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Introduction 

Areas of Interest (AOIs) are widely used for stimuli-

driven, quantitative analysis of eye tracking data and allow 

the determination of important metrics such as dwell time 

or transitions (Holmqvist et al., 2011). Despite the pro-

gress in eye tracking software over the last years, AOI 

analysis for mobile eye trackers is still an error-prone and 

time-consuming manual task. In particular, this applies to 

studies in which the participants move around and interact 

with tangible objects. This is often the case for usability 

testing in real-world applications (Mussgnug, Singer, 

Lohmeyer, & Meboldt, 2017). As a result of these chal-

lenges, many scientists are hesitating to use mobile eye 

tracking in their research even though it is often the appro-

priate tool for the study design (Vansteenkiste, Cardon, 

Philippaerts, & Lenoir, 2015).  

Automating Areas of Interest Analysis in 

Mobile Eye Tracking Experiments based 

on Machine Learning  

Julian Wolf 
ETH Zürich, Switzerland 

Stephan Hess 
ETH Zürich, Switzerland 

David Bachmann 
ETH Zürich, Switzerland 

Quentin Lohmeyer 
ETH Zürich, Switzerland 

Mirko Meboldt 
ETH Zürich, Switzerland 

For an in-depth, AOI-based analysis of mobile eye tracking data, a preceding gaze assign-

ment step is inevitable. Current solutions such as manual gaze mapping or marker-based 

approaches are tedious and not suitable for applications manipulating tangible objects. This 

makes mobile eye tracking studies with several hours of recording difficult to analyse quan-

titatively. We introduce a new machine learning-based algorithm, the computational Gaze-

Object Mapping (cGOM), that automatically maps gaze data onto respective AOIs. cGOM 

extends state-of-the-art object detection and segmentation by mask R-CNN with a gaze 

mapping feature. The new algorithm’s performance is validated against a manual fixation-

by-fixation mapping, which is considered as ground truth, in terms of true positive rate 

(TPR), true negative rate (TNR) and efficiency. Using only 72 training images with 264 

labelled object representations, cGOM is able to reach a TPR of approx. 80% and a TNR of 

85% compared to the manual mapping. The break-even point is reached at 2 hours of eye 

tracking recording for the total procedure, respectively 1 hour considering human working 

time only. Together with a real-time capability of the mapping process after completed train-

ing, even hours of eye tracking recording can be evaluated efficiently.  

(Code and video examples have been made available at: https://gitlab.ethz.ch/pdz/cgom.git) 

Keywords: mobile eye tracking, areas of interest, machine learning, mask R-CNN, object 

detection, gaze mapping, tangible objects, cGOM, usability 

 
 

 

 

Julian Wolf 
ETH Zürich, Switzerland 

Stephan Hess 
ETH Zürich, Switzerland 

David Bachmann 
ETH Zürich, Switzerland 

Dr. Quentin Lohmeyer 
ETH Zürich, Switzerland 

Prof. Dr. Mirko Meboldt 
ETH Zürich, Switzerland 

This document can be used to create a suitably formatted submission to the Journal of Eye 

Movement Research. It contains some instructions, style definitions, and explanatory text 

in conformance with the publication manual of the American Psychological Association. 

Writing a paper for the Journal of Eye Movement Research may be different from what you 

are used to: The journal accepts only final manuscripts that are formatted according to the 

styles defined in this template. To ensure a final product of high quality, we must receive 

your article in the appropriate file type and text format. The purpose of this documentation 

is to provide you with the information you need to produce a complete, well-formed sub-

mission to the Journal of Eye Movement Research.  

Keywords: Eye Tracking, Areas of Interest, Mask R-CNN, Object Detection, Instance 

Segmentation, Semantic Gaze Mapping, head-mounted eye tracker, tangible objects 

 

Received October 2, 2018; Published December 10, 2018. 

Citation: Wolf, J., Hess, S., Bachmann, D., Lohmeyer, Q., & 

Meboldt, M. (2018). Automating Areas of Interest Analysis in Mo-

bile Eye Tracking Experiments based on Machine Learning. Jour-

nal of Eye Movement Research, 11(6):6. 

