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Introduction 

Vision is the main channel through which humans ac-

quire external information. Based on the eye-mind hypoth-

esis (Just, & Carpenter, 1980), what subjects see can help 

to predict human's cognitive activities such as user inten-

tions (Razin, & Feigh, 2017), sarcasm understandability 

(Mishra, Kanojia, & Bhattacharyya, 2016), risky decision 

making (Zhou, Zhang, Wang, Rao, Wang, Li, Li & Liang, 

2016) and reading effort (Mishra, Kanojia, Nagar, Dey & 

Bhattacharyya, 2017). Eye trackers record human viewing 

behavior in the form of raw eye tracking data, which can 

be processed into scanpaths (Noton, & Stark, 1971) com-

posed of fixations and saccades.  

Scanpaths reflect the ebbs and flows of visual attention. 

According to Yarbus’ research (1967), scanpaths from dif-

ferent observers for the same visual stimuli in free viewing 

conditions are similar but not identical. The scanning order 

of one subject is not perfectly congruent with that of others 

as shown in Figure 1 (a), so it remains a challenging task 

to identify from multiple scanpaths a pattern that reflects 

the attention synchrony of different subjects as shown in 

Figure 1 (b). Such a pattern not only plays an important 

role in understanding how humans perceive and explore 

their surrounding scenes but also reveals some important 

properties of visual stimuli, so it has a wide range of appli-

cations in many fields. For example, in psychology, it can 

be used to identify reading habits of experts and detect 

reading disorder; in marketing, it can tell us which parts of 
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an advertisement first grab customer attention and help to 

design a more user-friendly interface; in computer vision, 

it can be regarded as the group viewing pattern to train a 

network for scanpath prediction.  

 

Figure 1. An example to illustrate the viewing pattern for 

a natural image from MIT1003 dataset. 

Related Work 

Several methods were proposed to analyze scanpaths. 

For example, T-pattern is a tool to discover repetitive scan 

patterns in each individual scanpath (Magnusson, 2000; 

Burmester & Mast, 2010). Others attempt to characterize 

complex scanning patterns in dynamic tasks such as air 

traffic control (McClung & Kang, 2016). However, to get 

the group viewing pattern, we need to take into account all 

individual scanpaths rather than focus on a single one, like 

the identified scanpath in Figure 1(b), which we call rep-

resentative scanpath. The surge of interest in dynamic vis-

ual attention gives rise to various methods for representa-

tive scanpaths identification, most of which either stem 

from sequence mining algorithms or target a specific cate-

gory of visual stimuli such as web pages (Eraslan, Yesilada 

& Harper, 2014, 2016a, 2016b, 2016c, 2017a, 2017b). So 

they have limitations when applied to analyze scanpaths. 

Existing methods to analyze scanpaths include extracting 

common subsequences shared by all the subjects (Eraslan 

et al., 2014; Goldberg & Helfman, 2010; Hembrooke, 

Feusner, & Gay, 2006; West, Haake, Rozanski, & Karn, 

2006). However, in the case where there is no common 

component shared by individual scanpaths, methods in this 

category will fail to produce any pattern. To be more tol-

erant of individual differences, sequential pattern mining 

algorithms can be used to obtain frequent subsequences 

supported by a specified number of subjects (Hejmady & 

Narayanan, 2012). But a fixed threshold of subject number 

can hardly be suitable for all the images due to the varying 

degree of scanpath inconsistency incurred by personal 

viewing habits and visual stimuli properties. Hence pro-

duced subsequences may still be too short to reflect the 

complete viewing pattern. Instead of simply focusing on 

subsequences, scanpath trend analysis (STA) (Eraslan et 

al., 2016b) is proposed to acquire the viewing pattern from 

a whole new perspective. STA first selects representatively 

trending instances from scanpath components and then re-

arranges them based on their average rank in all the indi-

vidual scanpaths. To make STA more tolerant, a new pa-

rameter tolerance level, which allows trending instances to 

be shared by a subset of scanpaths rather than all of them, 

is added to the original STA algorithm (Eraslan et al., 

2017b), but it is difficult to propose a specific tolerance 

level. The main limitation of STA and its variant is that it 

targets web pages and relies on the natural segmentation 

of visual elements (e.g., navigation bar, text box, etc.) to 

denote scanpaths by character strings. Apart from the 

above studies, researchers in computer vision community 

are also interested in eye tracking data. Saliency models 

predicting fixation distribution and saccadic models pre-

dicting scanpaths are two important topics in computer vi-

sion. While fixation density map (Engelke, Liu, Wang, Le 

Callet, Heynderickx, Zepernick, & Maeder, 2013) has 

been widely accepted as the baseline to evaluate saliency 

model performance, few efforts are dedicated into finding 

an appropriate baseline for saccadic models. Generally, re-

searchers obtain the upper bound of scanpath prediction 

performance based on inter-observer consistency and 

choose from individual scanpaths the one that is the closest 
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to the rest on behalf of all the scanpaths for visualization 

(Jiang, Boix, Roig, Xu, Van Cool, & Zhao, 2016). Similar 

to STA, the inter-observer consistency method (IOC) also 

preprocesses recorded individual scanpaths into sequences 

based on clustering results. Scanpath similarity is meas-

ured by Needleman-Wunsch string matching algorithm. 

