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Abstract

Background: Long non-coding RNAs (lncRNAs) are typically expressed at low levels and are inherently highly
variable. This is a fundamental challenge for differential expression (DE) analysis. In this study, the performance of
25 pipelines for testing DE in RNA-seq data is comprehensively evaluated, with a particular focus on lncRNAs and
low-abundance mRNAs. Fifteen performance metrics are used to evaluate DE tools and normalization methods
using simulations and analyses of six diverse RNA-seq datasets.

Results: Gene expression data are simulated using non-parametric procedures in such a way that realistic levels of
expression and variability are preserved in the simulated data. Throughout the assessment, results for mRNA and
lncRNA were tracked separately. All the pipelines exhibit inferior performance for lncRNAs compared to mRNAs
across all simulated scenarios and benchmark RNA-seq datasets. The substandard performance of DE tools for
lncRNAs applies also to low-abundance mRNAs. No single tool uniformly outperformed the others. Variability,
number of samples, and fraction of DE genes markedly influenced DE tool performance.

Conclusions: Overall, linear modeling with empirical Bayes moderation (limma) and a non-parametric approach
(SAMSeq) showed good control of the false discovery rate and reasonable sensitivity. Of note, for achieving a
sensitivity of at least 50%, more than 80 samples are required when studying expression levels in realistic settings
such as in clinical cancer research. About half of the methods showed a substantial excess of false discoveries,
making these methods unreliable for DE analysis and jeopardizing reproducible science. The detailed results of
our study can be consulted through a user-friendly web application, giving guidance on selection of the optimal
DE tool (http://statapps.ugent.be/tools/AppDGE/).
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Background
Messenger RNA (mRNA) has been the primary target of
transcriptome studies. However, RNA sequencing tech-
nology has revealed that the human genome is pervasively
transcribed, resulting in thousands of novel non-coding
RNA genes. Hence, attention is expanding to one of the
most poorly understood, yet most common RNA species:
long non-coding RNAs (lncRNAs) [1, 2]. These lncRNAs

form a large and diverse class of transcribed RNA mole-
cules, constituting up to 70% of the transcriptome with a
defined length of 200 nucleotides. While they do not
encode proteins, lncRNAs are strong regulators of gene
expression [3]. The discovery and study of lncRNAs are of
major relevance to human health and disease because they
represent an extensive, largely unexplored, and functional
component of the genome [3–5]. In contrast to mRNAs,
lncRNAs are generally expressed in low amounts, typically
an order of magnitude lower than mRNA expression
levels [2, 6, 7]. Furthermore, several studies [7–9] demon-
strated that lncRNA expression levels are very noisy,
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which is a characteristic shared with low count data from
massively parallel RNA sequencing.
Following the advent of RNA-sequencing (RNA-seq)

technologies, several statistical tools for differential gene
expression (DGE) analysis have been introduced.
However, low and noisy read counts, such as those com-
ing from lncRNAs, are potentially challenging for the tools
[10, 11]. For example, it is commonly observed that low
count genes show large variability of the fold-change esti-
mates and thus exhibit inherently noisier inferential
behavior. The majority of the methods suggest removal of
low expressed genes before the start of data analysis, but
this procedure essentially blocks researchers from
studying lncRNAs. In our study, no such severe filtering
was applied, leaving almost all lncRNAs in the dataset. To
our knowledge, no statistical method has been specifically
developed for the analysis of lncRNA-seq data and there-
fore transcriptome studies make use of statistical methods
that assume sufficient expression levels. In this paper, we
evaluated and compared the performance of many popu-
lar statistical methods (Table 1) developed for testing DGE
of RNA-seq data (hereafter referred to as “DE tools”), with
special emphasis on lncRNAs and low-abundance
mRNAs. All tools considered in this study are popular (in
terms of number of citations), available as R software
packages [12], and use gene or transcript level read counts
as input. Our conclusions are based on six RNA-seq data-
sets and many realistic simulations, representing various
typical gene expression experiments.
Previous comparative studies of DE tools [11, 13–18]

focused on mRNA and some of these concluded that DE
tools show inferior performance for genes or transcripts
with low counts. We extend previous studies by including

lncRNAs and low expressed mRNAs separately. Further,
our results are based on diverse types of RNA-seq datasets
that vary with respect to their biological and technical
features, such as species (human, mouse, rat), experimen-
tal design (control versus treatment, diseased versus
non-diseased, and tissue comparisons), and level of
biological variability. We assess the degree of concordance
among results returned from the DE tools, and we study
important statistical properties of DE tools, such as their
ability to control the false discovery rate (FDR) and their
sensitivity for the detection of DE. The latter are empiric-
ally investigated using a non-parametric resampling-based
simulation procedure. The simulation method essentially
resamples data from a real RNA-seq dataset to create
realistic gene expression scenarios. Consequently, our re-
sults reflect the genuine behaviour of the DE tools under
study, in contrast to simulation studies based on paramet-
ric assumptions. Note that the evaluation of a method that
relies on a parametric assumption (e.g., edgeR, DESeq,
and DESeq2 assume a negative binomial distribution) by
means of simulated counts using the same distribution as
used in [14] will give too optimistic results. Moreover,
these results do not reflect a realistic setting because the
distributional assumption cannot be expected to hold in
general [19]. By starting from a variety of real and
representative RNA-seq datasets, the scope of our findings
is wide. To our knowledge, our study is the largest
empirical evaluation conducted so far in terms of the
number of real datasets used, the number of performance
metrics evaluated, and the number of DE pipelines
included (Additional file 1: Figure S1).
Our study consists of four parts: first we evaluated

various normalization procedures; second we compared

Table 1 List of DE tools and pipelines along with their reference and number of citations

Tool (package version) Pipelines Reference Citationsa

edgeR (3.14.0) (1) Exact test based on NB distribution, (2) GLM with NB family,
(3) QL, (4–7) robust GLM with four different prior DF

[32] 5406

DESeq (1.24.0) (1) Default, exact test based on NB distribution [45] 4655

DESeq2(1.12.4) Fits GLM with NB family. (1) Default, (2) independent filtering
disabled (setting1), (3) independent filtering disabled and
outlier-detection off (setting2)

[10] 1364

limma (3.25.21) Fits linear models on log-transformed counts. (1) Voom, (2)
voom (robust), (3) trended, (4) trended (robust), (5) voom+QW,
(6) limmaVST, (7) limmaQN

[33] 1828

NOISeq (2.12.1) (1) Default, data-adaptive and non-parametric method [53] 524

baySeq (2.6.0) (1) Default, Bayesian methods with empirical prior distributions [52] 315

SAMSeq (samr, 2.0) (1) Default, non-parametric method based on Wilcoxon rank
sum statistic

[19] 140

PoissonSeq (1.1.2) (1) Default, uses poisson log-linear model [46] 92

QuasiSeq (1.0.8) Fits GLM with NB family. (1) QL, (2) QLShrink, (3) QLSPline [34] 57
aAs reported by Web of Science (http://www.webofknowledge.com/; April 25, 2018). Further description about the pipelines can be found in the “Methods” section.
Abbreviations: DF=degrees of freedom, GLM=generalized linear models, NB=negative binomial, QL=quasi-likelihood, QN=quantile normalization, QW=quality
weight, VST=variance stabilizing transformation
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the level of agreement among DE pipelines using various
publicly available RNA-seq datasets; third we explored the
ability of the DE pipelines to recover known evidence of
differential expression; and fourth we used simulation
procedures to evaluate and compare the performance of
the tools under a variety of gene expression experiment
scenarios (Fig. 1), such as variability, sample size, and frac-
tion of DE genes.

