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Entanglement frustration for Gaussian states on symmetric graphs
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We investigate the entanglement properties of multi-mode Gaussian states, which have some
symmetry with respect to the ordering of the modes. We show how the symmetry constraints
the entanglement between two modes of the system. In particular, we determine the maximal
entanglement of formation that can be achieved in symmetric graphs like chains, 2d and 3d lattices,
mean field models and the platonic solids. The maximal entanglement is always attained for the
ground state of a particular quadratic Hamiltonian. The latter thus yields the maximal entanglement
among all quadratic Hamiltonians having the considered symmetry.

Classically as well as quantum mechanically the global
ordering or symmetry of a system often imposes highly
non-trivial constraints on its local properties. These
kinds of frustration effects lie at the heart of ordered
interacting systems, and physicists are faced with these
phenomena whenever dealing with lattice systems or
molecular structures. The present paper is devoted to
investigate how the entanglement of two subsystems of a
larger system is constraint by such a global symmetry for
some particularly interesting class of states, the so–called
Gaussian states [1].

Gaussian states appear very naturally in several
branches of physics where entanglement plays a predom-
inant role. The electromagnetic field in most quantum
optical setups, atomic ensembles interacting with such
fields [2], the motion of a collection of trapped ions, or
the low energy (bosonic) excitations of many interacting
systems can be very well described by these states. This
is due to the fact that quantum field theories can be, in
some regimes, approximated by Hamiltonians which are
quadratic in some bosonic operators, and thus in thermal
equilibrium as well as a result of the dynamics the corre-
sponding states are Gaussian. Thus, there is a growing
interest in understanding the entanglement properties of
these states [2, 3, 4, 5, 6, 7].

Our results quantify a very intuitive property of en-
tanglement, which distinguishes it from the usual corre-
lations found in classical systems: one particle can share
entanglement only with a limited number of other par-
ticles [8], which in turn becomes smaller and smaller as
the amount of entanglement increases. Furthermore, the
entanglement that can be shared by a subset of parti-
cles strongly depends on the symmetries of the multi-
particle state. For example, if we have a set of particles
distributed on a lattice in a state with translational sym-
metry, the maximal entanglement between any two near-
est neighboring particles should depend on the number
of spatial dimensions, and should decrease if the total
number of particles increases. For one-dimensional rings
of spin 1

2 particles quantitative investigations of this kind
were started in [9]. However, the involved optimization
problems are highly non-trivial such that up to now only
a lower bound for the achievable Entanglement of Forma-

tion (EoF) [10] is known. In the case of Gaussian states,
the situation can become even more intriguing since for
two modes only, the amount of entanglement becomes
unbounded. If we consider three modes, and impose that
the global state is invariant under permutations, it turns
out that the maximum EoF between any pair of modes
becomes finite. By increasing the number of modes and
imposing different symmetries to the global state, this
quantity experiences strong modifications. In this work
we determine the Gaussian state of N modes which gives
rise to the maximal EoF between a selected pair of modes,
for any N and a large variety of symmetry groups.
From our analysis it also follows that the state for

which the maximum entanglement is generated under a
given symmetry corresponds to the ground state of a par-
ticular Hamiltonian, quadratic in the bosonic operators,
which can be easily constructed. Thus we can deter-
mine the Hamiltonian, invariant under a certain symme-
try group, that generates the maximum two–mode en-
tanglement for the physical systems mentioned above.
Although we will consider rather general symmetry

groups, we will illustrate our results for groups which
can be associated to symmetric graphs (Fig.1(a)) , since
they give an intuitive geometric depiction of the group
and they are the ones that naturally appear in many
physical systems. For example, we will give the optimal
EoF for states that have the symmetries of a lattice in
any dimension, including square, cubic, hexagonal, and
trigonal lattices (Tab.I), or those of all platonic solids
(Tab.II).
Let (Q1, . . . , QN , P1, . . . , PN ) := R be the N conjugate

pairs of canonical operators characterizing N modes and
obeying the canonical commutation relations [Rk, Rl] =
iσkl with σ being the symplectic matrix (cf.[1]). Let us
consider a subgroup G of the permutation group and two
particular modes, k, l ≤ N , for which there exists a group
element such that g(k) = l and g(l) = k (this condition
will be relaxed later on). We construct a Hamiltonian
operator as follows

Ĥmax =
1

4|G|

∑

g∈G

(
Qg(k) +Qg(l)

)2
+
(
Pg(k) − Pg(l)

)2
.(1)

Let us denote by E0 the ground state energy and by
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FIG. 1: (a): Apart from chains, cubic lattices and meanfield
clusters there are several familiar symmetric graphs. Exam-
ples are the five platonic solids (e.g. the dodecahedron), and
hexagonal or trigonal lattices. (b): Maximal nearest neighbor
entanglement Emax (ebits) in a ring of N harmonic oscillators.
The dotted curves represent the envelopes corresponding to
Eq.(10).