Such simplification retains the viewing order but abandons 

the spatial distribution of scanpaths. 

However, it is fixation order and fixation distribution 

that jointly determine scanpath shape. So some researchers 

adopted Dynamic Time Warping (DTW) (Sakoe, & Chiba, 

1978) to directly compare scanpaths without preprocessing 

or simplication (Le Meur, & Liu, 2015). In our previous 

work (Li, Zhang, & Chen, 2017), we proposed the Candi-

date-constrained DTW Barycenter Averaging (CDBA) al-

gorithm to take into account spatial distribution when an-

alyzing the viewing trend. But still there is little discussion 

about the important role that gaze duration plays in char-

acterizing scanpaths. Hence, in this paper we extend the 

framework to generalize viewing trends in not only scan-

path shape but also gaze duration. Experiments are con-

ducted to assess the ability of obtained scanpaths to reflect 

viewing patterns. 

Methodology 

The overall framework to obtain the representative 

scanpath is shown in Figure 2. It consists of three steps: 

eye-gaze data preprocessing, scanpath aggregation and 

gaze duration analysis. Fixation position, order and dura-

tion are fully exploited to identify the viewing pattern. The 

preprocessing step is divided into three substeps: outlier 

removal, AOI extraction and center identification. The 

second step focuses on scanpath shape, in which multiple 

scanpaths are aggregated into a single one. Finally, based 

on the aggregated scanpath, we analyze the pattern from 

the perspective of gaze duration and combine the analysis 

results from all three aspects to obtain the representative 

scanpath. 

Eye-gaze Data Preprocessing 

Eye-gaze data are generally expressed by sequences of 

fixations. Each fixation is recorded as a point with coordi-

nates and gaze duration. The preprocessing step makes 

preparation for the next pattern mining procedures: outlier 

removal ensures the consistency of remaining scanpaths, 

AOI extraction facilitates a higher-level representation, 

center identification retains the spatial distribution of scan-

path components. 

 

Outlier Removal. With different preferences, subjects 

allocate fixations in irregular and idiosyncratic manners. 

In addition, inevitable errors in eye tracking and data pro-

cessing increase the uncertainty of recorded fixations. 

Therefore, fixations that are isolated might come from in-

teresting viewing behaviors of subjects or measurement er-

rors of eye trackers, leading to discrepancy among scan-

paths. Even fixation distributions are similar, how fixa-

tions are sequentially arranged to reflect the actual viewing 

process still varies with different individuals. Therefore, 

both fixation position and order are potentially causes for 

scanpath inconsistency. 

To eliminate the influence of outlier scanpaths on both 

spatial distribution and temporal order, we exclude outlier 

scanpaths with boxplot at the very beginning. Boxplot is a 

statistical tool that enables us to detect outliers and observe 

the dispersion degree of data. Algorithm 1 explains how 

the boxplot works in detail. In Algorithm 1, we use Dy-

namic Time Warping (DTW) (Sakoe, & Chiba, 1978) to 

calculate the distance or dissimilarity 
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Figure 2. The extended framework to find a representative scanpath that shows attention distribution, attention shift as 

well as attention span. 

between any two scanpaths. Outlier removal guarantees in-

ter-observer consistency to some degree so the result pat-

tern can reflect the common trend from the compatible ma-

jority.  

AOI Extraction. According to Gestalt theory (Kanizsa 

1979), the nature of unified whole is not simply the addi-

tion of its parts. So visual attraction is not from a single 

pixel but a whole region of interest. It is possible that for 

the same visual target, fixations scatter on different loca-

tions due to the high degree of viewing freedom. As a re-

sult, fixation based scanpaths do not facilitate an abstract 

expression, making it hard to identify what is common in 

eye tracking data. Therefore, we should express the repre-

sentative scanpath by higher level components such as 

AOIs. For example, ScanMatch (Cristino et al., 2010) al-

gorithm uses grid mask to transform fixation based scan-

paths to AOI sequences. But the number of grids is flexibly 

determined and AOIs are not associated with image con-

tent. Considering that fixations are stimulus-driven, the 

clustering structure of fixations is closely related to the dis-

tribution of visual attraction. Hence, the representative 

scanpaths we discuss in this paper are composed of AOIs 

that are associated with fixation clusters. 

