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ABSTRACT

We present our latest results on silicon photonics neuromorphic information processing based a.o. on techniques
like reservoir computing. We will discuss aspects like scalability, novel architectures for enhanced power efficiency,
as well as all-optical readout. Additionally, we will touch upon new machine learning techniques to operate these
integrated readouts. Finally, we will show how these systems can be used for high-speed low-power information
processing for applications like recognition of biological cells.
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1. INTRODUCTION

The persistent increase in demand for systems that can process the massive amounts of data available today
has strained the currently employed transistor-based von Neumann architectures. Simultaneously, the growing
demand for high-throughput, high-fidelity telecommunications systems has generated significant implementation
hurdles for the associated signal processing systems.

To address the compounding challenges for these computation and communication systems, a major design
revolution is underway for the next generations of these systems in the IT research world. The frantic search for
potential solutions has initiated a revisit to analog computation platforms but with the aim of combining them
with the state-of-the-art in large-scale integration technology. These platforms exploit the inherent dynamics
of certain physical systems for processing and/or computing. Of these, prominently under consideration are
biologically inspired techniques, and particularly brain-inspired computing approaches that employ artificial
structures that mimic the brain’s neural computational semantics.

Reservoir computing (RC) is a brain-inspired computing approach that initially emerged as a way around
the intricacies associated with correctly training recurrent neural networks.1–3 Classical software RC involves
setting up a large randomly initialized nonlinear dynamical system (the reservoir) – usually an artificial neural
network – that is tuned into a specific dynamical regime to allow for the following three conditions: separability
of the inputs, generation of similar outputs for similar inputs and some form of finite memory of the previous
inputs. Under these circumstances, the states of the reservoir can be linearly combined, following task-imposed
optimization criteria, to extract the desired outputs for the specified inputs.

Beyond the initial software implementations, RC has evolved into a way to enable computing with physical
nonlinear dynamical systems. Examples of the concept applied to mechanical systems, memristive systems,
atomic switch networks, boolean logic elements and photonic systems can be found in.4–8 Photonic RC particu-
larly presents a number of benefits compared to e.g. electronics, as it offers a large bandwidth and is inherently
massively parallel.

To date, experimental demonstrations of photonic reservoirs routinely achieve state of the art performance on
various information processing tasks. Implementations based on a single nonlinear node with a delayed feedback
architecture have proven that photonic RC is competitive for analog information processing.9–17 Moreover,
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integrated photonic reservoirs can push computation speeds even higher for digital information processing. The
performance of integrated photonic reservoirs has been studied numerically for networks of ring resonators,18–22

networks of SOAs,7 and experimentally with networks of delay lines and splitters in.23 Integrated photonic
reservoirs are particularly compelling, especially when implemented in the CMOS platform as they can take
advantage of its associated benefits for technology reuse and mass production.

A recent development in the design of RC systems is the realization that for certain tasks that are not strongly
nonlinear, it is possible to achieve state-of-the-art performance using a completely passive linear network, i.e.,
one without amplification or nonlinear elements. The required nonlinearity is introduced at the readout point,
typically with a photodetector.23 The work discussed in this paper is also based on this architecture. Aside from
the integrated implementation introduced in,23 the passive architecture has been adapted to the single node with
delayed feedback architecture in form of a coherently driven passive cavity.9

The rest of this paper is organised as follows. First, we discuss how passive reservoirs can benefit from
improved power efficiency by distributing the same total input power over multiple inputs. Second, we introduce
a novel hardware-friendly training scheme for devices with integrated all-optical readout. Finally, we present
a spatial analog of reservoir computing which can be used to identify different types of biological cells in a
flow-cytometry context.

2. PASSIVE INTEGRATED PHOTONIC RESERVOIR COMPUTING

We compare the performance of an architecture with the same size as in,23 with the same total input power
injected into the reservoir but distributed over different nodes. We will show that even when the same power is
injected into the reservoir, the increased variation between the reservoir states contributes considerably to the
computing power of the architecture.

In this work, each considered combination of reservoir initialization and input configuration was tasked to
solve the delayed XOR task. The current output bit for this task is the XOR of the current input bit with one
ndelay bits in the past. Here we express it as:

y[n] = x[n] ⊕ x[n− ndelay], (1)

where x[n] is the bit-level representation of the input data stream and y[n] is the bit-level representation of the
output. Before injection into the reservoir, the inputs (x[n]) are converted from logical levels to discrete sampled
data by upsampling and pulse shaping steps.