Ψ0 the corresponding ground state, which is a Gaussian
state, i.e., Ψ0 has a Gaussian Wigner function. The rela-
tion between this Hamiltonian and the EoF will later on
be established by linearizing the expression for the latter.
We will show that the Gaussian state which is invariant
under G and which maximizes the EoF of the modes k
and l is exactly Ψ0 and that the corresponding EoF is
Emax = EF (E0), where

EF (∆) = c+(∆) log[c+(∆)]− c−(∆) log[c−(∆)], (2)

and c±(∆) := (∆−1/2 ± ∆1/2)2/4. Hence, the ground
state of Ĥmax has maximum entanglement under all
G-invariant Gaussian states and conversely, among all
quadratic G-invariant Hamiltonians Ĥmax generates the
largest amount of entanglement at zero temperature.
The ground state of Hamiltonians of the form (1) can

be easily determined by resorting to symplectic space.
We define the covariance matrix (CM) of a Gaussian state
ρ as usual,

Γkl :=
〈

{
(
Rk − 〈Rk〉

)
,
(
Rk − 〈Rk〉

)
}+

〉

, (3)

which must fulfill Γ ≥ iσ [1]. Let us also introduce the
Hamiltonian matrix [5] corresponding to Ĥmax as H =
H+ ⊕H− with [13]

H± :=
1

|G|

∑

g∈G

Tg h
(k,l)
± T−1

g , (4)

h
(k,l)
± :=

1

4

[

|k〉〈k|+ |l〉〈l| ± (|k〉〈l|+ |l〉〈k|)
]

. (5)

The matrix H ≥ 0 can be diagonalized by a symplectic

matrix S, H = SDST . Since tr
[

ρĤ
]

= tr [ΓH ], the

lattice Emax Na

hexagonal (2d) 10.61 3

square (2d) 6.31 4

trigonal (2d) 2.69 6

cubic (3d) 2.62 6

TABLE I: Maximal nearest neighbor entanglement Emax (in
units of 10−2 ebits) for some infinite 2d and 3d lattices. Na

is the number of adjacent vertices.

ground state energy of Ĥ is given by [14]

E0 = inf
Γ

tr [ΓH ] = inf
Γ

tr [ΓD] = 2||

√

H
1/2
+ H−H

1/2
+ ||1.

(6)
Since H has a null space, the CM Γ0 of the ground state
Ψ0 of Ĥ is achieved in the limit ǫ → 0 of Γǫ := S−1T

ǫ S−1
ǫ ,

where Sǫ is the symplectic matrix that diagonalizes H +
ǫ1.
Before we prove the above statements, let us utilize the

results to analyze the maximum EoF for several interest-
ing symmetry groups. We will concentrate on groups
which can be associated to a symmetric graph.
Consider a simple undirected graph with N vertices,

characterized by an adjacency matrix A, which is such
that Akl = 1 if the vertices k and l are connected by an
edge, and Akl = 0 if there is either no edge or k = l. The
symmetry groupG of the graph contains all permutations
g, which commute with the adjacency matrix [A, g] = 0.
The graph is called symmetric if all edges as well as all
vertices are equal in the sense that every edge and every
vertex can be mapped onto every other one by an element
of G. Examples of symmetric graphs are given in Fig.1(a)
and Tab.I,II. By utilizing this symmetry we can simplify

H± =
1

|E|

∑

(k,l)∈E

h
(k,l)
± , (7)

where E = {(k, l)|Akl = 1} is the set of edges. Hence,
the sum in Eq.(1) runs over all edges which correspond
therefore to physical interactions between the adjacent
modes. By observing that [H+, H−] = 0 we can derive
the ground state CM (or the respective limit):

Γ0 =
√

H−H
−1
+ ⊕

√

H+H
−1
− . (8)

Note that when acting on two modes only, the ground
state of Ĥmax is the original singular EPR-state. More-
over, since H− has a Kernel containing the vector
(1, 1, . . . , 1) the ground state of any Ĥmax will always
be singular and the maximal entanglement is thus only
attained exactly in the limit of infinite squeezing.
In the following we will apply the obtained results to

some examples of familiar symmetric graphs.