Results and discussion
RNA-seq datasets
Six publicly available benchmark RNA-seq datasets were
used for the concordance analysis. Three of them were
used as source datasets for generating non-parametric
simulated data. The description of the datasets can be

found in the “Methods” section; a summary is presented
in Table 2.
The degree of homogeneity among samples, as

measured by Pearson’s correlation coefficient, was lowest
for the Zhang dataset followed by GTEx (see also the es-
timated biological coefficients of variation in Additional
file 1: Figure S2). As expected, the other datasets had
replicates that are more homogeneous because they were
obtained from inbred animals or cultured cell lines, in
contrast to the GTEx or Zhang datasets containing
tissues for different human individuals. For the Zhang
and NGP nutlin datasets, lncRNAs showed relatively
higher heterogeneity across samples than mRNAs. In
addition, lncRNAs showed, on average, lower expression
than mRNAs (Additional file 1: Figure S3).

Fig. 1 DE tools assessment work flow. The study has four components: evaluation of five normalization methods, concordance analysis of DE
tools, evaluating the capability of DE tools to recover genes with known biological evidence of differential expression, and simulation procedures to
study the statistical properties of DE tools, such as their ability to control the FDR and their sensitivity for the detection of differential expression. Six
diverse types of RNA-seq datasets were used for comparison of the normalization methods and concordance analysis of DE tools. RNA-seq datasets
were obtained from two cultured cell line datasets (CRC AZA and NGP nutlin), inbred animals (Bottomly and Hammer), normal human tissues (GTEx),
and human cancer cells (Zhang). Three series of simulations were performed, each starting from a different RNA-seq source dataset: Zhang, NGP nutlin,
and GTEx data. Results of the simulation study are made available through a user-friendly web application
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Comparison of normalization methods
Comparing DE tools requires careful attention to the
normalization methods. Previous studies [13, 16, 20, 21]
have pointed out that the normalization procedure can
affect DE results. The aim of our study is not to perform a
comprehensive comparison of all normalization methods.
Instead, we compared five normalization methods that are
used in conjunction with the DE methods evaluated in
this study. This will allow us to better understand the
general behavior of the DE tools as evaluated in the subse-
quent sections. The normalization methods were
compared using the metrics from Dillies et al. [20], such
as their capability to reduce technical variability and to
eliminate bias due to library size differences, and their ef-
fect on DGE analysis.
Box plots of the relative log expressions show that for

all six datasets all normalization methods succeed in
aligning the sample-specific distributions and hence no
library size effects were noticeable after normalization
(Additional file 2: Section 2.2). Furthermore, the
condition-specific gene-wise coefficient of variation
(CV), which is a proxy for intra-group variability, was
lower for all datasets upon normalization (Fig. 2b and
Additional file 2: Section 2.3). Nearly equal levels of
biological variability across methods were observed, even
with quantile normalization that was found to result in
high CV in other studies [20, 22]. The overlap of DE
genes with different normalization methods was high
(Fig. 2a and Additional file 2: Section 2.4). Ignoring
quantile normalization (QN), on average (across the six
dataset) a minimum of 86% similarity was observed.
QN-based DE analysis gives deviating results, particularly
for designs with small numbers of replicates (< 5); the
average minimum proportion of similarity was 70.1%
(average minimums are calculated across datasets). Over-
all, the results suggest that all normalization methods
perform almost equally, except QN. Nevertheless, for the

concordance analysis of the DE tools (see next section) we
include a limma pipeline that uses QN (named limmaQN)
to further investigate its effect on other performance met-
rics of DE tools.

Concordance analysis
Twenty-five DE pipelines were run on six RNA-seq
datasets, and (dis)similarities among the results were ex-
amined. The concordance analysis focused on five quanti-
tative and one qualitative metric: (1) number of genes
identified as significantly differentially expressed (SDE);
(2) similarity in terms of the set of SDE genes; (3) the
degree of agreement on gene ranking; (4) similarity of
fold-change estimates; (5) handling of genes with special
characteristics (lncRNAs, genes with low counts, genes
with outliers); and (6) computation time. The results for
individual datasets are presented in Additional file 3.
Results show that the pipelines show substantial vari-

ability in the numbers of SDE genes. The marginal sum-
mary across all datasets indicates that DESeq, NOISeq,
baySeq, and limmaQN detected the smallest number of
SDE genes, whereas QuasiSeq and SAMSeq returned the
largest numbers (Fig. 3). The variability among DE
pipelines with respect to the number of SDE genes seems
to be related to the biological variability in the dataset. For
the Zhang and GTEx RNA-seq datasets, characterized by
the largest intra-group biological variability, the numbers
of SDE genes were quite different among the DE pipelines.
In contrast, the numbers of SDE genes from the NGP
nutlin and CRC AZA datasets, all displaying low
biological variability, were relatively similar among
pipelines. lncRNAs and low-abundance genes in general
were under-represented among the SDE genes (Additional
file 3). For example, 25% of the SDE genes were lncRNAs,
whereas the data contain 40% lncRNAs.
Many of the DE pipelines showed agreement to each

other in terms of the set of SDE genes (Fig. 3). On

Table 2 Summary of datasets

Library size (× 106)

Dataset and reference Replicate size Species Type Number of genes Min. Max. Correlation among
replicatesa

Sequencing
instrument

Library type

CRC AZA {3, 3} Human mRNA 16,499 3.3 4.2 (0.99, 0.99) HiSeq 2000 PE, 100, poly(A)

Hammer [39] {2, 2} Rat mRNA 15,908 17.3 23.5 (0.99, 0.99) GAII SR, 50, poly(A)

Bottomly [40] {10, 11} Mouse mRNA 12,784 2.7 7.3 (0.82, 0.99) GAIIx SR, 30, poly(A)

GTEx [41] {28, 30} Human mRNA 18,632 10.2 76.8 (0.45, 0.99) HiSeq 2000 PE, 76, poly(A)