All the fixation points are clustered by the algorithm 

proposed by Rodriguez et al. (2014), which considers two 

properties of points: local density ρ and distance from 

points with higher density δ.  

Fixations with large values of ρ  and δ  are recog-

nized as cluster examplars. To determine the number of 

clusters, γ = ρ × δ is calculated for each fixation and all 

the values are sorted in decreasing order. Then a threshold 

is set so that fixations with γ larger than the threshold 

stick out and cluster number is accordingly determined. 

The threshold can be set as the arithmetic mean or geomet-

ric mean empirically. In our experiment, we used the 

weighted geometric mean, which is calculated as follows: 
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where ��, ��,…, �� have been sorted in decreasing or-

der. The weighted geometric mean puts more emphasis on 

larger γ and leads to fewer and less overlapped clusters 

than the geometric mean.  

Center Identification. Now all the fixations are as-

signed to different AOIs. To retain the spatial information 

of scanpaths, we need to take into account the locations of 

AOIs. Instead of simply averaging coordinates or choosing 

points with large γ as centers, we adopt a random walk 

based method (Chen & Chen, 2017) to identify AOI cen-

ters, which is more robust and less likely to be affected by 

edge points of a cluster. The random walk based method 

aims to obtain a coefficient � for each fixation in the AOI 

and calculates the weighted center as the final AOI center.  

The coefficient � is updated by the following formula: 
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where �(�) is the initial coefficient of fixation � defined 

by fixation density, �  is the normalizing parameter, 

�(�, �) is the transition probability from fixation � to fix-

ation j.  

 
( , )

( , )

1

( , )
D j i

n
D j k

k

e
q j i

e





 

 






  (3) 

where �(�, �) is the Euclidean distance from fixation � 

to fixation �, σ is introduced to influence the center dis-

tribution subtly. 

Different from simple segmentation or grid mask that 

only allows scanpaths to be treated as character strings, 

AOI centers make it possible to denote scanpaths by se-

quences of coordinates and thus can also be regarded as 

indicators of AOI distribution. AOIs with identified cen-

ters are considered as candidate components for the repre-

sentative scanpath in the aggregation stage. 

Scanpath Aggregation 

Generally speaking, the barycenter of points in a clus-

ter is regarded as the representative or examplar of the 

cluster. Likewise, we aggregate multiple scanpaths into a 

single one by computing the “barycenter” of the scanpath 

set. In other words, we try to calculate a representative 

scanpath that is the closest to individual scanpaths in terms 

of average distance. Mathematically, the representative 

scanpath is defined as follows: 

 arg min ( , )
s s sps

r Dist s s
 

    (4) 

where � is the representative scanpath, ��  is any scan-

path that may become the representative scanpath, � is an 

individual scanpath in the given scanpath set ��� , and 

���� is a function calculating the distance or dissimilarity 

between two scanpaths. 

Here we utilize Dynamic Time Warping (DTW) to 

measure scanpath distance. DTW was first put forward for 

speech recognition and then widely used in time series 

analysis (Berndt & Clifford, 1994). Traditional string 

matching algorithms like Needleman-Wunsch algorithm 

(Needleman & Wunsch, 1970) and Levenshtein Distance 

(Levenshtein, 1965) simply treat scanpaths as strings and 

need to additionally construct a cost matrix to take into ac-

count spatial proximity, while DTW already involves the 

construction. In most cases, scanpaths are recorded as se-

quences of components with coordinates. Given two scan-

paths A = �� =< ��, ��,⋯ , �� >  and B = �� =<

��, ��,⋯ , �� > , the DTW distance is recursively com-

puted by the following formula: 
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where ��, ��  are the subsequences of A and B, �� and 

��  are components of scanpaths A and B respectively, 

δ() is the Euclidean distance function. The distance or 

dissimilarity between scanpath A and B is: 

 ( , ) ( , )m nDist A B DTW A B   (6) 

It is difficult to directly get the optimal solution of 

Equation (1). Hence, we add the following constraints to 

make it feasible: 

 The representative scanpath must be composed of ab-

stract scanpath components such as AOIs; 

 Any two contiguous components in the representa-

tive scanpath must be contiguous in at least one indi-

vidual scanpath; 
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 The occurrence count of each component in the rep-

resentative scanpath does not exceed the maximum 

occurrence count of the component in all the individ-

ual scanpaths. 

These constraints not only simplify the aggregation but 

also force the obtained scanpath to be more reasonable. 

The first constraint guarantees the aggregated scanpath is 

expressed at a higher level. The second and the third con-

straints ensure that the aggregated scanpath will not devi-

ate too far from individual scanpaths. We propose two 

methods for scanpath aggregation. 