Chains and rings: The simplest non-trivial exam-
ple of a symmetric graph is a ring of N nodes represent-
ing translation and reflection symmetry. In this case the
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operators H± have the form

H± =
1

4N

[
21± (T + T−1)

]
(9)

where Tkl = δk,l+1modN is the cyclic shift operator. H±

are so-called circulant matrices [11], which can be diag-
onalized simultaneously by a Fourier transform yielding

E0 =
1

N

N−1∑

l=0

∣
∣
∣ sin

2π

N
l
∣
∣
∣ =

{
2
N cot π

N , N even
1
N cot π

2N , N odd
. (10)

Hence, the entanglement remains finite and is suppressed
in rings with an odd number of modes (see Fig.1). It
approaches Emax = 0.30 ebits (E0 = 2

π ) in the limit
N → ∞. This value is comparable to the 0.29 ebits
conjectured for an infinite chain of spin 1

2 particles [9].

Cubic lattices: The result obtained for the chain
has a straight forward extension to d-dimensional cubic
lattices. Imposing periodic boundary conditions (i.e. a
lattice on a torus) for a cubic lattice of Nd modes we get

H± =
1

4Nd

[

21±
1

d

d∑

a=1

(T(a) + T−1
(a) )

]

, (11)

where now T(a) is the shift operator acting on the a’th
of d tensor factors, each corresponding to one of the di-
mensions of the lattice (e.g. T(2) = 1⊗ T ⊗ 1 . . .). Diag-
onalizing H± by a tensor product of Fourier transforms
leads to

E0 =
1

Nd

N∑

l1=1

. . .

N∑

ld=1

[

1−
1

d2

( d∑

k=1

cos
2π

N
lk

)2
] 1

2

, (12)

which goes to 1 (Emax → 0) for d → ∞, and is calcu-
lated explicitly in Tab.I for the infinite two and three
dimensional cubic lattice.

Mean field clusters: When every mode is con-
nected to every other one, i.e., when we have complete
permutation symmetry, then

H± = [2N(N − 1)]−1
[
(N − 1)1± (E− 1)

]
, (13)

where Ekl = 1, which leads to E0 =
√

N−2
N . Hence, the

maximal entanglement decreases with the number N of
modes and vanishes as ∼ 1

N2 logN in the limit N → ∞.

Platonic solids: The results for the graphs corre-
sponding to the three dimensional platonic solids can be
found in Tab.(II).
All these examples indicate three different tendencies

for the maximal EoF:

1. Emax decreases with the number of adjacent ver-
tices.

platonic solid Emax Na N E0

tetrahedron 19.74 3 4 1
√

2

cube 19.74 3 8 1
√

2

dodecahedron 11.12 3 20 1

30

(
12 + 5

√
2 + 2

√
5
)

octahedron 10.75 4 6 1

6
(3 +

√
3)

icosahedron 5.37 5 12 1
√

5
+ 1

√

6

TABLE II: Maximal amount of nearest neighbor entangle-
ment Emax (measured in units of 10−2 ebits) and the respec-
tive ground state energy (minimal EPR-uncertainty) E0 for
the five platonic solids. Na is the number of adjacent vertices
and N the total number of nodes.

2. Emax decreases with the total number of vertices.

3. Emax is suppressed in loops with an odd number of
vertices, which give rise to additional frustration.

Let us now to proceed to prove our main result. We
denote by Γ and γ CM of the global state and the reduced
density operator for the modes k, l in whose entanglement
we are interested. The first CM must fulfill

Γ =
1

|G|

∑

g∈G

(Tg ⊕ Tg)Γ(Tg ⊕ Tg)
T . (14)

The CM γ of a two-mode subsystem can always be
written, up to local symplectic transformations S1,2, in
the standard form [3]

(S1 ⊕ S2)γ(S1 ⊕ S2)
T =

(

nA kq
kq nB

)

⊕

(

nA kp
kp nB

)

. (15)