Zhang [36] {81, 91} Human mRNA 19,254 10.8 31.7 (0.29, 0.98) HiSeq 2000 PE, 90, poly(A)

lncRNA 10,051 0.3 1.0 (0.19, 0.97)

NGP nutlin {10, 10} Human mRNA 17,489 13.4 18.1 (0.98, 0.99) NextSeq 500 PE, 75, poly(A)

lncRNA 8929 0.2 0.4 (0.83, 0.99)
aPearson’s correlation is calculated among replicates within conditions based on read counts
Data include the species, gene biotype, number of genes (annotated genes with at least one count in each condition), number of replicates per condition, library
size (minimum, maximum), Pearson correlation among replicates (minimum, maximum), sequencing instrument, library type (SR=single read, PE=paired-end read,
read length (nucleotides), sequencing type poly(A)/total).
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average, NOISeq, limmaQN, DESeq, baySeq, and SAM-
Seq showed the smallest concordance with all other
tested pipelines. It was also observed that the overlap of
SDE is smaller for lncRNAs than for mRNAs (Additional
file 1: Figure S4). In the Zhang dataset, there is less than
70 and 60% SDE overlap across all DE tools for mRNAs
and lncRNAs, respectively.
Accurate gene ranking is an essential step for down-

stream analysis such as gene set enrichment analysis
(GSEA) [23]. The degree of agreement among the 25 DE
pipelines’ gene ranking is studied using the rank of π
scores; taking into account both the significance and
magnitude of differential expression [24]. Summarized
results across datasets (Fig. 3) indicate that all pipelines
strongly agree, except for baySeq, NOISeq, SAMSeq,

and limmaQN. Apart from baySeq, this is somewhat in
contrast to the findings in Soneson and Delorenzi [14].
This might be due to the difference in the score used to
rank genes, as only p values were used to rank genes in
Soneson and Delorenzi [14]. Except for limmaQN, gene
ranking agreement among all pipelines was nearly the
same for lncRNAs and mRNAs from analyzing the NGP
nutlin data. A slightly lower agreement for lncRNAs was
observed when the most variable dataset (Zhang) was
used (Additional file 1: Figure S4).
Moreover, the log fold-change (LFC) estimates from all

DE tools were strongly correlated, with a minimum of 0.8
Pearson correlation coefficient (on average) for limmaVst,
limmaQN, and limmaTrended pipelines (Fig. 3 and
Additional file 3). However, the correlations become

Fig. 2 Effect of normalization methods on DGE analysis. a The UpSet diagram shows the intersection size among DGE analyses (at 5% FDR), each
using different normalization methods but the same statistical test (moderated t-test from limma package). This result is particularly for the CRC
AZA data. All considered normalization methods generally show strong concordance except for quantile normalization (QN). DGE analysis with all
normalization methods commonly identified 2820 significantly differentially expressed (SDE) genes, whereas QN resulted in 629 SDE genes that
are not shared with other normalization methods. b Distribution of gene-wise coefficients of variation (CV) from the Bottomly data. Each violin
plot indicates the quartiles of the distribution (solid horizontal lines). Results based on all six datasets can be found in Additional file 2
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relatively stronger for the datasets with higher numbers of
samples per group. In addition, the correlations for
lncRNAs were lower than for mRNAs (Additional file 1:
Figure S4 and Additional file 3: Sections 5.4 and 6.4).
In addition, we qualitatively examined the handling of

genes with outlier expression (Additional file 1: Section
3.1). A set of genes with outlier count in only one of the
samples (from the Zhang data) was chosen (Additional file
1: Figure S5). The adjusted p values for these outlier genes
shows that edgeR exact, edgeR GLM, edgeR QL, Poisson-
Seq, QuasiSeq (both settings), and baySeq declared most of
them SDE at 5% nominal FDR (Additional file 1: Table S2),
suggesting that they can be affected by outlier expression.
To come to an overall conclusion, the results were

combined in a hierarchical clustering analysis of the DE
pipelines, resulting in 4 clusters (Fig. 3). DESeq, baySeq,

limmaQN, and NOISeq cluster together, generally
showing the lowest number of SDE genes, lower overlap,
and lower gene ranking agreement with all other DE
pipelines. The second cluster includes edgeR exact,
edgeR GLM, edgeR QL, DESeq2 (both settings), and
limmaVoom (robust and not robust), showing the
highest concordance with respect to calling SDE, gene
ranking, and LFC estimates. Pipelines in this cluster gen-
erally identify more SDE genes than methods in the first
cluster. LimmaTrended (robust and not robust) and
limmaVst appear in a separate cluster because of their
relatively weakly correlated LFC estimates with that of
other pipelines, but these pipelines strongly resemble the
second cluster with respect to the other concordance
metrics. The last cluster includes QuasiSeq (both set-
tings), edgeR robust (with both tested prior degrees of

Fig. 3 Summary of concordance analysis results. Hierarchical clustering of 25 DE pipelines based on standard scores of four concordance metrics
(a fraction of significantly differentially expressed (SDE) genes detected at 5% FDR, b overlap among pipelines in detecting SDE genes at 5% FDR,
c gene ranking agreement, and d similarity of log fold-change (LFC) estimates). Scores are averaged across the six datasets. First, observed values
(let yi, i = 1,2,..., 25) of concordance metrics (proportions and correlations) for each pipeline from a given dataset are converted to standard scores
(zi = (yi − ȳ)/sy, where ȳ and sy are the mean and standard deviation of yi, respectively). Afterwards, the average of standard scores of each pipeline
across datasets are presented. A negative value, for example, for the fraction of SDE genes indicates that the number of SDE genes detected by the
pipeline is lower than the average across all the 25 pipelines. Subsequently, the Euclidean distance among the marginal standardized scores of the
four comparison metrics are computed and the complete linkage method of agglomerative clustering is applied, resulting in four clusters. The bar
plots to the right side of the cluster show the individual marginal scores of each DE tool for the four concordance measures. Since the fold-change
estimate from SAMSeq is in terms of rank-sum, it was excluded from comparison of LFC estimates
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freedom), limmaVoom+QW, PoissonSeq, and SAMSeq.
They detect the most SDE genes and show a modest
proportion of overlap, gene ranking agreement, and LFC
similarity.
Moreover, with respect to identifying DE genes among

genes that are detected only in one group of samples,
DESeq, baySeq, and PoissonSeq fail to estimate a mean-
ingful fold change. On the other hand, edgeR exact test,
DESeq, and SAMSeq return no p value for such genes
with a low signal-to-noise (STN) ratio (Additional file 1:
Section 3.2). STN is defined as the ratio of the mean to
the standard deviation of normalized counts in the
group with detected gene expression [13]. In general,
and not unexpectedly, all the pipelines assign significant
p values for such genes with a high STN ratio
(Additional file 1: Figure S6). This suggests that re-
searchers need to be cautious when interpreting the DE
results, particularly when the 0 read counts in one of the
groups is likely caused by technical artefacts. Moreover,
for lncRNAs (also for low-abundance mRNAs), the STN
ratio is typically low, and hence all the DE pipelines fail
to detect true DE among such genes. However, from the
relationship between the STN and adjusted p values, one
can learn that limma and QuasiSeq tools (and edgeR ro-
bust and DESeq2 to a lesser extent) detect such genes as
SDE even at low STN (Additional file 1: Figure S6).
Results obtained with the three settings of DESeq2