Heuristic Method. The heuristic method first constructs a 

candidate set for each AOI. The candidate set contains all 

the potential subsequent AOIs for a certain AOI. In other 

words, AOIs in the candidate set for ����  must follow 

����  in at least one individual scanpath. Then all the pos-

sible scanpaths are enumerated by extending scanpaths of 

1 fixation to scanpaths of � fixations. A scanpath is ex-

tended by choosing an AOI from the candidate set of the 

last AOI on the scanpath and adding it to the end. When 

the occurrence count of a certain AOI is equal to its maxi-

mum occurrence count in individual scanpths, the AOI is 

removed from the candidate set and thus will not appear in 

later enumerated scanpaths. Finally, the scanpath with the 

smallest DTW from individual scanpaths is chosen from 

all the enumerated scanpaths as the representative. n is the 

specified maximum fixation number. When n is large 

enough, we can get the theoretically optimal result for 

Equation (2), which provides a lower bound of the average 

distance. 

Candidate-constrained DTW Barycenter Averaging 
(CDBA) algorithm. Since the heuristic method is time 

and space consuming, we propose another algorithm for 

scanpath aggregation by imposing some constraints on the 

DTW Barycenter Averaging (DBA) algorithm (Petitjean, 

Ketterlin, & Gancarski, 2011) as an approximation (Li et 

al., 2017). CDBA also needs to construct a candidate set 

for each AOI and adjust the set members like the heuristic 

method. Then it defines an initial average scanpath as the 

reference scanpath and then updates the reference scanpath 

iteratively. For each iteration, CDBA consists of two steps: 

computing DTW between every individual scanpath and 

the reference scanpath and updating the components of the 

reference scanpath. 

 DTW computation. When computing DTW between 

two sequences, we can obtain the accumulation ma-

trix and find the path of cost accumulation, which in-

dicates the optimal alignment between sequences. 

The process of DTW computation is repeated be-

tween every actual scanpath and the reference scan-

path. 

 Scanpath update. In the update step, each component 

of the reference scanpath is updated by the “con-

strained barycenter” of fixations that are aligned to it 

during the computation process. The “constrained 

barycenter” means an AOI belonging to the candidate 

set and having the minimum average distance with all 

the aligned fixations. 

The above two steps are repeated until the reference 

scanpath does not change. The process of CDBA is sum-

marized in Algorithm 2. 

 

Gaze Duration Analysis 

After scanpath aggregation, we obtain an aggregated 

scanpath that can tell us not only which areas draw our at-

tention but also the priority of attraction. In this section, 

we aim to embed gaze duration into the aggregated scan-

path. To specify how long an AOI can hold our attention, 

we transform each individual scanpath (of fixations) into 

an AOI sequence (of clusters) and statistically analyze the 

gaze duration of each AOI for all the individual scanpaths. 

The gaze duration of each AOI in the aggregated scanpath 

is obtained by averaging the gaze duration of the same AOI 

in all the individual sequences. Note that when we analyze 

AOI duration, one and the same AOI appearing more than 

once in a sequence is regarded as different AOIs and will 

be distinguished by their appearing order in the sequence. 
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Eye Tracking Study 

Eye Tracking Data 

To investigate the rationality of representative 

scanpaths, we conduct experiments on two large public 

eye-tracking data sets, namely OSIE data set (Xu, Jiang, 

Wang, Kankanhalli & Zhao, 2014) and MIT1003 data set 

(Judd, Ehinger, Durand, & Torralba, 2009). 

 OSIE Data Set contains 700 images. Each image is 

freely viewed by 15 subjects for 3 seconds. All the 

images are of the size 800 × 600 pixels. 

 MIT1003 Data Set includes 1003 scenes freely 

viewed by 15 subjects for 3 seconds. The longest di-

mension of each image is 1024 pixels. 

Procedure 

The key process in our framework is scanpath 

aggregation, which can be substituted by other methods 

like eMine (Eraslan et al., 2014), STA (Eraslan et al., 

2016b), SPAM (Hejmady et al., 2012) and IOC (Jiang et 

al., 2016). The first three of them can not directly operate 

on scanpaths consisting of fixations with coordinates and 

need to convert scanpaths into character strings. IOC also 

relies on some preprocessing steps for scanpath 

quantization. To make sure the comparison is fair, we 

adopt the same preprocessing step in our framework. The 

outlier removal process averagely excludes 0.61 and 0.86 

scanpaths per image for OSIE and MIT 1003 data sets, 

respectively. In addition, despite the outlier removal 

process, eMine still fails to produce any result for some 

images, so for eMine algorithm, we only consider cases in 

which eMine algorithm has final outputs. For SPAM 

algorithm, we set the minimum supporting number of 

subjects as the half of the total number, which may lead to 

more than one frequent subsequences, so we choose from 

these frequent subsequences the one that is optimal with 

regard to Equation (1) as the representative scanpath. For 

IOC algorithm, we adapt it for our framework by taking 

DTW as its distance function and choosing the scanpath 

with the smallest average DTW. For the heuristic method, 

we need to determine the specified maximum number � 

when enumerating all the possible scanpaths. Figure 3 

shows average DTW varying with given maximum length 

�. For both data sets, when � is equal to or larger than 8, 

the average DTW does not change and the heuristic 

method can get the theoretically best results. So the 

maximum number is set as 8 in later discussion for the 

heuristic method unless otherwise stated. 