Digital Object Identifier: 10.16910/jemr.11.6.6 

ISSN: 1995-8692 

This article is licensed under a Creative Commons Attribution 4.0 

International license.  

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Journal of Eye Movement Research

https://core.ac.uk/display/188639485?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://gitlab.ethz.ch/pdz/cgom.git
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Journal of Eye Movement Research Wolf, J., Hess, S., Bachmann, D., Lohmeyer, Q., & Meboldt, M. (2018) 

11(6):6 Automating AOI Analysis in Mobile Eye Tracking Experiments based on Machine Learning 

  2 

Various methods exist for assigning gaze data to respec-

tive AOIs such as manual frame-by-frame or fixation-by-

fixation analysis and dynamic AOIs using either key 

frames or different types of markers. Ooms et al. (2015) 

state that dynamic AOIs based on interpolation between 

key frames are generally not suitable for interactive eye 

tracking studies. Vansteenkiste et al. (2015) add that for 

experiments in natural settings, it is almost inevitable to 

manually assign the gaze point frame-by-frame to a static 

reference image or, as proposed in their paper and which 

is state of the art by now, using a fixation-by-fixation al-

gorithm. These manual methods are very effective and ap-

plicable to any possible case, but also highly tedious. Over 

the last few years, marker-based approaches using visible, 

infrared or natural markers have become more and more 

common and are now widely used for automated compu-

ting of AOIs (Kiefer, Giannopoulos, Kremer, Schlieder, & 

Raubal, 2014; Pfeiffer & Renner, 2014; Zhang, Zheng, 

Hong, & Mou, 2015). Although the use of markers can ac-

celerate the evaluation process enormously, they are lim-

ited to the types of scenes that can be analyzed (Evans, Ja-

cobs, Tarduno, & Pelz, 2012). Applied to interactive ex-

periments with tangible objects, they represent a potential 

disturbance factor for analyzing natural attentional distri-

bution, cannot be attached to small objects due to the nec-

essary minimum detectable size, must face the front cam-

era for detection and generally cannot be used for objects 

that move and rotate during the experiment (e.g. rolling 

ball).  

To overcome these limitations, object detection algo-

rithms could be applied directly to the objects of interest 

and not to markers (De Beugher, Brone, & Goedeme, 

2014). In recent years, major breakthroughs in object de-

tection have been achieved by machine learning ap-

proaches based on deep convolutional neuronal networks 

(deep CNNs) (Garcia-Garcia et al., 2018). Until recently, 

CNN-based object detection algorithms were solely able 

to roughly predict the position of an object by means of 

bounding boxes (Chukoskie et al., 2018). Figure 1 (left) 

shows the disadvantage of such a rectangular AOI using a 

simple diagonally placed pen as an example. The oversize 

and shape of the AOI can lead to high error rates, in par-

ticular in experimental setups in which overlapping is ex-

pected (Orquin, Ashby, & Clarke, 2016).  

   

Figure 1: Bounding box created by a conventional deep CNN 

(left) and close contour mask created by mask R-CNN (right). 

In 2017, mask R-CNN was introduced (He, Gkioxari, 

Dollar, & Girshick, 2017) as one of the first deep CNNs 

that not only detects the objects, but also outputs binary  

masks that cover the objects close contour (Figure 1, 

right). In this article, a study is conducted to compare AOI 

analysis using Semantic Gaze Mapping (SGM), which is 

integrated in SMI BeGaze 3.6 (Senso Motoric Instruments, 

Teltow, Germany) and is considered as ground truth, with 

an AOI algorithm based on mask R-CNN being introduced 

here for the first time.  

Semantic Gaze Mapping. SGM is a manual fixation-by-

fixation analysis method used to connect the gaze point of 

each fixation to the underlying AOI in a static reference 

view (as described by Vansteenkiste et al., 2015). Succes-

sively for each fixation of the eye tracking recording, the 

fixation’s middle frame is shown to the analyst (e.g. for a 

fixation consisting of seven frames only the fourth frame 

is displayed). The analyst then evaluates the position of the 
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gaze point in the frame and clicks on the corresponding 

AOI in the reference image.  