were not markedly different, except that the independent
filtering excluded more lncRNAs (29% from the Zhang
data) than mRNAs (Additional file 1: Figure S7). Among
the seven limma pipelines, voom and trended (with and
without robust estimate of the prior degrees of freedom)
showed relatively better concordance. In addition, voom
with sample quality weight (limmaVoom+QW) tend to
identify more SDE genes. Similarly, edgeR pipelines
attained similar concordance except that edgeR robust
detects slightly more SDE genes than the average. Al-
though the three QuasiSeq pipelines cluster together, the
quasi-likelihood (QL) method with an independent esti-
mate of the gene-wise QL dispersion showed worse
agreement in terms of the set of SDE genes.
The computation time to run DGE analysis presented

in Additional file 1: Figure S8 shows that baySeq and
DESeq require the longest time, whereas limma tools
and PoissonSeq run fast. For RNA-seq data with ten
replicates per group and 19,150 mRNAs, the slowest
tools, baySeq and DESeq, were approximately 8000 and
2000 times slower than the fastest pipeline, limmaQN,
respectively.

Recovering biological truth
In addition to the concordance analysis, we also assessed
the capability of the DE tools to recover genes with
known biological evidence of DE in the benchmark

datasets. To this purpose, results from three published
studies were used to define the truth: genes with
gender-biased expression [25], MYCN regulated genes
[26], and TP53 pathway genes [27] (see “Methods” for
description). The ability to recover the truth is evaluated
using four metrics: number of recovered genes, similar-
ity among DE pipelines in terms of the set of recovered
genes, gene classification agreement with the truth, and
GSEA. Detailed results can be found in Additional file 4.
Despite the challenge of defining biological truth,

several pipelines show relatively good performance in re-
covering the known truth, definitely when considering
that the experimental conditions are not identical in the
benchmark studies and the truth studies. However, in
terms of the number of recovered genes and the degree
of similarity to each other, the pipelines show substantial
variation. In line with the concordance analysis, conser-
vative tools (DESeq, baySeq, and NOISeq) recovered a
relatively lower number of genes with low similarity to
other tools (Additional file 4: Figure S8). In contrast,
tools such as SAMSeq and PoissonSeq that were cate-
gorized as liberal (highest number of SDE genes)
according to the concordance analysis now ranked
generally low in recovering the biological truth across
the three control studies and exhibited the least
agreement with other pipelines. Across the four
metrics assessing biological truth, DESeq2 (both set-
tings), edgeR (robust), and limma (voom+QW, voom,
and trended) outperformed all other tools, whereas
PoissonSeq, SAMSeq, NOISeq, DESeq, and QuasiSeq
(both settings) showed inferior capability.

Simulation results
The non-parametric SimSeq [28] procedure was applied
to realistically simulate RNA-seq expression data. The
simulation technique involves sub-sampling of replicates
from a real RNA-seq dataset with a sufficiently large
number of replicates. In this way, the underlying charac-
teristics of the source dataset are preserved, including
the count distributions and variability. The representa-
tiveness of the simulated data was examined using
various quality metrics, including those proposed by
Soneson and Robinson [29] (see “Methods” section).
Three series of simulations were performed, each
starting from a different RNA-seq source dataset: Zhang,
NGP nutlin, and GTEx data. The degree of homogeneity
among the replicates in these datasets varies, reflecting
different levels of intra-group biological variability (Table
2 and Additional file 1: Figure S2). The Zhang and NGP
nutlin datasets include annotated lncRNAs along with
mRNAs, whereas the GTEx RNA-seq dataset contains
only annotated mRNA genes. Therefore, simulated
counts for mRNA and lncRNA are sampled from mRNA
and lncRNA counts of the source dataset, respectively.
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Gene expressions were simulated under a wide range
of scenarios that may affect the performance of DE tools:
different numbers of replicates ranging from 2 to 40,
different proportions of true DE genes (0 to 30%), two
gene biotypes (mRNA and lncRNA), and different levels
of intra-group biological variability (as present in the
three source datasets). From the simulation results, the
actual FDR, true positive rate (TPR), and false positive
rate (FPR) were computed for each DE pipeline. The
comparison between the two gene biotypes was done in
two ways: simulating lncRNA data only or simulating
lncRNA and mRNA jointly, but analyzing separately.

False discovery rate and true positive rate
FDR refers to the average proportion of incorrect discov-
eries among SDE genes (genes identified as DE at a par-
ticular nominal FDR threshold). A good DE tool has
actual FDR close to the nominal level, and has high TPR.
The TPR, also known as sensitivity, is the average propor-
tion of SDE genes among the true DE genes. The TPR
should be sufficiently large, otherwise one cannot expect
to find many of the true DE genes. Therefore, it is custom-
ary to look for a DE pipeline that has the highest TPR
among those that control FDR (i.e., actual FDR is close to
nominal FDR). The FDR versus TPR curve is used to com-
pare the performance of DE pipelines at various nominal
FDR threshold (ranging from 0 to 100%).
Results from the first simulation (starting from the

Zhang data) generally indicate that the FDR is not
controlled well by many DE pipelines (Fig. 4). Among
the pipelines that control the FDR relatively well, many
have a small TPR. Besides the gene biotype (mRNA ver-
sus lncRNA), the performance is correlated with the
level of the intra-group variability, the number of repli-
cate samples, and the fraction of DE genes. Many DE
tools show severe FDR inflation and slightly lower TPR
when only a small fraction of genes is DE (Additional
file 1: Figures S9 and S10). The actual FDR may even ex-
ceed 50%, which means that more than half of the called
SDE genes may be false discoveries. For most DE tools,
better FDR control and higher sensitivity were attained
with increasing number of replicates (Fig. 4 and
Additional file 1: Figures S11 and S12). Performance of
all DE pipelines is considerably poorer for lncRNAs than
for mRNAs (Figs. 4 and 5). However, very similar results
(poor performance in terms of FDR control and TPR)
were obtained for low-abundance mRNAs based on a
simulation starting from the GTEx data (Additional file
1: Figure S13).
For the simulation that started from the (homoge-

neous) NGP nutlin data, the results were better (Fig. 5),
with good FDR control and high TPR for all DE tools,
even for small numbers of replicates. Only for simula-
tions with 5% of true DE genes was the FDR control lost