 

Figure 3. Average DTW varying with the specified maxi-

mum fixation number. 

Due to the high degree of viewing freedom, it is hard 

to define ground truth representative scanpaths. The only 

way to evaluate the rationality of the obtained scanpath is 

to compare it against each individual scanpath with the 

standard string-edit algorithm as suggested by Eraslan et 

al. (2016b, 2016c). More sophisticated methods to com-

pare scanpaths like ScanMatch (Cristino et al., 2010), Mul-

tiMatch (Jarodzka, Holmqvist, & Nyström, 2010), and 

ScanGraph (Dolezalova & Popelka, 2016) are also be de-

veloped, facilitating the evaluation. 

In our experiment, the evaluation of representative 

scanpaths is conducted at three different levels: 
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 Scanpath length: scanpath length reflects the fre-

quency of attention shift, so we compare the length 

distribution to check whether representative scan-

paths can reflect this property; 

 Scanpath shape: scanpath shape, partly influenced by 

scanpath length, is related to both spatial distribution 

and temporal order, which is measured by DTW in 

our experiment; 

 Overall scanpath similarity: overall scanpath similar-

ity comprehensively considers scanpath shape and 

gaze duration. ScanMatch and MultiMatch can pro-

vide such comparison. 

Results 

Analysis of Scanpath Length. Scanpath length reflects 

the frequency of attention shift. Figure 4 and Figure 5 an-

alyze the length of representative scanpaths for both OSIE 

and MIT1003 datasets. From Figure 4 (a) and Figure 5 (a), 

we can find that length distributions of individual scan-

paths are similar to normal distribution, which indicates 

that for only a small number of images, people concentrate 

on certain areas (hardly shift) or roam over the whole im-

age (frequently shift) while for most images the shift fre-

quency is relatively stable, neither too large nor too small. 

Thus the bell-shaped property should also be reflected by 

representative scanpaths. Considering that all the repre-

sentative scanpaths are AOI based while individual scan-

paths are fixations based, the absolute values of scanpath 

length may be different but the bell-shaped property of 

scanpath length distribution should be kept. However, 

eMine, STA and SPAM fail to retain this property and ob-

tain right-tailed distributions. All of them are more likely 

to get shorter representative scanpaths, which reflect the 

pattern that for most images, subjects tend to concentrate 

on certain areas and hardly shift their attention. IOC, 

CDBA and the heuristic method can keep the bell-shaped 

distributions. 

 

Figure 4. Length distribution of individual scanpaths and 

aggregated scanpaths for OSIE data set. 

Analysis of Scanpath Shape. In this part, we evaluate the 

ability of representative scanpaths to reflect attention dis-

tribution and attention shift, that is, the shape of repre-

sentative scanpaths. We measure this ability by computing 

the average distance (DTW) between the representative 

scanpath and all the actually recorded scanpaths as sug-

gested by Le Meur et al. (2015). Quantitative results are 

shown in Table 1. A smaller DTW means a better result. 

The average DTW between representative scanpaths ob-

tained by the heuristic method and all the recorded scan-

paths is the smallest. In other words, the heuristic method 

produces the best solutions for Equation (1), followed by 

CDBA and IOC. The results of statistical analysis are pre-
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sented in Table 2, which shows there is a significant dif-

ference between the results of our proposed “barycenter” 

based methods (CDBA and heuristic) and other methods. 

 

 

Figure 5. Length distribution of individual scanpaths and 

aggregated scanpaths for MIT1003 dataset. 

Analysis of Overall Scanpath Similarity. In this part, we 

estimate and assign gaze duration to scanpaths obtained in 

the aggregation step. Note that none of the existing algo-

rithms except for STA have discussed representative scan-

paths with gaze duration. Even though STA employs the 

duration information when identifying trending elements, 

it still focuses on the analysis of trending scanpaths and 

does not further analyze gaze duration. To make fair com-

parisons, we combine our gaze duration analysis method 

with all the methods proposed for scanpath aggregation, 

i.e., eMine, SPAM, STA and IOC. The overall scanpath 

similarity is evaluated by MultiMatch (Jarodzka et al., 

2010) and ScanMatch (Cristino et al., 2010). MultiMatch 

compares scanpaths from five aspects: vector similarity, 

direction similarity, length similarity, position similarity 

and duration similarity. ScanMatch only outputs an inte-

grated score reflecting order consistency, spatial proximity 

and duration similarity. The parameters involved in Scan-

Match implementation are set as follows: Xbin = 24, Ybin 

= 18, Threshold = 3.5, GapValue = 0, TempBin = 100 

(TempBin =0 when duration is not taken into account). We 

compare the representative scanpath with each actually 

recorded scanpath using both algorithms and compute the 

average scores. Table 3 shows the results on both datasets. 