The fact thatG contains by assumption an element which
maps k ↔ l immediately implies that nA = nB and S1 =
S2 = S. Hence, given a global CM we can always find

another one given by
(⊕N

i=1 S
)
Γ
(⊕N

i=1 S
)T

, which is
alsoG–symmetric, and such that γ has the standard form
(15) with nA = nB =: n.
We are interested in maximizing the EoF of γ. Since

nA = nB we can use the results of [6], which show that
this quantity is given by EF (∆), where the function EF

has been given in (2), which is a monotonically decreas-
ing function of the so–called EPR–uncertainty ∆. Thus,
maximizing the EoF is equivalent to minimizing ∆. This
last quantity is a highly nonlinear function of the param-
eters n, kq, kp, and thus minimizing it with respect to all
possible global Γ looks as a very daunting task. In order
to overcome this problem, the trick is to linearize the ex-
pression of ∆ by including an extra maximization in the
problem, i.e. writing

∆ = inf
s>0

tr

[

γ
(

sh
(k,l)
+ ⊕

1

s
h
(k,l)
−

)]

(16a)

= inf
s>0

tr

[

Γ
(

sH+ ⊕
1

s
H−

)]

. (16b)

In the last step we have used that γ is the reduced CM
of Γ, and Eq.(14).
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We show now that Γ must correspond to a pure state.
If a CM Γm corresponds to a G-symmetric mixed state, it
can always be decomposed into a G-symmetric pure state
CM Γp and a G-symmetric matrix M ≥ 0 via Γm = Γp+
M [15]. This decomposition can be interpreted as adding
classical Gaussian noise to Γp [4]. Since this will certainly
not increase the entanglement between any two modes of
the system, maximal entanglement will be attained if the
overall CM Γ corresponds to a pure state.
We can thus exploit the fact that every pure state CM

can be written as

Γ =

(

X XY

YX Y XY +X−1

)

, (17)

with X > 0 and Y = Y T [7]. Hence, the EPR-
uncertainty (16a) becomes

∆ = inf
s>0

str [XH+] +
1

s
tr
[
(X−1 + Y XY )H−

]
, (18)

Maximizing the entanglement means minimizing ∆ with
respect to X and Y under the constraint that they pa-
rameterize a G-symmetric CM. We can, however, drop
this constraint since the symmetry of H± will force the
optimal Γ0 to have the right symmetry. Moreover, Γ0

will be the ground state corresponding to the Hamilto-
nian matrix H = H+ ⊕H− since

∆0 = inf
X,Y

∆ = inf
X

tr [XH+] + tr
[
X−1H−

]
(19)

= inf
Γ

tr [Γ(H+ ⊕H−)] (20)

where we have first set Y = 0, since tr [Y XYH−] ≥ 0
and then incorporated the infimum over s into that over
X . This completes the proof of our main result, since ∆0

is by Eqs.(4,20) equal to the ground state energy E0 of
the Hamiltonian in Eq.(1).
By imposing less restrictions on the symmetry group

than requiring the existence of an element which inter-
changes k ↔ l, the maximal achievable EoF could grow.
In the examples on chains and lattices, we implicitly im-
posed the translational and reflection symmetry. The
same results can however be derived with only the trans-
lational symmetry. In fact, the presented proof can be
extended in a straight forward manner to all symmetry
groups with Abelian commutant, including those of rings
and cubic lattices, without imposing reflection symmetry.
The proof can be found in the appendix.
In conclusion, we have determined the maximal entan-

glement between two modes under the constraint that
the overall system is in a Gaussian state which has some
symmetry with respect to the ordering of the modes. The
result was derived by linearizing the entanglement func-
tional which permits to perform the maximization in a
simple way. We find that the maximal entanglement is
connected to the ground state of a particular quadratic

Hamiltonian which possesses the same symmetry as the
state. The state that maximizes the EoF is precisely the
ground state of such a Hamiltonian. The maximal entan-
glement turned out to be finite in all the discussed cases,
and is even comparable to the (conjectured) values for
spin 1

2 systems for the case of rings [9]. We have shown
how the entanglement decreases with the number of spa-
tial dimensions, and how it depends on the geometry of
the state. Finally, although we have concentrated here
on Gaussian states, we think that similar results may be
obtained for the case of qubits. In that case it is also
possible to linearize the expression for the EoF [12] and
in this way to relate it to the ground state energy of a
specific nearest–neighbor interaction Hamiltonian, which
allowed us to solve the problem for Gaussian states.
We acknowledge interesting discussions with J. Garcia

Ripoll and G.Giedke. This work was supported in part by
the E.C. (projects RESQ and QUPRODIS) and the Kom-
petenznetzwerk “Quanteninformationsverarbeitung” der
Bayerischen Staatsregierung.
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APPENDIX: GROUPS WITH ABELIAN

COMMUTANT

In this appendix, it will be shown that the reflection
symmetry need not be imposed if the commutant of the
group is Abelian, as the states with maximal EoF au-
tomatically have this property. The proof is as follows.
The reduced covariance matrix corresponding to modes
k and l of a state with a symmetry that maps g(k) = l is
of the form

γ =








a b d e

b c f g

d f a b

e g b c








.