(Additional file 1: Figure S10). The difference in per-
formance between the Zhang and NGP nutlin simulations
can be explained by their intra-group variability (Table 2
and Additional file 1: Figure S2): the NGP nutlin data
come from cell line replicates that are characterized by
low biological variability. For the simulations starting from
the GTEx dataset, which has intermediate biological vari-
ability, the performance of the DE tools is somewhere in
between those for the Zhang and NGP nutlin datasets
(Additional file 1: Figure S14).
Because of the trade-off between FDR and TPR, a high

TPR is expected for DE tools with a high actual FDR.
This was observed for edgeR, DESeq2, and QuasiSeq
pipelines, particularly for small numbers of replicates
(Fig. 4). limma and SAMSeq showed better FDR control,
while retaining a high TPR. Their better performance is
true for both biotypes with at least ten and four samples
per group for the Zhang and NGP nutlin simulations,
respectively (Additional file 1: Figures S11 and S12).
DESeq, PoissonSeq, and NOISeq showed better FDR
control, but at a cost of severe TPR loss.
Among the seven edgeR pipelines, edgeR robust

showed generally better performance for the Zhang data
simulations (Additional file 1: Figure S15). However,
only a small difference was observed in the simulation
that starts with the less variable NGP nutlin data. edgeR
robust with data-specific prior degrees of freedom seems
more beneficial in maximizing the TPR. Only small
performance variation was observed among the limma
pipelines, except limmaQN, which deviated substan-
tially (lower performance) in the second simulation
(Additional file 1: Figure S16). This deviation may be
due to the number of replicates, as only five samples
were used in each group. Among all limma pipelines
except limmaQN, voom with sample quality weight
(limmaVoom+QW) lost control of FDR. Similarly,
minor differences were observed among the DESeq2
pipelines (Additional file 1: Figure S17). However, as
indicated in the concordance analysis, the independ-
ent filtering should be used carefully for lncRNAs.
Similarly, among the QuasiSeq pipelines, the one with
QL dispersion estimated independently for each gene,
appeared to have worse performance (Additional file
1: Figure S18).
The simulation study demonstrated that large hetero-

geneity among samples has a potential to negatively
affect the performance of DE tools, particularly leading
to a failure to detect biological signals. The heterogen-
eity can result from both biological and technical factors.
The technical artefacts can be alleviated by filtering low
quality or aberrant samples that substantially contribute
to the intra-group variability [30]. Such samples can be
recognized by the sample-to-sample distances projected
into a two-dimensional space using, for example,
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principal component analysis [10, 32]. This is confirmed by
an extra simulation that starts from the Zhang data
whereby the most distant (outlying) samples were excluded
beforehand (Additional file 1: Section 4.2.3). The results
generally indicate that DE tools perform better with respect
to FDR control and sensitivity if outlying samples are ex-
cluded (Additional file 1: Figures S19 and S20).
Methods for controlling the FDR, for example, Benja-

min and Hochberg (BH) [31], rely on the assumption
that the raw p values have a flat distribution near p = 1.
This assumption, however, might not always hold, espe-
cially for low-abundance genes such as lncRNAs and for

small numbers of replicates. This concern is demon-
strated by (1) a simulation with no DE genes, so that all
p values correspond to the null hypothesis, and (2) using
the p values from the DE results from the six benchmark
RNA-seq datasets. For comparison purposes, the p value
distributions from the analysis of a simulated dataset
with 30% DE genes is also included. The p values associ-
ated with the null hypotheses are supposed to be
uniformly distributed between 0 and 1. For datasets with
a fraction of SDE genes, a spike near p = 0 and a flat dis-
tribution near p = 1 is expected if the DE tool works
fine. For many DE pipelines, the observed p value

Fig. 4 False discovery rate and true positive rate of DE tools using simulated data from the Zhang RNA-seq dataset. The actual FDR and TPR (at
various nominal FDR) of eight DE tools from joint simulation and DGE analysis of mRNA and lncRNA. These particular results are from simulations with
25% true DE genes among 10,000 genes (constituting approximately 30% lncRNAs and 70% mRNAs) for designs with n = 20 and 40 replicates per
group. The curves represent the trade-off between the average TPR and the average actual FDR at different nominal FDR (ranging from 0 to 100%).
The points on the curve indicate the actual FDR and TPR values at 5% nominal FDR threshold. Although negative binomial models (edgeR, DESeq2,
and QuasiSeq) showed higher sensitivity, in general they tend to lose FDR control for simulated data with lower numbers of replicates. In contrast,
DESeq, NOISeq, and PoissonSeq showed better capability of controlling FDR, with actual FDR below the threshold level (5%), but these tools have
lower sensitivity than all other DE tools. For simulated data with at least ten replicates per group, SAMSeq and limma tools consistently showed
better FDR control and comparable TPR to negative binomial models (more results can be found in Additional file 1). DE pipelines generally exhibited
substandard performance (high FDR and low TPR) for lncRNAs than for mRNAs
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distribution looks as expected (Additional file 1: Figures
S21–S27 and Additional file 2). When the number of
replicates is small, a slightly conservative p value distri-
bution (a spike near p = 1) is noticeable for lncRNAs,
and to a lesser extent for mRNAs. The underlining cause
may be the high variability of lncRNAs. This may result
in loss of power to detect true DE lncRNAs, as con-
firmed by our simulation study. Correct calibration of p
values under the null hypothesis and a large sample size
can overcome this issue. Overall, QuasiSeq, DESeq,
edgeR (exact test), and limma tools (for small numbers
of replicates) return p values that do not well satisfy the
assumption of p value uniformity.

False positive rate
The FPR refers to the probability of calling a gene SDE in a
scenario with no DE genes at all. FPR of DE tools was eval-
uated using a simulated RNAseq data with 0% DE genes
(also known as mock comparison). Results shown in Add-
itional file 1: Figure S28 demonstrate that all DE pipelines
resulted in a FPR of less than 1%. The results were similar
for both gene biotypes (mRNAs and lncRNAs), except for a
slightly higher FPR for lncRNAs than for mRNAs. The FPR
was generally larger for methods relying on the negative bi-
nomial distribution. This finding is in line with conclusions
from a previous comparative study [13] in which it was
concluded that the number of false predictions of differen-
tial expression from DE tools (most of these DE tools are
also the part of our study) is sufficiently low even for genes
with low counts (the lowest 25% expressed genes).