The larger the scores, the better the results. Our proposed 

methods (CDBA* and Heuristic*) still outperform eMine, 

STA and SPAM, but the advantages of our methods over 

IOC are not so obvious. Then we further conduct statistical 

test on the ScanMatch results (with duration). The differ-

ence between the proposed methods and the first three 

methods, i.e., eMine, STA and SPAM, is significant on 

both data sets but this is not the case with IOC. It can be 

seen that although the heuristic method can get a smaller 

average distance in terms of DTW, scores of MultiMatch 

and ScanMatch are neck and neck with CDBA and IOC on 

both datasets. This may be caused by the fact that DTW 

directly takes Euclidean distance as elements in the cost 

matrix while both MultiMatch and ScanMatch conduct 

scanpath simplification or quantization before comparison.

 
Table 1. Average DTW on two data sets ↓ 
 

Dataset eMine STA SPAM IOC CDBA heuristic 
OSIE 1644 1418 1050 921 899 891 

MIT1003 1319 1467 1007 910 882 876 
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Table 2. The Statistical Test Results of DTW. NA: Not applicable because df is not related to the Wilcoxon Test. 
N: the number of images for which both comparison algorithms can find the representative scanpaths.; ***: 
p<0.0001. 
 

Dataset Algrotihm Test N df T or Z value Effect Size 

OSIE 

CDBA-eMine Wilcoxon 531 NA -19.9092*** -1.3536 
CDBA-STA Wilcoxon 700 NA -22.8043*** -1.1528 

CDBA-SPAM Wilcoxon 700 NA -21.7021*** -0.5653 
CDBA-IOC Wilcoxon 700 NA -14.4308*** -0.1025 

Heuristic-eMine Wilcoxon 531 NA -19.3612*** -1.3612 
Heuristic-SPAM Wilcoxon 700 NA -21.8317*** -0.5999 
Heuristic-STA Wilcoxon 700 NA -22.8062*** -1.1689 
Heuristic-IOC Wilcoxon 700 NA -18.2585*** -0.1443 

Heuristic-CDBA Wilcoxon 700 NA -13.6244*** -0.0420 

MIT1003 

CDBA-eMine Wilcoxon 484 NA -18.6447*** -0.9658 
CDBA-STA Wilcoxon 1003 NA -27.0153*** -1.0299 

CDBA-SPAM Wilcoxon 1003 NA -25.1192*** -0.4019 
CDBA-IOC Wilcoxon 1003 NA -19.7691*** -0.1033 

Heuristic-eMine Wilcoxon 484 NA -18.6447*** -0.9761 
Heuristic-STA Wilcoxon 1003 NA -27.1454*** -1.0398 

Heuristic-SPAM Wilcoxon 1003 NA -25.3895*** -0.4236 
Heuristic-IOC Wilcoxon 1003 NA -22.3411*** -0.1273 

Heuristic-CDBA Wilcoxon 1003 NA -15.3338*** -0.0243 
 
 
 
 
Table 3. Evaluating the representative scanpath by MultiMatch and ScanMatch ↑ (* means the aggregation algo-
rithm combined with the proposed duration analysis method) 
 

Dataset Algorithm 
MultiMatch ScanMatch 

vector direction length position duration 
without du-

ration 
with dura-

tion 

OSIE 

eMine* 0.181  0.123  0.191  0.176  0.130  0.120 0.219 
STA* 0.567  0.402  0.604  0.550  0.409  0.199 0.311 

SPAM* 0.853  0.655  0.891  0.837  0.602  0.244 0.386 
IOC* 0.881  0.744  0.906  0.871  0.613  0.348 0.474 

CDBA* 0.882  0.749  0.905  0.875  0.614  0.351 0.476 
Heuristic* 0.882  0.749  0.905  0.874  0.614  0.344 0.474 

MIT1003 

eMine* 0.083  0.058  0.088  0.080  0.060  0.149 0.224 
STA* 0.524  0.399  0.542  0.503  0.398  0.251 0.275 

SPAM* 0.734  0.539  0.754  0.711  0.555  0.254 0.324 
IOC* 0.842  0.696  0.849  0.819  0.620  0.355 0.419 

CDBA* 0.843  0.701  0.849  0.820  0.617  0.352 0.416 
Heuristic* 0.843  0.702  0.850  0.821  0.620  0.349 0.415 
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Table 4. The statistical test results of ScanMatch scores (with duration). NA: Not applicable because df is not related 

to the Wilcoxon Test. N: the number of images for which both comparison algorithms can find the representative 

scanpaths. *: p<0.05; ***: p<0.0001. 