Computational Gaze-Object Mapping (cGOM). cGOM 

is based on a loop function that iterates through all fixa-

tions’ middle frames and always performs the same routine 

of (i) object detection using mask R-CNN and (ii) compar-

ison of object and gaze coordinates. In detail, each frame 

consists of a number of pixels that can be precisely de-

scribed by x and y coordinates in the two-dimensional 

plane with the origin in the top left corner of the image. 

Mask R-CNN uses plain video frames as input and outputs 

the frame with a suggested set of corresponding pixels for 

each object of interest. If the gaze coordinate matches with 

the coordinate of an object of interest, cGOM automati-

cally assigns the gaze to the respective AOI.  

The performance of the two evaluation methods is com-

pared in terms of conformance with the ground truth and 

efficiency, expressed by the two research questions RQ1 

and RQ2. The goal of the study is to investigate whether 

the new algorithm offers the potential of replacing conven-

tional, manual evaluation for study designs with tangible 

objects. Mask R-CNN, which is the core element of the 

cGOM algorithm, has already surpassed other state-of-the-

art networks in object detection and segmentation tasks 

when trained on huge online data sets (He et al., 2017). 

However, since the creation of such data sets is very time-

consuming and not feasible for common studies, a small 

and more realistically sized training data set will be used 

for the investigations in this article. 

(RQ1) How effective is cGOM in assigning fixations to 

 respective AOIs in comparison with the ground 

 truth? 

(RQ2) At which recording duration does the efficiency of  

 the computer-based evaluation exceed that of the 

 manual evaluation? 

Methods 

The study presented in this article consisted of two parts. 

Firstly, an observation of a handling task was performed 

for creating a homogeneous data set in a fully controlled 

test environment. Secondly, the main study was conducted 

by analysing the data sets of the handling task and varying 

the evaluation method in the two factor levels SGM (Se-

mantic Gaze Mapping) and cGOM (computational Gaze-

Object Mapping).  

Handling Task 

Participants. 10 participants (9 males and 1 female, av-

erage 26.6 years, range 21-30 years) conducted the han-

dling task wearing the eye tracking glasses. All partici-

pants had normal or corrected to normal vision and were 

either mechanical engineering students or PhD students.  

Material. The data was collected using the eye tracking 

glasses SMI ETG 2 with a scene resolution of 1280 x 960 

px (viewing angle: 60° horizontal, 46° vertical) of the front 

camera offering a sampling frequency of 24 Hz with the 

gaze point measurement having an accuracy of 0.5° over 

all distances.  

Stimuli. The stimuli (Figure 2) were placed on a table 

covered in a green tablecloth and consisted of five trans-

parent syringes, two beige bowls and one disinfectant dis-

penser. Four of the syringes had a green piston and maxi-

mum filling capacities of 2, 5, 10 and 20 ml and one was 

fully transparent with a filling capacity of 50 ml. The bowl 

on the left side was almost completely filled with water 

and the other one was empty. Moreover, there was one 

long piece of adhesive tape attached to the tablecloth with 

five filling quantities written on it (12ml, 27ml, 19ml, 

150ml and 87ml).  
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Figure 2: Spatial arrangement of the stimuli at the beginning of 

the handling task. 

Task. The participants were asked to decant the filling 

quantities specified on the adhesive tape from the left bowl 

to the right bowl. The two bowls and the disinfectant dis-

penser should not be moved and the participants were only 

allowed to use the maximum filling quantity for each sy-

ringe. After each completed decanting of one of the five 

preset values, the participants were instructed to disinfect 

their hands.  

Design 

For the main study, the data set of the handling task was 

analyzed by the two evaluation methods SGM and cGOM. 

Both evaluation methods were compared in terms of con-

formance with the ground truth and efficiency, quantified 

through the two dependent variables (i) fixation-count per 

AOI and (ii) required time for each evaluation step. For 

calculation of the fixation-count per AOI, three AOIs were 

defined. All syringes were equally labelled as syringe 

without further differentiation. The disinfectant dispenser 

was referred to as bottle. All gaze points that did not affect 

either AOI were to be assigned to the background (“BG”). 