Simulation of lncRNA expression data only
Results presented up to this point came from simulating,
normalizing, and analyzing lncRNAs and mRNAs to-
gether. Of note, joint analysis of the two gene biotypes
may affect results. For example, estimates of gene-specific
dispersion parameters for negative binomial models are
often done by sharing information across all genes using
empirical Bays strategy [32–34], and hence the results for
lncRNAs depend on mRNA read counts and vice versa. In
addition, adjusted p values aimed at controlling FDR are
calculated taking into account the total number of genes
included in the analysis [31]. Therefore, we also evaluated
the performance of the DE tools with only lncRNA
data, using the same simulation procedures. Our con-
clusions remain the same. The results are shown in
Additional file 1: Figure S29. The FDR control is gen-
erally worse when analyzing lncRNA separately, par-
ticularly for small replicate sizes. Only a small
reduction in TPR is observed.

Web application
All simulation results can be consulted and visualized
with a web application [35].

Conclusions
The discovery and study of lncRNAs is of major rele-
vance to human health and disease because they repre-
sent an extensive, largely unexplored, and functional
component of the genome [3–5]. Several gene expres-
sion studies indicated that the expression of the majority

Fig. 5 False discovery rate and true positive rate of DE tools using simulated data from the NGP nutlin datasets. The actual FDR and TPR (at various
nominal FDR) of eight DE tools from joint simulation and DGE analysis of mRNA and lncRNA. These particular results are from simulations with 25% true
DE genes among 10,000 genes (constituting approximately 35% lncRNAs and 65% mRNAs) for designs with replicates per group. The curves represent the
trade-off between the actual FDR and TPR at different nominal FDR (ranging from 0 to 100%). The points on the curve indicate the actual FDR and TPR
values at 5% nominal FDR threshold. In general, DE tools’ performance for gene expression data simulated from the NGP nutlin dataset is better (low FDR
and high TPR) than the performance observed from the Zhang based simulation, which can be explained by the difference in the intra-group biological
variability. In line with the first simulation, DE tools’ performance appeared to be relatively lower for lncRNAs than for mRNAs
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of lncRNAs is characterized by low abundance [2, 7, 9],
high noise [8], and tissue-specific expression [7]. These
characteristics are very challenging for DE tools and may
potentially negatively affect tool performance [10, 11].
Our study evaluated the performance of widely used
statistical tools for testing DGE in RNA-seq data, with
separate analysis of mRNA and lncRNA.
Under the assumption that there is no batch effect, all

considered normalization methods perform equally well
with respect to correcting the library size differences and
reducing technical variability. However, QN tends to
substantially deviate in terms of its effect on DGE
analysis. This result was also confirmed by the poor per-
formance of the limma DE pipeline that uses QN.
Therefore, it is fair to suggest not to use QN to
normalize RNA-seq data. Concordance analysis based
on six diverse types of RNA-seq datasets demonstrated
that the DE pipelines lack strong consensus on identify-
ing a set of significantly differentially expressed genes,
gene ranking, and fold-change estimates. For datasets
with a small number of replicates and/or heterogeneous
replicates, the disagreement is even worse. Lower
concordance was observed generally for lncRNAs than
for mRNAs. In particular, limmaQN, NOISeq, baySeq,
and DESeq (also PoissonSeq and SAMSeq to a smaller
extent) showed lower concordance with other DE tools.
In contrast, edgeR, DESeq2, and limma (except lim-
maQN) tools showed better agreement with other DE
tools and consistent characteristics across datasets. In
terms of recovering known evidence of a biological
truth, DESeq2 (both settings), edgeR (robust), and limma
(voom+QW, voom, and trended) showed better capabil-
ity than all other tools, whereas PoissonSeq, SAMSeq,
NOISeq, DESeq, and QuasiSeq (both settings) showed
inferior capability.
Results of the non-parametric simulation study re-

vealed that there are substantial differences between
methods with respect to FDR control and sensitivity.
The DE tool performance is strongly affected by the
sample size and biological variability. FDR control at the
nominal level is good for all methods for datasets with
small biological variability, even with only five biological
replicates per condition. On the other hand, for datasets
that are more variable, the FDR control is only guaran-
teed for larger sample sizes, and only with the following
methods: PoissonSeq, limma tools, SAMSeq, and DESeq.
All other DE methods result in actual FDR levels far
above the nominal level, up to an FDR exceeding 50%
for lncRNAs even when studying 40 replicates per con-
dition. Differences between the tools in terms of sensi-
tivity are not very large, except for PoissonSeq, NOISeq,
DESeq, and limmaQN to a smaller extent, which showed
the lowest sensitivities among all pipelines. For highly
variable data, a maximum sensitivity of 50% for mRNAs

is obtained with at least 40 replicates per condition. For
homogeneous samples, this level of sensitivity is reached
with four to five replicates per condition. In addition, we
have demonstrated that the performance of DE tools can
be improved by filtering aberrant samples that substan-
tially contribute to the intra-group variability.
In the light of promoting reproducible science, it is es-

sential to select a DE tool that succeeds in controlling
the FDR level under a large range of conditions. Among
these DE tools, one can select one with a high sensitiv-
ity. If a DE tool has an actual FDR far larger than the
nominal level, many of the claimed discoveries will be
false discoveries. If one accepts a large proportion of
false discoveries, it is generally better still to use a DE
tool with good FDR control, but to apply the method at
a larger nominal FDR level. In this way, the researcher
still controls the error rate. This reasoning implies that
the selection of a DE tool may never rely purely on the
sensitivity. High sensitivities may be expected from
methods with a large actual FDR (and hence poor FDR
control). These high sensitivities are illusive in the light
of the large proportion of false discoveries.
Combining all results, we conclude that limma (with

variance stabilizing transformation; voom with or with-
out quality weighting; trend) and SAMSeq control the
actual FDR reasonably well, while not sacrificing
sensitivity. However, desirable performance is guaran-
teed only for a reasonably large number of replicates
and for samples with low variability. Our results also
indicate that accurate differential expression inference of
lncRNAs requires more samples than that of mRNAs.
Although we concluded that DE tools exhibit
substandard performance for lncRNAs, the substand-
ard performance of DE tools also applies to low-
abundance mRNAs.