This task was considered as it is the most difficult of all delayed binary tasks involving only two bits. This
is the case because, in machine learning terms, XOR is not linearly separable (see for example24).

For all considered input cases, the 4x4 (16 node) reservoir architecture was used to generate the states. This
number of nodes was chosen as it is a design that is both cost-effective to produce with multi-project wafer runs,
but also has a good performance on a number of tasks. In all cases, the length of the interconnections between
the reservoir translates to a propagation time of 62.5 ps, matching the current generation of available chips.

For a fair comparison between the different cases, the same aggregate input power across all input nodes
was used: 100 mW. Where the input was fed into more than one node, the power was equally divided between
the nodes. Results are reported as averages across 30 different random initialisations of the input weights and
reservoir waveguide phases (each using different randomly generated bit streams).

Figure 1 shows averaged error rates plotted against total input power.

We observe that as we increase the number of the input nodes, the minimum power requirements for error-
free performance also go down. The most significant jump in power efficiency is an approximately 2 orders of
magnitude decrease for the best 4-input node combination as compared to the 1 or 2 node input combinations.
This can be attributed to the fact that the [5, 6, 9, 10] combination is the central loop in the swirl architecture
which allows for significant signal distribution for a small number of inputs. We also observe that increasing the
number of input nodes beyond 4 does not significantly impact the power efficiency. Since each input that needs
to be driven incurs an additional hardware cost, we can conclude that driving the central four nodes is the most
cost- and power-efficient solution.
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Figure 1: Error rate vs total input power for different injection scenarios. The minimum measurable error, given
the number of bits used for testing, is 10−3.

3. HARDWARE-FRIENDLY TRAINING ALGORITHMS

Regular reservoir training algorithms, e.g., ridge regression or recursive least squares, assume full observability
of all states of the reservoir. For a passive photonic reservoir with on-chip readout, this full observability is only
obtained if a high-speed photodetector is implemented on the chip for each reservoir state to be read out. This
multiple-detector approach is costly in terms of chip footprint and power consumption, and therefore we want to
investigate an approach where the linear combination is happening in the optical domain and the result is being
sent to a single photodiode. Since this loses full observability of the states, novel algorithms to train passive
photonic reservoirs need to be found.

In order to achieve this, we exploit the weighting mechanism of the optical readout of the reservoir to read
out all reservoir states through the single photodetector available at the end of the summing structure. Reading
out the state variable si in response to the training input sequence can be simply realized by setting the weight
of that state variable to 1 and all other weights to 0. By presenting the whole training input sequence to the
reservoir n times, where n is the number of nodes of the reservoir, the training responses of all nodes can be
collected through the single photodetector. By taking the square root of each measured power value, we can
approximately invert the nonlinearity of the photodetector and obtain an estimate for the evolution of the light
intensity over time at the corresponding reservoir node. However, since passive photonic reservoirs work with
coherent light, it is not sufficient to know only the light intensities at the points predefined as reservoir states:
we also need to know the corresponding phase of the light. While the absolute phase of the optical signal inside
the reservoir is lost within the photodetection process, the relative phases between the optical state signals
influence the power at the detector output. We therefore estimate the phase between two given optical signals
within the integrated reservoir by obtaining the evolution of the sum of their states through time as we apply
the training signal at the reservoir’s input. We now use the phase of one state signal (node) as a reference.
Using the evolution of the power of sum between the reference node’s signal and each other node signal, as well
as the previously determined powers of all individual states, we are able to estimate the relative phase of each
node signal with respect to the reference node using basic trigonometric relationships. The last stage of this
calculation consists of an inverse cosine, which is is injective, in the sense that there are always two solutions
within the range [−π, π]. To discriminate between them, we perform a third measurement between the reference
node’s signal and each other node’s signal, now shifting the phase of the reference node’s readout weight by π

2
and comparing with the phase estimate obtained before. As a result, the whole process requires that we feed the
training sequence through the reservoir 3n−2 times. Under ideal conditions, this nonlinearity inversion procedure



is exact. Our simulations confirm that, when exchanging the true reservoir states in our setup with the states
estimated through the method elaborated above, the resulting bit error plot is identical. Since detector noise is
neglected in our current simple model of an integrated optical readout, future work will focus on extending the
proof-of-concept nonlinearity inversion approach elaborated here to a more general setting incorporating a more
realistic photodetector model.