True positive rates (TPR) and true negative rates (TNR) 

were calculated for the AOIs syringe and bottle to evaluate 

the effectivity of the algorithm. While TPR describes how 

many of the true positive assignments of the ground truth 

were found by the cGOM tool, TNR describes the same 

comparison for the true negative assignments or non-as-

signments.  

Even though cGOM is able to assign the gaze point of 

each frame to the corresponding AOI, for reasons of com-

parability the assignment was also performed using only 

the fixations’ middle frame. For comparison of efficiency, 

the required time for each evaluation step of SGM and 

cGOM was measured and summed up. For all manual 

work steps, the times were averaged over all analysts, 

whereas all computational steps were measured in one rep-

resentative run. Finally, the relation of data size and re-

quired time for evaluation was plotted and extended by a 

linear trend line to allow the determination and visualiza-

tion of the break-even point of both evaluation methods.  

Participants & Materials 

Five professional analysts (5 males, average 29 years, 

range 26-37 years), experienced in eye tracking data anal-

ysis, performed both the evaluation using Semantic Gaze 

Mapping and the manual steps of computational Gaze-Ob-

ject Mapping (e.g. data labelling). For the latter, they re-

ceived a training prior to execution. All operations con-

cerning mask R-CNN were performed using an AWS GPU 

1 NVIDEA Tesla V100 (Graphics Processing Unit) via 

Amazon Web Services cloud computing. Both Semantic 

Gaze Mapping and the export of gaze data were performed 

using SMI’s BeGaze 3.6. 

Procedure 

The evaluation process is divided into three purely man-

ual steps for SGM and five steps for cGOM with the latter 

consisting of two computational operations and three that 

demand manual execution by the analyst. The respective 

steps of both methods are explained in the following.  
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Semantic Gaze Mapping. Initially, the evaluation was 

prepared once by loading a reference image with all ob-

jects of interest into the software and drawing AOIs ac-

cordingly. This reference image and all respective AOIs 

can be reused over all trials. Subsequently, the manual 

mapping for the recordings of the handling tasks was per-

formed for all fixations until at last, the data was exported. 

Computational Gaze-Object Mapping. First, training im-

ages were collected to train mask R-CNN on the handling 

task setup, using only 72 frames from the recording of a 

pilot study. All images were taken from the front camera 

of the eye tracking glasses, resulting in a corresponding 

resolution of the training and the test images. Due to the 

small amount of training images, it was of great im-

portance to keep environmental conditions constant 

throughout all studies. Mask R-CNN needs labelled im-

ages as input for training, just as they should be outputted 

later. To do this, close contour masks were manually 

drawn on all objects of interest in the training images. 

Once all images were labelled, the training of the neural 

network was started. This operation is purely computer-

based and thus did not require the analyst's working time, 

allowing the analyst to export the gaze data in the mean-

time. The cGOM algorithm requires start time, duration 

and end time of all fixations, the x and y coordinates of the 

gaze point as well as the raw video recording of the front 

camera. Once all data was prepared, in a final step, the al-

gorithm performed the gaze-object mapping of all trials in 

a single run. 

Results 

As presented in Methods, the algorithm in its core is an 

already established state-of-the-art convolutional neuronal 

network for object detection including the prediction of 

masks. Figure 3 shows that the algorithm is able to perform 

the mapping of specific gaze points to gazed-at objects 

when comparing the position of the object masks with the 

gaze point coordinates. On the one hand, this chapter shall 

evaluate the mapping performance of the algorithm in 

comparison to the manual mapping, which is considered 

as ground truth. On the other hand, it shall provide an over-

view of the time needed to operate the algorithm and pre-

sent the break-even point from which on the algorithm ap-

proach is faster than the manual mapping. 

 

 

Figure 3: Detection of the two objects syringe and bottle by the 

cGOM algorithm. The detected objects are marked with masks, 

coloured according to the object class. Their positions in the 

image are then compared with the corresponding gaze point 

coordinate (red ring). 