Methods
RNA-seq datasets
A total of six datasets are used in this study. All of them
are publicly accessible. The Zhang dataset, containing
498 neuroblastoma tumors, was retrieved from Zhang et
al. [36] (GEO accession number GSE49711). In short,
unstranded poly(A)+ RNA sequencing was performed
on the HiSeq 2000 instrument (Illumina). Paired-end
reads with a length of 100 nucleotides were obtained. To
quantify the full transcriptome, raw fastq files were proc-
essed with Kallisto [37] v0.42.4 (index build with
GRCh38-Ensembl v85). The pseudo-alignment tool Kal-
listo was chosen above other quantification methods as
it is performing equally good but faster. For this study, a
subset of 172 patients with high-risk disease were se-
lected, forming two groups: the MYCN amplified (n1 =
91) and MYCN non-amplified (n2 = 81) tumors. Twenty
samples randomly selected from each group were used
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to study concordance analysis of the DE tools, whereas
all samples were considered for the simulation study.
Second, the NGP nutlin-3 dataset (GEO accession num-

ber GSE104756) contains ten biological replicates of NGP
neuroblastoma cells grown in six-well culture flasks
treated with either nutlin-3 (8M racemic mixture) or ve-
hicle (ethanol). RNA was extracted using the RNeasy mini
kit (Qiagen), quantified using Nanodrop-100, and quality
controlled using FragmentAnalyzer (High Sensitivity RNA
Analysis Kit, DNF-472-0500, Advanced Analytical). Total
RNA (100 ng) was used for TruSeq stranded mRNA li-
brary prep (Illumina), followed by paired-end sequencing
(2 × 75 nucleotides) on a NextSeq 500 instrument (Illu-
mina). On average, 20 million read pairs per sample were
generated. Raw fastq files were processed with Kallisto2
v0.42.4 (index build with GRCh38-Ensembl v85).
From the Gene Expression Omnibus (GEO) repository

of analysis-ready RNA-seq dataset [38], we accessed two
datasets: Hammer (GEO accession number GSE20895)
and Bottomly mRNA-seq datasets (GEO accession num-
ber GSE26024). The Hammer mRNA-seq dataset con-
tains the results of a study on the L4 dorsal root
ganglion (DRG) of rats with chronic neuropathic pain
induced by spinal nerve ligation (SNL) of the neighbour-
ing (L5) spinal nerve (two controls and two with L5-SNL
induced chronic neuropathic pain) [39]. The study in-
cludes RNA-seq samples of each treatment at two differ-
ent time points, and in our study we only used samples
from the first time point. The Bottomly mRNA-seq data
are an expression set obtained from the brain striatum
tissues of two mice strains (it includes ten biological
replicates of the C57BL/6J (B6) strain and 11 biological
replicates of the DBA/2J (D2) strain) [40]. Details about
library preparation and features of these datasets can be
obtained from the original papers cited above.
We also used a subset of the RNA-seq dataset from

the GTEx (Genotype-Tissue Expression) project [41],
which provides a large database of human gene expres-
sion data with more than 3000 RNA-seq samples from
54 different tissues. For our study, we selected all
biological replicates of hippocampus (n2 = 28) and hypo-
thalamus (n1 = 30) mRNA-seq counts. All information
about this dataset can be obtained from the GTEx pro-
ject database. Twenty samples randomly selected from
each tissue were used for concordance analysis of the
DE tools and all samples were considered for the third
simulation study.
The colorectal cancer (CRC AZA) RNA-seq dataset

contains three biological replicates of HCT-116 cells
grown in six-well culture flasks treated with either azaci-
tidine (1 μM) or vehicle (DMSO). RNA was extracted
using the RNeasy mini kit (Qiagen), quantified using
Picogreen, and quality controlled using Bioanalyser Frag-
mentAnalyzer. Total RNA (500 ng) was used for TruSeq

stranded mRNA library prep (Illumina), followed by
paired-end sequencing (2 × 100 nucleotides) on a HiSeq
instrument (Illumina). On average, 40 million read pairs
per sample were generated. Raw fastq files were
processed with Bowtie2/Cufflinks (index build with
GRCh37-Ensembl v75). The count data can be accessed
in Additional file 6 [42].

DE tools and normalization methods
Five normalization methods were evaluated in this study:
quantile normalization (QN) [43] implemented in limma
(limmaQN), Trimmed Mean of M-values (TMM) [44]
implemented in edgeR, limma (limmaVoom, limma-
Voom+QW, and limmaTrended), baySeq, NOISeq, and
QuasiSeq, Medians of ratios [45] implemented in DESeq,
DESeq2, and limma (limmaVst), the goodness-of-fit sta-
tistics [46] approach in PoissonSeq, and the Poisson
re-sampling technique [19] implemented in SAMSeq.
To examine the effect of normalization on DGE analysis,
we applied moderated t-test of the limma package in com-
bination to each of the five normalization methods. After-
wards, the extent of dissimilarity of results was used as an
indicator of normalization effect on DGE analysis.
Nine DE tools were evaluated through a total of 25

pipelines (various settings of the DE tools). Seven edgeR
pipelines were evaluated: (1) exact test based on negative
binomial distribution (edgeR exact, also known as edgeR
classic) [47], (2) generalized linear model for multi-factor
design (edgeR GLM) [48], (3–6) robust GLM [49], and
(7) quasi-likelihood method (edgeR QL) [50]. edgeR ro-
bust was run with four different prior degrees of free-
dom (pDF) to estimate robust gene-wise dispersions:
pDF = 10 (the default), 5, 20, and estimated pDF ob-
tained using the getPriorN() function of the edgeR pack-
age. The latter is referred to us “pDF=auto”. The pDF
determines the degree of shrinkage of gene-wise disper-
sions towards the common estimate. The shrinkage in-
fluences the precision of the DE inference, and it is
indicated to consider various pDF for different data, de-
pending on the number of samples and complexity of
the design [11, 32].
DESeq2 [10] was applied with three different settings.

The default DESeq2 pipeline applies independent filter-
ing of low-abundance genes prior to calculating the
FDR. It also flags outliers using Cook’s distance. It re-
places flagged observations by imputed values if the
number of samples is larger than 6, or excludes other-
wise. Therefore, besides the default setting, two pipelines
were considered: the first setting disables independent
filtering (setting 1); the second disables both independ-
ent filtering and outlier detection (setting 2).
Similarly, seven limma pipelines were tested: (1)

limma-voom [51], (2) limma-trended [51], in which the
mean-variance trend is incorporated into the empirical
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Bayes moderation. Both voom and trended limma pipe-
lines were also applied with a robust estimation of pDF
and variance as separate pipelines (3 and 4). (5) limma
voom was also applied in conjunction with sample qual-
ity weights (limmaVoom+QW) to down-weight low
quality samples [30]. Other limma pipelines are (6)
limma with QN (limmaQN) [13] and (7) limma with
variance stabilizing transformation using DESeq tool
(limmaVst) [14].
QuasiSeq [34] applies quasi-likelihood inference to test

DE with three different proposed pipelines to estimate
gene-specific dispersion (referred to as quasi-dispersion):
(1) independent estimates (QL), (2) shrinkage towards a
common estimate (QLShrink), and (3) spline-smoothing
(QLSpline). DESeq [45], baySeq [52], PoissonSeq [46],
SAMSeq [19], and NOISeq (particularly NOISeqBIO)
[53] were applied with their default settings. For
PoissonSeq the filtration cut-point for the sum and aver-
age counts of genes across samples were set to 1 and
0.01, respectively.
All computations were performed in R version 3.3.2

[12]. baySeq was not included in the simulation study
due to its slow computation time. The reader can also
access the R scripts in Additional file 6 [42].