4. PILLAR SCATTERERS TO IMPROVE BIOLOGICAL CELL IDENTIFICATION

The sorting of biological cells is of key importance in several biomedical applications, like diagnostics, therapeu-
tics and cell biology. However, an accurate classification and separation of different cell types is usually expensive,
time consuming and often requires alterations of the samples due to the use of labels, e.g. fluorescent tags, that
may hinder subsequent analyses.25 For these reasons, the development of label-free, high-speed, automated and
integrated cell sorting solutions is of particular interest. Among several options, the employment of digital holo-
graphic microscopy in microfluidic flow cytometry is a promising candidate. In this technique, the classification
is carried out through the analysis of the interference pattern (hologram) projected by the cell when illuminated
by monochromatic light. The hologram is acquired by an image sensor and contains information on the 3D
refractive index structure of the cells.26The large amount of information contained in a cell hologram enables
nontrivial analysis and classifications. On the other hand, the computational cost of elaborating such a complex
source of information by reconstructing the image from the hologram is a major hindrance to an increase in the
cell sorter throughput, e.g. by parallelization of the process.

In this work, a passive, linear, integrated photonic stage is proposed as an interface between the hologram
projection and the image sensor, in order to simplify the classification process in the relatively slow electric
domain. In particular, the forward scattered light coming from a cell and the corresponding background are
made to propagate through a collection of silica pillar scatterers of elliptic cross section embedded in silicon
nitride (Fig. 2). For computational time reasons, this process has been investigated via 2D finite-difference time-
domain simulations as a proof-of-concept, approximating the 3D case of a cell flowing in a microfluidic channel
interfaced with a photonic chip. The far-field intensity of the light exiting the scatterers cluster is collected by
an array of virtual pixels that approximately simulate a line scan image sensor. The pixel outputs are fed into
a linear classifier that can be, for example, implemented in the electric domain.

The photonic stage containing the scatterers is intended to exploit the nonlinearity of the transfer function
that relates the phase shift accumulated by the light through the cell to the corresponding interference pattern
measured by an image sensor.

Let us consider a green laser source (λ = 532nm) and let us compare the classification error on the test
samples when no scatterers are present and when, instead, 4 scatterer layers are employed (considering the
random displacement amplitude Ar = 150nm and the layer distance D = 1.846µm). Let us stress that the
error rate expected value and the confidence intervals drawn in all the following graphs are extracted from the
results obtained from 20 random permutations of the simulated samples and correspond to an optimal choice of
the number of training epochs. The resulting error rate values for different numbers of pixels and for different
noise levels (Fig. 3) show that the use of scatterer layers allows for a significant error rate reduction (up to
∼ 50%), provided that a sufficient number of pixels and a low enough noise level are considered. The increased
sensitivity of classification performance towards added noise level when scatterers are used is ascribed to the fact
that the scatterers presence unfolds the cell diffraction pattern into a higher number of components that may be
important for classification. Thus, it is probable that some of these components have low intensity with respect
to the average pattern intensity and are therefore easily overcome by high relative levels of noise.

The chosen scatterer configuration was the best performing among the tested combinations (800 simulated
samples each). Performances similar to the ones presented in this paper were obtained for a broad number of
cases. Therefore, the main conclusion of this (non-exhaustive) geometrical exploration is that the employment
of scatterer layers of different kinds can decrease the classification error rate significantly, up to 50%.



Figure 2: Schematic of the classification process. From right to left: a monochromatic plane wave impinges
on a microfluidic channel containing a cell in water (nH2O ∼ 1.34), which has a low refractive index contrast
(ncytoplasm = 1.37, nnucleus = 1.39); the forward scattered light passes through a collection of silica scatterers
(nSiO2

∼ 1.461) embedded in silicon nitride (nSi3N4
∼ 2.027) and organized in layers; the radiation intensity is

then collected by a far-field monitor, which is divided into bins (pixels); each pixel value is fed into a trained
logistic regression, which classifies the cell as a “normal” cell (small nucleus) or as a “cancer” cell (big nucleus).
The logistic regression consists of a weighted sum of the pixel values. The weights are trained so that the sum
exceeds a threshold value only if a certain input class is recognized.

5. CONCLUSIONS

We have presented a study showing that distributing the available input power of different input channels is
beneficial for performance and scalability. Moreover, we presented a hardware-friendly training mechanism that
deals with the limited observability in case the linear combination is performed entirely in the optical domain.
Finally, we introduced a spatial analog of reservoir computing - an array of pillar scatterers - which can boost
the performance of cell-sorting applications.
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