Effectivity evaluation. Figure 4 shows the results for TPR 

and TNR of the two AOIs syringe and bottle. For the AOI 

syringe, the cGOM tool achieves a TPR of 79% and a TNR 

of 85%. For the AOI bottle, the TPR of the cGOM tool is 

58% and the TNR is 98%. Table 1 shows the overview sta-

tistic of the fixation mapping both for SGM and for 

cGOM, including the number of fixations mapped [-], the 

average fixation duration [ms] and the standard deviation 

of the fixation durations [ms] for the two examined objects 

syringe and bottle. 

Efficiency of the manual mapping. The analysts needed 

a total of 128 minutes on average for the mapping, with a 
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standard derivation of 14 minutes. The subtasks were 

preparation, mapping and export of the data sample. The 

main time was needed to map all 4356 fixations. The exact 

sub-times for the total mapping process are presented in 

Table 2.   

Efficiency of the computational mapping. The whole pro-

cess using the algorithm required 236 minutes in total. The 

exact times of the subtasks of the mapping process are 

shown in Table 3. The mapping aided by the algorithm re-

quires manual and computational steps. The cGOM tool 

spends most of the time for the steps of training and map-

ping that are solely conducted by a computer. The steps for 

collecting training images, manual labelling of the training 

images and export of the main study gaze data have to be 

performed by an operator. The labelled training set of this 

study included 72 images showing in total 264 representa-

tions of the object syringe and 32 representations of the 

object bottle. These three manual steps required 129 

minutes in total. 

Break-even point. Figure 5 shows the approximated 

break-even point for the average time required for the 

manual mapping. The measurement points for the manual  

mapping are the averaged interims for the single partici-

pant data sets. The completely analysed data sample (video 

time) totals up to 52 minutes. The start time for the data 

mapping was dependent on the required preparation for the 

manual and for the computational mapping. The average 

of the measured mapping times is extended by a linear 

trend line (dashed lines in Figure 5). The grey cone shows 

the extended linearized times of the fastest and slowest ex-

pert. All linearization is based on the assumption that the 

experts take sufficient breaks. The horizontal dashed line 

in Figure 5 indicates the time of the three manual steps re-

quired for the cGOM tool. For the manual SGM tool, the 

ratio between to-be-assigned gaze data sample and the re-

quired time for the mapping is 2.48 on average. For the 

cGOM tool, the ratio is 0.77 on average. The break-even 

point of the whole manual mapping procedure and the 

whole computational mapping procedure lies approxi-

mately at a data sample size of 02:00h. When comparing 

only the manual steps of both procedures, the break-even 

point reduces to a data sample size of approximately 

01:00h (see Figure 5).   

 

Figure 4:  True positive rate (TPR) and true negative rate (TNR) of the cGOM assignment, compared to the manual assignment, 

which is considered as ground truth [%]. Relation between the results of the manual mapping (abscissa) and the mapping by the 

cGOM tool (ordinate).  264 labelled representations for the AOI syringe, and 32 labelled representations for the AOI bottle were 

used for training the cGOM algorithm. 
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Table 1: Overview statistics of the fixations mapped by SGM and cGOM for the objects syringe and bottle. The applied statistics are 

number of fixation [-], fixation duration mean [ms] and fixation duration standard deviation [ms]. 

Mapping characteristics SGM (syringe) cGOM (syringe) SGM (bottle) cGOM (bottle) 

Number of fixations [-] 2016 1934 79 82 

Duration mean [ms] 445 434 311 248 

Duration SD [ms] 

 

 

 

 

568 571 296 146 

     

 

Table 2: SGM - Overview of the mapping sub-times (mean and standard derivation in minutes) of the manual mapping by five 

professional analysts. The sub-tasks were preparation, mapping and export of the data sample. 