Dataset Algrotihm Test N df T or Z value Effect Size 

OSIE 

CDBA-eMine Paired t-test 531 530 54.1696*** 1.6125 
CDBA-STA Wilcoxon 700 NA 22.6372*** 1.2585 

CDBA-SPAM Wilcoxon 700 NA 20.9515*** 0.8052 
CDBA-IOC Wilcoxon 700 NA 1.7021 0.0279 

Heuristic-eMine Wilcoxon 531 NA 19.8712*** 1.6068 
Heuristic-STA Wilcoxon 700 NA 22.5733*** 1.2461 

Heuristic-SPAM Wilcoxon 700 NA 20.9413*** 0.7875 
Heuristic-IOC Wilcoxon 700 NA 0.1103 0.0057 

Heuristic-CDBA Wilcoxon 700 NA -1.8394 -0.2222 

MIT1003 

CDBA-eMine Wilcoxon 484 NA 18.6006*** 1.3676 
CDBA-STA Wilcoxon 1003 NA 26.6705*** 1.0802 

CDBA-SPAM Wilcoxon 1003 NA 24.0124*** 0.7038 
CDBA-IOC Wilcoxon 1003 NA -2.0228* -0.0253 

Heuristic-eMine Wilcoxon 484 NA 18.6003*** 1.3736 
Heuristic-STA Wilcoxon 1003 NA 26.5807*** 1.0766 

Heuristic-SPAM Wilcoxon 1003 NA 23.9828*** 0.6980 
Heuristic-IOC Wilcoxon 1003 NA -2.4115* -0.0353 

Heuristic-CDBA Wilcoxon 1003 NA -1.1309 -0.0099 

 

Summary 

In our experiment, we can regard the adaptation of IOC 

as constructing a candidate set that contains AOI-level 

scanpaths transformed from individual fixation-level scan-

paths. In other words, IOC actually finds an optimal solu-

tion of Equation (1) under stricter constraints. In addition, 

CDBA and the heuristic method are also based on Equa-

tion (1), and the outputs of CDBA can actually be regarded 

as approximations of the heuristic results. Compared with 

the heuristic method, IOC chooses from a smaller candi-

date set while CDBA searches the set in a more efficient 

way, but these three algorithms share a similar idea, choos-

ing a scanpath from a candidate scanpath set as the repre-

sentative. In this sense, all the algorithms we discussed 

above can be categorized as follows: (1) “barycenter” 

based: IOC, CDBA, heuristic; (2) subsequence based: 

eMine, SPAM; (3) others: STA.  

When evaluated by scanpath length, the “barycenter” 

based method can well keep the bell shaped distribution of 

scanpath length. The comparison by DTW also indicates 

that all the “barycenter” based methods can produce repre-

sentative scanpaths similar to actually recorded individual 

scanpaths in scanpath shape. As for overall scanpath simi-

larity, the “barycenter” based methods improve the perfor-

mance by a large margin over others, which consolidates 

that “barycenter” based aggregated scanpaths are more 

suitable to be combined with gaze duration to get final rep-

resentative scanpaths. In summary, representative scan-

paths obtained by “barycenter” based methods can better 

describe viewing patterns. 

Interpretation of Representative Scanpaths 

Figures 6 shows the aggregated scanpaths obtained by 

different algorithms. In Figure 6, red circles represent 

AOIs. Yellow arrows indicate the direction and numbers 

indicate the order. Images 1009 and 1033 respectively con-

tain only one conspicuous foreground object and three ob-

jects without many distractors in the background while im-

age 1263 and image 1270 both contain multiple objects 

with complex background. eMine, STA and SPAM obvi-

ously produce shorter scanpaths that may not be able re-

flect complete viewing patterns. In particular, eMine only 

identifies one common AOI in all the individual scanpaths 

and fails to provide any information about attention shift 

for images 1009, 1033 and 1263. The “barycenter” based 

methods (IOC, CDBA and the heuristic method) produce 
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identical results for images 1009 and 1263. For image 