It can readily be checked that this can be brought into
symmetric normal form γ̃ by local symplectic transfor-
mations of the form

γ̃ = (O ⊕ 1)(S ⊕ S)γ(S ⊕ S)T (OT ⊕ 1)

with S symplectic and O orthogonal. Suppose now that
γ and the global covariance matrix Γ are such that S =
1, which can always be done by a transformation Γ 7→
(⊕N

i=1S
′)Γ(⊕N

i=1S
′)T . Then the EPR-uncertainty ∆ is

given by

∆ = inf
s>0

Tr













γ (OT ⊕ 1)








s 0 s 0

0 1/s 0 −1/s

s 0 s 0

0 −1/s 0 1/s








(O ⊕ 1)

︸ ︷︷ ︸

h













.

Parameterizing O =

(

cos(θ) − sin(θ)

sin(θ) cos(θ)

)

, one gets

hqq =

(

s cos2(θ) + sin2(θ)
s s cos(θ)

s cos(θ) s

)

(21)

hqp = hT
pq =

( (
1
s − s

)
cos(θ) sin(θ) − sin(θ)

s

−s sin(θ) 0

)

(22)

hpp =

(

s sin2(θ) + cos2(θ)
s − cos(θ)

s

− cos(θ)
s

1
s

)

(23)

Let’s next extend these Hamiltonian blocks to N -modes
by averaging over the group:

Hαβ =
1

|G|

∑

g∈G

TghαβT
T
g

The goal is now to calculate the sum of the symplectic
eigenvalues of this Hamiltonian. As the commutant of the

group was assumed to be Abelian, all N ×N matrices

Aij =
1

|G|

∑

g∈G

Tg|i〉〈j|T
T
g ,

(i, j) ∈ {0, 1}, commute and hence can be diagonalized
simultaneously by a unitary operator (eventually com-
plex), yielding diagonal elements λµ

ij , where (i, j) ∈ {0, 1}
and 1 ≤ µ ≤ N . Applying the same unitary transforma-
tion to the four matrices Hαβ , the complete Hamiltonian
becomes a direct sum of 2× 2 blocks of the form

Bµ =

(

bµqq bµqp
bµqp

∗ bµpp

)

, bµαβ =
∑

ij

hij
αβλ

µ
ij . (24)

In general, the symplectic eigenvalues of a positive op-
erator Γ are given by the square roots of the eigenvalues
of the operator (ΓσΓ†σT ), and the unitary operation un-
der consideration does not change these eigenvalues. It
can now readily be checked that the sum of the symplec-
tic eigenvalues corresponding to the block Bµ is given by
the formula

νµ1 + νµ2 =
√

bµqqb
µ
pp − (Re(bµqp))2.

Due to equation (24), it holds that

bµqqb
µ
pp − (Re(bµqp))

2 = (λ̄µ)TQλ̄µ

where

λ̄µ =






λµ
00

Re(λµ
01)

λµ
11




 ,

Q =






1 0 1

0 −4 0

1 0 1




+

sin2(θ)

2

(

s−
1

s

)2






0 0 1

0 −2 0

1 0 0




 .

The presence of the second term in Q (which is not there
when reflection symmetry is present) can never lead to an
improvement of the entanglement, as it can only increase
the symplectic eigenvalues. Indeed, it holds that

λµ
00λ

µ
11 − |λµ

01|
2 ≥ 0,

as it is the determinant of a principal submatrix of a
positive 2N × 2N matrix P . (P is obtained by first ap-
plying the group symmetry to the hypothetical blocks
hqq = |0〉〈0|;hqp = hT

pq = |0〉〈1|;hpp = |1〉〈1| (which
is manifestly positive), and then diagonalizing the four
blocks by a unitary transformation.) Therefore, the op-
timal choice for the orthogonal matrix O is to choose it
equal to the identity, imposing that the optimal solution
obeys the reflection symmetry.