SGM (Semantic Gaze Mapping) Mean [min] Standard derivation [min] 

Preparation 1.5 1 

Mapping 126 13 

Export 1 0.5 

 Total time 128.5 14 

 

Table 3: cGOM - Overview of mapping sub-times (mean and standard derivation in minutes) of the computational mapping by the 

algorithm. The mapping aided by the algorithm requires manual steps (#) and computational steps (*).  

cGOM (computational Gaze-Object Mapping) 

 

 

Mean [min] Standard derivation [min] 

Collecting training images (#) 15 0 

Manual labelling of the training images (#) 113 38 

 Training of the neural network (*) 67 0 

Export of the main study gaze data (#) 1 0.5 

Mapping of the main study gaze data (*) 40 

 

0 

Total operator time 129 38 

 Total time 236 38 
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Figure 5: Graphical representation of data samples size in hours and minutes (abscissa) and time for mapping in hours (ordinate) for 

manual mapping using SGM (●) and computational mapping using cGOM (▲). The linear approximation is based on the measured 

sub-times data. According to the approximation, a sample size of 4 hours video time would require 6.5 hours for the computational 

mapping and 10 hours for the manual mapping on average. The grey cone represents the distribution of the manual mapping and the 

linear continuation. The break-even point is at approx. 02:00h gaze data sample size. The break-even point for the man hours invest-

ment for cGOM is at approx. 01:00h gaze data sample size.

Discussion 

The goal of the main study was to investigate whether 

the newly introduced machine learning-based algorithm 

cGOM offers the potential of replacing conventional, man-

ual AOI evaluation in experimental setups with tangible 

objects. Therefore, manual gaze mapping using SGM, 

which was considered as ground truth, and cGOM were 

compared in regards to their performance. In the process, 

it was quantified whether the new algorithm is able to ef-

fectively map gaze data to AOIs (RQ1) and from which 

recording duration on the algorithm works more efficiently 

than the manual mapping (RQ2). Based on the results of 

this study we evaluate both research questions.  

 

(RQ1) How effective is cGOM in assigning fixations to 

respective AOIs in comparison with the ground truth? 

 

The two objects used during the handling task were de-

liberately selected because they represent potential chal-

lenges for machine learning. On the one hand, the syringes 

are partially transparent and constantly change their length 

during decanting. On the other hand, both the syringes and 

the bottle have partly tapered contours, which were as-

sumed difficult to reproduce by close contour masks, in 

particular when working with small training data sets. Ac-

cording to the results presented in Figure 4, the assignment 

by the computational mapping has a TPR of 79% for the 

AOI syringe and 58% for the AOI bottle. For training the 

neural network, not only the number of training images but 

also the total number of object representations in these im-

ages is important. Since the stimuli consisted of five sy-

ringes and only one bottle, the 72 training images included 

264 representations of the AOI syringe on which the neural 

network could learn, but only 32 representations of the 
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AOI bottle. Due to the small learning basis, the masks pro-

duced by the algorithm sometimes did not include crucial 

features like the tip of the bottle (Figure 3).  

For the AOI syringe, the TNR is slightly better than the 

TPR, whereas for the AOI bottle the TNR greatly exceeds 

the TPR. The relation between TPR and TNR can be well 

explained by the quality of the created masks. The masks 

tend to rather fill too little of the object than too much. The 

more the masks are directed inwards from the outer con-

tour or exclude crucial features like in case of the bottle, 

the less true positives are registered, but the higher the 

probability of true negatives being recorded. 

In line with the results, it can be concluded that for the 

AOI syringe the conformance with the ground truth is al-

ready promising, but can still be further increased. For the 

AOI bottle, there is no sufficient true positive rate yet, but 

with almost 60%, it is surprisingly high given the fact that 

the neural network was shown only 32 object representa-

tions of the bottle during training. In comparison, large 

online databases such as MS COCO work with hundreds 

to thousands of labelled images for training one single ob-

ject. Objects already represented in the COCO data set 

may even be used in a plug-and-play approach without 

training, using only the gaze-object mapping feature of the 

presented algorithm. In contrast to the 72 images needed 

for the tailored approach of this study, the COCO dataset 

includes more than 320k labelled images in total (Lin et 

al., 2014). To improve the performance of the cGOM al-

gorithm, the amount of training images and object repre-

sentations can be increased until a sufficient TPR and TNR 

is reached. 

