle said in a statement released by the White House.

Reference (best) Daschle said the work would require the full faith of Congress and the American
people.

System Output Daschle: It will require a leader who can operate with the full faith of Congress.

Input Sentences

Senators and Obama had stood by him, but Daschle withdrew today, saying he did
not want to be a distraction. Asked about the stunning reversal, White House
spokesman Robert Gibbs said Daschle made the decision because he did not want
to be a distraction to Obama’s agenda.

Reference (best) Daschle made the decision because he did not want to be a distraction.
System Output Daschle said he did not want to be a distraction in Obama’s agenda.

74