Concordance analysis
The numbers of SDE genes detected for each dataset
were compared among the 25 DE pipelines. For the
Zhang and NGP nutlin datasets, we explored the pro-
portion of mRNAs and lncRNAs within the set of SDE
genes. For the other datasets, we explored the propor-
tion of low and high expressed mRNAs among the set of
SDE mRNAs. In particular, we divided the genes into
four equally large groups based on the quartiles of their
average normalized read counts across samples (DESeq
normalization). To study the concordance in SDE calling
between any two DE pipelines, we calculated the extent
of overlap as the proportion of SDE genes commonly de-
tected by the two tools. To rank genes in the order of
significance of differential expression, taking into ac-
count the biological importance of the significance, we
calculated the π score [24]:

πi ¼ − log10pi � φi

where φi is the absolute value of the estimated LFC for
the ith gene and pi is the raw p value, except for
SAMSeq, for which pi is replaced by wi

− 1, where w is
the Wilcoxon statistic [19]. For baySeq, pi is the esti-
mated Bayesian false discovery rate (BFDR) [52]. For
NOISeq, pi is replaced by an equivalent measure of the
significance as proposed by the authors (1 − the probabil-
ity of DE) [53]. Afterwards, we used Spearman’s rank

correlation to evaluate the degree of agreement among DE
pipelines with respect to gene ranking.

Recovering biological truth
Results from three published studies were used to define
the truth. (1) A list of 54 genes with sex-biased expres-
sion evidence using microarray data in at least one
central nervous system region (passing FDR 1%) were
obtained from Trabzuni et al. [25]. The ability of the DE
tools to recover these genes was examined by comparing
two groups of neuroblastoma samples of the Zhang data:
girls (n1 = 44) versus boys (n2 = 48). (2) MYCN is a bona
fide oncogenic transcription factor, activated in high-risk
neuroblastoma through high-level gene amplification. A
set of 157 MYCN pathway genes was obtained from a
microarray study on primary tumors and shRNA model
systems [26]. By comparing MYCN amplified (n1 = 20)
and MYCN not-amplified neuroblastoma (n2 = 20) sam-
ples from the Zhang RNA-seq data, the ability of the DE
pipelines to recover the 157 MYCN pathway genes was
examined. (3) TP53 is the most frequently mutated and
best studied gene in cancer. The protein itself is a tran-
scription factor regulating a set of genes involved in
cell-cycle control and programmed cell death. The
consensus between SDE genes (identified by the 25 DE
pipelines from analysing the NGP nutlin data at 1%
FDR) and the TP53 pathway was examined using a set
of 116 TP53 pathway genes obtained from a meta-ana-
lysis consensus list [27]. Nutlin-3a liberates TP53 from
MDM2-mediated inhibition and hence activates the
TP53 transcriptional response pathway.
To come to an overall conclusion, consensus rank-

ing of the 25 DE pipelines was established using Con-
sRank (version 2.0.1) R software package [54]. A
detailed description of methods and results is avail-
able in Additional file 4.

Non-parametric simulation methods
SimSeq [28] simulates a matrix of RNA-seq read counts
by sub-sampling samples from a source RNA-seq data-
set. It creates a set of DE genes based on prior informa-
tion from analyzing the source dataset (which has a
larger number of replicates than the simulated expres-
sion data). Details about the method are given in Benidt
and Nettleton [28] and in Additional file 1: Section 4.1.
Three sets of simulations were performed, each start-

ing from a different source dataset: the Zhang, NGP
nutlin, and GTEx datasets. Gene expression levels are
simulated containing a given proportion of true DE
genes (ranging from 0 to 30%) from a total of 10,000
genes. Each gene in every simulated count matrix has a
total of at least one expression in each group. Also,
counts are simulated for varying numbers of replicates
per group (2 to 40, 2 to 5, and 2 to 14 for simulations
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that start from the Zhang, NGP nutlin, and GTEx data-
sets, respectively). For joint simulation of mRNAs and
lncRNAs (for Zhang- and NGP nutlin-based simula-
tions), each simulated count matrix includes a number
of lncRNAs and mRNAs in the set of true DE genes and
non-DE genes, proportional to their numbers in the
source dataset (for the Zhang data 70% mRNA and for
NGP nutlin data 65% mRNA). We ran 100 independent
simulations for each scenario. On each simulated
dataset, we applied the 24 DE pipelines and calculated p
values, adjusted p values, LFC, and other relevant statis-
tics. These statistics were subsequently used for comput-
ing the comparative performance metrics.
For a given fraction of true DE genes, the SimSeq

method generates data for which it is known which
genes are truly DE. To each simulated dataset all DE
tools are applied and genes are called SDE if their
FDR-adjusted p values are smaller than the nominal
FDR level (nominal FDR ∈ [0, 1]). For a single simulated
dataset the observed false discovery proportion (FDP) is
calculated as FDP = FP/(FP + TP), where FP and TP are
the numbers of incorrect (false) and correct (true) rejec-
tion of the null hypothesis, respectively. The actual false
discovery rate (FDR) is then computed as the average of
the FDPs over all simulations. When the FDR is com-
puted for a scenario with no DE genes at all, it is gener-
ally known as the false positive rate (FPR). For this
scenario, the SimSeq procedure simply samples repli-
cates from only one group of the source dataset and ran-
domly assigns the samples to one of two arbitrary mock
groups. The actual true positive rate (TPR), which is also
called sensitivity, is defined as the average of the true
positive proportions (TPP) across independent simula-
tions, TPP = TP/(TP + FN), where FN is the number of
incorrect decisions to fail rejecting the null hypothesis.
To demonstrate the importance of pre-processing of

samples in reducing the intra-group variability (and
hence improve the performance of DE tools), we ran an
extra simulation that starts from the Zhang data (which
contains the most variable samples) by filtering a set of
outlying samples beforehand. We particularly used prin-
cipal component analysis to identify such samples. After
excluding the top 10% most extreme samples (in a
two-dimensional space formed by the first two principal
components) we applied the non-parametric simulation
procedure on the remaining samples. Details can be
found in Additional file 1: Section 4.2.3.
The quality of simulated data was examined using the

quality metrics proposed by Soneson and Robinson [29]
as implemented by their countsimQC R package (ver-
sion 0.5.2). The metrics evaluate the average expressions
of genes, variability, mean-variance relationship, correla-
tions among replicates, correlations among genes, and
fraction of zero counts. The quality assessments were

positive in all aspects, and the reports generated by the
countsimQC R package can be found in Additional file
5A. In addition, the representativeness of the simulated
mRNA and lncRNA expression data is further explored
using similar quality metrics (see Additional file 5B).

Web application
A web application has been developed using the R Shiny
package (version 1.0.5) [55]. This user interface allows
the user to consult and visualize all detailed results from
the simulation studies. It can be accessed at [35].
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