 

(RQ2) At which recording duration does the efficiency of 

the computer-based evaluation exceed that of the manual 

evaluation? 

 

The cGOM tool exceeds the manual evaluation when the 

respective procedure in total needs less time. The amount 

of data from which onwards the cGOM tool is faster than 

the manual evaluation is called the break-even point. For 

the break-even point one has to distinguish between the 

time for the total computational mapping procedure and 

the time, a person has to invest (see man hours investments 

of cGOM in Figure 5). The main part of the time is needed 

for training the algorithm on the training images, which is 

solely performed by the computer, and for the labelling of 

the training images, which has to be performed once by the 

analyst. For the total procedure and the consideration of 

the average speed for manual mapping by the experts, the 

break-even point lies at 2 hours of eye tracking recording. 

When focussing only on the time a person has to invest, 

this break-even point reduces to just 60 minutes of eye 

tracking recording. 

 After the preparation of the cGOM algorithm, the algo-

rithm needs less than 8 minutes for every 10 minutes of 

eye tracking recording and thus is able to work in real time 

with a factor of 0.77. This is by far faster than the manual 

mapping, which has on average a ratio of 2.48 between re-

cording length and time needed for the manual mapping. 

The difference in evaluation speed does not take into ac-

count symptoms of fatigue on the part of the analyst that 

increase considerably with longer evaluation times of 

SGM. With the given break-even points of only 2 hours of 

eye tracking recording or rather 1 hour, considering only 

the human working time, and the real-time capability of 

the mapping, the authors evaluate the efficiency of the 

cGOM tool exceeds the manual mapping for the majority 

of mobile eye tracking studies. 

Due to the novelty of the algorithm presented in this 

study, there are several limitations regarding the results. 

First and foremost, to achieve the best possible results with 
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a minimum amount of training images, the results pre-

sented are only valid in a laboratory environment with con-

stant conditions. The amount of training data has to be 

higher to cover the possible variations in field studies. Fur-

ther investigations are also required to determine which 

other objects are suitable for the presented algorithm and 

how the characteristics and number of objects influence 

the evaluation time. Although the comparison with SGM 

as a ground truth allows for a good assessment of the algo-

rithm’s potential, it is questionable that the results of the 

manual mapping are always error-free due to the subjec-

tive evaluations by the analysts. The approach using five 

independent professional analysts tries to compensate this 

limitation.  

Moreover, the gaze data set consisted of only 52 minutes 

video material and the derived linearization may not be 

true, as the human analysts cannot work uninterruptedly 

and the mapping speed decreases. The results for the meas-

ured times for the computational and the manual mapping 

may not be achieved when using a different computer sys-

tem or mapping a different set of gaze data. The computa-

tional system used for this study has a state-of-the-art 

graphics processing unit (GPU), which is not comparable 

to the one of a standard computer regarding the speed and 

hence the time needed for training the algorithm and map-

ping the gaze data. Cloud computing, which was used in 

this study, lowers the burden as it continuously decreases 

the costs and democratises the access to the amount of 

computational performance needed. 

As described in the introduction, AOI analysis of mobile, 

interactive eye tracking studies with tangible objects is still 

a time-consuming and challenging task. The presented 

cGOM algorithm is a first step to address this gap and com-

plement state-of-the-art methods of automated AOI analy-

sis (e.g. markers). For objects that are trained with a suffi-

cient amount of training data like the AOI syringe, the al-

gorithm already shows a promising TPR and TNR. Due to 

the early break-even point, both for the total procedure and 

in particular considering human working time, as well as 

the real-time capability of the mapping process, even hours 

of eye tracking recording can be evaluated. Currently, this 

would require an amount of time for the manual mapping 

that is not or difficult to realise, seen from an economical 

and a humane point of view. Consequently, this approach 

using machine learning for the mapping task promises to 

enable the mapping of a great amount of gaze data in a 

reliable, standardized way and within a short period. It lays 

the foundation for profound research on AOI metrics and 

reduces the obstacles many researchers still have when 

thinking about applying mobile eye tracking in their own 

research. 
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