1009, the representative scanpaths show that attention is 

first attracted by the dog head, then transferred to the body 

and finally go back to the head. For image 1263, the pat-

tern is that subjects are first attracted by faces, then linger 

between faces, next explore objects with which the female 

and the male are interacting (the food they are eating), and 

finally redirect their attention to human faces. For images 

1033 and 1270, representative scanpaths obtained by IOC, 

CDBA and the heuristic method are a little different. It is 

difficult to conclude which scanpath can better describe 

the viewing pattern since they actually contain some com-

mon segments. Take image 1270 for example, all the three 

representative scanpaths start by an AOI located near im-

age center, which is consistent with the well-known center 

bias. The main difference between obtained patterns lies in 

the priority of the AOI on the zip-top can and the AOI on 

the computer screen. The heuristic method and CDBA pri-

oritizes the AOI on the zip-top can while IOC is on the 

contrary. Note that there are some letters on the can. Con-

sidering text is a top-down factor capable of guiding visual 

attention (Ramanishka, Das, Zhang, & Saenko, 2017), the 

pattern obtained by the heuristic method and the CDBA 

algorithm may be more reasonable. In addition, although 

we do not have any so-called ground truth viewing pattern, 

the identified patterns seem to be congruent with human 

intuition and some verified findings such as center bias, 

top-down effect, etc, whether there are one or several fore-

ground objects, simple or complex backgrounds. However, 

in some cases where the priorities of different visual stim-

uli are not clear (e.g., image 1033), the identified patterns 

can only provide limitedly useful knowledge. 

Figure 7 visualizes obtained representative scanpaths 

obtained by our proposed methods (CDBA and huristic) 

with duration pattern for image i1182314083 from 

MIT1003 data set (Judd et al., 2009). The radius of red cir-

cles is proportional to the total gaze duration on the corre-

sponding AOI. Figure 8 shows the duration patterns of in-

dividual scanpaths. It is can be seen that the duration pat-

tern of the representative scanpath is visually consistent 

with the duration pattern of individual scanpaths and can 

reflect the group trend from an overall perspective. 

Discussion 

In this article, we extend our previous framework to 

identify representative scanpaths from multiple individual 

scanpaths for natural images. Different from most existing 

work, we also analyze the duration pattern. The proposed 

framework consists of three steps: eye-gaze data prepro-

cessing, scanpath aggregation and gaze duration analysis. 

Experiments demonstrate that our proposed framework is 

able to identify representative scanpaths reflecting group 

viewing patterns on natural images. 

Based on the algorithms for scanpath aggregation, we 

further categorize representative scanpaths as follows: (1) 

“barycenter” based; (2) subsequence based; (3) others. 

Some algorithms are specially designed to identify view-

ing patterns on a specific kind of visual stimuli so their 

performances are not so satisfactory when visual stimuli 

are changed. For natural images, we find that “barycenter” 

based representative scanpaths are the closest to individual 

scanpaths. Such representative scanpaths for natural im-

ages are useful in various fields. For example, computer 

vision researchers attempt to build plausible saccadic mod-

els to predict human scanpaths and they need a reliable 

ground truth scanpath against which predicted scanpaths 

can be compared. In addition, it is much easier for us to 

visualize and analyze one representative scanpath than 

multiple individual scanpaths that are largely overlapped, 

which makes it possible to validate some assumptions 

about visual attention and eye movements such as center-

bias and top-down bias. The representative scanpath with 

duration pattern can also give us a hint about what first 

grabs visual attention and what holds attention for a long 

period, providing knowledge about what kinds of images 

are obvious visual attractors.  

However, there are some limitations of our work. For 

example, the eye tracking data set only involves 15 partic-

ipants, which means there are at most 15 scanpaths for 

each image. So it is necessary to construct a much larger 

data set with more participants. The size of the data set can 

arouse some challenges for the proposed algorithm, like 

how to efficiently determine the initial reference scanpath 

for CDBA and how to reduce the space and time cost of 

the heuristic method. In addition, we use a data-driven ap-

proach to obtain AOIs but it could be better to associate 

AOIs with semantically meaningful objects. The incorpo-

ration of semantic segmentation in the preprocessing step 

needs further investigation. 
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Figure 6. Aggregated scanpaths for four different images from OSIE data set. From top to bottom: individual scanpaths, 

eMine, STA, SPAM, IOC, CDBA, heuristic. 
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Figure 7. Representative scanpaths with gaze duration of image i1182314083 from MIT data set.  

 

Figure 8. Gaze duration of individual scanpaths of image i1182314083 from MIT data set. 
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Conclusions 

Eye tracking data provide insights into how humans 

perceive and explore their surroundings. Traditional meth-

ods to analyze scanpaths target a specific kind of viewing 

stimuli such as web pages and neglect the duration pattern, 

so the scanpaths obtained by such methods are not able to 

reflect the viewing pattern on natural images correctly or 

comprehensively. In this paper, we extend our previous 

framework to identify representative scanpaths, consider-

ing temporal order, spatial distribution and gaze duration. 

The framework consists of three steps: eye-gaze data pre-

processing, scanpath aggregation and gaze duration analy-

sis. The second step is the key to representative scanpaths 

identification and can be replaced by traditional methods 

such as eMine. Based on the algorithms chosen, we further 

categorize the obtained representative scanpaths as subse-

quence based, “barycenter” based and others. Experiments 

demonstrate that our framework can well serve the purpose 

of generalizing viewing patterns and the “barycenter” 

based representative scanpaths can better describe the pat-

terns. 
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